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A BS TRA C T 

The use of Statistics in risk assessment studies is an expanding field where the 
selection of the proper technique is often difficult to make. This is the case with 
the sensitivity analysis methods used in conjunction with Monte Carlo 
computer codes. The Monte Carlo approach is commonly used in risk 
assessment, where it can be used to estimate the uncertainty in the model's 
output due to the uncertainty in the model's input parameters. This treatment 
is referred to as Uncertainty Analysis, and is generally complemented with a 
Sensitivity Analysis, which is aimed at the identification of the most influential 
system parameters. Often different sensitivity analysis techniques are used in 
similar contexts, and it would be useful to identify (a) whether certain 
technique(s) perform better than others and (b) when two or more techniques 
can provide complementary information. 

In this article a number of sensitivity analysis techniques are compared in 
the case of non-linear model responses. The test models originate from the 
context of the risk analysis for the disposal of radioactive waste, where 
sensitivity analysis plays a crucial role. The statistics taken into consideration 
include: 

Pearson Correlation Coefficient 
Partial Correlation Coefficient 
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Standardized Regression Coefficient 
Smirnov Test Statistic 
Mann-Whitney Test Statistic 
Spearman Rank Correlation Coefficient 
Partial Rank Correlation Coefficient 
Standardized Rank Regression Coefficient 
Cramer-Von Mises Test Statistic 
Two sample t Test Statistic 

All the techniques are applied to output from the same Monte Carlo 
simulations, where random sampling is used for the sample selection. 
Hypothesis testing is systematically applied to quantify the degree of 
confidence in the results given by the various sensitivity estimators. Although 
the problem of relative efficiency is not touched upon explicitly, the estimators 
are ranked according to their robustness and stability for the test case under 
consideration, and qualitative differences in the prediction of  the various tests 
are pointed out. 

1 INTRODUCTION 

1.1 The problem 

The analysis of the sensitivity of model response to the value of input 
parameters is a crucial step in the analysis of model performance, especially 
when the model itself is complex and involves many variable parameters. 
The difficulty of Sensitivity Analysis (SA) increases when: 

(a) the model is non-linear; 
(b) the model is non-monotonic; 
(c) the model's output is a time dependent function of the input 

variables; 
(d) the distribution functions of the input parameters range over many 

orders of magnitude; 
(e) there are many 'ties' in the output vector (a possibility is that many 

output data are zero); 
(f) the computer code where the model has been implemented is time 

consuming and expensive to run. 

It is well known that non-parametric statistics based on the ranks of both 
input and output vectors are an appropriate tool for tackling sensitivity 
analysis problems.1 A great number of different techniques of this type are 
described in the literature.1- 6 

Since different research groups are currently using one or another of these 
techniques in similar contexts the problem arises of investigating the relative 
performance of the various statistics. 
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In this work a number of statistics have been considered, which includes 
the Spearman 'rho' coefficient, the partial rank correlation coefficient, the 
standardized rank regression coefficient and some two-sample statistics such 
as the Mann-Whitney test. A few parametric statistics have also been 
included for the sake of comparison. 

1.2 Previous work 

The problem of intercomparing uncertainty and sensitivity analysis tech- 
niques has already been addressed by Iman and Helton, 4 who used three 
different complex test models to intercompare the performances of (a) 
response surface replacement for the computer model, (b) modified Monte 
Carlo as exemplified by Latin Hypercube sampling with and without 
regression analysis and (c) differential analysis. 

Some of the conclusions of that article are summarised here: 

(a) Response surface replacement for the computer model. Fractional 
factorial design has been used to generate the response surface. Such 
a technique is an optimal choice for the input selection if the output 
behaves in a linear fashion. Because this is not generally the case with 
complex models, the response surface might not be adequate in 
approximating these models. 

(b) Latin hypercube sampling. It is the easiest to implement, especially 
when the number of variables is large. This type of design can easily 
handle complex multivariate input structures, when the input 
variables are not independent from each other (see also Ref. 7). The 
input space is well represented with this technique. As far as 
sensitivity analysis is concerned several methods for ranking the 
input variables can be adopted, including the powerful partial rank 
correlation coefficient. This is not always the case when using the 
above design (a). 

(c) Differential analysis. This technique is intended to provide informa- 
tion with respect to a small perturbation about a point. 'Problems 
arise, however, in an uncertainty analysis or in sensitivity analysis 
when large uncertainties are present and attempts are made to 
extend the results from the small perturbation in the input variables, 
for which the differential analysis is intended, to a broader global 
interpretation'. 4 In other words, for complex models with large 
uncertainties the results might be too sensitive to the choice of the 
base-case point. The implementation of this technique can be 
difficult, depending on the nature of the model. The partial rank 
correlation coefficient cannot be used for sensitivity analysis. 

The same authors have subsequently condensed their study in a different 
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article, s confirming their conclusions and recommending the use of LHS in 
conjunction with non-parametric rank correlation/regression techniques for 
sensitivity analysis. 

1.3 Approach 

Because design (b) above appeared as the most promising as far as sensitivity 
analysis is concerned it has been used in the present article, by expanding on 
the use of different SA estimators. 

A test case has been selected which displays most  of the difficulties 
mentioned in section 1.1. It pertains to the radioactive waste management 
field, and has been used already in a recent code intercomparison exercise 
promoted by the Nuclear Energy Agency of the Organization for Economic 
Cooperation and Development (OECDfNEA) 9 in order to check the 
statistical sampling techniques of different computer codes used for 
probabilistic safety assessments for nuclear waste repositories. 

The input data sample has been generated using purely random sampling, 
as the Latin Hypercube was not suited to some of the SA techniques being 
compared (Smirnov test, for example; see Appendix). As usual, when 
running a model in a Monte Carlo fashion, the input sample consists of 
different sets (vectors) of input parameters. For each set the model is 
executed once. The ensemble of these executions (runs) is called a simulation 
(or case), and yields a distribution of values for the output variable(s) under 
consideration. Uncertainty and sensitivity analyses aim at characterising 
this distribution(s) with respect to the distributions of the input parameters. 

The approach taken in the present study has been to realize different 
'simulations', changing each time the seed used for the random number 
generation, and to compare the variances of the SA estimator prediction 
over the various simulations. Estimator-estimator score correlation 
coefficients have also been computed. A short description of the formulae 
used in the sensitivity analysis study is given in the Appendix. 

2 METHODS 

2.1 Sampling 

Random sampling has been systematically used for all the simulations 
described. Because of the random pairing of the input values undesired 
correlations among the input variables may be introduced. Such correla- 
tions are particularly undesirable when the sample has also to be used 
for purposes of sensitivity analysis. Although a technique to eliminate 
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spurious correlations 7 is available in our  sampling subrout ine it was not  
used for the test model  under  consideration.  

2.2 Sensitivity analysis 

Various statistical techniques have been applied to the model  ou tpu t  data  in 
order  to rank the input  parameters  as a funct ion of  their influence on the 
ou tpu t  distribution. It is unders tood  that  the ranking will not  be unique. 
Different est imators (techniques) can focus on different kinds of  inpu t -  
ou tpu t  correlation, thus assigning different ranks to the parameters.  

For  the sake of  conciseness the tests applied in this exercise are referred to 
by the abbreviated name used in the compute r  program.  A list of  these 
abbreviat ions is given below. 

Pearson Correlat ion Coefficient 
Spearman R a n k  Correlat ion Coefficient 
Partial Correlat ion Coefficient 
Partial Rank  Correlat ion Coefficient 
Standardized Regression Coefficient 
Standardized R a n k  Regression Coefficient 
Smirnov Test  Statistic 
C r a m e r - V o n  Mises Test Statistics 
M a n n - W h i t n e y  Test Statistics 
Two Sample t Test Statistic 

A description of  the above techniques is given in the Appendix,  
main  characteristics are summarized in Table 1. 

P E A R  
SPEA 
PCC 
P R C C  
SRC 
S R R C  
S M I R  
C R A M  
T M W T  
TTST 

while their 

TABLE 1 
Classification of the Statistics Used. P = parametric; NP = non-parametric; Xj is the Generic 
Input Variable (j = 1, 2 ..... K), which takes the Value x~ in the ith Runs (i = 1,2 ..... N). Y~ is 

the Corresponding Value of the Output Variable 

Objective Statistic type Data disposition 

Determination of correlation 
within the sample 

Test for the location of 
the two samples 

PEAR i 1 1 bivariate sample (y,,x,~) 
SPEAR N P )  i= 1,2,..., N for each variable Xj 
PCC P 1 (K+ 1) variate sample 
PRCC N (Yl, x i l ,  xi2 . . . . .  XiK) 
SRC i= 1,2 ..... N 
SRRC NP J for each variable Xj 

f TTST P } 2 monovariate samples 
SMIR NP (x~j) i = 1, 2 ..... N 1 
CRAM NP (x.i)n=l,2 ..... N 2 
TMWT NP for each variable Xj 
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2.3 Computations 

The results from the test model have been obtained with the LISA.SCK 
code. 1° This code has been developed at the Centre d'Etudes Nucleaires 
(SCK/CEN) ofMol  (B) by adapting the LISA code, from the Joint Research 
Centre (JRC) of the CEC in ISpra (1). 11 The sensitivity analysis 
computations have been made with the SPOP code developed at the JRC. 12 

3 THE TEST MODEL 

The 'Level 0' model was set up by the Probabilistic System Assessment Code 
(PSAC) group of the OECD/NEA in order to run one of the group's 
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benchmark exercises. 9 Twelve different organizations from the United 
Kingdom, Belgium, West Germany, Sweden, Finland, Canada, USA and 
Japan have participated in the exercise, which was mainly focused on 
uncertainty analysis, but also on sensitivity analysis. 

The test model describes a hypothetical disposal system making use of 
simplified mathematical equations. The following compartments can be 
identified: the waste form, a buffer material, the geosphere and the biosphere. 
Seven radionuclides, 135Cs, 129I, t°Tpd, 795e, 1515m, 1265n and 93Zr are 
considered in the exercise. 

The rate of radionuclides' release from the waste form is assumed to be 
constant until depletion of the source. The transport through the buffer is 
described as a pure delay function, i.e. the output from the buffer sub-model 
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equals  its i npu t  de layed  by  a t ime t B, c o m p u t e d  as a func t ion  o f  the buffer  

charac te r i s t i cs  a n d  o f  the  r ad ionuc l ide  d i s p e r s i o n - r e t e n t i o n  pa rame te r s .  
T h e  geosphe re  m o d e l  includes  advec t ion  a n d  dispers ion.  T h e  gauss ian  
t r ans fe r  func t ion  c o r r e s p o n d i n g  to  t r a n s p o r t  by  advec t ion  a n d  d i spers ion  is 
s implif ied to  a r e c t a n g u l a r  t r ans fe r  func t ion ,  the wid th  o f  which  s imula tes  
the effect o f  d ispers ion.  T h e  b i o s p h e r e  m o d e l  cons iders  w a t e r  inges t ion  only,  

where  the w a t e r  is p u m p e d  f r o m  a well which  cons t i tu tes  the g e o / b i o s p h e r e  
interface.  

R a d i o a c t i v e  decay  is cons ide red  in each  c o m p a r t m e n t .  
Because  o f  the  a p p r o x i m a t e  f o r m u l a e  used  for  diffusion and  dispers ion,  

the o u t p u t  m a i n l y  consis ts  o f  sha rp ly  p e a k e d  or  r e c t a n g u l a r  pulses.  The  

o u t p u t  to ta l  dose  (all the nuclides) for  five typica l  runs  is s h o w n  in Fig. 1, 
where  each  p e a k  genera l ly  represen ts  the c o n t r i b u t i o n  f r o m  a different 

nuclide.  I t  c an  be seen tha t  for  m a n y  t ime  po in t s  there  is no  dose  at  all, i.e. 
yi(t) = 0, so tha t  the o u t p u t  vec to r  Y(t)  con ta in s  m o s t l y  zeroes.  This  resul ts  in 
a large n u m b e r  o f  ties when  the r a n k s  are  t a k e n  and  cons t i tu tes  a ser ious  

p r o b l e m  for  m o s t  o f  the SA techn iques  employed .  

TABLE 2 
Input Parameters and Their Distribution for the Test Model 

Notation Definition Distribution Value 

RLEACH leach rate log-uniform 
XBFILL buffer thickness uniform 
XPA TH geosphere path length uniform 
V ground water velocity log-uniform 
DIFFG geosph, diff. coeff, normal 
ADISPG dispersivity in the geosph, log-uniform 
,4BSR water extraction rate uniform 
R M W  water ingestion rate uniform 
BD(Cs) sorpt, const, in the buffer lognormal 
BD(I) sorpt, const, in the buffer lognormal 
BD(Pd) sorpt, const, in the buffer lognormal 
BD(Se) sorpt, const, in the buffer lognormal 
BD(Sm) sorpt, const, in the buffer lognormal 
BD(Sn) sorpt, const, in the buffer lognormal 
BD(Zr) sorpt, const, in the buffer lognormal 
KD(Cs) sorpt, const, in the geosph, lognormal 
KD(I) sorpt, const, in the geosph, lognormal 
KD(Pd) sorpt, const, in the geosph, lognormal 
KD(Se) sorpt, const, in the geosph, lognormal 
KD(Sm) sorpt, const, in the geosph, lognormal 
KD(Sn) sorpt, const, in the geosph, lognormal 
KD(Zr) sorpt, const, in the geosph, lognormal 

(0"002 69, 12"9) kg/m2/a 
(0-5, 5) m 
(1 000, 10000) m 
(0.001, 0"1) m/a 
mean = 0.04, std = 0.001, m2/a 
(2, 200) m 
(5.105, 5.106) m2/a 
(0.7, 0.9) mZ/a 
mean = -0'46, std =0.26, m3/kg 
mean = -5-07, std = 1.34, mS/kg 
mean = - 1.91, std =0"669, mS/kg 
mean = -2"38, std =0'143, m3/kg 
mean = - 2" 13, std = 0'605, m3/kg 
mean = - 1-77, std = 0.729, mS/kg 
mean = - 0-71, std = 0.5, mS/kg 
mean = - 1-46, std = 1-6, mS/kg 
mean = - 6"07, std = 2"6, m3/kg 
mean = -2.91, std = 1-4, m3/kg 
mean = - 3-38, std = 0'3, mS/kg 
mean = -3-13, std = 1-2, m3/kg 
mean = -2.77, std = 1.4, mS/kg 
mean = - 1.71, std = 1'0, mS/kg 
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The mean total dose resulting from a simulation of 5000 runs is given in 
Fig. 2, together with the 95% Tchebycheffconfidence bounds. In spite of the 
large number of runs the curve has not yet converged to a smooth profile. 

The model parameters are given in Table 2 together with the 
characteristics of their distributions. The large range of variability of the 
parameters is also a source of difficulty for the SA. 

4 RESULTS AND DISCUSSION 

4.1 Preliminary analysis 

One of the findings of the code intercomparison exercise described in Ref. 9 
was that the test case used there (and in the present work) was much more 
difficult for the sensitivity analysis part than it was for the uncertainty 
analysis part. 

This difficulty is illustrated by the analysis of the model coefficient of 
determination R 2, which provides a measure of the effectiveness of the linear 
regression model based upon the input parameters. Values close to one (in 
absolute value) indicate a good performance of the regression model (see 
Appendix). Low R 2 values suggest that the output under consideration is 
poorly reproduced by the linear regression model, and indicate a poor 
performance of the SA techniques based upon regression. 

In Fig. 3, three quantities have been plotted: 

(1) the R~ values based upon the values of the input parameters for the 
output variable 'dose rate at the time point' (R 2 based upon the 
SRCs; see Appendix); 

(2) the R 2 values based upon the ranks of the input values (R 2 based upon 
the SRRCs); 

(3) the percentage of non-zero output for each time point. 

The curves in Fig. 3 have been computed from a simulation of 1000 runs. It 
can be seen that the percentage of non-zero runs never exceeds 27 % and is as 
low as a few per cent for the lowest time point. The model coefficients of 
determination are also very low, never exceeding 0-26 for the regression 
based on the ranks. Rr 2 values for the regression based upon the raw values 
are even lower, indicating that a sensitivity analysis based upon a linear 
regression technique is not really worth being pursued. It must be stressed 
that the results given in Fig. 3 are not due to the sample size, i.e. the model 
coefficient of determination does not increase when increasing the sample 
size. 
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Fig. 3. Model  coefficient o f  determination on raw values (*) and ranks ( [ ] )  and percentage 
o f  non-zero outputs ( ~ )  for output = 'dose at the time point' as a function of  time. 

It is quite difficult in this context to establish the relative importance of  the 
input parameters; if all the parameters taken together account for only 24% 
of  the data variance it may not be worthwhile to determine how much 
variance each of  them can account for individually. Ranking the parameters 
on this basis would be questionable. 

In Fig. 4 the percentage of  non-zero runs and the R 2 based on the SRRCs 
have been plotted, taking as output the 'maximum total dose rate between 
t = 0 and the considered time point'. The percentage runs yielding non-zero 
output is much higher in this case, as can be expected, and the model 
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Fig. 4. Mode l  coefficient of  de te rmina t ion  on  raw values ( * ) a n d  ranks  (I-q) and  percentage 
of  non-xero  ou tpu ts  ( ~ )  for ou tpu t  = ' m a x i m u m  dose up  to the t ime poin t '  as a funct ion o f  

time. 

,b coefficient of determination increases consistently. The strong dependence 
of R 2 upon the fraction of non-zero runs is evident. 

It is a peculiar characteristic of this model that the model coefficient of 
determination increases with time. 

In view of the above considerations it was decided to use the maximum 
dose up to time t, rather than the dose at that time point, as the output 
quantity. In this way the SRRCs can be used effectively to rank the input 
parameters and a comparison can be made with the predictions of the other 
SA estimators. 
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4.2 Relative performance of SA estimators as a function of sample size 

The output from the test model consists of the maximum total doses, at 
selected points in time between zero and 10 million years.t For the sake of 
conciseness this quantity shall be simply referred to as 'dose' in the following 
discussion. In order to investigate the influence of the sample size on the 
relative performances of the selected SA estimators the following procedure 
was taken: 

(a) A sample of 5000 runs is generated using the LISA.SCK code; for 
each run the sampled input parameter and the output dose time series 
are stored. 

(b) The sample is then divided into subsamples ranging between 100 to 
1000 runs (see table). Each set of subsamples characterised by the 
same number of runs is named a 'partition', where each partition 
contains the same 5000 runs of the original sample. 

Partition Number of simulations 
in the partition 

S~e of each simulation 
(=number ofruns) 

1st 50 100 
2nd 20 250 
3rd 10 500 
4th 5 1000 

(c) Each of the 85 simulations (50 + 20 + 10 + 5) is taken as the input for 
a separate SA study, where the sensitivities of dose at different time 
points (10 5, 10 55, 10 6, 10 6'5, 10 7 yr) are analyzed using the SPOP 
code. 

(d) The variance of the estimators' prediction over the various 
simulations is investigated. 

For each simulation the following quantities are computed: 

(a) quantiles of the test distribution corresponding to the number ofruns 
employed at the selected significance level (see Appendix); 

(b) model coefficient of determination R 2 (on raw values and on ranks) at 
the selected time points; 

5" The huge time span chosen for the intercomparison is characteristic of  current 'radwaste' 
risk calculations in European countries 13-15 and in Canada.16'l~ A time scale of  the same 
order of magnitude is adopted in the NEA coordinated international feasibility study for the 
sub-seabed disposal. 18 



A comparison of sensitivity analysis techniques 241 

(c) percentage of  non-zero dose runs at the selected time points; 
(d) values of  the 10 statistics (e.g. PEAR,  SPEA, etc.) for the 22 

considered variables at the selected time points; 
(e) variable ranking corresponding to each statistic; 
(f) statistic-statistic score correlation coefficient. 

An example of  a quantile table is given in Table 3, which refers to one of  
the 1000 run simulations contained in the 4th partition. Values of  R 2 and of  
the percentage of  non-zero runs for the same simulation are given in Fig. 4 
discussed previously. A statistics' table is presented in Table 4 for the 
t = 1 0  6 yr time point, and in Table 5 the corresponding ranks matrix is given, 
where each entry represents the rank given by each SA estimator to each 
variable (rank = 1 for the most  important  variable, rank = 22 for the least 
important  one). Only the 6 most important  variables are ranked in Table 5. 

It can be seen that different techniques produce different rankings: variable 
V (water velocity in the geosphere) is identified as the top rank variable by all 
the tests, while for the second most influential variable there is disagreement 
even among the more 'reliable' non-parametr ic  tests (KD(I), XPA T H  and 
A B S R  are selected by SPEA, PRCC and SMIR respectively). 

Estimators'  prediction also varies from simulation to simulation, and this 
variation has been taken as the basis for investigating the relative 'stability' 
o f  the estimators at different sample sizes. 

For  each simulation five tables similar to T a b l e  5 were generated, 
corresponding to the five time points under consideration. These tables are 
used to analyze the reproducibility of  the SA estimators over the various 
simulations. Let the 1st partit ion be taken as an example. Here there are 50 
different simulations of  100 runs each, and for each simulation and time 
point a ranking table like Table 5 is produced. Because of  the random 
sampling, different rankings will be produced in different simulations. 

Let R~k (test, SIMi) represent the rank given by the statistic 'test' (e.g. 

TABLE 3 
Quantiles W of the Test Distribution for a 1000 Run Simulation. 
Contingency Level ALPHA=0.05. For the Two Sample Tests (e.g. 

SMIR) a 10%-90% Partition was used 

W(ALPHA/2) for the normal distr. = -1"96 
SPEA W(ALPHA/2)  = - 0.062 W(1 - ALPHA/2) = 0.062 
SMIR W(I - ALPHA) = 0"143 
CRAM W(I - ALPHA) = 0"461 
TTST W(ALPHA/2.) = - 1-96 (t distribution) 
TMWT W(ALPHA/2.) = - 1"96 (t distribution) 
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TABLE 4 
Statistics Value (Non-significant Values Omitted) 

Variable P E A R  S P E A  P C C  P R C C  S R C  S R R C S M I R  C R A M  T T S T  T M W T  

v 0.48 0,83 0-50 0-88 0.48 0.83 0.66 17.78 -17.27 -12-97 
R L E A C H  - -  - -  - -  0.11 - -  0'05 0.16 0.54 - -  - -  
A B S R  - 0 " 2 2 - 0 " 1 5 - 0 . 2 5 - 0 . 3 2 - 0 . 2 1 - 0 " 1 5  0.34 5-11 7.48 7-14 
) ( P A T H  -0 '11  - 0 , 1 9 - 0 . 1 6 - 0 " 4 7 - 0 . 1 3 - 0 . 2 4  0-18 1.34 3.68 3-65 
KD (Zr) 0,15 - -  0-14 - -  0.12 . . . . .  
KD(Cs) . . . . . . . . . . . .  
KD(Pd) . . . . . . . . . .  
K D ( S e )  . . . . . . . . . . .  

K D  (Sm) . . . . . . . . . .  
K D  (Sn) . . . . . . . . . .  
KD(I) - -  -0 .20  - -  -0"41 - -  -0"19 0"19 0"92 - -  2.98 
B D  (Zr) . . . . . . . . . .  
B D  (Cs) . . . . . . . . . .  
B D  (Pd) - -  - -  - -  0'08 . . . . . .  
B D  (Se) . . . . . . . . . .  
B D  (Sm) - -  0-11 . . . . . . . .  
B D  (Sn) - -  - -  - -  0-06 . . . . . .  
BD(I) . . . . . . . . . . .  
R M W  . . . .  0"06 . . . . .  
X B F I L L  . . . . . . . . . .  

A D I S P G  - 0 ' 1 5  -0"13 -0"19 -0"27 -0"16 -0-12 0"33 4-49 5'37 6'61 
D I F F C  - -  - -  - 0.08 - 0.06 - 0-06 . . . . . .  

S P E A )  to  t h e  v a r i a b l e j  ( j - -  1, 2 , . . . ,  22) a t  t h e  t i m e  p o i n t  k (k --  1, 2 . . . .  ,5 )  in  

t h e  s i m u l a t i o n  S I M  i (i = 1, 2 , . . . ,  50). T h e  v a r i a n c e  o f  R j k  ( test ,  S I M i )  o v e r  t h e  

50 s i m u l a t i o n s  c o u l d  t h e n  be  u s e d  to  m e a s u r e  t h e  s t a b i l i t y  o f  ' t e s t ' ,  o n c e  t h e  

v a r i a n c e s  fo r  a l l  t h e  r e f e r e n c e  t i m e s  a n d  v a r i a b l e s  a r e  s u m m e d  t o g e t h e r .  

H o w e v e r  in  th i s  w a y  t h e  t o p  r a n k s  w o u l d  y i e l d  a s  m u c h  w e i g h t  a s  t h e  l o w  

r a n k s ,  i.e. a n  a g r e e m e n t ,  b e t w e e n  t w o  s i m u l a t i o n s  f o r  t h e  t o p  r a n k i n g  

v a r i a b l e  (R  = 1) w o u l d  be  c o n s i d e r e d  e q u a l  to  a n  a g r e e m e n t  o n  a l o w  r a n k  

o n e  ( s ay  R = 20). I n s t e a d  t h e  d e g r e e  o f  a g r e e m e n t  b e t w e e n  t w o  t e c h n i q u e s  

s h o u l d  be  e v a l u a t e d  m o s t l y  o n  t h e  t o p  r a n k s ,  w h e r e  t h e  t e s t s  a r e  m o r e  

s i gn i f i c a t i ve ,  g i v i n g  d e c r e a s i n g  w e i g h t s  to  d e c r e a s i n g  r a n k s .  T h i s  c a n  b e  

a c h i e v e d  b y  r e p l a c i n g  t h e  r a n k s  w i t h  t h e i r  S a v a g e  scores .  4 

T h e  S a v a g e  s c o r e  Si  o f  a c e r t a i n  r a n k  v a l u e  Ri  c a n  b e  c o m p u t e d  as  

K 

Si = ~ (l/m) 

m=Ri  
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TABLE 5 
Variable Ranking (only the 6 Most Significant Ranks are Given) 

243 

Variable P E A R  S P E A  P C C  P R C C  S R C  S R R C  S M I R  C R A M  T T S T  T M W T  

v 1 1 1 1 1 1 1 1 I 1 
R L E A C H  - -  - -  - -  6 - -  6 6 6 - -  - -  

A B S R  2 4 2 4 2 4 2 2 2 2 

X P A T H  5 3 4 2 4 2 5 4 4 4 

K D  (Zr) 4 - -  5 - -  5 - -  - -  - -  6 - -  
K D  (Cs) . . . . . . . . . .  
K D  (Pd) . . . . . . . . . .  
K D  (Se) . . . . . . . . . .  
K D  (Sm) . . . . . . . . . .  
K D  (Sn) . . . . . . . . . .  
K D  (I) - -  2 - -  3 - -  3 4 5 - -  5 
B D  (Zr) . . . . . . . . . .  
O0(Cs) . . . . . . . . . .  
BD(Pd) . . . . . . . . . .  
B D  (Se) . . . . . . . .  5 6 
B D  (Sin) - -  6 . . . . . . . .  
BD(Sn) . . . . . . . . . .  
BD(I) . . . . . . . . . .  
R M W  6 . . . . . . . . .  

X B F I L L  . . . . . . . . . .  

A D I S P G  3 5 3 5 3 5 3 3 3 3 

D I F F C  - -  - -  6 - -  6 . . . . .  

w h e r e  K =  n u m b e r  o f  v a r i a b l e s  ( th is  f o r m u l a  m u s t  be  s l i g h t l y  m o d i f i e d  in  t h e  

c a s e  o f  t ies);  so  t h e  v a r i a b l e  w i t h  t h e  h i g h e s t  r a n k  (Ri = 1) is g i v e n  a s c o r e  

Si = 1 + 1/2 + 1 / 3 " "  + 1/22 = 3.69 

w h e r e a s  f o r  Ri  = 22 

S i = 1/22 = 0 .0455 

I n  t h i s  w a y  t h e  s c o r e s  f o r  t h e  50 s i m u l a t i o n s  w e r e  c o m p a r e d ,  c o m p u t i n g  f o r  

e a c h  v a r i a b l e  a n d  f o r  e a c h  r e f e r e n c e  t i m e ,  t h e  v a r i a n c e  o f  t h e  e s t i m a t o r s  o v e r  

t h e  50 s i m u l a t i o n s .  T a k i n g  S M I R  as  a n  e x a m p l e ,  

50 

= ( 1 / 4 9 ) ) '  ( S j k ( S M I R ,  S I M s )  - S~k(SMIR))  2 v a r j k ( S M I R )  

i = l  

w h e r e  S i k ( S M I R ,  S I M I )  = s c o r e  a t t r i b u t e d  b y  t h e  S M I R  t e s t  t o  t h e  v a r i a b l e  

X~ a t  t h e  r e f e r e n c e  t i m e  k in  t h e  s i m u l a t i o n  S I M v  
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,~jk(SMIR) = average of the above quantity over the 50 simulations. A 
new statistic D(SMIR) can then be defined as 

5 22 

D(SMIR)=~varjk(SMIR) 
k = l j = l  

where the estimator variances are summed over all the variables and 
reference times. The above treatment was repeated on all the partitions for 
all the estimators under consideration. 

Values of  the D statistics for the various partitions are given in Table 6, 
where the sample size N is also indicated. This table gives a clear picture of 
the effect of the sample size on the reproducibility of  the estimators' 
prediction. As a general trend D values decrease with increasing sample size, 
yet the decrease is more pronounced at small sample sizes. In Fig. 5, values 
for PCC ( = SRC), PRCC ( = SRRC) and SMIR (very similar to CRAM and 
TMWT) have been plotted. This figure clearly shows that PRCC, besides 
having the smallest D for the entire range of explored sample size N, is also 
the least affected by N (smallest ~D/ON). 

The non-parametric two-sample tests are dramatically affected by the 
sample size, and for N = 250 and N = 100 their performances become worse 
than those of the parametric tests, e.g. the scatter in the SMIR predictions 
from simulation to simulation become more relevant than that of  PCC of 
PEAR. 

This is a very interesting result when the sensitivity of  PEAR to the 
distribution outliers is considered. Also interesting is the convergence of  D 
values for PRCC, SRRC, SMIR, CRAM and TMWT at N =  500. 

TABLE 6 
D Statistic for the Four Partitions 

1st Partition 2nd Partition 3rd Partition 4th Partition 
50 simulations 20 simulations 10 simulations 5 simulations 

~/" 100 runs o f  250 runs o f  500 runs o f  1000 runs 

PRCC 0"22 PRCC 0-18 CRAM 0-15 PRCC 0" 15 
SRRC 0"22 SRRC 0"18 PRCC 0-15 SRRC 0'15 
SPEA 0"31 SPEA 0"23 SRRC 0"15 SMIR 0"15 
PCC 0'32 CRAM 0'23 SMIR 0"15 CRAM 0-15 
SRC 0'33 PCC 0 " 2 4  TMWT 0"16 TMWT 0'16 
PEAR 0"34 SRC 0"24 SPEA 0"20 SPEA 0"19 
TMWT 0 " 3 6  TMWT 0'24 SRC 0-21 TTST 0"19 
TTST 0'36 SMIR 0"25 PCC 0"21 PCC 0-21 
CRAM 0"37 PEAR 0'27 TTST 0"21 SRC 0"21 
SMIR 0-38 TTST 0-27 PEAR 0"23 PEAR 0"22 
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The poor performance of SMIR was further investigated. An analysis of 
the rank tables (as Table 5) for the fifty 100 run simulations has shown that in 
effect the PEAR predictions are more reproducible than those of SMIR at 
these sample sizes. The tables of the t = 1000 000 yr time point, for instance, 
show that the variable V is the most influential variable for both the 
estimators; for the second most important variable, then, PEAR selects very 
often ABSR (29 times out of 50), whereas the selections of SMIR are more 
scattered (16 times ABSR, 8 times ADISPG, 3 times XPA TH, etc.). This can 
be due to the fact that PEAR always favours the variables having a strong 
linear influence on the output (such as ABSR, see next section), whereas 
SMIR tends to select both this variable and those having a non-linear 
influence (such as XPA TH). 

Y 
0.30 

Fig. 5. 
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Values of  the D statistic as function of  the sample size for PCC (,), PRCC (['-1) SMIR 
(~)  and SPEA (/X). 
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4.3 The t = 1 0  6 yr time point. A detailed analysis 

Tables 4 and 5, relative to the t = 106 yr time point, can be used to further 
investigate the differences between the various tests. 

If the ranks in Table 5 are converted in scores--as described in the 
previous section--the statistic-statistic correlation (Table 7) can be 
computed. 

TABLE 7 
Score Correlation Coefficients 

Statistic P E A R  SPEA PCC P R C C  S R C  S R R C S M I R C R A M  T T S T  T M W T  

P E A R  1 "00 . . . . . . . . . .  

S P E A  0"73 1'00 . . . . . . . . . . .  

PCC 0"90 0-71 1"00 . . . . . . . . . . . . .  

P R C C  0-69 0'84 0-78 1'00 . . . . . . .  

S R C  0"90 0"71 1"00 0"78 1"00 . . . . .  

S R R C  0-69 0-84 0"78 1"00 0-78 1'00 . . . . .  

S M I R  0'86 0'80 0-89 0"80 0"89 0"80 1.00 - -  - -  - -  

C R A M  0'87 0'79 0"89 0'82 0'89 0"82 0"99 1"00 - -  --- 

T T S T  0"92 0"79 0-83 0'70 0"83 0-70 0"86 0-89 1"00 - -  

T M W T  0"87 0'80 0'89 0'81 0-89 0"81 0'96 0'98 0"92 1"00 

It shows that, as expected, non-parametric techniques correlated more 
with each other than with the parametric ones. PRCC and SRRC (as well as 
PCC and SRC) have correlation coefficients equal to one. In fact, given the 
functional relationship existing between standardized regression and partial 
correlation coefficients, these SA indicators yield identical ranking in all the 
simulations. Nevertheless it can be shown that the rankings from PRCC and 
SRRC diverge when significant correlations are involved among the input 
variables, which is not the case for the present exercise. There is also a high 
correlation within the group of the three non-parametric two-sample tests 
SMIR, CRAM, TMWT (correlations between 0.96 and 0.99); these three 
estimators correlate better with the parametric tests PEAR, PCC, SRC than 
with the equivalent non-parametric ones (though this is true only for the 
t = | 0  6 yr time point). TTST is nonspecific, and correlates equally well with 
the non-parametric tests and with the other two-sample tests. The group of 
SPEA, PRCC and SRRC correlates better with the group of SMIR, CRAM, 
TMWT than with their parametric equivalents PEAR, PCC, SRC. 

This does not yet solve the problem of selecting the proper variable 
ranking among those provided in Table 5. An essential piece of information 
is provided by the model coefficient R 2. The R 2 value for the data in 
Table 4 is: 
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R 2 = 0"385 for SRCs (based on the raw values) 

R 2 = 0.810 for the SRRCs (based on the ranks) 

Thus, as expected, the SRRCs are to be more trusted than the SRCs, and the 
PRCC more than the PCC. As could have been easily anticipated, non- 
parametric techniques based on rank are more adequate for this type of 
model. 

Yet the information provided by the parametric tests (PEAR, etc.) should 
not be disregarded. 

The variable ABSR,  water extraction rate from the well, provides a good 
example of the differences between the parametric and non-parametric 
responses. This variable has no effect on the travel time of the nuclides 
(governed by V, XPA TH,.. .)  but it has a strong effect on the height of the 
dose peak. As A B S R  varies over one order of magnitude it has a very strong 
influence on a linear scale. On a logarithmic scale instead, A B S R  can only 
vary dose by one unit, against the many units' variation dominated by V and 
XPATH.  

For this reason in all the simulations and at all the reference times A B S R  is 
given more importance from PEAR, PCC, SRC than from SPEA, PRCC, 
SRRC. The two-sample tests (SMIR, CRAM, TMWT) also classify A B S R  
as the second most important variable, and this is not surprising as the high 
dose runs collected in the 10% sub-sampler are likely to be associated with 
low A B S R  values (dose and A B S R  are inversely proportional). 

The same can be said for ADISPG (rank 3 for SMIR, CRAM, TMWT and 
only 5 for SPEA, PRCC and SRRC); this variable represents the geosphere 
dispersivity, and in the present model its effect is to smooth out the dose 
peaks. Most of the runs in the 10% high dose sub-sample are likely to be 
associated with low ADISPG values, although, by itself, ADISPG does not 
have the capability of producing non-zero dose outputs and is in fact the 5th 
parameter in the regression model built by the SRRCs. 

As a general trend the two-sample tests give more weight to the 
parameters which influence the high dose outputs, where the SRRC's search 
for the best model to fit all the outputs. These examples, together with the 
analysis of the score correlation Table 7, lead to the conclusion that the two 
sample tests, when applied to the 10%-90% sub-samples, may exhibit some 
of the peculiar features of the parametric SA estimates (for example PEAR), 
overestimating a few high outputs (outliers) of the distribution. 

1" When using the two-sample tests (SMIR through TMWT) the output sample from a given 
simulation is partitioned into two sub-samples, the first one containing, for example, the 10% 
runs yielding the highest output, the second one containing the remaining runs (see the 
Appendix). 
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5 CONCLUSIONS 

A number of interesting results have been obtained from the inter- 
comparisons that have been made among the selected sensitivity analysis 
estimators. These are summarized in the following points: 

(1) The relative stability of sensitivity analysis indicators depends upon 
the sample size (Fig. 5). When increasing the sample size the 
variability (from simulation to simulation) of the non-parametric 
estimators tend to converge to its lowest asymptote. 

(2) The disagreement between estimators, including the non-parametric 
ones (generally considered as the most reliable) are non-negligible. In 
particular there are differences among the predictions of the family 
SPEA, PRCC, SRRC and the two sample tests SMIR, CRAM, 
TMWT. These latter, when employed on the 10%-90% sub-samples, 
exhibit some of the negative characteristics of the parametric tests. 

(3) The disagreement increases when decreasing the sample size. 
(4) The estimators PRCC and SRRC appear to be, in general, the most 

robust and reliable. In particular they seem much more effective than 
SMIR at low sample size. 

An additional remark can be made. The discussion of the t - -  1 0  6 yr time 
point has shown that, given a sample of size 1000, about 5 variables were 
successfully ranked (in average) by the SA estimators. If the sample were to 
be increased indefinitely more variables would be ranked by each estimator. 
All the test statistics used in this work for hypothesis testing are in fact 
consistent in the statistical sense of the term, i.e. if the sample size tends to 
infinity the power of these tests tend to unity, where the power is defined as 
the probability of rejecting a false hypothesis. Taking again SMIR as an 
example, an increase in the sample size will result in a lower value of the 
quantile for the Smirnov test distribution, and SMIR will become significant 
for more influential variables. In an analogous way, by increasing the sample 
size, R~ will tend to its asymptote, which corresponds to the degree of 
linearity between the ranks of Y and X~s. Nevertheless, for sufficiently 
complex models, the ranking of all the variables might be impossible to 
achieve, especially when the model involves non-monotonic input-output 
relationships. 

The advantage of using more than just one SA technique lies in the fact 
that performing a statistical test is generally much cheaper than running a 
simulation. Furthermore, it has also been seen in the discussion of the 
role of the variables V, XPATH, ABSR and ADISPG, that sensitivity 
analysis techniques must be complemented with knowledge of the system. 
Although the use of Hypothesis Testing can give a certain degree of 
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confidence in the results of  the sensitivity analyses, errors are always 
possible. It would be very difficult to interpret  the results of  the analysis 
wihtout  cross-checking between statistics and unders tanding the model.  
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APPENDIX:  SENSITIVITY ANALYSIS T E C H N I Q U E S  

The Pearson product moment correlation coefficient (PEAR) is the usual 
linear correlation coefficient computed on the xi~, yis (i = 1, 2 . . . . .  N). For  
non-linear models the Spearman coefficient (SPEA) is preferred as a measure 
of  correlation, which is essentially the same as PEAR, but using the ranks of  
both Y and Xj. instead of  the raw values: 5 

SPEA( Y, X~) = PEAR(R(Y), R(Xj)) 

The basic assumptions underlying the Spearman test are: 

(a) Both the xig and the yi are random samples from their respective 
populations. 

(b) The measurement  scale of  both variables is at least ordinal. 

The numerical value of SPEA, commonly  known as the Spearman 'rho', can 
also be used for hypothesis testing, to quantify the confidence in the 
correlation itself. 
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Partial Correlation Coefficients (PCC) and Standardized Regression 
Coefficients (SRC) are two very useful correlation estimators, which can also 
be used on the ranks of  the (Y, Xj) values (Partial Rank Correlation 
Coefficients PRCC and Standardized Rank Regression Coefficient SRRC). 

A description of  how these coefficients are computed is given in Ref. 6. The 
SRC(Y, Xj) are the coefficients of  the regression model for Y; they may 
provide an approximation to Y in the form: 

K 

= S R C ( r ,  Xj)X* y* 

j = l  

where X* are the normalized variables: 

. ~  = (.,~j -- Xj)/g(~fj)  

and ,~j and S(Xj) are respectively the sample mean and standard deviation. 
When using the SRCs it is also important  to consider the model coefficient 

of  determination R 2. 
R 2 provides a measure of  how well the linear regression model based on 

SRCs can reproduce the actual output  vector Y. In particular: 

N N 

R 2 = ~ ( Y m - - f i , 2 / ~ ( Y , - 3 7 )  2 

i = 1  i = 1  

where 37 is the mean of  the output  values Yl and the y~ are the model 
prediction based on the SRCs, so that R 2 represents the fraction of  the 
variance of  the output  vector explained by the regression. The closer R 2 is to 
unity the better is the model performance. 

The coefficients SRC(Y, Xj) can themselves provide a very effective 
measure of  the relative importance of  the input variables. Of course the 
validity of  the SRCs as a measure of  sensitivity is conditional to the degree to 
which the regression models fits the data, i.e. to R 2. 

The PCC can be considered as an extension of  the usual correlation 
coefficients and represents that part of  the interdependence between two 
variables which is not  due to correlation between these two variables and the 
remaining ones. When PCCs are used they can provide a ranking of  the 
various variables by indicating the strength of the linear relationship 
between Yand Xj. When PRCCs are used the linear relationship between the 
ranks of  Y and Xj is measured. This gives an effective estimation of  
sensitivity. 

The Smirnov test SMIR(Y, Xj) and Cramer-Von Mises CRAM(Y, Xj) 
belong to the same class of non-parametric statistics. 
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In particular they are 'two-sample' tests originally designed to check the 
hypothesis that two different samples belong to the same population. The 
application of  such 'two-sample' tests to sensitivity analysis comes from the 
idea of  partitioning the sample of the parameter Xj under consideration into 
two sub-samples according to the quantiles of  the output  (Y) distribution. 

If the distributions of Xj in the two sub-samples can be proved to be 
different then the parameter under consideration is recognized as influential. 

For instance, the values XijS corresponding to output  yis above the 90th 
quantile of  the F(Y) distribution may constitute one sub-sample, and all the 
remaining xljs the other sub-sample. 

For these statistics to be applicable, a number of  basic assumptions must 
be satisfied by the two sub-samples under consideration, viz: 

(a) the two sub-samples are random samples; 
(b) the two sub-samples are mutually independent; 
(c) the measurement scale is at least ordinal; 
(d) the random variables must be continuous. 

When using SMIR and CRAM the empirical cumulative distributions 
F(Xj) are computed on the two samples and the two distributions compared 
with each other. If the two distributions are different, it can be said that the 
parameter influences the output,  and that high outputs are preferentially 
associated with high, or low, parameter values. 

More quantitatively the Smirnov statistic is defined as the maximum 
vertical distance between the empirical cumulative distribution functions of 
the two samples. SMIR can be used for hypothesis testing. 

The Cramer-Von Mises and Smirnov statistics resemble each other very 
closely; however, the test function for the former is related to the total area 
enclosed by the two cumulative distributions, and involves the summation of  
the squared distances between the two curves computed at all xji points, with 
i = 1, 2 . . . . .  N. Because in this statistic the total area of the two distributions 
is scanned, it may be more appropriate for sensitivity analysis when Y(Xj) is 
a non-monotonic  function. 

A description of both the SMIR and the C R A M  tests is given in Ref. 5. 
As with the two preceding statistics, the Mann-Whitney test (TMWT) is 

also applied to two samples of  the same parameter and the hypothesis to be 
tested is whether or not the two samples come from the same population. 

Actually T M W T  is a test specially designed for detecting differences in the 
population location, so that the hypothesis FI(Xj) = F2(Xj) can be replaced 
by an hypothesis stating the equivalence between the two population means. 

Under  certain circumstances (equal variance of the two samples) the 
hypothesis can be written as: 

E(Z,)= E(Z ) 
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where E stands for the expectation value and Z1, Z2 refer to the X~ values 
selected in the two sub-samples. 

For this statistic the ranks of the parameter values are used and the means 
of the two sub-samples are compared. The same basic assumptions made for 
the SMIR test hold for TMWT. The Mann-Whitney statistic and its test 
distribution are described in Ref. 5. 

The t-test (TTST) is a widely used parametric statistic on the sample mean. 
The two sample version of the t-test used here is the parametric equivalent of 
the Mann-Whitney test; for practical calculations in fact the formula for the 
t-test can be used for computing the Mann-Whitney test, once the 
parameter values have been replaced by their ranks. 5 

Because of its parametric nature, linked to the assumption of normality of 
the samples, the t-test is likely to compare unfavourably with its non- 
parametric equivalent TMWT for the generally non-normal data under 
consideration. The test, however, has been included for comparison 
purposes, in order to have a parametric statistic also in the class of the two 
sample tests (SMIR, CRAM, TMWT). A description of the two sample t-test 
(TTST) can be found in Ref. 5. 

For all the above statistics Hypothesis testing is used to quantify the 
degree of confidence in the identification of an influential variable. This is 
exemplified here for the statistic SPEA. 

The numerical value of SPEA can be used for hypothesis testing by 
making first the base hypothesis: 

'no correlation exists between Y and X S 

SPEA( Y, Xj) is then computed from a simulation of a given number of runs 
N, and its value is compared with the quantiles of the Spearman test 
distribution. The comparison is made at a certain pre-established level of 
significance (~), and the hypothesis of no correlation is rejected if SPEA is 
either lower than W(~/2) or higher than W(1 -~/2) ,  where the Ws are the 
quantiles of the test distribution. 

The level of significance ~ is the probability of erroneously rejecting the 
hypothesis, i.e. in this context, the probability that the test indicates a 
correlation when Y and Xj are actually uncorrelated. To apply the test at a 
0.05 significance level W(0.025) and W(0.975) must be computed or read on 
tables. 5 

Taking, for instance, N = 500, the Spearman quantiles are: 

W(0"025) = -0-088 
W(0-975) = 0"088 

The hypothesis of no correlation is rejected if SPEA, as computed from a 500 
run simulation, falls outside the range (-0"088, 0"088), and the probability 
of an erroneous rejection, when Y and X~ are actually uncorrelated, is 0.05. 


