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Scope of the conference

Modelling activities are steadily increasing in all scientific disciplines, ranging from financial to 

environmental assessments. Sensitivity Analysis is crucial both in the modelling phase and in 

the interpretation of model results. It contributes to model development, model calibration, 
model validation, reliability and robustness analysis, decision-making under uncertainty, 
quality-assurance, and model reduction. 

SAMO conferences are devoted to advances in research on sensitivity analysis methods and 

their interdisciplinary applications, they are held every third year. The aim of the conference is 

to bring together researchers involved in the developments and improvements of methods and 

strategies and users of sensitivity analysis in all disciplines of science, including physics, 

operations research, chemistry, biology, nanotechnology, engineering, environmental science, 
nuclear and industrial safety, economics and finance, etc. 

The first day (July 1) is organized jointly with the MASCOT-NUM network and is devoted to 
presentations by PhD students working on the topics covered by the SAMO conference and 

MASCOT-NUM (uncertainty in simulation, sensitivity analysis, design and modelling of 

computer experiments, model validation, optimization under uncertainty, applications, etc.). A 

submission call has been launched to PhD students. Eight PhD students have been selected 

for oral presentations, other student submissions being considered for poster communications. 
A prize of 1000€ will be conferred by the MASCOT-NUM's scientific committee to the best 
student communication (to be used by the student to go to a meeting). 
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Back and Forth Nudging for data assimilation in geophysics

Jacques BLUM (jblum@unice.fr)
Laboratoire J.-A. Dieudonné, University of Nice-Sophia Antipolis, 06108 Nice Cedex02

Data Assimilation is the ensemble of techniques combining in an optimal way
(in a sense to be defined) the mathematical information provided by the equations
of the model and the physical information given by the observations in order to
retrieve the state of a flow [1]. There are two large classes of methods: variational
algorithms (4D-VAR) and sequential techniques (Kalman filtering).

The standard nudging algorithm is a simple data assimilation technique: it con-
sists in adding to the state equations of a dynamical system a feedback term, which
is proportional to the difference between the observation and its equivalent quantity
computed by the resolution of the state equations. The model appears then as a
weak constraint, and the nudging term forces the state variables to fit as well as
possible to the observations. This is known in control theory as being the Luen-
berger’s observer. First used in meteorology, the nudging method has been applied
with success in oceanography.

The back and forth nudging algorithm, introduced in [2], consists in solving first
the forward nudging equation and then the direct system backwards in time with
a feedback term which is opposite to the one introduced in the forward equation.
This term stabilizes this backward resolution, which is usually ill-posed for these
irreversible geophysical systems. The ”initial” condition of this backward resolution
is the final state obtained by the standard nudging method. After resolution of
this backward equation, one obtains an estimate of the initial state of the system.
These forward and backward resolutions (with the feedback terms) are repeated
until convergence of the algorithm.

This algorithm has been tested for various systems in geophysics [3], such as
Lorenz system, viscous Burgers equation, quasi-geostrophic model , or shallow wa-
ter equations [4] and compared with 4D-VAR method. The convergence of this
algorithm has been studied for linear transport equations and non-linear Burgers
equation, with or without viscosity in [5]. An improvement to the Back and Forth
Nudging (BFN) algorithm for handling diffusion in the context of geophysical data
assimilation, in which the sign of the diffusion term is changed in the backward
integrations, has been introduced in [6] and the convergence of this algorithm has
been studied, in particular for linear transport equations. This modified BFN has
been applied to Burgers equations and compared with other algorithms [7].
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Robust optimization using computer experiments 

DICK, DEN HERTOG  
Tilburg University, Tilburg, The Netherlands 

The goal of many experiments is to estimate the best solution for a given practical problem. 
Such experiments may be conducted with a physical system (e.g., an airplane model in a wind 
tunnel) or a mathematical model of a physical system (e.g., a computerized simulation model 
of an airplane or an inventory management system). These experiments produce data on the 
outputs and the inputs. Output may be univariate (a single or scalar response) or multivariate 
(multiple responses). The number of inputs may range from a single input to many inputs. The 
inputs may be controllable or uncontrollable (also called environmental inputs).  

Robust Parameter Design (RPD) developed in statistical quality control use metamodels (such 
as regression, Kriging, etc.) estimated from experiments with both controllable and 
environmental inputs. RPD assumes known mean and covariance, and sometimes even a 
known distribution of the environmental inputs. In practice such a distribution is often not 
known, and the final solution may be very sensitive to estimates for the mean and covariance. 

We describe a new approach for RPD that uses only experimental data, so it does not need 
such assumptions. This new approach uses techniques from Robust Optimization, which is a 
relatively new and important field in mathematical optimization. We show that this new 
method can be used for many classes of metamodels, including polynomials obtained via 
regression and Kriging models. Moreover, we describe an adjustable RPD approach in which 
the values of (some of) the controllable factors are adjusted after observing the values of 
(some of) the environmental inputs. This new method is based on Adjustable Robust 
Optimization techniques. We illustrate our novel method through several numerical examples, 
which demonstrate its effectiveness. 

This is joint work with Jack P.C. Kleijnen and Ihsan Yanikoglu, both from Tilburg 
University. 
 
[ D.denhertog@uvt.nl - 
http://www.tilburguniversity.edu/webwijs/show/?uid=d.denhertog ] 
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Design for linear models with correlated observations

Holger Dette (joint work with Andrey Pepelyshev & Anatoly

Zhigljavsky)

Ruhr-Universität Bochum, Germany

In the common linear regression model the problem of determining optimal designs for least squares
estimation is considered in the case where the observations are correlated. A necessary condition
for the optimality of a given design is provided, which extends the classical equivalence theory for
optimal designs in models with uncorrelated errors to the case of dependent data.

If the regression functions are eigenfunctions of an integral operator defined by the covariance
kernel, it is shown that the corresponding measure defines a universally optimal design. For
several models universally optimal designs can be identified explicitly. In particular, it is proved
that the uniform distribution is universally optimal for a class of trigonometric regression models
with a broad class of covariance kernels and that the arcsine distribution is universally optimal for
the polynomial regression model with correlation structure defined by the logarithmic potential.

[ Holger Dette; Ruhr-Universität Bochum, Department of Mathematics, Institute of Statistics,
44780 Bochum, Germany ]
[ holger.dette@ruhr-uni-bochum.de – http://www.ruhr-uni-bochum.de/mathematik3/en/dette.
html ]
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Models of Science & Policy: From Expert Demonstration to Extended 

Participation  

SILVIO, FUNTOWICZ 
SVT, University of Bergen, Norway  

Our modern (Western) civilisation is based on science in several ways. Science is the basis of the 
material culture which has so transformed the world; and it is also a primary source of legitimation for 
policy arguments. As science-related policy issues have come to be recognised as complex and more 
inherently difficult of solution, the conception of the role of science has also developed and matured. 
Today, when science is deployed in the policy context, we are aware of the possibility that facts are 
uncertain, values in dispute, stakes high and decisions urgent. These last features define what we call a 
post normal science problem. In the light of this new understanding, we can identify several 
conceptual models of the relation between science and decision-making in policy processes. We trace 
their evolution through a deepening appreciation of the process of the use of science in policy. 

The 'modern' model (perfection/perfectibility). 

Scientific facts (unproblematic), employed in rigorous demonstrations, would determine correct
policy. In classical terms, the true entails the good; in modern terms, truth speaks to power. Being 
based on scientific facts, the power that is exercised is effective. There are no limits to the progress of 
man's control over his environment, and no limits to the material and moral progress of mankind. This
is the classic 'technocratic' vision, dependent on an assumed perfection/perfectibility of science in 
theory and practice. 

Precautionary model (uncertain and inconclusive information). 

In real policy processes, it is discovered that the scientific facts are neither fully certain in themselves, 
nor conclusive for policy. Progress cannot be assumed to be automatic, and control over the 
environment can fail, leading sometimes to pathological situations. While all sides still pay homage to 
the truth/validity of science in general, they each contest particular unwelcome items of information. 
Because of this imperfection in the science, there is an extra, normative, element in policy decisions, 
precaution, which both protects and legitimises decisions. 

Framing (arbitrariness of choice and possible misuse). 

In the absence of conclusive facts, scientific information becomes one among many inputs to a policy 
process, functioning as evidence in the arguments. Debate is known to be necessary, as different 
stakeholders have their own perspective and values shaping their arguments. Moreover, all such 
processes involve complex issues, where the situation has a plurality of phases (causes, effects, 
prevention, remediation, etc.), each with its own theoretical constructions of reality. There are no 
simple 'facts' that resolve issues in all these phases and aspects. Hence the framing of the relevant 
scientific problem to be investigated, even the choice of the scientific discipline to which it belongs 
becomes a prior policy decision, part of the debate among those affected by the relevant issue. 
Different scientific disciplines become competing stakeholders; whoever 'owns' the research problem 
will make the greatest contribution and will enjoy the greatest benefits. There is no conclusive 
scientific basis for the choice of framework, and hence to some extent the choice is arbitrary (or 
social). 



Demarcation (possibility of abuse of science). 

The scientific information and advice that are used in the policy process is created by people working 
in institutions with their own agendas. Experience shows that this context can affect the contents of 
what is offered, through the selection and shaping of data and conclusions. Although they are 
expressed in scientific terms, the information and advice cannot be guaranteed to be objective and 
neutral. In this sense, science can be abused when used as evidence in the policy process. A clear 
demarcation between the institutions (and individuals) who provide the science, and those where it is 
used, is advocated as a means of protecting science from the political interference that would threaten 
its integrity. It also ensures that political accountability rests with policy makers and is not shifted, 
inappropriately, to the scientists. In addition, it prevents scientists from using the authority of their 
status as an illegitimate validation of their pronouncements when they engage in partisan advocacy on 
contentious policy issues. However, too great a separation can result in the scientific institutions 
pursuing their own, internal goals, and the work becoming irrelevant to the needs of the policy 
process. Designing the right form of demarcation of science and policy is therefore one of the urgent 
tasks of governance. 

Extended participation 

Given these acknowledged imperfections in the deployment of science in the policy process, it 
becomes ever more difficult to defend a monopoly of accredited expertise for the provision of 
scientific information and advice. 'Science' (understood as the activity of technical experts) is included 
as one part of the 'relevant knowledge' is brought in as evidence to a process. The ideal of rigorous 
scientific demonstration is replaced by that of open public dialogue. Citizens become both critics and 
creators in the knowledge production process as part of an extended peer community. Their 
contribution is not to be patronized by such labels as 'local', 'practical', 'ethical' or 'spiritual' 
knowledge. A plurality of co-ordinated legitimate perspectives (with their own value-commitments 
and framings) is accepted. The strength and relevance of scientific evidence is capable of assessment 
by citizens. All sides come to the dialogue ready to learn, or else the process is a sham. Through this 
co-production of knowledge, the extended peer community creates a democracy of expertise in the 
context of post normal science. 

Summary 

We can see the latter four models as a progression from the initial 'modern' model with its assumption
of perfection of science in the policy process. All this had initial expressions in the debates of the 
1970s, when progress  started to come into question. It has emerged in the policy domain notably in 
the last decade, starting with the proclamation of 'precaution' at Rio 1992. The post-normal science 
framework, a part of this evolution, was already published at the beginning of the 1990s, the decade of 
sustainability  and precaution; but it has come to prominence only more recently as a result of the 

debate on governance. The three models of imperfections can be seen to form a sequence of increasing 
severity, admitting incompleteness, misuse and abuse. Each is designed to resolve a particular type of 
anomaly, and in any real situation they may be complementary or in conflict. But in each case, the 
desire is that the link between science and policy remain direct and unmediated. In the successive 
models, we see that (a) policy is modified by precaution, (b) problems are framed by stakeholders, or 
(c) scientists are protected from political interference. But the core activity of the modern model, the 
experts' (desire for) truth speaking to the politicians' (need for) power, is unchanged. The final model, 
of extended participation, involves a change in the form of governance. Implementing this is a great 
challenge of our time; for without it, 'the consent of the governed' in science related policy issues will 
not be maintained. 

[ Silvio.Funtowicz@svt.uib.no ] 
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Fast and Sobol Pick Freeze methods in the Costa Brava sauce 

FABRICE, GAMBOA 
Institut de Mathématiques de Toulouse, Université Paul Sabatier, France 

In this talk, we will discuss some recent theoretical advances on sensitivity analysis obtained by 
researchers of the COSTA BRAVA project [1].  More precisely, we will focus on the following topics: 

1. Asymptotic properties of Sobol pick freeze method, 

2. A new look of the FAST method, 

3. Hoeffding Sobol decomposition for systems with non independent inputs.  

 

References : 

[1] Web page of the COSTA BRAVA project, www.math.univ-toulouse.fr/COSTA_BRAVA

[ fabrice.gamboa@math.univ-toulouse.fr - http://www.math.univ-
toulouse.fr/~gamboa/newwab/Pages_Fabrice_Gamboa/Main_Page.html ] 
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Sensitivity Auditing 

Andrea Saltelli (1), Silvio Funtowicz (2), Sjoerd Hardeman (2), Michaela Saisana (1)  

(1) Institute for the Protection and Security of the Citizen, Joint Research Centre, European 

Commission 

(2) University of Bergen  (NO), Centre for the Study of the Sciences and the Humanities 

(SVT) 

The Joint Research Centre of the European Commission is routinely called to provide input to impact 

assessment activities involving different services of the Commission. Among the tools deployed in this

activity JRC has developed an extension of sensitivity analysis termed sensitivity auditing [Saltelli et 

al., 2013]. This is an attempt to collect best practices from very different corners about how to ensure 

quality in models when these are used to the science-policy interface. The use of mathematical models 

in contested issues has been the subject of intense debate and deliberation [Pilkey and Pilkey, 2007],

especially in relation to the   issue of model plausibility. Ideally sensitivity auditing is to a

plausibility  a concept explored in anticipatory science [http://www.cspo.org/projects/plausibility/] - 

what sensitivity analysis is to a appropriateness. In other words while a well-run sensitivity 

analysis is part of the due diligence expected from a model based analysis, sensitivity auditing tests

whether the model can stand in court .  Sensitivity analysis, as mandated by existing guidelines as a 

good practice to use in conjunction to mathematical modeling, is as such insufficient to ensure quality 

in the treatment of uncertainty of science for policy. When stakes are high, uncertainty is inflated and 

deflated by opposing parties according to convenience. Policy-related science calls for an extension of 

the traditional internal, peer review-based methods of quality assurance to higher levels of supervision, 

where extended participation and explicit value judgments are necessary. By the same token 

sensitivity analysis must extend beyond the technical exploration of the space of uncertain 

assumptions when the inference being sought via mathematical modeling is subject to relevant 

uncertainties and stakes. Sensitivity auditing borrows ideas and strategies from sensitivity 

analysis (Saltelli et al., 2000, 2010), from the NUSAP system for multidimensional 

uncertainty assessment (Funtowicz and Ravetz, 1990; Van der Sluijs et al., 2005) and from 

post-normal science (Funtowicz and Ravetz, 1993). In se

We thus provide 

:

1.         Check against rhetoric use of mathematical modeling [is the model being used to elucidate or 

to obfuscate?];  

-

analytic, possibly normative assumptions underlying the analysis?];   



3.         Detect Garbage In Garbage Out (GIGO) [=artificial deflation of uncertainty operated in order

to achieve a desired inference at a desired level of confidence]; 

4.         Find sensitive assumptions before these finds you [do not publish your inferences without 

having mapped the assumptions they rely on, lest someone else does it for you]; 

5.         Aim for transparency [stakeholders should be able to make sense of, and possibly replicate, the 

results of the analysis];  

6.         Do the right 

stakeholder being neglected?];  

7.         Focus the analysis on the key question answered by the model, exploring holistically the entire 

 perfunctory analyses changing one factor at a time]. 

call for normative vigilance which can only be implemented by in an appropriate institutional and 

political framework. We quote relevant regulatory literature and offer a set of present-day examples, 

from academy, blogosphere, the literate press and society, to argument our rules. It applied to 

mathematical modeling as well as to statistical indicators of various complexities [Paruolo et al., 

2012].  Finally we shall submit sensitivity analysis to a criticism, to investigate if and how sensitivity 

analysis can promote rather than deter the use of a more reflexive use to mathematical modeling from 

the community of practitioners.  Sensitivity auditing is a new concept, and is part of the training 

offered by JRC in the context of impact assessment, see 

http://ipsc.jrc.ec.europa.eu/fileadmin/repository/eas/sensitivity/presentations/Sensitivity_Auditing_22F

eb2013.pdf. 
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UASA of complex models: Coping with dynamic and static inputs

F. Anstett-Collin

Université de Lorraine, CRAN, Nancy, France

T. Mara

Université de La Réunion, PIMENT, Réunion, France

L. Denis-Vidal

University of Technology of Compiègne, LMAC, Compiègne, France

J. Goffart

University of Savoy, Le Bourget Du Lac, France

In many fields, complex systems are modelled by a set of partial differential equations with initial
and boundary conditions. For instance, in mechanics or thermodynamics, the PDEs are based on
conservation laws. A particular problem is defined by a set of inputs that characterized the system
of interest, embedding the initial and boundary conditions. Then, numerical methods are employed
to solve the problem. In practice, the system is not accurately defined due to the uncertainty about
some inputs. Uncertainty and sensitivity analyses (UASA) can help assess the impact of this lack
of knowledge onto the model responses ([1,2]). Let y = g(ωd(x, θ),ωs(θ), x) be the response of
interest where: x ∈ D is the spatial/time variable, ωd is a set of random fields (dynamic inputs)
and ωs is a set of random variables (static inputs) (see figure 1). As an example, in building energy
modelling, ωs embeds the thermophysical properties of the materials used in the building while
ωd represents the weather data.
In this communication, we address the issue of performing UASA with these two kinds of uncertain
inputs. Indeed, in the literature, such an issue is rarely addressed (except, for instance, in [3]).

For the sake of simplicity, we assume that random variables are independent and defined by their
marginal distribution. The random fields are also assumed independent and normally distributed
with mean ω̄i(x) and covariance function Ci(x1, x2), i = 1, · · · , Nd, Nd denoting the number of
dynamic inputs. Monte Carlo based methods can be used to perform UASA of such a model. But,
while generating static inputs samples is not an issue, it is not straightforward to generate samples
that satisfy the desired random fields distribution. One possibility is to resort to the truncated
Karhunen-Loeve (KL) expansion. The former expands a random field as follows:

ωd

i (x, θ) ≃ ω̄d

i (x) +

Mi∑

k=1

√

λkiξki(θ)fki(θ), (1)

where λki and fki are the deterministic eigenvalues and eigenfunctions of the covariance function
Ci(x1, x2), ξi(θ) is a set of independent standard normal variables and Mi is the number of KL-
terms. The eigenmodes depend on the choice of the covariance function and are determined by
solving the Fredholm integral equation of the second kind given by:

∫

D

Ci(x1, x2)fki(x1)dx1 = λkifki(x2). (2)

Equation (2) can be solved using a wavelet-Galerkin scheme ([4]). The advantage of this approach
is to avoid tedious quadratures by using wavelet transform, alleviating computational effort.
In practice, we retain the first Mi eigenmodes that contain the 95% of the variance of the input
ωd

i
. The number of eigenmodes retained depends on the choice of the covariance function and

may be very different from one input to another. Note that once the eigenmodes are obtained
for all the dynamic inputs, UASA of the model output are performed through the random vectors
{ξ1, · · · , ξNd
︸ ︷︷ ︸

ωd

,ωs}. Consequently, the effect of the group of factors ξi is the one of the dynamic

input ωd
i
. This effect can be estimated with sampling-based methods such as Sobol’ method ([5]).
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The approach is applied to a building energy model. This model presents dynamic inputs as dry
bulb temperature, direct and diffuse radiations, humidity, speed and direction of wind, and static
inputs as the thermal properties of the materials. The model response of interest is the energy
consumption (scalar output).

scalar

{
ωs
1

✲

...

ωd

Nd

✲

Complex model

y1✲

...
ym

✲

}

scalar

Fig. 1 - Complex model with static and dynamic inputs
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Abstract: 

The Russia-Ukraine gas dispute during the winter 2008 / 2009 triggered the hardest gas supply crisis 
in the EU in the last decade, producing a significant decrease in the amount of gas delivered to 
customers and important economic losses in eastern European countries. This crisis was the origin of a 
number of regulatory steps taken by the EU to avoid this type of situation in the future, among them 
most remarkably the European Energy Programme for Recovery and Regulation 994/2010 on security 
of gas supply. 

One major threat to the security of supply in case of gas crises is the existence of internal bottlenecks 
in the EU gas transmission network, most remarkably at cross-border points. Broadly speaking, a 
bottleneck is a network component whose capacity (maximum gas flow allowed by the component in 
a given direction) is a real obstacle to the transmission of gas in the network, especially in case of 
crisis (any type of situation that produces some shortage of gas in all or a part of the network). The 
identification of such bottlenecks, and the development of new infrastructures to remove them, is an 
important task to increase the resilience and reduce the risk of the EU gas system. 

The computer code GEMFLOW, Szikszai and Monforti (2011), was designed at JRC-IET with the 
intention of investigating the potential effect of gas supply crises with different possible origins 
(geopolitical crises, technical failure, natural hazards, etc.), and the effect of different measures 
deployed to mitigate their consequences. This program has been recently modified in order to improve 
its runtime, incorporate other strategies to cope with gas crises and improve its capabilities to perform 
Uncertainty and Sensitivity Analysis (UA & SA) using a Monte Carlo approach.  

It is important to take into account that the concept of bottleneck, with the purely physical 
interpretation considered in this work, is very much related to crisis situations. Many bottlenecks arise 
as a consequence of putting the gas system under big stress, not being detectable in normal situations 
that do not demand large gas flows. In situation of crisis (for example complete lack of Russian gas 
coming across Ukraine during a winter cold period with huge gas demand), a clear target of gas 
system managers is satisfying the demand for as long as possible. In this work we call the number of 
days during which the demand is satisfied in all Member States (MS) 

In order to solve this problem, we develop a strategy based on Monte Carlo filtering (Smirnov two-
sample tests) and graphic techniques. The strategy consists in considering the capacity of each pipeline 
at MS cross-border points an uncertain quantity that follows a uniform distribution between nowadays 
pipeline capacity and a hypothetical maximum pipeline capacity (the maximum capacity in the EU gas 
system  the pipeline connecting Ukraine and Slovakia ~ 300 million cubic meters per day  300 



mcm/d) and to run the model under severe crises conditions a number of times (~ 1000), applying the 
mentioned SA techniques to the results. 

Figure 1 shows the type of graphic results obtained. It represents the survival time of the EU gas 
system (number of days that all EU MS are able to satisfy the demand of gas at peak consumption) for 
different sampled values of the capacity of the pipeline that connects France with Spain (in this 
direction, from France to Spain). The results represented have been obtained under the conditions of a 
huge gas crisis in the Mediterranean Sea where no gas arrives at EU Mediterranean coasts by any 
means (neither via pipeline nor via Liquefied Natural Gas cargo). GEMFLOW has been run 10,000 
times.  This figure shows how increasing moderately the capacity (from its nowadays value ~ 8 
mcm/d) in the mentioned pipeline does not help increasing the system survival time; only when the 
capacity exceeds the value 34 mcm/d the system survival time dramatically increases. Equally, 
increasing it beyond approx. 36 mcm/d does not produce any additional benefit. The statistical 
significance of these results is supported by the Smirnov two-sample statistical test.

Fig. 1.- Survival days of the EU gas system versus capacity of the pipeline taking 
gas from France to Spain.  
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A frequent problem of interest to econometricians is that of model selection. Typically a set of time-
dependent economic data is available, and it is suspected that some quantity of interest is a function
of some unknown subset of these variables. The model selection problem seeks to identify which
variables are driving the response, given the data set, and then use these for subsequent forecasts.
The problem is typically compounded by lags and strong correlations between the observed data.
Standard approaches to this problem are to fit linear models and order variables using t-statistics,
then use the F-test to systematically remove spurious regressors until the important variables are
found. An influential paper was published which examines and critiques this approach [1], which
is the starting point of this work.

The work here proposes a novel application of global sensitivity analysis to deal with econometric
model selection. The concept is to assess the sensitivity of some measure of model fit or “quality”
to the presence or absence of each variable in the regression model. To give a little more detail,
the standard assumption is adopted that the output y is a linear function of a set of D observed
variables, x = {xi}

D
i=1

. For any subset of x, a simple linear regression can be fitted with a
least squares estimator. There is therefore a set of 2D possible regression models, representing
all possible subsets of regressors, where the choice of regressors in each model k is represented
by zk = {zk,i}

D
i=1

, such that zk,i ∈ {0, 1} and zk,i = 1 represents the inclusion of xi in model k
and zk,i = 0 excludes it. Note that since the estimation of regression parameters is always done
by the ordinary least squares approach, each model is completely defined by z. Now, defining η

as a function that gives a measure of “model quality” (here the Bayesian Information Criterion
is used), the model quality q of a given model can be defined as q = η(z). The proposal of this
article is to perform a sensitivity analysis on this function η: examining the sensitivity of q to the
choices of regressors z. By treating z as a random binary vector, the total sensitivity index ST

can be calculated for each variable, giving a measure of the contribution to the model quality, and
thereby providing a way to distinguish influential variables from non-influential ones.

Using this paradigm, an algorithm was constructed which calculates ST for each zi and ranks vari-
ables in order of importance. This ranking enables a reasoned search process, whereby candidate
regression models are built starting with the regressor with highest ST , then successively adding
regressors in order of importance and using the F-test as a stopping criterion.

In order to test the new approach, the new algorithm, as well as that created in [1], were applied
to the same 11 data generating processes (DGPs) used in that study, to see how often the true
regressors are recovered. By comparing both optimum performance (by optimising tuning param-
eters in both algorithms), and performance when tuning parameter values are not known, it was
found that the new algorithm outperforms that of [1], such that the rate of not recovering the true
DGP was roughly halved. Additionally the new algorithm appears to be significantly more robust.
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Modern scientific codes capture a variety of phenomena, from social to physical laws, especially in
the environmental and climate change sciences. This generates two types of issues in sensitivity
analysis. The first is computational burden (the curse of dimensionality, [6]). The statistics litera-
ture has addressed this problem extensively since the mid ’90’s [8, 4] and a series of seminal works
on the subject has shown the possibility of abating computational burden drastically, opening the
door for application of global methods even to computationally intensive models. This evolution,
however, leads to the second problem, namely estimation accuracy, which is the subject of investi-
gation of this work. In several applications, the output of numerical codes is severely skewed and
ranges over several order of magnitudes. A commonly-used solution is to transform the output
to a logarithmic scale, leading to much more accurate estimation at reasonable sample sizes. But
while the estimation quality improves, the global sensitivity statistics lose their original meaning
relative to the input-output mapping. We argue that a practical way to avoid this problem is to
use global sensitivity indices that are invariant to monotonic transformation of the output.

In this work, we investigate in detail the implications of invariance for monotonic transformations
(henceforth, monotonic invariance) in the estimation of global sensitivity statistics. First, we pro-
pose a general framework for monotonic invariant global sensitivity statistics. We argue that any
global sensitivity measure be seen as a functional of the unconditional model output distribution
and of the conditional model output distribution obtained when any given factor is fixed. Then,
we investigate the nature of monotonic invariance showing that one can obtain monotonic invari-
ant global sensitivity statistics choosing a proper probability metric. We propose a generalized
variational distance which encompass several monotonic invariant probability metrics. We show
that the Kuiper, Kolmogorov, Anderson-Darling, the L

1-norm, any Csiszar-divergence [1, 5, 9, 2]
and any member of the Birnbaum-Orlicz family [3] generate monotonic invariant global sensitivity
statistics. Also, the estimation of the sensitivity statistics becomes equivalent to a sequence of
repeated goodness of fit tests.

The numerical implications of transformation invariance are addressed next. We illustrate numer-
ical experiments through both analytical case studies and through the Level E model, used in
[7], which is a benchmark model for global sensitivity analysis studies. We compare results for
statistics that are monotonic invariant and statistics that are not monotonic invariant. To test the
independence of results from the estimation method, alternative estimation strategies are analysed
for the same sensitivity statistic.

Results show that, if an appropriate monotonic transformation is employed, the rate of convergence
with respect to the sample size increases for both invariant and non-invariant sensitivity statistics.
The transformation allows one to obtain stable estimates in cases in which it would otherwise
be impossible to obtain convergence. However, for sensitivity statistics that are not monotonic
invariant the results can be distorted and misleading, i.e. different transformations may yield a
different ranking of factors. If a sensitivity statistic is monotonic invariant, then we fully retain
the increased computational accuracy.

DISCLAIMER: an extended version of the manuscript is presently under review at an internation-
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ally refereed journal.

References:

[1] T. W. Anderson and D. A. Darling. Asymptotic theory of certain “goodness of fit” criteria
based on stochastic processes. Annals of Mathematical Statistics, 23(2):193–212, 1952.

[2] I. Csiszár and P. Shields. Information theory and statistics: A tutorial. Foundations and Trends

in Communications and Information Theory, 1(4):417–528, 2004.

[3] E. Deza and M. M. Deza. Dictionary of Distances. Elsevier, Amsterdam, 2006.

[4] J. E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models: A Bayesian
approach. J. R. Statist. Soc. B, 66(3):751–769, 2004.

[5] E. S. Pearson. Comparison of tests for randomness of points on a line. Biometrika, 50(3/4):315–
325, 1963.
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The art of robust engineering requires to take the random nature of design parameters into account
in order to predict the dispersion of the performance of a structure. When dealing with reducing
this dispersion, one has to identify the parameters to which the variability of the performance is
the most sensitive. Global sensitivity analysis (GSA) is a statistical field that aims at identifying
and prioritizing the design parameters that contribute the most to the dispersion of the response of
a model. This quantity is in most cases described by the statistical variance of the model response.
The so-called ANOVA (ANalysis Of VAriance) technique ranks the parameter according the share
of the model response variance they are responsible for.

Let us consider a performance Y described by a physical modelM(X) where X is n−dimensional
independent random vector. Such an apportionment of the total variance can be processed thanks
to a functional decomposition of the model M [1] reading:

M(X) =M0 +
n∑

i=1

Mi(Xi) +
∑

16i<j6n

Mij(Xi, Xj) + · · ·+M1...n(X1, . . . , Xn)

=M0 +
∑

u⊆{1,...,n}

Mu(Xu)

(1)

where M0 is a constant and where the components have zero mean and are mutually orthogonal.
This decomposition also holds when dealing with the variance of Y :

V [Y ] =

n∑

i=1

V [Mi(Xi)] +
∑

16i<j6n

V [Mij(Xi, Xj)] + · · ·+ V [M1...n(X1, . . . , Xn)] (2)

The so-called Sobol’ index [2] of a variable Xi is defined by the ratio between the variance of the
component that only depends on Xi and the total variance of Y, namely:

Si =
V [Mi(Xi)]

V [Y ]
(3)

The index Si represents the share of the variance of Y that is due to both the physical role of Xi

in M and its random nature. An index Si close to 1 indicates a strong contribution of Xi to the
dispersion of Y whereas an index close to 0 denotes a weak incidence.

Computing the ANOVA sensitivity indices requires to identify the different components of the
functional decomposition. This task can be achieved by a projection method but the corresponding
computational cost is substantial. On top of that, if the response of the model M is expensive to
evaluate (ifM is a FEM code for instance), then the number of calls to the model will be limited,
let us say to a few hundreds of times, which is not sufficient to perform GSA. In order to circumvent
this limitation, one may substitute the physical model by a surrogate model M̂, namely a analytical
representation built from a reasonable-sized design of experiment D = {X , Y =M(X )} that is
much cheaper to evaluate than M. One adequate method is referred to as polynomial chaos
expansion [3]. The principle is to expand the model response on a suitable polynomial basis,
namely:

Y ≈ M̂(X) =

+∞∑

j=0

ajΨj(X) (4)
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In practice, the basis B = {Ψj , j = 0, . . . , P − 1} is usually truncated to a finite number P of
terms. Then, defining a substitution model for M consists in evaluating the coefficients aj of the
development, using a regression method for instance.

GSA techniques for models with independent input parameters are well-established and computa-
tionally efficient when coupled with surrogate models. When the input parameters are no longer
independent, the functional decomposition in (1) does not hold since the components of the de-
composition are no longer orthogonal. A generalization of the ANOVA for models with correlated
input has been introduced in [4]. The principle of the ANCOVA (ANalysis of COVAriance) is to
express the variance of Y as its covariance with the functional decomposition of M, namely:

V [Y ] = C [Y,M(X)]

= C



Y,
∑

u⊆{1,...,n}

Mu(Xu)





=
∑

u⊆{1,...,n}

[

V [Mu(Xu)] + C [Mu(Xu), Y −Mu(Xu)]

]

(5)

The following triplet of indices (Su, S
U
u
, SC

u
) can be derived from (5):

Su =
C [Mu(Xu), Y ]

V [Y ]
, SU

u
=

V [Mu(Xu)]

V [Y ]
, SC

u
= Su − SU

u
(6)

The index SU
u

represents the uncorrelated contribution of Xu to the variance of Y , that the
contribution that would be left if the variables where independent. On the contrary, the index
SC
u

represents the contribution of the correlation of Xu with the other parameters. The global
contribution index Su = SU

u
+ SC

u
is the sum of the two contributions.

The issue of the functional decomposition is solved by using the one provided by the polynomial
chaos expansion in (4). Since the expansion of the correlated parameters is not expressed in the
physical space because of the isoprobabilistic transformation, the trick proposed in [5] is to build the
expansion with the joint distribution of the input random vectorX featuring an independent copula
to preserve the link between the physical and standard variables and to evaluate the variances and
covariances by simulating realizations of X with its true dependence structure.

The ANCOVA technique coupled with polynomial chaos expansion is first applied on analytical test
functions in order to exhibit how the uncorrelated an correlated parts behave when the correlation
between the input parameters varies. It is then carried out on a simple mechanical application.
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In recent time, in the field of traffic simulation, sensitivity analysis (SA) is starting to attract attention 

as an indispensible tool for simplifying the calibration of microscopic traffic flow models (1,2,3). 

These models, in facts, involve many sub-models and dozens of parameters (4) that need to be 

calibrated to make the model suitable to correctly reproduce local traffic conditions. Unfortunately, 

such models are quite computationally expensive (the typical duration of a simulation run being in the 

order of minutes) meanwhile the calibration in the high-dimensional space of model parameters 

usually requires several thousands of model evaluations. For this reason, it is common practice to 

carry out calibration only for a limited number of parameters. However, there is no established 

procedure for their selection, other than the personal experience. Therefore it is easy to imagine as the 

selection of an incomplete set of parameters for the calibration might lead to several issues, including 

but not limited to the inaccuracy and unreliability of model results as well as unrealistic values for the 

calibrated parameters. Therefore, a proper SA, including the initial screening of the parameters, can be 

very valuable for the subsequent calibration process (5), as it can provide both quantitative and 

qualitative information regarding the effects of the different model parameters (and their variations) on 

the simulation results.  

The sensitivity analysis of traffic simulation models is therefore carried out on its parameters, 

whereas the other inputs like the transportation network or the travel demand are kept constant. Since 

many sensitivity analysis techniques require a considerable number of model evaluations (5) and a SA 

needs to be repeated for each specific case study, the computational complexity still remains a 

problem. For this reason, the possibility of generalizing results of a SA of a specific traffic simulation 

model in a specific case study, is worth to be investigated. 

In the present work we present the preliminary results of an exploratory research in which the 

robustness of the results of a sensitivity analysis, carried out on the parameters of a car-following 

model, is assessed against the variation of the other (non-parametric) inputs. 

Car-following models are the key components of all microscopic traffic simulation models. 

They describe the longitudinal motion of a vehicle by mimicking the reaction of its driver (the 

“follower”) to the stimuli perceived while interacting with the front vehicle (the “leader”). They are in 

the form of differential equations (sometimes delayed) whose basic inputs are, generally, the 

follower’s speed, the distance between the follower and the leader and their speed difference. Outputs 

of such models are usually the follower’s speed or acceleration. Traffic is therefore simulated through 

a system of chained coupled equations. 

Apart from the mentioned inputs, simulation outputs are strongly dependent on the values of the 

model parameters , which vary among the population of drivers (that is along the chain of coupled 

equations) as deemed to capture the individual psycho-physical characteristics of each driver. In 

simulation practice such parameters are considered uncertain in order to cover all the uncertainty in the 

simulation process. They are usually calibrated through an inverse analysis, that is by looking for the 

value of parameters that allow the simulated time-space trajectory of a vehicle to be as near as possible 

to the measured one. 

Although these models have usually a quite simple formulation, their behavior, especially as the 

result of the parameter values, is not yet clear. Their SA is therefore an interesting and timely issue. As 

already mentioned, however, this is not the only objective of this work. Here, we do want also to 



ascertain how robust are the results of the analysis against the variation of the non-parametric inputs, 

that is, by varying the leader’s trajectory. To this aim, the sensitivity analysis included the leader’s 

trajectory as an additional factor, which, in the Monte Carlo framework adopted, was sampled from a 

predefined dataset of trajectories. Such dataset, in particular, was built by picking trajectories 

measured in different roads (freeway and arterial) and in different traffic conditions. In this way it was 

possible to assess the relative effect on model outputs of the parameters and the input trajectories that 

was essential to understand whether results of a SA can be generalized (independently of the 

trajectory). 

In the experiment, we chose the sensitivity analysis technique based on the computation of the 

Sobol first order and total order sensitivity indices (5,6). Confidence intervals around the indices were 

also calculated in order to check for their stability. The car-following model used was the IDM model, 

while the trajectories considered were 101 trajectories selected from 10 databases available thanks to 

the NGSIM project which allowed us to capture a wide spectrum of driving behaviors. Some results 

are summarized in Figure 1. 

 
Figure 1. First and total order sensitivity indices for the parameters of the IDM model. 

They show that the input trajectory (identified by the PairID variable) has a prominent effect on 

the model outputs. At the same time, however, its effect is mainly played in combination with other 

model parameters. Overall, it can be said that there are few parameters exerting a certain effect on the 

output of the model no matter the input used. This is an important result as it opens the path for 

defining classes of problems, in traffic simulation, for which the parameters to calibrate can be defined 

a priori and not individuated case by case. 
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Motivation : The aim of global sensitivity analysis is to describe the inner structure of a real-
valued function f of several variables, and to analyse the influence of each (group of) variable(s)
on the response. It is based on the High Dimensional Model Representation (HDMR) of f [2]:

f(x) = f0 +

d∑

i=1

fi(xi) +
∑

i<j

fi,j(xi, xj) + · · ·+ f1,...,d(x) (1)

where the integrals of fI (I ⊂ {1, ..., d}) with respect to any of its variable are equal to zero
1.

Computing the various fI terms requires to integrate f multiple times (and potentially over
large dimensional spaces), so that it cannot be performed directly when evaluations of f are costly.
A popular alternative is to perform the sensitivity analysis on an mathematical model m that
approximates f . We show that when m is based on Gaussian process regression with a kernel from
an appropriate class, the HDMR of m can be obtained in a very convenient way.

Results: This work corresponds to a recently published article [1]. Let us introduce the kernel

K∗
ANOV A(x, y) =

d∏

i=1

(
1 + k0i (xi, yi)

)
=

∑

I⊂{1,...,d}

∏

i∈I

k0i (xi, yi) =
∑

I⊂{1,...,d}

k0I (xI , yI) (2)

where the kernels k0i are associated to reproducing kernel Hilbert spaces (RKHS) of zero mean
functions for µi. The ANOVA structure of K∗

ANOV A allows to decompose the best predictor of the
associated Gaussian process model in a sum of sub-models:

m(x) = k(x)tK−1Y = m0 +

d∑

i=1

mi(xi) +
∑

i<j

mi,j(xi, xj) + · · ·+m1,...,d(x) (3)

where mI(xI) = k0I (xI)
tK−1Y . Furthermore, one can associate the prediction variance vI(x) =

kI(xI , yI)− kI(xI)
tK−1kI(xI) to each submodel mI . Let us remark, however, that the sum of the

variances of the sub-models does not coincide with the variance of the full model.

A striking fact with K∗
ANOV A kernels is that the decomposition given by eq. 3 coincides with

the HDMR of m since, by construction, the sub-models correspond to the projections of m onto
sub-spaces of zero-mean functions. As a consequence, the HDMR of the model can be obtained at
any order without the need to compute high dimensional integrals. Note that this construction is
similar to SS-ANOVA [3] but the framework is more general here since we do not focus on splines.

1Note that we assume here an input space of the form D = D1 × · · · × Dd endowed with a product measure

µ = µ1 ⊗ · · · ⊗ µd.



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Another contribution of [1] is to show how to obtain kernels associated to RKHS of zero-mean
functions. Let k be a kernel andH be the associated RKHS. Under the hypothesis

∫

Di

ki(si, si) dµi(si) <

∞, the kernel k0i associated to the sub-space of zero-mean functions in H is

k0i (xi, yi) = ki(xi, yi)−

∫

Di

ki(xi, si) dµi(si)

∫

Di

ki(yi, si) dµi(si)

∫∫

D2

i

ki(si, ti) dµi(si)dµi(ti)

. (4)

We finally show that the global sensitivity indices SI of m
∗ are given by:

SI =
Y tK−1

(⊙

i∈I Γi

)
K−1Y

Y tK−1
(⊙d

i=1
(1n×n + Γi)− 1n×n

)
K−1Y

(5)

where Γi is the n× n matrix Γi =
∫

Di

k0i (si)k
0

i (si)
t dµi(si) and 1n×n is the n× n matrix of ones.

Compared to the similar property given in [4], the particular structure of K∗
ANOV A allows here to

compute the indices SI at any order without the need to compute all SJ for J ⊂ I.

Illustration: In order to illustrate briefly the previous results we consider the test function
f(x) = x1+x2

2
+x1x2 defined on [−5, 5]

2. Given evaluations of f on a 10-point LH design we build
a model based on a K∗

ANOV A kernel. Its decomposition in sub-models can be represented as

m(x1, x2) m0 m1(x1) m2(x2) m12(x1, x2)

The computation of the sensitivity indices on m gives S1 = 0.23, S2 = 0.48, S12 = 0.29, a
reasonably good approximation of the true values: S1 = 0.25, S2 = 0.5 and S12 = 0.25.
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Computational Fluid Dynamics (CFD) simulations represent a key element of the analysis and
design methods used in industry. These simulations are typically based on a unique set of input
data and model parameters. However, real-world flow configurations are subject to numerous
uncertainties, e.g. variations in boundary and initial conditions. The presence of these uncertainties
is a major source of error in the design decision process and increases the risk of failure of a given
component. The proposed research work focuses on the quantification of modeling uncertainties
using a statistical approach.

An essential ingredient in CFD simulation is represented by turbulence modeling. Capturing all
the spatial and temporal scales on a computational grid, is typically not feasible considering the
currently available computing power. In current CFD practice, all the turbulent scales are modeled,
and only the average flow field is solved directly. This is known as the Reynolds-Averaged Navier-
Stokes (RANS) framework [1]. The averaging process of the Navier-Stokes equations leads to the
appearance of additional terms, resulting in an unclosed system. RANS approaches tackle this
problem by introducing additional constitutive models, i.e. turbulence models, which come with
their own mathematical structure and closure parameters.

Within the framework of the RANS equations, several turbulence models are available in the
literature (see e.g. Ref. [1] for a review). There is a quite general agreement about the fact that no
universal turbulence model exists, i.e. the performance of different turbulence models is strongly
problem-dependent [2]. Moreover, a specific turbulence model uses a number of closure coefficients
which are traditionally determined by calibrating the model for a dataset of relatively simple test
cases. The model performance may strongly depend on the selected coefficients, which are often
re-calibrated to improve the model response for a given set of problems.

For calibration, we follow the work of Cheung et al. [3], in which a Bayesian approach was applied to
the calibration of a well-know turbulence model. In that work, the coefficients were calibrated once
on all the available measured velocity profiles and wall-shear stress components. Model inadequacy
was treated with a multiplicative term parameterized in the wall-normal direction with a Gaussian
process, following the framework of Kennedy and O’Hagan [4]. The latter authors define model
inadequacy as the discrepancy remaining between the mean of the real-world process and the model
evaluated at the ’true’ parameters. These parameters are defined as those values who give a best-fit
to the data under the assumed form of the statistical model. Thus, even when we assume that we
know these best-fit closure coefficients, assumptions intrinsic to the mathematical structure of the
turbulence model will prevent it from reproducing a Quantity of Interest without error.

In the present work, we perform the calibrations on a set of popular turbulence models. Un-
like Cheung, we quantify model inadequacy using multiple calibration results. Summarized we
proceed as follows: (1) we define the class of flows for which we wish to estimate the error, in
our case turbulent boundary-layers for a range of pressure gradients. (2) We collect experimental
data for a number of flows of this class. (3) We use Bayesian model updating to calibrate the
closure coefficients against each flow in this data-set, resulting in posterior distributions on the
coefficients for each flow. We obtain samples from these distributions by running a boundary-layer
code in the Markov-Chain Monte-Carlo (McMC) method. Thanks to the low-computational cost
of the boundary-layer code (less than 1 second / simulation), McMC sampling does not require
the use of surrogate models and is coupled directly to the exact model. The Markov chains are
found to converge after approximately 35.000 samples, and statistics are computed on 5.000 sam-



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice
p
ri

o
r

1
4
0
0

1
3
0
0

2
7
0
0

6
3
0
0

1
1
0
0

2
1
0
0

2
5
0
0

2
4
0
0

2
6
0
0

3
3
0
0

0
1
4
1

1
2
0
0

4
4
0
0

0.30

0.35

0.40

0.45

0.50

0.55

0.60 std. value

prior range

HPDκ

(a) The prior range and the posterior HPD intervals for
the 13 flow cases.

13 14 15 16 17 18

ζ (θ)

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

y+ = 46.4

p-box boundaries

zi ±3σzi

(b) The p-box at a given normalized y station. The
shaded area is the region of experimental uncertainty.

ples. (4) We summarize the large amount of posterior information using Highest Posterior-Density
(HPD) intervals. This summary gives most-likely intervals on the coefficients which represent both
the spread of coefficients within the flow-class, as well as the ability of the calibration to provide
information about the values these coefficients should take in each individual flow case. Figure
(a) shows the HPD intervals of one of the parameters, namely the von Karman constant κ, which
are quite well informed by the calibrations. This was to be expected, since a sensitivity analysis
based on Sobol indices [5] showed κ is a sensitive input parameter. (5) For a new flow of the
class (i.e. a new pressure gradient), for which there might be no experimental data, we perform
a simulation in order to obtain probabilistic error bars on the model output. Our approach is to
construct a probability box (p-box) for the output of the model at the new pressure gradient, using
uniformly distributed sets of coefficients bounded by the HPD intervals of the 13 calibrated cases.
We propagate each of these coefficient sets through the model to obtain 13 random variables Zk,
where each one represents the posterior uncertainty of a calibrated flow case k on the model output
at the new pressure gradient. Next we calculate an approximate cumulative-density function (cdf)
for each Zk. The envelope formed by this collection of cdfs is called a p-box, of which an example
is depicted in Figure (b). To construct a worst-case 90% credible interval on the model output
we find the model output value of the left p-box boundary corresponding to a 0.05 probability
content, and the value with a 0.95 probability content from the right boundary.

At the conference we will show the mentioned results for all turbulence models in the considered set,
and also compare how much the quality of each model’s predictions depends upon the inclusion of
a model inadequacy term. Alternatively, comparisons of the posterior plausibility associated with
each turbulence model (evaluated at the different flow cases) will also allow for conclusions to be
reached on the possible existence of a single ’best model’ for the class of flows under consideration.
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Sensitivity analysis and model exploration require flexible sampling and analysis tools. In biol-
ogy and agroecology applications, they must cope with many possible types of model features,
including stochasticity, interactions, mixtures of qualitative and quantitative factors, crossed and
nested input factors, etc. In this talk, we advocate methods that are based on standard statistical
methodology but integrate the modern approaches to model exploration. More precisely, we show
how a combination of regular factorial designs and regression-based metamodelling techniques can
be adapted to generate flexible space-filling designs and to explore the main effects and interactions
of the input factors.

From our experience, most of the models developped in agroecology have two main characteristics.
The first one is that a small number of input parameters explain most of the variability of the model
outputs ; the second one is that most of the input parameters have a strong linear or polynomial
main effect with a limited order of interactions.

The basic metamodel we postulate to explore the models is a polynomial linear model of a low
degree D (typically, D = 3 at max.). Interactions are modelled by products of powers of input
parameters, with the constraint that the sum of these powers is lower than or equal to D. The
plmm, for polynomial linear metamodel, corresponds to the model

Y =
A
∑

a=1

βa

(

K
∏

k=1

X
da,k

k

)

+ η

where K is the number of input parameters; A = CD
K+D is the number of cross product terms that

satisfy 0 ≤
∑

k da,k ≤ D, with D the maximal degree of the polynomial; η is a centred random
term independent of the Xk variables.

The coefficient of determination R2 expresses the percentage of variation explained by a regression
model (see Saporta, 2011 among others). With such an index, it is possible to evaluate the specific
contribution of each input parameter, alone or in interaction with other parameters.

Three R2 values are needed to evaluate the contributions of a parameter.

The first one (R2

C) is the coefficient of determination of the complete model. It gives the total
percentage of variation explained by the A terms in the complete model: 1 − R2

C corresponds to
the part not explained by such a polynomial linear model and so to the random term η.

The second one (R2

k) corresponds to the main effect of the parameter Xk, assuming all other terms
are negligible: it is evaluated by the coefficient of determination of the polynomial model that
involves the single input parameter Xk. It can be considered as an (estimated) upper bound of
the actual main effect of Xk, because it is not adjusted with respect to the other parameters.

R2

−k is the coefficient of determination of the plmm when input parameter Xk is not taken into
account.

With these three values, the total contribution of the parameter Xk (main effect and interactions
with other parameters) is evaluated by R2

C −R2

−k. It corresponds to the classical Total sensitivity
index under the assumption that the plmm is the true model.

In principle, the difference ∆ between R2

C −R2

−k and R2

k can be used to quantify the interactions
between parameter Xk and others. However it is also influenced by correlations and confounding
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between explanatory variables (two parameters may explain the same model output variation).
Notice that ∆ can be negative when confounding occurs, which arises frequently if the experimental
design is not balanced (with respect to the information matrix).

To better estimate interaction, it is necessary to reduce confounding through appropriate sampling
designs. Several types are available for sensitivity analysis (LHS, regular fractional design, Sobol’
sequences, . . . ). We focus on the scrambled (t,m, s)-net designs (see Koehler and Owen, 1996),
which satisfy the properties of Latin hypercubes together with space filling properties in dimensions
greater than 1. We explore their potential on some models developped in agroecology and compare
it to other designs when estimating parameters’ contributions to the model output variation using
plmm.

To gain insight, we discuss the relationship between (t,m, s)-net designs and regular fractional
designs based on defining relationships (Dey and Mukerjee, 1999, Pistone and Rogantin, 2008).
Based on the recent Planor R package (Monod, Kobilinsky and Bouvier, 2012), we show how the
(t,m, s)-net type of design can be tailored to make the effects of interest estimable assuming a
given polynomial model on the input factors.

The talk is illustrated by the exploration of some standard models and of agroecological models.
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Morris scheme for One At a Time (OAT) designs for sensitivity analysis [1] is widely used for rapid
identification of the groups of important (further classified into linear or mixed/non-linear) and
unimportant inputs of a multivariate function f(x), x ∈ A ⊂ R

k, and is particularly relevant for
models whose execution is computationally expensive and time consuming [2].

Morris designs are restricted to points in a finite k-dimensional grid G ⊂ A covering the domain
of f . Stated in simple terms, the method starts by randomly evaluating f(·) at r “initial points”
{x(n)}rn=1

in G. Starting at each of these r points, say x(n), k successive evaluations of f(·) are

made, each two consecutive points enabling the determination of an elementary effect EE
(n)

i along
a distinct direction i ∈ {1, . . . , k}. Morris designs are thus composed of r paths in G of size k + 1,
which do not have two segments along the same direction. Each input factor xi is then classified
as irrelevant, linear or other (non-linear or involved in cross-effects), depending on the first and

second order statistics of the set of elementary effects {EE
(n)

i }rn=1
observed. The attractiveness of

Morris Elementary Effects method relies on the fact that the size of the designs required to detect
the important input factors of f(·) is linear in the number of input factors (being equal to r(k+1))
irrespective of the resolution of the grid G, providing an efficient initial screening of the sensitivity
of f(·) with respect to each input factor.

Given its higher efficiency, the clustered version of Morris OAT designs (see [1], Section 5), that

computes m > 1 Elementary Effects {EE
(j)

i (x)}mj=1
along all directions i = 1, . . . , k of the input

space in the neighbourhood of each point x(n), is especially appealing. Surprisingly, these more
complex designs seem to have attracted much less interest than the original (m = 1) version.
Possible reasons are the lack of a constructive method for finding these designs, and, presumably,
concerns about the impact of residual correlation amongst the resulting set of elementary effects
along each direction, see [4].

In this communication we complete the original presentation of Morris [1], giving a formal speci-
fication of a family of balanced clustered designs for arbitrary values of k and m ≤ 2k−1 (Morris
construction is valid only for pairs (k,m) where k is not prime and m is a divisor of k). Our
construction is supported on the definition of an isometry between sub-graphs of the unit cube Qk

equipped of the Manhattan metric, and a set of polynomials in (x1, . . . , xk) on which a convenient
inner product is defined. This isometry, based on the association (si)

d
i=1

∈ Qd →֒ Xs1
1
· · ·Xsd

d ,
enables explicit symbolic representation and manipulation of designs, as well as the formal demon-
stration of their properties. We define (k,m)-edge balanced designs as those that enable the deter-
mination of exactly m elementary effects for each direction. Using our polynomial representation
this is equivalent to finding the polynomial solutions to a set of equations. The computation of the
set of elementary effects provided by any given subgraph is then immediate using our polynomial
representation, even if the designs are no longer OAT.

A natural but more complex algebra over the set of polynomials also enables the extension of Morris
concept of clustered designs to the estimation of two-factor interaction effects, SEEij(x), i 6= j ∈
{1, . . . , k}, that can detect the presence of products xixj of pairs of input factors. We define (k, c)-
cycle balanced designs as the subgraphs of the unit hypercube Qk that are (k,m)-edge balanced
for some m and contain exactly c 4-cycles in direction (i, j) all k(k − 1)/2 possible pairs. In the
paper we present the system of equations that define these designs. For c = 1, 2 and 3 we present
families of (k, c)-cycle balanced designs, that are recursively defined in terms of their polynomial
representations. The figure below shows a (5, 1)-cycle balanced solution, together with the recursive
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equations that define the family for c = 1. In this Figure, edges are coloured according to the
elementary effect that is computed from their end points, there are thus 5 distinct colors. The
graph represents a (5, 1)-cycle balanced design because there is exactly one cycle of dimension 4
involving all 10 possible pairs of colors.

G1

1
= 1 +X1, G1

2
= G1

1
+X2G

1

1
,

G1

3
= G1

2
+X3 (1 +X1 +X2) , G1

4
= G1

3
+X4 (1 +X1 +X2 +X3)

G1

5
= G1

3
+X5 (1 +X1 +X2 +X3 +X4) · · ·

Our work is related to a previously proposed “New Morris method”, see [6,7]. However, these
references only consider the case c = 1, i.e., computation of a single mixed effect for each pair of
input factors and do not impose that the resulting designs are edge balanced.

We show how our approach can formally be extended to sampling of higher order derivatives by
imposing the presence of certain patterns in the designs graphs.

Explicit formulas for the size of our edge and cycle balanced designs are provided, and we compare
their economy (defined as in [1], as the ratio of the number of effects computed over the size of
the design) to the economy of the original and New Morris methods. The performance of cycle
balanced designs is demonstrated by considering both the analytical function on Morris’ original
paper [1] and a true simulation model of a complex system with a large number of inputs.

Finally, we discuss the problem of finding designs able to detect n-th order terms in each input
factor, which requires definition of a suitable isometry between {0, . . . , n}k and polynomials.
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Many mathematical models encountered in applied sciences involve a large number of poorly-known
parameters as inputs. It is important for the practitioner to assess the impact of this uncertainty
on the model output. An aspect of this assessment is sensitivity analysis, which aims to identify
the most sensitive parameters, that is, parameters having the largest influence on the output.
In global stochastic sensitivity analysis (see for example [11] and [12] and references therein) the
input variables are assumed to be independent random variables. Their probability distributions
account for the practitioner’s belief about the input uncertainty. This turns the model output into
a random variable, whose total variance can be split down into different partial variances (this
is the so-called Hoeffding decomposition see [16]). Each of these partial variances measures the
uncertainty on the output induced by each input variable uncertainty. By considering the ratio
of each partial variance to the total variance, we obtain a measure of importance for each input
variable that is called the Sobol index or sensitivity index of the variable [13]; the most sensitive
parameters can then be identified and ranked as the parameters with the largest Sobol indices.

Once the Sobol indices have been defined, the question of their effective computation or estimation
remains open. In practice, one has to estimate (in a statistical sense) those indices using a finite
sample of evaluations of model outputs [4]. Many Monte Carlo or quasi Monte Carlo approaches
have been developed by the experimental sciences and engineering communities. This includes
the Fourier Amplitude Sensitivity Test (FAST) methods (see for example [2], [15] and references
therein) and the Sobol pick-freeze (SPF) scheme (see [13], [14]). Nevertheless, those methods
require many evaluations of model outputs which can be a strong limitation when those evaluations
are expensive. Many approaches have been developped to overcome this issue. The most popular
are Bayesian approach (see for example [11]) or the construction of metamodels. As mentioned in
Kleijnen [7] (see equation (1) page 121) one can use functional linear regression as metamodel. In
this paper, we study the particular context of the functional linear regression and propose a new
way of estimation. We consider nonparametric estimators of quadratic functionals by projection
methods, which are related to the procedures developed by Laurent (see [8], [9]) in a density model
and by Da Veiga and Gamboa in [3] in a regression model. This method allows us to estimate
simultaneously all the Sobol indices with a single sample of reasonable size.

More precisely we consider a separable Hilbert space H endowed with the scalar product <, > and
X1, . . . , Xp, p independent centered, H-valued, stochastic processes. The model that we consider
is a linear regression model :

Y = µ +

p
∑

k=1

< βk, Xk > +ε.

where βi, 1 ≤ i ≤ p are elements of H, µ is in R and ε is a centered noise independent of the
processes X1, . . . , Xp.
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Our approach is based on the so-called Karhunen-Loève decomposition of the processes Xk ([10],
[1]). Thanks to this decomposition we construct natural estimators of the Sobol indices for which
we prove asymptotic normality and efficiency. Asymptotic efficiency is a natural property which
generalizes the notion of minimum variance unbiased estimator, see [16] chapters 8 and 25 or [6]
for more details. Finally we compare this method with the classical SPF [5] and give numerical
illustrations on a benchmark model.
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This work describes the global sensitivity analysis (SA) of an agro-climatic model embedded in a
decision support system (DSS) for the water status management of vineyard in the Languedoc-
Roussillon region, France. The DSS is used in real time to recommend irrigation amounts in order
to maintain optimal vine water stress dynamics, based on the quality objective targeted by the
winegrower (table wine, aging or laying-down wine, etc.). A major characteristic of agro-climatic
models is the difficulty of estimating the numerous input parameters because field measurements
are both costly and tedious. This is particularly true when soil-related parameters are involved -
which is the case here - because their estimation requires subsoil measurements. The operational
use of the model thus requires finding the right balance between data-friendliness and precision:
the less input parameters asked to the end-user, the better. In this context, in addition to the
obvious interest for the modeller in gaining insight into the model behaviour, the practical use of
the SA is twofold. It is first to identify the most influent parameters in order either to concentrate
experimental efforts on their field measurement when possible, or to calibrate them otherwise.
It is then to measure the ouputs uncertainty – computed along with the sensitivity indices –
to parameters estimation in order to provide the end-user with confidence indices on the DSS
irrigation recommendations. After a preliminary screening of the less influential parameters via
Morris method [1], the SA is achieved with Sobol method [2]. The model includes a temporal
output and correlated temporal inputs, so the study addresses some issues arising from these two
aspects when met in a practical context.

Several model outputs are analyzed. The first one is a discrete-time (daily) output called the
predawn leaf water potential (PLWP) that measures in MPa the water status in vine leaves. It
is the reference indicator of vine water status, which describes the physiological state that vine
experiences under water deficit. It is estimated based on a discrete-time mechanistic soil-vegetation-
atmosphere-transfer model [4], i.e. through the combination of models describing the dynamics
of soil water balance, vine canopy growth and solar radiation absorbed by the vegetation. The
soil water balance model is itself the combination of sub-models describing the various soil water
transfer processes: rain and irrigation infiltration, bare soil evaporation, vine root absorption,
runoff and drainage. The soil water balance model runs daily starting January 1st, and the PLWP
is computed daily during the vine vegetative cycle, i.e. when leaves are present, typically from
April till October. The other outputs of interest are scalar outputs related to the DSS irrigation
recommandations: triggering date and amount. They are computed when the PLWP falls below
an optimal range, defined by the winegrower and varying over time. For a practical use of the
model in a DSS, these are the outputs whose uncertainty and sensitivity to inputs variability is
the most critical to assess. The model requires the definition of 4 temporal and 22 scalar inputs.
The 4 temporal inputs are to some extend correlated. They represent the weather data necessary
for driving the model: daily precipitations, solar radiation, mean air temperature and potential
evapotranspiration, and are in practice measured by a weather station.

Firstly, the SA was achieved at the Languedoc-Roussillon scale on the temporal PLWP output
only, in order to gain a general insight into the model behaviour. The distributions of all scalar
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parameters were set rather easily from literature or field expertise in order to scan their whole
variation range at the regional scale. The case of the weather data was more an issue, since to the
authors’ knowledge, the introduction of correlated functional inputs in a SA is still under research.
The solution chosen was to use an equivalent of the map-labeling method develop for spatial inputs
[4]. It consists in grouping the 4 temporal inputs into a single one, defining a weather scenario. The
weather scenarios are then equiprobably drawn among 22 sets of data (i.e. scenarios) collected in
various spots of the Languedoc-Roussilon in the past 40 years, and representative of dry, medium-
dry and humid years. A preliminary screening via Morris method allowed to identify 6 parameters
as being negligible, and consequently to fix them to nominal values. These are the soil albedo,
which depicts the radiation reflecting power of the soil surface, and the 5 cumulative thermal times
defining the transition between phenological stages (leaf appearance, flowering, etc.). A Sobol SA
was then achieved, and the first order and total sensitivity indices were computed sequentially
at each simulation step, which enables to follow the variation of parameters influence over time.
Results showed the predominant influence of the weather data and of the total transpirable soil
water (TTSW) parameter controlling the maximum amount of soil-water available to the vine,
which confirms the empirical knowledge of the modelers. Yet one drawback of the method is that
it does not allow to quantify the individual influence of the weather components, and especially of
precipitations that are empirically known to be the most influent one.

The second step was to quantify at the vine plot scale the sensitivity to inputs estimation error of
the PLWP, and most importantly of the irrigation amount and triggering date. Since simulations
are rather time-consuming, the regional-scale results were used to help defining 12 vine plots repre-
sentative of the Languedoc-Roussillon variability and restrict the analysis to them. 3 independent
SA (i.e. 36 in total) were then realized for each vine plot for 3 fixed weather scenarios represen-
tative of dry, medium-dry and humid years. The aim was thus to test the model sensitivity to
the scalar inputs in various fixed pedo-climatic contexts. In all SA, the temporal evolution of the
PLWP uncertainty and of the sensitivity indices strongly related to the precipitations histogram,
which confirms the critical influence of this weather component. In order to compare the various
SA, synthetic sensitivity indices were defined based on previous works [5] to rank parameters ac-
cording to their global influence on the whole time-dependent simulations. In all cases, the same
3 parameters predominate, even if their relative influence varies from one vine plot to another.
These are the TTSW parameter, the soil-water content at January 1st and a soil-water content
threshold controlling root absorption. The same 3 parameters have the highest influence on the
irrigation recommendations variability, along with the vegetation maximum width. These 3 soil-
related parameters, especially the TTSW, are hard to measure and thus hard to directly ask to
the end-user. So the suitability of calibrating one or all of them is currently under discussion.
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The reduced basis method ([2,3]) is a powerful model reduction technique. It is aimed at fast
numerical resolution of certain parametrized partial differential equations in a many-query setting,
i.e., fast approximation, for a large number of values of µ, of a solution u(µ) of:

L(µ, u(µ)) = f(µ), (1)

where µ ∈ Rp is the parameter vector, L(µ, ·) is a (discretized) linear differential operator and
f(µ) is a (discretized) function.

We are interested in the approximation of a linear functional ℓ of u: s(µ) = ℓ(u(µ)) by

s̃(µ) = ℓ(ũ(µ)),

where ũ(µ) is the approximate solution of (1) found using the reduced basis method.

More specifically, we want to find an explicitly computable error bound ǫs so that:

|s(µ)− s̃(µ)| ≤ ǫs(µ). (2)

In [1], we present a numerical algorithm for computing an ǫs bound such that (2) holds with great
probability.

In this talk, we propose to briefly review the reduced basis method, to present our probabilistic
bound ǫs(µ), to compare it with competing error bounds, and, to finish, to give an application to
the certification of a Sobol sensitivity analysis of s (with respect to the components of µ) performed
using fast evaluations of its approximation s̃.
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There have been many successful improvements in the efficiency of estimating the main 
sensitivity indices to 

application of RBD and various metamodelling methods [1]. However, there have been no 
similar advances concerning computation of the total sensitivity indices and the Sobol-Jansen 
formula [2] remains to be the only formula used in the direct computation of the total 
sensitivity indices. To improve the efficiency of the MC estimates for total sensitivity indices 
we apply the variance reduction technique and develop a new formula for the evaluation of 
total sensitivity indices. We also present results using well known test functions.  
Consider the integral of the function  over the -dimensional unit hypercube .  For the 
estimation by the Monte Carlo method, an integration error , where  is the 
variance of . The control variate method is used to decrease  by reducing . In the 
control variate method we define a new integrand , where  is 
a constant coefficient and  is a function for which  is known.  is 
called a control variate. The difficulty is to find a good control variate  to build an unbiased 
estimatorr  with a reduced variance. 
We apply the control variate technique to the evaluation of the total sensitivity indices  for 
the case of a single variable . The same approach can be easily generalised for the case of a 
set of variables. The Sobol- Jansen formula has a form: 

(1) 

Consider the ANOVA decomposition: 

(2) 

A natural choice for the control variate for a function  is to choose the first order terms 
 of ANOVA. It leads to the following result: 

Theorem: Formula for the evaluation of the total sensitivity indices  using the control 
variate (CV) technique has a form

(3) 

Clearlyy  because 

. Hence formula (3) is more efficient for estimation of  using the MC method for 



Type A and B functions for which  is close to  [3]. However, it requires the knowledge 
of the first order ANOVA terms  and the corresponding . In a general case of 
functions not known analytically  and  can only be found by building metamodels and 
then extracting the numerical values of the first order sensitivity indices and approximation of 
the first terms of the ANOVA decomposition from metamodels.  
In this project, we approximate the functions 
Models [4] with an identity link function. In this method mated as smoothing 
penalized regression splines. Once  are numerically estimated. 
We apply the developed formula (6) for the total sensitivity indices to the Ishigami function 
with a=7, b=0.1. From the values of the first order and total indices 

 it is 
clear that one can expect the formula with using the control variate technique can give an 
improvement in efficiency for variables 1 and 3. Indeed, the numerical tests confirm this 
hypothesis. We evaluated total sensitivity indices  using the original formula (1) and the 
improved formula (6). We used 1) analytical expressions for  and 
QMC sampling; 2) expressions for  and  Fig. 1 presents 
results for the convergence of , namely by plotting the root mean square error (RMSE) 
versus (for definition of RMSE see e.g. [3]). It can be seen that the improvements in 
convergence are from 10-folds for MC to 102 folds for QMC when analytical expressions for 

 and and
 The efficiency of this method can be also increased 

further by adding higher order terms to the control variate. 

Figure 1: RMS Error vs. N. Variable 1 ( left ) Variable 2 ( right) for the original Sobol Jansen 
formula (blue line), CV formula based on metamodel (red line), analytical results for 
and  using MC (green line), analytical results for  and  using QMC (blue line). 
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I. Objective Global Sensitivity Analysis (GSA) methods [1,2] and Multivariate Sensitivity
Analysis (MSA) methods [3], which aim to apportion the variability of model output into input
variables and their interactions, are an objective way to evaluate the impact of the uncertainty in
input variables on the model output. In particular, The Total Sensitivity Index (TSI) gives for
each input its overall contribution, including the effects of its interactions with all the other inputs,
in the variability of the model output. The computation of TSI requires a large number of model
evaluations [1,4]. We investigate a promising way of computing TSI with few model evaluations.

II. Methods Let Y = f(X) be a model output and X = (X1, . . . , Xd), d independent (A1)
input factors. Under assumption E

(
f2(X)

)
< +∞ (A2) we have the following decompositions:

f(X) =
∑

u⊂{1,2,...d}

fu(Xu), [1]

= f0 + g(Xj ,X∼j) + h(X∼j), [5]

where, f0 = E [f(X)]; fj(Xj) = E [f(X)|Xj ]− f0; E [fu(Xu)] = 0 and g(Xj ,X∼j) =
∑

u∋j

fu(Xu),.

In papers [5] [6], it is shown that the TSI index of Xj is also defined as:

STj
=

E
[
g2(Xj ,X∼j)

]

V[f(X)]
. (1)

Proposition 1 and Theorem 1 give a practical expression of g(·) and a numerical way of computing
g(·) and TSI indices.

Proposition 1: Under assumptions A1 and A2, we have:

g(Xj ,X∼j) = f(X)− E [f(X)|X∼j ]

Proof 1: Due to f(X) = f0 + g(Xj ,X∼j) + h(X∼j) and E [g(Xj ,X∼j)|X∼j ] = 0, we have
E [f(X)|X∼j ] = f0 + h(X∼j). �

Theorem 1: Let xi, i = 1, 2 . . . , N be N realizations of X; f(X), a polynomial of order 2p − 1
with respect to Xj (A3). If A1, A2 A3 hold we have:

i) g(xj ,x∼j), is exactly known if E [f(X)|X∼j = x∼j ] is known
ii) p evaluations of f(·) are sufficient to obtain the exact integral E [f(X)|X∼j = x∼j ]
iii) p+ 1 evaluations of f(·) are sufficient to obtain the exact value of g(xj ,x∼j)
iv) N(dp+ 1) is the total cost of model evaluations to estimate the d TSI indices

Proof 2: i) obvious; ii) Gauss−Legendre quadrature allows an exact computation of E [f(X)|X∼j ]
for polynomials of order 2p− 1 with only p evaluations of f(·); iii) and iv) are the consequences of
i) and ii). �

Theorem 1 is suitable for polynomial function with respect to each factor. However, it can be used
to approximate the TSI indices of any function, bearing in mind the Taylor expansion.

III. Results and Conclusions Theorem 1 is used to estimate the TSI indices of 3 classes
of Sobol’s function [7]

(

f(x) =
∏d=10

j=1

|4xj−2|+aj

1+aj

)

: Type A, i.e. few important factors; Type B, all

factors are important without any interaction; Type C, all factors are important by interaction.
Table 1 shows the average of 50 estimations of TSI based on Sobol’ sequence design and Figure 1
shows the sum of the d mean absolute errors. Results are interesting for Type A and B functions
(best case). For Type C, the estimations vary a little bit after 30000 model evaluations, suggesting
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Type A: a = (0, 0, 6.52, . . . , 6.52) Type B: a = (50, . . . , 50) Type C: a = (0, . . . , 0)

Input ST.j ŜT.j ST.j ŜT.j ST.j ŜT.j

X1 0.54 0.5676 0.1 0.1062 0.27 0.2687
X2 0.54 0.5515 0.1 0.1070 0.27 0.1653
X3 0.013 0.0135 0.1 0.1066 0.27 0.2272
X4 0.013 0.0125 0.1 0.1059 0.27 0.1641
X5 0.013 0.0158 0.1 0.1050 0.27 0.2616
X6 0.013 0.0126 0.1 0.1064 0.27 0.2703
X7 0.013 0.0123 0.1 0.1072 0.27 0.3312
X8 0.013 0.0153 0.1 0.1076 0.27 0.2578
X9 0.013 0.0131 0.1 0.1064 0.27 0.2667
X10 0.013 0.0148 0.1 0.1056 0.27 0.3575
N(dp+ 1) 3780 3780 30380

Table 1: True TSI indices and average of 50 estimations of TSI indices for Sobol’s function

Total number of model evaluations(.10^3)

M
AE

0.
05

0.
10

0.
15

0.
20

0 10 20 30 40

Type A

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0 10 20 30 40

Type B

0.
5

1.
0

1.
5

2.
0

0 10 20 30 40 50 60

Type C

Figure 1: Sum of d = 10 mean absolute errors for TSI estimations versus total cost of analysis

a possibility and a need to improve the method rather than increasing the number of model
evaluations. However, the results are comparable to those obtained in [4].
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1. Context  

Progress made during the last fifty years in optics sensors enhanced the use of InfraRed (IR) detection 
for scientific, surveillance and military applications. IR sensors enable to detect targets that cannot be 
set apart from their surroundings in the visible spectral range, thanks to their emitted heat. This 
explains why knowledge of aircraft IR emission is compulsory: for example in order to assess their 
detection probability and thus their susceptibility, and why IR signature (IRS) analysis is important.
For many reasons, the experimental approach is generally not feasible to evaluate the IRS, and 
computer programs are therefore extremely valuable tools.  
In the last decade, the usefulness of multispectral or hyperspectral sensors for remote sensing 
assignments has been proven [1-2], and some studies [3-4] emphasize their potential for target 
detection. However, few multispectral sensors are, for now, available in the IR field. In this study, we 
focus on the specification of a multispectral sensor for different missions, such as aircraft detection or 
classification. ONERA has developed for thirty years a simulation of aircraft IRS, CRIRA, initiated by 
[5]. Using CRIRA, we aim at performing a sensitivity analysis, to identify inputs that have negligible
influence on the computed IRS, and can be set at a constant value.
For an aircraft in a given atmospheric environment, the first order effects on the IRS relate to the 
spectral range, the presentation geometry, the aircraft speed and the engine power setting. Several 
sources of variability lead to a dispersion of the values likely to be observed: weather, aircraft aspect 
angles, aircraft type, optical properties. Some input variables of CRIRA are qualitative: the 
atmospheric model, the model of aerosol, for example, and quantitative variables related to 
atmospheric conditions, such as the relative humidity of the atmosphere, the ground’s air temperature
and the altitude of the cloud layer’s base, are correlated. 
We consider vectorial outputs: the IRS spectrally integrated in about 5 up to 20 contiguous bands. 
Moreover, a single run of our simulation requires about three minutes; we thus keep the number of 
simulation runs below 1000 for the sensitivity analysis. Hence, we have to perform a multidimensional 
global sensitivity analysis with four constraints: 

- a number of simulation runs that must be small (<1000), 
- quantitative inputs that are correlated, 
- presence of qualitative inputs,  
- correlated multidimensional outputs. 

2. Methodology 

Several approaches enable to carry out the sensitivity analysis of a computer simulation, among which 
stand out Sobol' Sensitivity Indices (SSI) estimation, described in [6]. Most of the published methods
are based on Monte Carlo or Quasi Monte Carlo simulations and require thousands or even tens of 
thousands of simulation runs for computing accurate estimations of the SSI. Moreover, only a few 
methods enable to account for dependent quantitative inputs, either by generalizing variance-based 
sensitivity indices [7-9] or by using distribution-based sensitivity indices [10]. 
We thus make use of an approach that is jointly based on a Partial Least Squares Regression 
metamodelling and on a D-Optimal Computer Experiment Design strategy, proposed in [11] and 



implemented in R. This methodology enables to compute specific sensitivity indices, referred to as SI-
VIP, under our four constraints.  
It is based on a small size D-optimal design, formed by computer experiments selected from a large 
(about 10000 points) correlated network of candidate simulations. In this work, we use copulas [12] 
for correlating the quantitative inputs, and we assume that the outputs can be approximated by an 
incomplete polynomial metamodel of degree 3 (the categorical inputs are coded with their (0/1)-
indicator variables), with chosen monomials. We make use of an exchange algorithm for the 
optimization of the normalized determinant of the information matrix associated to this metamodel 
and we choose the size of the final D-optimal design so as to perform a good compromise between a 
high level of the D-optimality criterion and a not too large number of simulation runs. 
The simulation outputs for all numerical experiments prescribed by the design are then collected, the 
coefficients of the polynomial metamodel computed by PLS regression, and the sensitivity indices 
estimated. The SI-VIP indices can reveal the more influent inputs for all the outputs studied 
simultaneously, which accounts for our fourth constraint and is especially useful when the multivariate 
output is a (multi)spectral one. 

3. Results 

Very promising results have been obtained applying the proposed methodology on a test case for a 
standard air-to-ground detection scenario, namely a daylight air-to-ground full-frontal approach by a 
generic aircraft flying at low altitude. We were able to identify 10 variables among 26 that have a 
strong impact on integrated and multispectral IRS variability for the chosen scenario, with only 180 
simulations. Being able to perform a sensitivity analysis simultaneously in dozens of spectral bands is 
especially interesting: we can thereby consider different selections and mergings of bands, and carry 
through the specification of a multispectral sensor.   
�

References : 

[1] L. E. Hoff, A. M. Chen, X. Yu, and E. M. Winter, "Enhanced Classification Performance from 
Multiband Infrared Imagery ", IEEE Proceedings of ASILOMAR-29, 837-841, 1996. 
[2] C. I. Chang and S. S. Chiang, "Anomaly detection and Classification for Hyperspectral Imagery ", 
IEEE Trans. Geosci. Remote Sensing, 40: 1314-1325, 2002.  
[3] J. Karlholm and I. Renhorn, “Wavelength band selection method for multispectral target 
detection”, Applied Optics, 41(32):6786-6795, 2002.  
[4] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications”, IEEE 
Signal Process. Mag., 19:29-43, 2002. 
[5] G. Gauffre, “Aircraft infrared radiation modeling”, Rech. Aerosp., 4:245–26, 1981. 
[6] I.M. Sobol, “Sensitivity estimates for nonlinear mathematical models”, Mathematical Modelling 

and Computational Experiments, 1:407-414, 1993.  
[7] T.A. Mara, S. Tarantola, “Variance-based sensitivity indices for models with dependent inputs”, 
Reliability Engineering and System Safety, 107:115-121, 2012. 
[8] S. Kucherenko, S. Tarantola, P. Annoni, “Estimation of global sensitivity indices for models with 
dependent variables”, Computer Physics Communications, 183: 937–946, 2012. 
[9] G. Chastaing, F. Gamboa, C. Prieur, “Generalized Hoeffding-Sobol Decomposition for Dependent 
Variables -Application to Sensitivity Analysis”, http://arxiv.org/abs/1112.1788v3. 
[10] E. Borgonovo, S. Tarantola, “Moment Independent and Variance-Based Sensitivity Analysis with 
Correlations: An Application to the Stability of a Chemical Reactor”, Int. J. of Chemical Kinetics 
40(11): 687-698, 2008. 
[11] J.P. Gauchi, S. Lehuta and S. Mahévas, "Optimal Sensitivity Analysis under Constraints: 
Application to Fisheries," Procedia Social and Behavioral Sciences, 2:7658-7659, 2010. 
[12] R. B. Nelsen, “An Introduction to Copula” 2nd Ed., Springer, 2006. 

[ Sidonie Lefebvre ; ONERA - sidonie.lefebvre@onera.fr ] 



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Multi-fidelity sensitivity analysis

Loic, Le Gratiet
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Complex computer models, used in science and engineering to model physical phenomena, fre-
quently have a large number of input parameters. To finely analyse these codes, the determination
of the important input parameters can be carried out by a global sensitivity analysis. We focus on
Sobol indices [6] which are a variance-based importance measures of model input parameters on a
model response. Nevertheless, the estimation of the Sobol indices by sampling methods requires
large number of simulations, that are sometimes too costly and time-consuming. A well known
method to overcome this difficulty is to build a mathematical approximation of the code output -
also called surrogate model or metamodel - from a limited number of simulations of the real code.
A very popular class of surrogate models is the Gaussian process regression, also called kriging.

The goal of this paper is to take advantage of the property that a computer code can often be run at
different levels of accuracy. In this case, the so-called multi-fidelity co-kriging surrogate modeling
[2] can be used to predict the output of the complex computer code and thus to perform a global
sensitivity analysis. For this purpose, we introduce non-asymptotics certified multi-fidelity Sobol
indices, i.e. with confidence intervals which take into account the surrogate model error when the
number of simulations is small.

Let y(x) be the scalar output of a complex code and y1(x) be a less accurate and faster version
of this code. The idea is to suppose that the prior knowledge about the response of codes can be
modeled by Gaussian processes. The multi-fidelity cokriging model [2] is defined as the following
auto-regressive model :

Y (x) = ρY1(x) + δ(x) (1)

where δ(x) ∼ GP(f ′δ(x)βδ, σ
2

δrδ(x, x
′)), Y1(x) ∼ GP(f ′

1
(x)β1, σ

2

1
r1(x, x

′)) and Y1(x) is indepen-
dent of δ(x). The surrogate model is given by the distribution of the Gaussian process Y (x)
conditioned by the known values of y(.) and y1(.) at points in D = {x(1), . . . , x(N)} and D1 =
{x(1), . . . , x(N), x(N+1), . . . , x(N1)}. We use the notations y = y(D), y1 = y1(D1), Y = Y (D)
and Y1 = Y1(D1). The mean and the covariance of the conditional distribution of Y (.) given
Y = y,Y1 = y1 have the following form [3]:

E[Y (x)|Y = y,Y1 = y1] = ρ̂µ1(x) + µδ(x) (2)

cov(Y (x), Y (x̃)|Y = y,Y1 = y1) = ρ̂2s2
1
(x, x̃) + s2δ(x, x̃) (3)

The important property is that ρ̂2s2
1
(x, x̃) and s2δ(x, x̃) represent respectively the contribution of

the coarse code to the total variance and the contribution of the model error between the complex
code and the coarse code to the total variance.

Let us suppose that the input parameters X = (X1, X2) are independent random variables X1 ∈
R

p1 and X2 ∈ R
p2 . We are interested in the following Sobol index [6]:

SX1 =
var

(
E

[
y(X)|X1

])

var (y(X))
=

V X1

V
, (4)

where E is the expectation with respect to the distribution of the input parameters X.
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When we replace the true function by its multi-fidelity approximation, a first estimator for V X1

can be proposed :

V X1

N,N1,n
= 1

n

∑n

i=1
YN,N1

(x1

i , x
2

i )YN,N1
(x1

i , x̃
2

i )

− 1

n

∑n

i=1
YN,N1

(x1

i , x
2

i )
1

n

∑n

i=1
YN,N1

(x1

i , x̃
2

i ),
(5)

where YN,N1
(x1

i , x
2

i ) and YN,N1
(x1

i , x̃
2

i ) respectly have the conditional distribution of Y (.) givenY =

y,Y1 = y1, (X1,X2) = [(x1

i , x
2

i )]i=1,...,n and (X1, X̃2) = [(x1

i , x̃
2

i )]i=1,...,n with X2 independent of

X̃2. We thus have an estimator V X1

N,N1,n
which is a random variable. We note that we can use

other estimators of Sobol indices as the the efficient one suggested in [1]. We denote by VN,N1,n

the corresponding estimator of V .

We hence can define a first Gaussian process-based multi-fidelity sensitivity index (it corresponds to
the one suggested in [4] and [5] in a kriging framework) by the ratio between the expected value of

V X1

N,N1,n
and the expected value of VN,N1,n thanks to the equations (2) and (3). The first advantage

of the proposed method is that we have a closed form expression for the two expectations without
processing numerical integrations. The second advantage is that we can evaluate the contribution
of the coarse code, the bias between the two codes and the covariance between the bias and the
coarse code with respect to the distribution of the input parameters.

The main flaw in the previous multi-fidelity sensitivity index is that we considered the variance
of the main effects and the total variance separately. Therefore, we propose a second Gaussian
process-based multi-fidelity sensitivity index. It is defined as the expected value of the ratio between
V X1

N,N1,n
and VN,N1,n. Nevertheless, we cannot obtain closed form expressions for the mean or the

variance of this index. A numerical estimation will consist in samplingm realizations of the random
vectors YN,N1

(X1,X2) and YN,N1
(X1, X̃2) and computing V X1

N,N1,n
/VN,N1,n for each realization.

However, computing such realizations could lead to numerical issues such as ill-conditioning or huge
computational cost (especially if we use a Cholesky’s decomposition). To avoid those difficulties,
we express the conditioned Gaussian processes included into the model as a linear transformation of
non-conditioned stationary Gaussian processes. Then we sample them using the Karhunen-Loeve
decomposition of the non-conditioned stationary Gaussian processes.

Sampling with respect to the distribution of YN,N1
(X1,X2) and YN,N1

(X1, X̃2) in order to obtain

the distribution of V X1

N,N1,n
/VN,N1,n could be an issue since the conditional distribution Y (.) given

Y = y,Y1 = y1 is not Gaussian. We note that the non-normality is due to the product of the two
Gaussian random variables ρ and Y1(x). We propose a method to tackle this issue.

These two Gaussian process-based multi-fidelity sensitivity indices are finally illustrated on toy
examples and applied to a mechanical problem.
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Kriging has been successfully used for approximating multidimensional functions based on a limited
number of evaluations, with numerous applications in sensitivity analysis [1]. A known limitation
of the approach, however, is the loss in predictability of usual kriging models when the problem
dimensionality increases. Inspired by generalized additive models, kriging models with additive
kernels have recently been proposed in the literature. They proved beneficial since centered Gaus-
sian processes (GPs) with an additive kernel have additive paths [2].

A central property of additive kriging models is that they rely on a hypothesis of additivity for
the underlying function while offering the convenient framework of kriging, with the interpolation
property in the case of noiseless evaluations, and a prediction variance enabling to quantify the
precision of kriging predictions. However, when using an additive kernel, the covariance matrix of
observations may not be invertible, e.g., when evaluations on a grid induce linear dependencies.
An option is to add a positive number to the diagonal entries of the covariance matrix as in [2],
but this amounts at considering the non-additive part of the function as noise.

Here we propose a novel approach for extending additive kriging models and enable them to
properly deal with the non-additive part of the objective function. Our approach is based on
complementing the additive kernel with a kernel whose associated GP paths are orthogonal to
additive functions (henceforth called ortho-additive). Derivations are conducted in the framework
of Hilbert space decompositions (such as, but not limited to the celebrated Sobol’ decomposition),
and on recent generalizations of them to kernels [3]. In the context of the Sobol’ decomposition
for a d-dimensional setting this leads to a decomposition of a kernel k(x, y) into 22d components.
Each component describes the contribution of a selection of subsets of the x and y variables to the
covariance. We may sketch this decomposition in a 2d × 2d matrix where the first d + 1 columns
and rows correspond to selections of at most one coordinate of x or y, respectively.

Figure 1 shows this matrix for various modeling choices in which the components used are marked
in dark colors. The models differ from each other in the extent to which (cross-covariance) effects
can be expressed and in the number of required parameters. In the newly proposed model d)
we enrich the additive model with an extra ortho-additive component. Doing so the model may
require more samples to be accurately trained, but we gain the ability of capturing non-additive
effects at the lowest cost, namely by adding just one more model parameter.

Figure 1: Schematic representation of kernel decompositions; a) full or non-sparse (e.g., Gaussian),
b) additive kernels proposed in [2], c) kernels corresponding to processes with uncorrelated Sobol’
decomposition terms, d) additive kernels complemented with an ortho-additive kernel.

We consider the Gaussian kernel k(x, y) = σ2 · e−(
‖x−y‖

θ
)
2

, which is used in various applications of
kriging. By projecting k twice (w.r.t. x and y) onto the orthocomplement of additive functions,
we obtain a non-stationary kernel whose associated GP paths are orthogonal to additive functions.
E.g., for d=2, we obtain the projected kernel explicitly using the Gaussian error function erf, as
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πOA(k)(x, y) = σ2 ·
(
e−(

x1−y1
θ

)
2

− E(x1)− E(y1) + E
)(
e−(

x2−y2
θ

)
2

− E(x2)− E(y2) + E
)

(1)

with E(x) =

√
π θ

2
·
(

erf
(1− x

θ

)

+ erf
(x

θ

))

and E =
√
π θ erf

(1

θ

)

+ θ2
(

e
−1

θ2 − 1
)

Adding an ortho-additive kernel like the one defined in Eq. (1) to additive kernels enables one to
create GPs whose covariance structure corresponds to panel d) of Fig. 1. Realizations of such a
GP and its split-up into additive and ortho-additive parts are shown in Fig. 2. As illustrated in
the last column, this GP is very flexible, even though its kernel is sparser than the Gaussian one.

Figure 2: Realizations of GPs; first column: additive part, second column: ortho-additive part;
third column: sum of the two, which may be seen as realizations from our new class of GPs.

We demonstrate the potential of the new model in the context of kriging and sensitivity analysis.
Introducing a weight parameter for the ortho-additive part allows us to tune but also potentially
estimate the degree of additivity. We apply our model to various test cases, and also study the
ability of kriging with the proposed class of kernels to approximate realizations of a GP from the
corresponding class, depending on several factors such as the degree of additivity, the dimension
and the design of experiments.

This research is done under the helpful guidance of David Ginsbourger and Dominic Schuhmacher.
The input of Nicolas Durrande helped much to consolidate our work.
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A first step in the analysis of a parametric statistical model involves the likelihood function.
Some models, however, are too complicated for the likelihood to be available in a useful form.
Approximate Bayesian Computation (ABC) [1] belongs to a family of likelihood-free Bayesian
inference algorithms that attempt to estimate posterior density of parameters where likelihood
are intractable. Where θ is the model parameter, posterior density for θ given data D0 from an
observation is given by

p(θ|D0) ∝ f(D0|θ)π(θ)

where f(D0|θ) is the likelihood and π(.) is the prior density for the parameters. ABC algorithm
consists in proposing parameter values and only accepting parameters for which the model generates
data that satisfies a performance criteria with respect to the observed data D0. More precisely,
a parameter is accepted if the condition d(S(D), S(D0)) ≤ ǫ is verified where d(., .) is a distance,
S(.) = (S1(.), ..., Sp(.)) a set of p summary statistics and ǫ defines a policy tolerance for the accepted
parameters. This algorithm is an ABC that makes use of the approximation

p(θ|D0) ≈ p(θ | d(S(D), S(D0)) ≤ ǫ).

This approximation becomes exact if S is sufficient and S(D0) = S(D), that is ǫ = 0. Several is-
sues arise with these summary-based methods: curse of dimensionality when using a large number
of statistics, use of MCMC approaches to estimate posterior densities and selection of summary
statistics.

In this work, we propose to use Sensitivity Analysis (SA) in two ways for parameter estimations
with ABC. The first one consists in determining informative statistics Sj(.). In the second one,
we propose to use weighted statistics in the definition of distance d(., .) to improve performance of
ABC, when compared to unweighted distance. The weighted distance is defined by

d(S(D), S(D0) =

p
∑

j=1

wj (Sj(D)− Sj(D0))
2

with the constraint on the positive weights
∑

p

j=1
wj = 1. To do this, a criterion is defined to

quantify the effects of weights wj on precision of θ estimates. SA is then used to explore the
weight space through a fractional design and we also try to choose optimal weights.

The approach is illustrated with a stochastic architectural model of root systems [2]. This model
was designed to integrate the major developmental processes in the simplest way, while using a
reduced number of parameters. In our application, θ is a vector of 4 parameters. The number
of statistics has been fixed to p = 15. These statistics correspond to different analysis on images
simulated by the root system model.
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Numerical simulations of dense gas flows, i.e. flows of molecularly complex gases at pressures and
densities of the general order of magnitude of those of the liquid/vapor critical point, can be extremely
sensitive to the model used to describe the fluid thermodynamic behavior [1]. This sensitivity is
particularly large for the so-called Bethe–Zeldovich–Thompson (BZT) fluids, which are theoretically
predicted to exhibit non-classical gas dynamic behaviors, like expansion discontinuities and splitting
shocks, in a tiny thermodynamic region close to the liquid/vapor coexistence curve [2]. Dense gases
are encountered in several engineering applications like energy conversion cycles, high-Reynolds wind
tunnels, and chemical transport and processing, and are represented by heavy gases with complex
molecules, like heavy hydro- and fluorocarbons and siloxanes, for which accurate and comprehensive
thermodynamic data are rarely available. As a consequence, high-accurate equations of state (EOS),
i.e. thermodynamic laws designed to describe the fluid thermal and caloric behavior in the region
of interest, are scarcely found for this class of fluids. Now, reliable simulations of compressible flows
with complex thermodynamic behavior require the quantification of thermodynamic modelling errors,
especially for those applications that look for improvements of the order of a few percents of the
system performance, e.g. energy conversion cycles [3].

For a given EOS, two kinds of uncertainties are encountered. On the one hand, an uncertainty exists
on the mathematical form of the EOS to be used for a given fluid; on the other hand, the material-
dependent coefficients associated to the equation are imperfectly known. Modelling uncertainties
can be reduced to levels on the same order of the experimental uncertainty for molecularly simple
well known fluids like water, hydrogen, or carbon dioxide (see [4]), i.e. even as low as 0.1 %. For
molecularly complex fluids reserved essentially to an industrial use, like the dense gases of interest
here, high accurate experimental data are more hardly available, so that a significant uncertainty
on the closure coefficients may exist. Moreover, previous work [1] shows that for some particularly
complex gases the model-form uncertainty can be even overwhelming with respect to the parametric
uncertainty.

In this work, we adopt a Bayesian approach to quantify modelling uncertainty associated to ter-
modynamic models used for dense gas flow simulations, and investigate the possibility of calibrating
thermodynamic models by using aerodynamic data on the flow behavior, instead of strictly thermody-
namic information. The statistical model adopted is similar to that used in [5] to calibrate turbulence
models for a boundary layer flow.

To this purpose we consider a transonic flow of a silicon oil, namely cyclopentasiloxane (D5), past an
airfoil, as in [1]. Numerical solutions of the flow equations are generated by means of a finite volume
code based on a third-order accurate numerical scheme [6]. The fluid thermodynamic behavior is
modelled using two cubic EOS, namely the Peng-Robinson-Stryjek-Vera [7] (PRSV) and the Soave-
Redlich-Kwong [8] (RKS), and a five-term virial EOS, namely the Martin-Hou model [9] (MAH).
Without experimental data, calibration data are generated by computing the pressure distribution
around the airfoil using a reference EOS based on Helmholtz free energy [10]. The uncertainty on
calibration data is estimated to be about 10%. A zero mean Gaussian distribution is used to represent
the experimental uncertainty. Pressure data provided by the flow solver for a given choice of the EOS
are corrected by using a multiplicative term that accounts for model-form uncertainty. Modelling errors
on pressure values computed at different points in the flow field are assumed to be correlated over
some distance. The variance of model-form uncertainty term and the correlation length are treated
as hyper-parameters and are calibrated from available data along with the EOS closure coefficients.

Markov-chain Monte Carlo sampling of the likelihood function is generated using the Metropolis-
Hastings algorithm. Since the numerical dense gas flow model is too expensive to be used in a
Monte Carlo algorithm, an approximate model was generated by second-order Lagrange polynomial
reconstruction from 3n samples (n being the number of uncertain coefficients comprised between 3
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and 6 according to the EOS considered) of the flow field obtained by running the dense gas solver.

Preliminary results obtained for the PRSV are shown in Fig. 1: (a) represents both the experimental
pressure coefficient Cp (red square) along the airfoil wall and the a priori output model (green solid
line) along with the updated model output (blue solid line, with error bars corresponding to ±3σ); (b)
and (c) are prior (dashed) and posterior (solid) pdf for the Cv,∞ parameter and the σ hyperparameter.
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Figure 1: Preliminary results.

We can observe that the model parameters are well informed, and the updated model output is closer
to the data than the prior one, although not completely superposed since the simple cubic PRSV EOS
exhibits a large model-form error, on the order of 15% (see Fig. 1-(c)).

At the conference, we will provide a full description of both the numerical and statistical model, along
with calibration results for different EOS. Posterior model plausibilities will be used to compare the
different EOS and to conclude on the importance of dealing with model-form uncertainty for reliable
numerical simulations of dense gas flows.
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[ paola.cinnella@ensam.eu – ]



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Efficient Prediction Designs for Random Fields

Werner G. Müller

Helmut Waldl
Department of Applied Statistics, Johannes-Kepler-University Linz, Freistädter
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For estimation and prediction of random fields it is increasingly acknowledged that the kriging
variance may be a poor representative of the true uncertainty. Experimental designs based on the
more elaborate criteria that are appropriate for empirical kriging are very costly to determine. We
investigate the possibility of using a compound criteria inspired by an equivalence theorem type
relation cf.[1], to build designs sub-optimal for the empirical kriging variance.

The model underlying our investigations is the correlated scalar random field given by

Y (x) = η(x, β) + ε(x) .

Here, β is an unknown vector of parameters in Rp, η(·, ·) a known function and the random term
ε (x) has zero mean, (unknown) variance σ2 and a parameterized spatial error correlation structure
such that E[ε (x) ε (x′)] = σ2c(x, x′; ν) with ν some unknown parameters.

We are interested in making predictions Ŷ (·) of Y (·) at unsampled locations x in a compact subset X

of Rd using observations Y (x1), . . . , Y (xn) collected at a set of design points ξ = (x1, . . . , xn) ⊂ Xn.
Our objective is to select ξ (of given size n) in order to maximize the precision of the predictions
Ŷ (x) over X. One penalized design criterion for such designs is the corrected kriging variance:

MEK(ξ) = max
x∈X

{

Var[Ŷ (x)] + tr
{

Vν Var[∂Ŷ (x)/∂ν]
}}

, (1)

with Vν the covariance of the ML estimator of the covariance parameters ν. Designs ξ that minimize
this criterion are called EK(empirical kriging)-optimal. EK-optimal designs are typically not space-
filling. This is particularly true for small numbers of observations, when prediction precision is the
most sensitive to the detailed geometry of the design. Unfortunately, straightforward maximization
of the EK-criterion is computationally demanding. In [4] the use of a convex composition of the
two D-optimality criteria for the parameters β and ν is suggested as a surrogate for EK:

Jα(ξ) = α log |Mβ(ξ, θ)| + (1 − α) log |V −1
ν (ξ, ν)|, α ∈ [0.1] , (2)

where
(

Mβ(ξ, θ) 0
0 Mθ(ξ, θ)

)

= E

{

−∂2 log L(β,θ)
∂β∂β′

−∂2 log L(β,θ)
∂β∂θ′

−∂2 log L(β,θ)
∂θ∂β′

−∂2 log L(β,θ)
∂θ∂θ′

}

,

with L(β, θ) the likelihood of β and θ = (σ2, ν), and Vν(ξ, ν) in the second term of (2) is the lower
diagonal block of M−1

θ (ξ, θ).

Although, as it has been shown in [3], a strict equivalence between (1) and (2) does not hold, there
is experimental evidence that that optimal designs for one of the criteria tend to perform well
under the other, confirming the intuition that finding designs ξ that minimize the EK criterion
(1) should be intimately related to finding designs that optimize a suitable combination of the
D-optimality criteria for β and ν.

However, the ability to define a constructive experimental design method based on Jα(·) is ham-
pered by the lack of an efficient methodology to select α. In this paper we overcome this difficulty
by considering simultaneous optimization of the two criteria log |Mβ(ξ, θ)| and log |V −1

ν (ξ, ν)|, and
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constraining the candidate set Ξ for the minimization of (1) to the set of non-dominated designs
for the corresponding multi-criteria optimization problem. The EK criterion (1) will thus play the
role of a preference function for choosing designs in the reduced candidate set Ξ.

Other authors have addressed the determination of experimental designs that simultaneously op-
timize multiple criteria, constraining the set of possible solutions to the corresponding Pareto
surface, e.g. [2] where the author discusses the advantages of explicit consideration of the individ-
ual criteria over the use of scalar “desirability functions” and proposes several methods to chose
amongst the efficient solutions of the Pareto surface. The precise contribution of our work is to use
the set of non-dominated solutions of the two identified D-optimality criteria, log |Mβ(ξ, θ)| and
log |V −1

ν (ξ, ν)|, as a relevant (small) candidate set for EK-optimal designs. We call the designs of
this constrained candidate set Pareto-optimal.

For simultaneous optimization of two criteria the Pareto surface reduces to a bounded curve (or to
a finite subset of a curve when X is finite). Since the Pareto surface is also the set of maxima of all
scalar functions monotone in each criterion, we can construct a finite set of candidate designs by
optimizing the compound criterion Jα(·) for a finite set of values of α. Evaluation of the corrected
kriging variance over this finite subset allows the determination of a good approximation to the
EK-optimal design. As the examples presented will demonstrate, our Pareto-optimal designs have
high EK-efficiency, especially for designs with small size n.
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Straße 315, A-4040 Linz, Austria ]
[ werner.mueller@jku.at – ]



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Low cost bounds and estimates of total sensitivity indices based on

metamodels

Miguel, Munoz Zuniga

Institut de Radioprotection et de Sûretè Nuclèaire, Fontenay-aux-roses,
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Model based simulation of complex processes is an efficient approach of exploring and studying
systems whose experimental analysis is costly or time-consuming. Good modelling practice requires
sensitivity analysis to ensure the model quality by analysing the model structure, selecting the best
type of model and effectively identifying the important model parameters. Among the large amount
of methods available for the previous purpose, the Global Sensitivity Analysis (GSA) is one of the
most efficient and popular ones. GSA methods evaluate the effect of a factor while all the other
factors also vary and thus they account for interactions between variables and do not depend on
the choice of a nominal point like the local sensitivity analysis methods. Reviews of different global
SA methods can be found e.g. in [1]. Variance-based methods, in particular the method of global
sensitivity indices (SI) developed originally by Sobol, are one of the most efficient and popular
GSA techniques. However, these methods generally require a large number of function evaluations
to achieve reasonable convergence and can become impractical for large engineering problems.
There are a few efficient techniques for calculating first order Sobol SI. [2] developed the random
balance design (RBD) method which is a modification FAST method. In RBD the input space
is explored by using one single frequency: this has the advantage of making the computational
cost independent from the number of model inputs. Therefore, RBD remains computationally
cheap even for models with many inputs. The method is relatively easy to implement, however
it only allows the calculation of the first order effects. One of the very important and promising
developments of model analysis is the replacement of complex models and models which need to
be run repeatedly on-line with equivalent operational metamodels. Several metamodels can be
used: polynomials, Gaussian process metamodels [3,4], local polynomials [5], High Dimensional
Model Representation (HDMR) based on polynomial chaos expansion [6,7,8]. A practical form of
HDMR, Random Sampling-HDMR (RS-HDMR) has recently become a popular tool for building
metamodels [9]. [10] developed a variant of RS-HDMR based on Quasi Monte Carlo (QMC)
sampling. RS(QRS)-HDMR can also be used for GSA. This approach to GSA is considerably
cheaper than the traditional variance-based methods in terms of computational time. However, it
can only provide estimates of the first order effects and low-order interactions (up to third). There
is therefore a need for the development of an efficient method for low cost estimates of the total
SI’s. In particular, the computational cost of estimating total SI’s for all input variables should be
independent of the number of model inputs. We present a method for the calculation of an upper
bound on the values of total SI based on RS-HDMR or other suitable metamodels. These bounds
are obtained at no extra function evaluations apart from those required to build a metamodel.
Numerical tests prove that the developed approach is promising.
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In environmental modelling, sensitivity analysis (SA) is very often applied to allow a dimensionality
reduction of the parameter estimation problem. Due to the complexity and high computational
demand of many environmental models, it is mostly impossible to use variance based methods. As a
consequence, it is more common to apply screening methods for this task, like the Morris method
[1] or the Latin-Hypercube – One-factor-at-A-Time (LH-OAT) technique [2]. In general, these
screening methods are conceptually simple and can yield qualitative SA results (e.g. parameter
rankings) with only a limited number of model evaluations. They are also particularly suited to
identify model parameters for Factor Fixing (FF), i.e. putting those parameters that have no
influence at all on the model output (elementary effect equal to 0) to a certain value [3].

Besides the non-influential factors, modellers also regularly fix a number of parameters that do have
a (major or minor) influence on the model output to a chosen value, in order to additionally simplify
the parameter estimation problem of an over-parameterized model. Hence, only the parameters
that have the highest influence according to the ranking inferred with the screening method are
considered in the optimization, leading to an (important) loss of model output variability.

Since it has been shown [4] that for a Morris-like screening SA with a standard number of 5 to 10
“trajectories” [5] the parameter rankings do not converge, any selection of the parameters included
in the estimation process becomes questionable. In addition, a drawback of screening methods is
that they can be prone to type II errors (i.e. failing to identify a factor with considerable influence
on the model) [6]. Therefore, the more the parameter rankings are mixed up and facing type II
errors, the higher the chance to exclude an influential parameter from the optimization and the
lower the model output variance might become.

This study provides a methodology to assess the convergence of the SA results of a Morris-like
screening method and shows that the number of trajectories needed to screen the parameter hy-
perspace of a complex environmental model should be higher than 100 to achieve converged results
and parameter rankings. Moreover, it is shown that with this higher number of trajectories, the
screening methods become more resilient to type II errors.

To achieve these results, the parameter sensitivities of the Soil and Water Assessment Tool (SWAT)
[7] have been investigated for 2 case studies, by performing a screening with the LH-OAT tech-
nique. For both applications of this complex, computationally expensive and over-parameterized
environmental model, a large set of model parameters has been included in the SA (resp. 40 and
26) and different variables have been considered as model output (discharge, suspended sediment,
nitrogen concentrations, etc.). The convergence of the SA results has been tested by examining
the influence of an increasing base sample size (i.e. an increasing number of trajectories), on the
evolution of the mean and the variance of the elementary effects. The latter statistics are the
principal sensitivity measures of Morris-like screening methods. To enhance the reliability of the
convergence results, 95% confidence intervals (CIs) are assessed for the values of the mean and the
variance, by performing bootstrapping with resampling [8]. The evolution of these CIs provides an
additional measure to evaluate the convergence of the SA results.
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Abstract  

According to many  including some of the authors of the Stiglitz report  composite indicators have 
serious shortcomings.  Still these measures are pervasive in the public discourse and represent perhaps 
the best known face of statistics in the eyes of the general public and media. The present study delves 
into the potential fallacies of rankings and ratings built as arithmetic averages.  

In mathematical terms, a composite indicator score (or rank) is a function of indicators and weights. 
Weights may represent the relative importance of each indicator or be implied by the data. The 
function may involve linear or geometric averaging or use of outscoring matrix in a multi-criteria 
setting. In their simplest and most frequent form, composite indicators are built by simply averaging 
normalised values across a set of indicators assuming equal weights within and across the main 
dimensions of the index. Yet, the weights assigned by the developers do not always coincide with the 
impact of an indicator to the overall index.  

The paper proposes to measure the importance of a given variable within existing composite indicators 
This measure of importance is appealing 

because: 

 

 it can be used regardless of the degree of correlation between variables; 

 it is model-free, in that it can be applied also in non-linear aggregations;  

 it is not invasive, in that no changes are made to the composite indicator or to the correlation 
structure of the indicators (unlike the classical perturbations induced during an uncertainty 
analysis). 

Because socio-economic variables are heteroskedastic and correlated, relative nominal weights are 
hardly ever found to match relative main effects; the paper proposes to summarize their discrepancy 
with a divergence measure. It is discussed to what extent the mapping from nominal weights to main 
effects can be inverted. This analysis is applied to six composite indicators, including the Human 
Development Index and two popular league tables of university performance. It is found that in many 
cases the declared importance of single indicators and their main effect are very different, and that the 
data correlation structure often prevents developers from obtaining the stated importance, even when 
modifying the nominal weights in the set of nonnegative numbers with unit sum.  

The paper is addressed both to those who develop and use rankings and ratings, aiming to induce a 
deeper reflection on the cost of the simplification achieved with arithmetic averages. 
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We present some advanced techniques which can be realized with Random Balance Design (RBD)
[4] for the computation of variance based sensitivity indices enhancing the precision of the first
order effect calculation.

The classical RBD method suffers from two classes of problems

• the computed values are biased with respect to the analytical values,

• the sample design in use is not necessarily exhausting the sample space (i.e., it is unclear if
the design is space filling).

A freedom of choice in the design of a RBD input sample is given by the choice of the permutations.
The standard RBD algorithm uses random permutations. We investigate if a clever choice of these
permutation leads to a space-filling design and pays off in terms of numerical precision.

Here, the permutations used to create the realizations of the input parameters are constructed
from multi-dimensional quasi-Monte-Carlo (QMC) sequences. Those are then called quasi-random
permutations. For this approach, note that the map ϕ : u 7→ 1 − |2u − 1| transforms u = ( 2i−1

2n
),

i = 1, . . . , n into a sample which is useable for RBD. Now, applying the same transformation per
dimension to a Latin Hypercube with conditional median (middle-of-box) placement also yields
a RBD sample. If the hypercube has additional properties like low-discrepancy the RBD sample
inherits this. We discuss how to exploit Sobol’ LPτ sequences [3] in order to create RBD samples
from quasi-random permutations. We test different quasi random sequence generators and compare
their results. A discussion of convergence rates when using such a periodic quasi-Monte Carlo
sample can be found in [1].

For bias reduction we investigate two strategies: the use of bias-reducing formulas which take the
number of degrees of freedom into account and bootstrap methods. The bias-reducing formula
has been recently discussed in [5]. A bias-reducing bootstrap estimator is available in [2]. For
bootstrapping, note that ϕ(ui) and ϕ(un+1−i) are the same. A bootstrap method therefore may
draw from these two associated outputs.

We report results on a practical example discussing the thermal energy consumption of a building.
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Sobol’ indices (SI) (Sobol’, 1993) are quantities defined by normalizing parts of variance in an
ANOVA decomposition (Hoeffding, 1948; Efron and Stein, 1981; Sobol’, 1993). They are an im-
portant tool to study the sensitivity of a model output subject to the input parameters since they
allow to quantify the relative importance of input factors of a function over their entire range of
values. As they essentially consist of integrals, their computation can become rapidly expensive
when the number of factors increases. Many techniques have been proposed to estimate these
indices including Fast Amplitude Sensitivity Test (FAST) due to Cukier et al. (1973, 1978) and
further developed by Saltelli et al. (1999), Random Balance Design (RBD) due to Tarantola et al.
(2006), polynomial chaos expansion (PCE)-based estimators developed by Sudret (2008) and Blat-
man and Sudret (2010) and the method in Sobol’ (1993). A recent review of these methods can
be found in Saltelli et al. (2008), and more specifically a new introduction to FAST and RBD has
been recently provided by Tissot and Prieur (2012b).

Until now, spectral methods — as FAST, RBD or PCE-based methods — which exploit the
spectral decomposition of the model with respect to a particular multivariate basis, are generally
preferred to the method of Sobol’ because the latter is too expensive. However, spectral methods
provide good estimations of SIs only under strong assumptions on the spectral decomposition of
the model itself such as a decay of the spectrum sufficiently fast, the negligibility of high-order
spectral coefficients, etc. As a result, these methods are not robust to complex phenomena as high-
frequency variations or discontinuities, and so the method of Sobol’ appears as the main method
one can trust when no strong a priori knowledge on the model of interest is available.

In the following, we consider a general model connecting an output Y ∈ R to independent inputs
X1, . . . Xd. We assume without loss of generality that, for i = 1, . . . d, Xi ∼ U([0, 1]). We denote
Y = f(X) := f(X1, . . . , Xd) where f is a deterministic real valued measurable function defined on
[0, 1]d. We assume that Y is square integrable and non deterministic (VarY 6= 0).

Let u be a subset of size 1 or 2 of Id := {1, . . . , d}. The closed SI (Saltelli et al., 2004) of order 1
or 2 are then defined as

Su :=
Var(E(Y |Xi, i ∈ u))

Var(Y )
.

For X and for any subset u of Id we define Xu as the d-dimensional vector such that Xu

i = Xi if
i ∈ u and Xu

i = X ′

i if i /∈ u where X′ is an independent copy of X. We then set Y u := f(Xu).

In the following we consider two independent and identically distributed samples of the distribution
of X — {Xj}j=1,...,N and {X′

j}j=1,...,N — and define for j = 1, . . . , N Yj and Y u

j as above.

Monod et al. (2006) introduced then the following estimator whose statistical properties have been
studied in Janon et al. (2012):

Tu

N =

1

N

∑N

j=1
YjY

u

j −
(

1

N

∑N

j=1

[

Yj+Y u

j

2

])2

1

N

∑N

j=1

[

Y 2

j
+(Y u

j
)2

2

]

−
(

1

N

∑N

j=1

[

Yj+Y u

j

2

])2
.

Estimating all first order sensitivity indices by this approach requires (d + 1)N evaluations of the
model, which can be quite prohibitive for costly models in high dimension.

In this talk we propose to replace the two independent samples — {Xj}j=1,...,N and {X′

j}j=1,...,N

— by two replicated latin hypercubes of size N . We will explain how this trick allows estimating
all first order SI with only 2N evaluations of the model. We will also present convergence results as
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N tends to infinity as far as a generalization for the estimation of second order closed SI, making
use of replicated orthogonal array-based latin hypercubes of strength 2 introduced in Tang (1993).

We refer to Tissot and Prieur (2012a) for more references.
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For more than one decade the uncertainty propagation and the sensitivity analysis are widely
used to handle mathematical models of industrial problems involving many parameters or vari-
ables: geophysics and oil reservoir, safety in nuclear industry, soil pollution, and more generally
domains where it can be found heavy computation codes with large number of inputs and complex
computations so that only few simulations of these codes can be run.

The uncertainty propagation uses random variables as inputs, even for deterministic codes, and
study the distribution (or some characteristics) of the output. It is justified on one hand by the
poor knowledge of the input parameter (or variables) and on the other hand by the relatively small
number of observed output available.

Very often some of the input variables strongly affect the output (or a characteristic), while others
have a small effect, and even no effect. The sensitivity analysis try to quantify these effects.

In 1993 I.M. Sobol defined indices, now called Sobol indices [1], based on the decomposition of the
output variance. Using the ANOVA decomposition of a function of several variables he defined
global and partial indices for single or group of variables.

In this paper we propose new global indices for one variable which generalize the Sobol ones.
Indeed, it is well known that Sobol indices provide information in ”central trend” in that these
indices may have no meaning when considering sensitivity to extreme cases for instance. We aim
at extending the Sobol indices to various kinds of trends so as to make relevant the sensitivity
analysis in the context of interest.

In a numerical model Y = h(X1, . . . , Xp) the first order global sobol indices quantify the influence
of a random variable Xi on the output Y , and is given by

Si =
var(E[Y |Xi])

varY
=

varY − E(var[Y |Xi])

varY
.

The key point of our method is the following: we start from the right hand side writing of the
previous index Si, which highlights a kind of ”variance differentiation”. We adopt the formalism
introduced in the work of N. Rachdi et al. [1] and we propose new sensitivity indices following
this idea of ”differentiation” but based on more general characteristics than the variance one. We
denote such indices by SΨ

i , where Ψ is the contrast associated to the characteristic of interest,
which satisfy SΨ

i ∈ [0, 1] for all i = 1, . . . , p.

For example, let Y = X1+X2, where X1 ∼ Exp(1) and X2 ∼ −X1, with X1 and X2 independent.
The variable Y has the Laplace distribution with parameter 1 and its density with respect to the
Lebesgue’s measure is f(x) = exp(−|x|)/2 (see Figure 1(left)).
The characteristic of interest is the α-quantile qY (α) of Y , hence we are seeking representative
indices quantifying the influence of X1 and X2 on qY (α). Sobol indices give trivially Ssob

1
= Ssob

1
=

0.5 which means that X1 and X2 have the same influence on Y , but one certainly has the intuition
that these variables do not have the same impact on extreme values of Y for instance. In Figure
1(right), we plot our new indices SΨ

1
(α) and SΨ

2
(α) depending on the quantile level α which gives
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expected and interpretable results: the variable X1 is the most influential when α ≥ 0.5 (the right
distribution tail) and X2 is the most influent when α ≤ 0.5 (the left distribution tail).
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0
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0
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.4

0
.5

(0,1)−Laplace distribution

Figure 1: Left : Plot of (0,1)-Laplace distribution - Right : Sensitivity Indices, Sobol indices are
in green, the blue dashed line corresponds to the index SΨ

1
(α) that is the influence of the variable

X1 on the quantile of Y of level α, noted qY (α). The blue solid line is the influence of the variable
X2 on qY (α).

We illustrate our purpose with other academic examples and by an analytic aeronautic model
which provide promising results.
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Sobol and Kucherenko [11] have recently introduced the derivative-based global sensitivity measure
(DGSM), defined as the integral of the squared derivatives of the model output. These indices can
be helpful when the problem dimension is large (more than ten) or when the gradient is available (or
at least estimated by a finite-differences technique). Indeed, this kind of indices have been shown
to be easily and efficiently estimable by sampling techniques as Monte Carlo or quasi-Monte Carlo,
gaining potentially a factor ranging between 10 to 100 compared to Sobol’ indices estimated with
the same technique [7]. Moreover, if the computer model proposes the adjoint code to compute
output derivatives [1], DGSM computations will be independent of the number of input parameters
and sensitivity analysis can then be performed for models including several hundreds of inputs.
Automatic differentiation tools can be helpful to that purpose [4].

A link between DGSM and Sobol’ indices, given initially for the uniform and normal measure, is
known for continuous probability measures: More precisely, Lamboni et al. [8] have proved the
following inequality:

Dtot
j ≤ C(µj)

∫
(

∂f(x)

∂xj

)2

dµ(x) (1)

where Dtot
j denotes the (un-normalized) total index of variable j, dµ(x) = dµ1(x1) . . . dµd(xd) is the

integration measure (with x = (x1, . . . , xd)), and C(µj) is a constant depending only on µj . Thus,
the DGSM can be used for variable screening, and may be also helpful in ranking the influential
variables, as studied in [6].

In this paper we extend that approach to interactions. Hence, we prove the following generalization
of Inequality (1):

Di,j ≤ D
superset
i,j ≤ C(µi)C(µj)

∫
(

∂2f(x)

∂xi∂xj

)2

dµ(x) (2)

where Di,j is the second order interaction index of variables i and j, and D
superset
i,j :=

∑

I⊇{i,j} DI

is the superset importance [9] defined as the sum of Sobol’ indices of supersets of {i, j}.

Thus, the second order derivatives contained in the Hessian of the model output are useful to
investigate interactions. Such a link was investigated for instance by [2] in the context of statistical
learning, but the connection to superset indices gives an original interpretation of it. While it is
rare in practice that second order derivatives of the model output are directly available, they can
be computed by second order finite differences. Indeed, it requires only one additive run of the
model to compute a second order derivative than a first order one. Another solution would be to
use automatic differentiation when possible.

The most striking application of Inequality (2) is for interaction screening: A zero value of the
(squared integrated) cross derivatives indicates that there is no interaction between i and j in
any order of interaction. This can be used to identify additive structures in machine learning
or computer experiments [5][10][3], which can substantially improve the model performances in
prediction [10]. The interaction structure can furthermore be displayed by a mathematical graph
showing the active interactions as edges.
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In the same vein of [8], we also investigate by numerical tests the utility of Inequality (2) in ranking
the most influential interactions. While this ranking may be useful at first sight for superset
importances more than for second order interactions, we can argue that in practice it is very often
the case that second order interactions are the only active ones, implying that Di,j = D

superset
i,j .
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Let Y=f(X) be a function defined over a set of k input factors X=(X1,X2 k) and Y is a scalar output 
variable obtained by evaluating the function f over X. The input factors X are uncertain and, 
consequently, Y is uncertain as well. We thus consider input factors (X1,X2 k) as independent 
random variables, with pdf pi and cdf F i. The output Y is also a random variable. We are interested in 
estimating the first order indices Si using an approach based on the contribution to the sample mean 
(CSM) [1]. 

The CSM represents the fraction of the output mean due to any given fraction of smallest values of the 
input Xi. Usually, CSM is plotted against the values of the cumulative distribution of Xi, which also lie 
in the interval [0,1]. More precisely, let consider a given quantile q in [0;1], and F i

-1(q) the associated 
value for input factor Xi. The contribution to the sample mean for input factor Xi at quantile q, denoted 
by CSMi(q), is defined as: by

An estimation of CSM can be constructed starting from any given sample of X and evaluating the 
model at any sample point. No particular sample design of X is required to estimate CSM. 

In this paper, we prove that CSM has an analytical relation with the first order index Si :  

dqq
dq

dCSM

Yc
S i

v
i

1

0

2

1
1

This fact enables us to estimate Si using CSM points. Therefore, the estimation of Si can be made from 
any given sample. We test the proposed approach against other existing approaches for estimation of Si

with given samples. 
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Performance Assessment (PA) models for radioactive waste repositories include a variety of coupled 
flow, transport and chemical processes. Such models often show a highly non-linear and non-
monotonic behaviour, highly skewed and heavily tailed model outputs and significant parameter 
interactions. The computational effort for a robust and reliable sensitivity analysis may be significantly 
reduced by using quasi-Monte-Carlo (QMC) sampling and metamodels. Quasi-Monte-Carlo sampling
methods are also often called quasi-random sampling or low discrepancy sequences. Discrepancy is a 
measure of how uniformly a set of points fills an area of multidimensional space. Consequently, in a 
low discrepancy sequence, the points are as equally spaced as possible [1]. A metamodel is a surrogate 
model that emulates the behaviour of the original model as closely as possible with a low 
computational effort. Once assembled, the metamodel can be used to estimate the sensitivity indices of 
the original model with lower CPU costs. This study investigates the performance and efficiency of 
LpTau low discrepancy sampling [2] compared with random and Latin Hypercube type sampling 
techniques. In connection with the different sampling techniques, the performance of the State-
Dependent-Parameter (SDP) metamodel [3] is evaluated and compared to that of EFAST. The 
resulting parameter rankings are compared to those provided by the Standardised Rank Regression 
Coefficients (SRRC) and the Contribution to the Sample Mean (CSM) plots. Effects of the sample 
sizes are also examined. Initial results indicate best convergence of the SDP method as well as the 
CSM plots and the SRRC method if combined with the LpTau sampling method. The EFAST method,
however, seems to have some convergence problems. 

Keywords : 

Low discrepancy sequence; LpTau sampling method; State-Dependent-Parameter (SDP) method; 
Performance Assessment (PA) models for radioactive waste repositories; Contribution to the Sample 
Mean (CSM) plots 
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Global sensitivity analysis has emerged in the last 15 years as a powerful tool for improving the
understanding of complex environmental, industrial or civil systems. In many fields of applied
and engineering sciences indeed, computer simulation models are now inescapable. The increasing
computer power which is available through large clusters of CPUs has made it possible to develop
models with increasing fidelity (e.g. accounting for physical couplings) at the price of an increasing
number of input parameters. In practice most of the parameters (corresponding for instance
to initial or boundary conditions for evolutionary systems) are not well known. A probabilistic
approach is then suitable for modelling the uncertainties about these parameters. Then the question
of the relative impact of these uncertainties onto the model predictions naturally arises.

Global sensitivity analysis aims at determining which input parameters of the model (resp. which
combination of input parameters) have the greatest influence on the variability of the model output
[1]. Several methods are now well established depending on the type of information that is required:

• Screening methods [2,3] aim at finding which parameters have no infuence on the model
output at a low computational cost.

• Variance-based sensitivity indices such as the Sobol’ indices aim at describing how the vari-
ance of the model output can be decomposed in terms of contributions of each input param-
eters or combinations thereof [4].

• Distribution-based sensitivity indices quantify how much the distribution of the output
changes when some input parameters are fixed [5,6].

• Derivative based sensitivity indices that have been recently proposed in [7,8] may be viewed
as a generalization of Morris importance measure.

In the context of industrial applications the computation budget, i.e. the number of affordable
runs of the computational model that is allowed to evaluate the sensitivity indices is rather low,
typically less than 1,000. Thus the classical Monte Carlo-based estimators of the various sensitivity
indices listed above are not applicable.

In this paper we will concentrate on the last category of indices, namely the derivative-based
sensitivity indices. Consider a random vector X of dimension M with independent components
and joint probability density function fX . Let us denote by Y = M(X) the random response of
the simulation model of interest. The derivative based sensitivity indices (DGSM) are defined by:

νj = E

[(
∂M

∂xj

(X)

)2
]

(1)

In order to efficiently compute them efficiently a polynomial chaos expansion of the model output
is used [9]:

Y =
∑

α∈NM

aα Ψα(X) (2)

where Ψα(X) are multivariate orthonormal polynomials with respect to the probability measure
associated with random vector X. In the present paper we use sparse polynomial chaos expansions
whose basis functions are selected using the Least Angle regression algorithm [10,11].
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The accuracy of the sparse polynomial chaos expansion is checked by a leave-one-out cross-
validation procedure. Once a sufficient accuracy has been obtained, the PC expansion is post-
processed in order to compute the derivative-based sensitivity indices. The very polynomial nature
of the expansion makes it possible to compute analytically the derivatives of the PC expansions.

The proposed approach is illustrated on several application examples that have been addressed in
the recent literature, especially in [8,12]. The convergence of the indices as a function of the global
leave-one-out mean square error is checked.
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Sensitivity analysis has been established as a suitable means to understand whether models are 

sensitive to the underlying assumptions (cf. Leamer, 2010, and Saltelli and Annoni, 2010). A 

sensitivity analysis helps to uncover how uncertain a particular inference from a model is and to what

extent certain input factors contribute to the uncertainty in model output. While the merits of 

performing a sensitivity analysis are evident, applications in the field of education models are sparse. 

A quick literature search shows that sensitivity analysis has not been used (to the authors’ 

knowledge) in the area of education and training. If at all, the robustness of education models is 

assessed by performing a ‘once-at-a-time’ sensitivity analysis instead of performing a simultaneous 

sensitivity analysis. One reason of the lack of applications of sensitivity analysis in the field of 

education models might be the distinct nature of those models, i.e. problems of missing or low-quality

data, high complexity of the modelling structure, such as interactions between various input factors, as 

well as nontrivial distribution of input parameters. 

This paper proposes to perform a simultaneous sensitivity analysis on an education model and 

thereby demonstrates how sensitivity analysis can be used to test the reliability of models in the area 

of education. In particular, we will perform a sensitivity analysis on the outcomes of a birth cohort 

model, which is used to forecast the tertiary education attainment in EU Member States from 2011 

until 2020, and thereby monitors the performance of countries for the European Commission. EU 

member states are expected to set a national target for tertiary attainment and outline policies to 

achieve the target. In particular, the indicator set by the European Commission on tertiary attainment

aims at increasing “the proportion of 30-34 year olds having completed tertiary or equivalent 

education to at least 40%” (cf. Eurostat, 2012). To understand whether countries will be able to 

achieve their national targets until 2020 we developed a birth cohort method, which allows forecasting

the benchmark value until 2020 (see also related work on headline indicators (Badescu, D'Hombres, 

and Weber, 2012)). In particular, we use administrative data drawn from the UIS/OECD/EUROSTAT 

data collection (UOE) and construct an indicator to measure the completion by this target population 

by using new entrants to tertiary education by age group, the average duration of studies and the 

average completion rate as reported by countries. With these variables we can track individuals in 

different birth cohorts and based on the flow of new entrants in tertiary education, we predict the 

output, i.e. the proportion, in the coming years, of people aged between 30 and 34 with completed 

tertiary education. 

In Figure 1, we applied the birth cohort method to an EU Member State, i.e. Slovakia, and 

show that under the base-line scenario the forecasted values (in red) are above the national target set 

for Slovakia (in green). However, the margin by which Slovakia is surpassing its national target is 

relatively small and whether a member state over- or underperforms is politically relevant and has 

important consequences for its country-specific recommendations issued by the European 

Commission. 

Hence, the question remains to what extent reaching the national target depends on the 

underlying assumptions intrinsic to the birth cohort model. In particular, we investigate the uncertainty 

due to the missing data which is required to provide forecasts, using a novel approach which attempts 

to capture uncertainty due to extrapolation. Simultaneously, we explore the effect of the uncertainty in 

model parameters such as the average completion rate and duration of tertiary education. To assess 

sensitivity, we estimate variance-based sensitivity indices of the various sources of uncertainty using 

Monte Carlo integration. As a result, we are able to estimate the uncertainty in the forecasts, and to

identify which model inputs are the most and least influential in determining the output uncertainty. 



Figure 1: Base-line: Birth cohort calculation for Slovakia 
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Consider a smooth and continuous black box function )(xf  obtained through a machine learning 

technique. Such a function links an output to d  input variables dRx ∈ . An example of such 
function would be a feed-forward neural network [1], 
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where ( ) 1))exp(1( −−+= zzφ  is the logistic function. The network is parameterized with the set of 

weights },,{ hiohoi www →→→ , and biases },{ ho bb . These parameters are obtained from data 
using the optimization algorithms especially devised for the neural network learning [1]. 
Although black box functions, like the neural network structure (1), are able to map input/output 
relations in data, they are not suitable for interpretation and sensitivity analysis. For example, it 
is not possible to quantify relative importance of the various inputs to the function response as 
well as to understand manner in which inputs affect the response: additive or also through some 
interactions. For the purpose of interpretation of functions like the neural network (1), it is useful 

to represent them using the following finite dimension-wise expansion with d2  terms [2], i.e. the 
ANOVA decomposition: 
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where a component function ( )uu xf  depends only on those components of input vector x  which 

indices are non-zero elements in the set u . In the notation used in (2), the summation is over all 
subsets u  of the set { }d,,2,1 � , where the number of non-zero elements in the set u  is less than 

or equal to d . Thus u  can have 1, 2, … and up to d non-zero elements. The black box function 
representation (2) is unique if the line integrals of every component )( uu xf  over any of its own 

variables ux  are qual to zero [2]. In such an expansion all components )( uu xf  are orthogonal. 

In Eq. (2) 0f  represents a constant (i.e. mean value) and one-dimensional component functions 

)(
11 uu xf  are referred to as the main effect of the corresponding input variable. Multi-

dimensional component functions ),(
2121, uuuu xxf , �,),,(

321321 ,, uuuuuu xxxf  represent 

interactions between different input variables.  

 
It often happens in practice that response of a black box function depends only on either additive 
inputs or low dimension interactions between input variables. Hence, the finite dimension-wise 
expansion (2) decays fast. Consequently the effective dimension esd , in the superposition sense 

[3], of the function )(xf  is smaller than d , and conversion of )(xf  to the dimension-wise 

expansion (2) can be achieved with a truncation of the components )( uu xf  in (2) that have 

cardinality of the subset u  greater than esd . In this way a high-dimensional black box )(xf  can 
be converted into a sequence of functions with lower dimensions. It is of great practical 
importance to devise a method that will exploit low effective dimension ( ddes < ) when 



computing variance-based sensitivity indices to be used for interpretation of black box functions 
(1). 
 
The paper presents two methods which are suitable for the global sensitivity analysis of the black 
box functions (1). The first method, called Sparse Grid Regression [4], is based on the 
parameterization of the ANOVA model (2) via a linear combination of the multidimensional basis 
functions. These basis functions are designed through a tensor product of orthogonal 
polynomials. To estimate parameters we solve multi-dimensional integrals using Sparse Grid 
technique [5]. The global sensitivity indices [2] are used to determining effective dimension and 
to do shrinkage of the model (2). The same indices are used for interpretation of the black box 
function (1).  
 
The second method is fundamentally different. It is based on the approximation of the black-box 
function (1) via Tensor Product Series [6]. The main tool in this approach is the Splitting 
Operator [6], which is able to replace the calculation of one integral in two dimensions by 2n 
integrals each in one dimension, where n is the rank of the Tensor Product Series. This technique 
is extended to multiple dimensions via recursive application of the Splitting Operator, where in 
each step, dimension of integrands are cut in half till the problem is reduced to some number of 
single dimensional integrations [7]. The paper demonstrates the application of the Splitting 
Operator in computing multidimensional integrals required in global sensitivity analysis of the 
black box function (1). 
 
Numerical example is devised to compare efficiency and accuracy of computing sensitivity 
indices using Sparse Grid Regression and by using Tensor Product Series approximation. These 
results are also compared to the results obtained via the Quasi-Monte Carlo method. 
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