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Introduction: Sensitivity Analysis

Abstract

Sensitivity analysis provides users of mathematical and simulation models with tools

to appreciate the dependency of the model output from model input, and to investigate

how important is each model input in determining its output. All application areas are

concerned, from theoretical physics to engineering and socio-economics. This introduc-

tory paper provides the sensitivity analysis aims and objectives in order to explain the

composition of the overall “Sensitivity Analysis” chapter of the Springer Handbook.

It also describes the basic principles of sensitivity analysis, some classification grids to

understand the application ranges of each method, a useful software package and the

notations used in the chapter papers. This section also offers a succinct description of
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sensitivity auditing, a new discipline that tests the entire inferential chain including

model development, implicit assumptions and normative issues, and which is recom-

mended when the inference provided by the model needs to feed into a regulatory or

policy process. For the “Sensitivity Analysis” chapter, in addition to this introduction,

eight papers have been written by around twenty practitioners from different fields of

application. They cover the most widely used methods for this subject: the determin-

istic methods as the local sensitivity analysis, the experimental design strategies, the

sampling-based and variance-based methods developed from the 1980s and the new im-

portance measures and metamodel-based techniques established and studied since the

2000s. In each paper, toy examples or industrial applications illustrate their relevance

and usefulness.

Keywords: Computer Experiments, Uncertainty Analysis, Sensitivity Analysis,

Sensitivity Auditing, Risk Assessment, Impact Assessment

Introduction

In many fields such as environmental risk assessment, behavior of agronomic systems,

structural reliability or operational safety, mathematical models are used for simula-

tion, when experiments are too expensive or impracticable, and for prediction. Models

are also used for uncertainty quantification and sensitivity analysis studies. Complex

computer models calculate several output values (scalars or functions) that can de-

pend on a high number of input parameters and physical variables. Some of these

input parameters and variables may be unknown, unspecified, or defined with a large

imprecision range. Inputs include engineering or operating variables, variables that de-

scribe field conditions, and variables that include unknown or partially known model
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parameters. In this context, the investigation of computer code experiments remains

an important challenge.

This computer code exploration process is the main purpose of the Sensitivity

Analysis (SA) process. SA allows the study of how uncertainty in the output of a model

can be apportioned to different sources of uncertainty in the model input [51]. It may be

used to determine the input variables that contribute the most to an output behavior,

and the non-influential inputs, or to ascertain some interaction effects within the model.

The SA process entails the computation and analysis of the so-called sensitivity or

importance indices of the input variables with respect to a given quantity of interest

in the model output. Importance measures of each uncertain input variable on the

response variability provide a deeper understanding of the modeling in order to reduce

the response uncertainties in the most effective way [57], [30], [23]. For instance, putting

more efforts on knowledge of influential inputs will reduce their uncertainties. The

underlying goals for SA are model calibration, model validation and assisting with

the decision making process. This chapter is for engineers, researchers and students

who wish to apply SA techniques in any scientific field (physics, engineering, socio-

economics, environmental studies, astronomy, etc.).

Several textbooks and specialist works [56], [3], [10], [12], [9], [59], [21], [11], [2]

have covered most of the classic SA methods and objectives. In parallel, a scientific

conference called SAMO (“Sensitivity Analysis on Model Output”) has been organized

every three years since 1995 and extensively covers SA related subjects. Works pre-

sented at the different SAMO conferences can be found in their proceedings and several

special issues published in international journals (mainly in “Reliability Engineering

and System Safety”).

The main goal of this chapter is to provide an overview of classic and advanced

SA methods, as none of the referenced works have reported all the concepts and meth-
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ods in one single document. Researchers and engineers will find this document to be

an up-to-date report on SA as it currently stands, although this scientific field remains

very active in terms of new developments. The present chapter is only a snapshot in

time and only covers well-established methods.

The next section of this paper provides the SA basic principles, including el-

ementary graphic methods. In the third section, the SA methods contained in the

chapter are described using a classication grid, together with the main mathematical

notations of the chapter papers. Then, the SA-specialized packages developed in the R

software environment are discussed. To finish this introductory paper, a process for the

sensitivity auditing of models in a policy context is discussed, by providing seven rules

that extend the use of SA. As discussed in Saltelli et al [61], SA, mandated by existing

guidelines as a good practice to use in conjunction with mathematical modeling, is

insufficient to ensure quality in the treatment of scientific uncertainty for policy pur-

poses. Finally, the concluding section lists some important and recent research works

that could not be covered in the present chapter.

Basic principles of sensitivity analysis

The first historical approach to SA is known as the local approach. The impact of small

input perturbations on the model output is studied. These small perturbations occur

around nominal values (the mean of a random variable, for instance). This determin-

istic approach consists of calculating or estimating the partial derivatives of the model

at a specific point of the input variable space [68]. The use of adjoint-based methods

allows models with a large number of input variables to be processed. Such approaches

are particularly well-suited to tackling uncertainty analysis, SA and data assimilation

problems in environmental systems such as those in climatology, oceanography, hydro-

geology, etc. [3], [48], [4].
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To overcome the limitations of local methods (linearity and normality assump-

tions, local variations), another class of methods has been developed in a statistical

framework. In contrast to local SA, which studies how small variations in inputs around

a given value change the value of the output, global sensitivity analysis (“global” in op-

position to the local analysis) does not distinguish any initial set of model input values,

but considers the numerical model in the entire domain of possible input parameter

variations [57]. Thus, the global SA is an instrument used to study a mathematical

model as a whole rather than one of its solution around parameters specific values.

Numerical model users and modelers have shown high interest in these global

tools that take full advantage of the development of computing equipment and nu-

merical methods (see Helton [20], de Rocquigny et al [9] and [11] for industrial and

environmental applications). Saltelli et al [58] emphasized the need to specify clearly

the objectives of a study before performing an SA. These objectives may include:

• The factors prioritization setting, which aims at identifying the most important

factors. The most important factor is the one that, if fixed, would lead to the

greatest reduction in the uncertainty of the output;

• The factors fixing setting, which aims at reducing the number of uncertain inputs

by fixing unimportant factors. Unimportant factors are the ones that, if fixed to

any value, would not lead to a significant reduction of the output uncertainty.

This is often a preliminary step before the calibration of model inputs using

some available information (real output observations, constraints, etc.);

• The variance cutting setting, which can be a part of a risk assessment study.

Its aim is to reduce the output uncertainty from its initial value to a lower

pre-established threshold value;
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• The factors mapping setting, which aims at identifying the important inputs in

a specific domain of the output values, for example which combination of factors

produce output values above or below a given threshold.

In a deterministic framework, the model is analyzed at specific values for inputs,

and the space of uncertain inputs may be explored in statistical approaches. In a

probabilistic framework instead, the inputs are considered as random variables X =

(X1, . . . , Xd) ∈ Rd. The random vector X has a known joint distribution, which reflects

the uncertainty of the inputs. The computer code (also called “model”) is denoted G(·),

and for a scalar output Y ∈ R, the model formula writes

Y = G(X) . (1)

Model function G can represent a system of differential equations, a program code,

or any other correspondence between X and Y values that can be calculated for a

finite period of time. Therefore, the model output Y is also a random variable whose

distribution is unknown (increasing the knowledge of it is the goal of the uncertainty

propagation process). SA statistical methods consist of techniques stemming from the

design of experiments theory (in the case of a large number of inputs), the Monte

Carlo techniques (to obtain precise sensitivity results) and modern statistical learning

methods (for complex CPU time-consuming numerical models).

For example, to begin with the most basic (and essential) methods, simple graph-

ical tools can be applied on an initial sample of inputs/output
(
x

(i)
1 , . . . , x

(i)
d , y

(i)
)
i=1..n

(sampling strategies are numerous and are described in many other chapters of this

handbook). To begin with, simple scatterplots between each input variable and the

model output can allow the detection of linear or non-linear input/output relation.

Figure 1 gives an example of scatterplots on a simple function with three input vari-

ables and one output variable. As the two-dimensional scatterplots do not capture the
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possible interaction effects between the inputs, the cobweb plots [32] can be used. Also

known as parallel coordinate plots, cobweb plots allow to visualize the simulations

as a set of trajectories by joining the value (or the corresponding quantile) of each

variables’ combination of the simulation sample by a line (see Figure 2): Each verti-

cal line represents one variable, the last vertical line representing the output variable.

In Figure 2, the simulations leading to the smallest values of the model output have

been highlighted in red. This allows to immediately understand that these simulations

correspond to combinations of small and large values of the first and second inputs

respectively.

Fig. 1. Scatterplots of 200 simulations on a numerical model with three inputs (in abscissa of each

plot) and one output (in ordinate). Dotted curves are local-polynomial based smoothers.

Moreover, from the same sample
(
x

(i)
1 , . . . , x

(i)
d , y

(i)
)
i=1..n

, quantitative global

sensitivity measures can be easily estimated, as the linear (or Pearson) correlation co-

efficient and the rank (or Spearman) correlation coefficient [56]. It is also possible to

fit a linear model explaining the behaviour of Y given the values of X, provided that

the sample size n is sufficiently large (at least n > d). The main indices are then the

Standard Regression Coefficients SRCj = βj

√
Var(Xj)

Var(Y )
, where βj is the linear regres-

sion coefficient associated to Xj. SRC2
j represents a share of variance if the linearity
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Fig. 2. Cobweb plot of 200 simulations of a numerical model with three inputs (first three columns)

and one output (last column).

hypothesis is confirmed. Amongst many simple sensitivity indices, all these indices are

included in the so-called sampling-based sensitivity analysis methods (see the descrip-

tion of the content of this chapter in the next section and Helton et al [23]).

Methods contained in the chapter

Three families of methods are described in this chapter, based on which is the objective

of the analysis:

1. First, screening techniques aim to a qualitative ranking of input factors at minimal

cost in the number of model evaluations. Paper 2 (see Variational Methods, written

by Maëlle Nodet and Arthur Vidard) introduces the local SA based on variational

methods, while Paper 3 (see Design of Experiments for Screening, written by Sue

Lewis and David Woods) makes an extensive review on design of experiments tech-

niques, including some screening designs and numerical exploration designs specif-

ically developed in the context of computer experiments;
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2. Second, sampling based methods are described. Paper 4 (see Weights and Importance

in Composite Indicators: Mind the Gap, written by William Becker, Paolo Paruolo,

Michaela Saisana and Andrea Saltelli) shows how, from an initial sample of in-

put and output values, quantitative sensitivity indices can be obtained by various

methods (correlation, multiple linear regression, non-parametric regression) and ap-

plied in analyzing composite indicators. In Paper 5 (see Variance-based Sensitivity

Analysis: Theory and Estimation Algorithms, written by Clémentine Prieur and Ste-

fano Tarantola), the definitions of the variance-based importance measures (the so-

called Sobol’ indices) and the algorithms to calculate them will be detailed. In Paper

6 (see Derivative based Global Sensitivity Measures, written by Sergëı Kucherenko

and Bertrand Iooss), the global SA based on derivatives sample (the DGSM indices)

are explained, while in Paper 7 (see Moment Independence Importance Measures

and a Common Rationale, written by Emanuele Borgonovo and Bertrand Iooss),

the moment independent and reliability importance measures are described.

3. Third, in depth exploration of model behavior with respect to inputs variation

can be carried out. Paper 8 (see Metamodel-based Sensitivity Analysis: Polynomial

Chaos and Gaussian Process, written by Löıc Le Gratiet, Stefano Marelli and Bruno

Sudret) includes recent advances made in the modeling of computer experiments.

A metamodel is used as a surrogate model of the computer model with any SA

techniques, when the computer model is too CPU time-consuming to allow a suf-

ficient number of model calculations. Special attention is paid to two of the most

popular metamodels: the polynomial chaos expansion and the Gaussian process

model, for which the Sobol’ indices can be efficiently obtained. Finally, Paper 9 (see

Sensitivity Analysis of Spatial and/or Temporal Phenomena, written by Amandine

Marrel, Nathalie Saint Geours and Matthias De Lozzo) extends the SA tools in the

context of temporal and/or spatial phenomena.
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All the SA techniques explained in this chapter present a trade-off between the

number of model computations required and the assumed model complexity. Figure

3 proposes a coarse classification of the global method families described before. This

figure shows how to place a method depending on its required number of computations

and its underlying hypothesis on the complexity of the G model. For example “Non

monotonic” means that the method can be applied to non monotonic models, as of

course to monotonic and linear ones. A distinction is made between screening techniques

(identification of non-influential variables among a large number of variables) and more

precise variance-based quantitative methods. As most of the methods have a dimension-

dependent cost in terms of required model evaluations, another distinction is made with

the few methods whose costs are dimension-independent.

Fig. 3. Coarse classification of main global SA methods in terms of required number of model evalu-

ations and model complexity.
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Fig. 4. Classification of global SA methods in terms of required number of model evaluations and

model complexity.

With the same axes than the previous figure, Figure 4 proposes a more accurate

classification of the classic global SA methods described in the present SA chapter.

Note that this classification is not exhaustive and does not take full account of ongoing

attempts to improve the existing methods. Overall, this classification tool has several

levels of reading:

• positioning methods based on their cost in terms of the number of model calls.

These methods linearly depend on the dimension (number of inputs) for most

of the methods, except for the moment-independent measures (estimated with

given-data approaches), smoothing methods, Sobol-RBD (Random Balance De-

sign), Sobol-RLHS (Replicated Latin Hypercube Sampling) and statistical tests;
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• positioning methods based on assumptions about model complexity and regu-

larity;

• distinguishing the type of information provided by each method;

• identifying methods which require some prior knowledge about the model be-

havior.

Each of these techniques corresponds to different categories of problems met

in practice. One should use the simplest method that is adapted to the study’s ob-

jectives, the number of numerical model evaluations that can be performed, and the

prior knowledge on the model’s regularity. Each sensitivity analysis should include a

validation step, which helps to understand if another method should be applied, if the

number if model evaluations should be increased, and so on. Based on the characteris-

tics of the different methods, some authors [9], [26] have proposed decision trees to help

the practitioner to choose the most appropriate method for their problem and model.

Finally, the different papers of this chapter use the same mathematical notations,

which are summarized below:
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G(·) Numerical model

N , n Sample sizes

d Dimension of an input vector

p Dimension of an output vector

x = (x1, . . . , xd) Deterministic input vector

X = (X1, . . . , Xd) Random input vector

xj, Xj Deterministic and random input variable

xT Transpose of x

x∼i = x−i = xī = (X1, . . . , Xi−1, Xi+1, . . . , Xd)

x(i) Sample vector of x

y, Y ∈ R Deterministic and random output variable when p = 1

y(i) Sample of y

fX(·) Density function of a real random variable X

FX(·) Distribution function of X

µX , σX Mean and standard deviation of X

xα = qα(X) α-quantile of X

V = Var(Y ) Total variance of the model output Y

A Subset of indices in the set {1, . . . , d}

VA Partial variance

SA, Stot
A First order and total Sobol indices of A

Specialized R software packages

From a practical point of view, the application of SA methods by researchers, engineers,

end-users and students is conditioned by the availability of an easy-to-use software.

Several software include some SA methods (see the Software chapter of the Springer

Handbook) but only a few are specialized on the SA issues. In this section, the sensitivity
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package of the R environment is presented [49]. Its development has started since 2006

and the several contributions that this package has received have made it particularly

complete. It includes most of the methods presented in the papers of this chapter.

The R software is a powerful tool for knowledge diffusion in the statistical com-

munity. The open source and availability have made R the software of choice for many

statisticians in education and industry. The characteristics of R are the following:

• R is easy to run and install on main operating systems. It can be efficiently used

with an old computer, with a single workstation and with one of the most recent

supercomputer;

• R is a programming language which is interpreted and object-oriented, and

which contains vector operators and matrix computation;

• The main drawbacks of R are its virtual memory limits and non-optimized

computation times. To overcome these problems, compiled languages as fortran

or C are much more efficient, and can be introduced as compiled codes inside R

algorithms requiring huge computation time.

• R contains a lot of built-in statistical functions;

• R is extremely well-documented with built-in help system;

• R encourages the collaboration, the discussion forums and the creation of new

packages by researchers and students. Thousands of packages are made available

on the CRAN website (http://cran.r-project.org/).

All these benefits highlight the interest to develop specific softwares in R and

many packages have been developed on SA. For instance, the FME package contains

basic SA and local SA methods (see Variational Methods), while the spartan package

contains basic methods for exploring stochastic numerical models.
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For global SA, The sensitivity package includes a collection of functions for factor

screening, sensitivity indices estimation and reliability sensitivity analysis of model

outputs. It implements:

• A few screening techniques as the sequential bifurcations and the Morris method

(see Design of Experiments for Screening). Note that the R package planor allows

to build fractional factorial design (see Design of Experiments for Screening);

• The main sampling-based procedures as linear regression coefficients, partial

correlations, rank transformation (see Weights and Importance in Composite

Indicators: Mind the Gap). Note that the ipcp function of the R package iplots

provides an interactive cobweb graphical tool (see Figure 2), while the R package

CompModSA implements various nonparametric regression procedures for SA

(see Weights and Importance in Composite Indicators: Mind the Gap);

• The variance-based sensitivity indices (Sobol’ indices), by various schemes of the

so-called pick-freeze method, the Extended-FAST method and the replicated

orthogonal array-based Latin hypercube sample (see Variance-based Sensitivity

Analysis: Theory and Estimation Algorithms). The R package fast is fully de-

voted to the FAST method;

• The Poincaré constants for the Derivative-based Global Sensitivity Measures

(DGSM) (see Derivative based Global Sensitivity Measures);

• The sensitivity indices based on Csiszar f-divergence and Hilbert-Schmidt In-

dependence Criterion of Da Veiga [6] (see Moment Independence Importance

Measures and a Common Rationale);

• The reliability sensitivity analysis by the Perturbation Law-based Indices (PLI)

(see Moment Independence Importance Measures and a Common Rationale);

• The estimation of the Sobol’ indices with a Gaussian process metamodel

(see Metamodel-based Sensitivity Analysis: Polynomial Chaos and Gaussian
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Process) with a Gaussian process metamodel coming from the R package DiceK-

riging. Note that the R package tgp performs the same job using treed Gaus-

sian process and that the R package GPC allows to estimate the Sobol’ indices

by building a polynomial chaos metamodel (see Metamodel-based Sensitivity

Analysis: Polynomial Chaos and Gaussian Process);

• Sobol’ indices for multidimensional outputs: Aggregated Sobol’ indices and func-

tional (1D) Sobol’ indices (see Sensitivity Analysis of Spatial and/or Temporal

Phenomena). Note that the R package multisensi is fully devoted to this subject

while the R package safi implements new SA methods of models with functional

inputs;

• The Distributed Evaluation of Local Sensitivity Analysis (DELSA) described in

Rakovec et al [50].

The sensitivity package has been designed to work either models written in R

than external models such as heavy computational codes. This is achieved with the

input argument model present in all functions of this package. The argument model is

expected to be either a function or a predictor (i.e. an object with a predict function

such as lm). The model is invoked once for the whole design of experiment. The argu-

ment model can be left to NULL. This is referred to as the decoupled approach and

used with external computational codes that rarely run on the statistician’s computer.

Examples of use of all the sensitivity functions can be found using the R built-in help

system.

As a global and generic platform allowing to include all the methods of these

different R packages, the mtk package [70] has recently been proposed. It is an object-

oriented framework which aims at dealing with external simulation platforms and man-

aging all the different tasks of uncertainty and sensitivity analyses. Finally, the ATmet
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and pse packages interface several sensitivity package functions for, respectively, metrol-

ogy applications and parameter space exploration.

Sensitivity auditing

It may happen that a sensitivity analysis of a model-based study is meant to underpin

an inference, and to certify its robustness, in a context where the inference feeds into a

policy or decision making process. In these cases the framing of the analysis itself, its

institutional context, and the motivations of its author may become a matter of great

importance, and a pure SA - with its emphasis on parametric uncertainty - may be seen

as insufficient. The emphasis on the framing may derive inter-alia from the relevance

of the policy study to different constituencies that are characterized by different norms

and values, and hence by a different story about ‘what the problem is’ and foremost

about ‘who is telling the story’. Most often the framing includes more or less implicit

assumptions, which could be political (e.g. which group needs to be protected) all the

way to technical (e.g. which variable can be treated as a constant).

These concerns about how the story is told and who tells it are all the more

urgent in a climate as today’s where science’s own quality assurance criteria are under

scrutiny due to a systemic crisis in reproducibility [25] and the explosion of the blo-

gosphere invites more open debates on the scientific basis of policy decisions [42]. The

Economist, a weekly magazine, has entered the fray by commenting on the poor state of

current scientific practices and devoting its cover to “How Science goes wrong”. It adds

that, ‘The false trails laid down by shoddy research are an unforgivable barrier to under-

standing’ (The Economist [66], p. 11). Among the possible causes of such a predicament

is a process of hybridization [33] of fact and values, and of public and private institu-

tions and actors. Thus the classical division of roles among science, providing tested

fact, and policy, providing legitimized norms, becomes arduous to maintain.
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As an additional difficulty, according to Grundmann [19], ‘One might suspect

that the more knowledge is produced in hybrid arrangements, the more the protagonists

will insist on the integrity, even veracity of their findings’.

In order to take these concerns into due consideration the instruments of SA have

been extended to provide an assessment of the entire knowledge and model generating

process. This approach has been called sensitivity auditing. It takes inspiration from

NUSAP, a method used to qualify the worth of quantitative information with the

generation of ‘Pedigrees’ of numbers [17], [69]. Likewise, sensitivity auditing has been

developed to provide pedigrees of models and model-based inferences [61], [53], [54].

Sensitivity auditing has been especially designed for an adversarial context,

where not only the nature of the evidence, but also the degree of certainty and uncer-

tainty associated to the evidence, will be the subject of partisan interests. Sensitivity

auditing is structured along a set of seven rules/imperatives:

1. Check against the rhetorical use of mathematical modeling. Question addressed: is

the model being used to elucidate or to obfuscate?;

2. Adopt an ‘assumption hunting’ attitude. Question addressed: what was ‘assumed

out’? What are the tacit, pre-analytical, possibly normative assumptions underlying

the analysis?;

3. Detect Garbage In Garbage Out (GIGO). Issue addressed: artificial deflation of

uncertainty operated in order to achieve a desired inference at a desired level of

confidence. It also works on the reverse practice, the artificial inflation of uncertain-

ties, e.g. to deter regulation;

4. Find sensitive assumptions before they find you. Issue addressed: anticipate crit-

icism by doing careful homework via sensitivity and uncertainty analyses before

publishing results.
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5. Aim for transparency. Issue addressed: stakeholders should be able to make sense

of, and possibly replicate, the results of the analysis;

6. Do the right sums, which is more important than ‘Do the sums right’. Issue ad-

dressed: is the viewpoint of a relevant stakeholder being neglected? Who decided

that there was a problem and what the problem was?

7. Focus the analysis on the key question answered by the model, exploring the entire

space of the assumptions holistically. Issue addressed: don’t perform perfunctory

analyses that just ‘scratch the surface’ of the system’s potential uncertainties.

The first rule looks at the instrumental use of mathematical modeling to ad-

vance one’s agenda. This use is called rhetorical, or strategic, like the use of Latin by

the elites and clergy before the Reformation. At times the use of models is driven a

simple pursuit of profit; according to Stiglitz [64], this was the case for the modelers

‘pricing’ the derivatives at the root of the sub-prime mortgages crisis:

[. . . ] Part of the agenda of computer models was to maximize the fraction of, say,

a lousy sub-prime mortgage that could get an AAA rating, then an AA rating,

and so forth, [. . . ] This was called rating at the margin, and the solution was still

more complexity, p. 161.

At times this use of models can be called ‘ritual’, in the sense that it offers a false

sense of reassurance. An example is Fisher [13] (quoting Szenberg [65]):
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Kenneth Arrow, one of the most notable Nobel Laureates in economics, has his

own perspective on forecasting. During World War II, he served as a weather

officer in the U.S. Army Air Corps and worked with a team charged with the

particularly difficult task of producing month-ahead weather forecasts. As Arrow

and his team reviewed these predictions, they confirmed statistically what you

and I might just as easily have guessed: The Corps’ weather forecasts were no

more useful than random rolls of a die. Understandably, the forecasters asked

to be relieved of this seemingly futile duty. Arrow’s recollection of his superiors’

response was priceless: “The commanding general is well aware that the forecasts

are no good. However, he needs them for planning purposes” Szenberg [65].

The second rule about ‘assumption hunting’ is a reminder to look for what

was assumed when the model was originally framed. Modes are full of caeteris paribus

assumptions, meaning that e.g. in economics the model can predict the result of a

shock to a given set of equations assuming that all the rest - all other input variables

and inputs - remains equal, but in real life caeteris are never paribus, meaning by this

that variables tend to be linked with one another, so that they can hardly change in

isolation.

Furthermore at times the assumption made by modelers do not to withstand

scrutiny. A good example of assumption hunting is from John Kay [28], where the

author takes issue with modeling used in transport policy. This author discovered

that among the input values assumed (and hence fixed) in the model was ‘average

car occupancy rates, differentiated by time of day, in 2035’. The point is that such

assumptions are very difficult to justify. This comment was published in the Financial

Times (where John Kay is a columnist) showing that at present times controversies

that could be called epistemological evade the confines of academia and populate the

media.
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Rule three is about artificially exaggerating or playing down uncertainties wher-

ever convenient. The tobacco lobbies exaggerated the uncertainties about the health

effects of smoking according to Oreskes and Conway [44], while advocates of the death

penalty played down the uncertainties in the negative relations between capital pun-

ishment and crime rate [34]. Clearly the latter wanted the policy, in this case the death

penalty, and were interested in showing that the supporting evidence was robust. In the

former case the lobbies did not want regulation (e.g. bans on tobacco smoking in public

places) and were hence interested in amplifying the uncertainty in the smoking-health

effect causality relationship.

Rule four is about ‘confessing’ uncertainties before going public with the anal-

ysis. This rule is also one of the commandments of applied econometrics according to

Kennedy [29]: ‘Thou shall confess in the presence of sensitivity. Corollary: Thou shall

anticipate criticism’. According to this rule a sensitivity analysis should be performed

before the result of a modeling study are published. There are many good reasons

for doing this, one being that a carefully performed sensitivity analysis often uncovers

plain coding mistakes or model inadequacies. The other is that most often than not

the analysis reveal uncertainties that are larger than those anticipated by the model

developers. Econometrician Edward Leamer in discussing this [34] argues that ‘One

reason these methods are rarely used is their honesty seems destructive’. In Saltelli and

d’Hombres [52], the negative consequences of doing a sensitivity analysis a-posteriori

are discussed. The case is the first review of the cost of offsetting climate change done

by Nicholas Stern of the London School of Economics (the so called Stern Review)

which was criticized by William Nordhaus, of the University of Yale, on the basis of

large sensitivity of the estimates upon the discount factors employed by Stern. Sterns

own sensitivity analysis, published as an annex to the review, revealed according to

the authors in Saltelli and d’Hombres [52] that while the discount factors were not



22

the only important factors determining the cost estimate, the estimates were indeed

very uncertain. On the large uncertainties of integrated assessment models of climate’s

impact, see also Saltelli et al [62].

Rule five is about presenting the results of the modeling study in a transparent

fashion. Both rules originate from the practice of impact assessment, where a modeling

study presented without a proper SA, or as originating from a model which is in fact

a black box, may end up being rejected by stakeholders [52]. Both rules four and five

suggest that reproducibility may be a condition for transparency and that this latter

may be a condition for legitimacy. This debate on Sciences transparency is very much

alive in the US, in the dialectic relationship between the US Environmental Protection

Agency (EPA) and the US Congress (especially the Republican Party) which objects

to EPAs regulations on the basis that these are based on ‘secret science’.

Rule six, about doing the right sum, is not far from the ‘assumptions hunting’

rule; it is just more general. It deals with the fact that often an analyst is set to work

on an analysis arbitrarily framed to the advantage of a party. Sometime this comes via

the choice of the discipline selected to do the analysis. Thus an environmental impact

problem may be framed through the lenses of economics, and presented as a cost benefit

or risk analysis, while the issue has little to do with costs or benefits or risks and a

lot to do with profits, controls, and norms. An example is in Marris et al [41] on the

issue of GMOs, mostly presented in the public discourse as a food safety issue while

the spectrum of concerns of GMO opponents - including lay citizens - appears broader.

According to Winner [71] (p. 138-163), ecologists should not be led into the trap of

arguing about the ‘safety’ of a technology after the technology has been introduced.

They should instead question the broader power, policy and profit implications of that

introduction and its desirability.
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Rule seven is about avoiding perfunctory sensitivity analyses. As discussed in

Saltelli et al [60], an SA where each uncertain input is moved at a time while leaving all

other inputs fixed is perfunctory. A true SA should make an honest effort at activating

all uncertainties simultaneously, leaving the model free to display its full nonlinear and

possibly non-additive behaviour. A similar point is made in Sam L. Savage’s book ‘The

flaw of averages’ [63].

In conclusion, these rules are meant to help an analyst to anticipate criticism.

In drafting these rules the authors in [61], [53], [54] have tried to put themselves in the

shoes of a modeler also based on their own experience and tried to imagine a model-

based inference feeding into an impact assessment. What questions and objections may

be received by the modeler? Here is a possible list:

• “You treated X as a constant when we know it is uncertain by at least 30%”

• “It would be sufficient for a 5% error in X to make your statement about Z

fragile”

• “Your model is but one of the plausible models - you neglected model uncer-

tainty”

• “ You have instrumentally maximized your level of confidence in the results”

• “Your model is a black box - why should I trust your results?”

• “You have artificially inflated the uncertainty”

• “Your framing is not socially robust”

• “You are answering the wrong question”

The reader may easily check that a careful go through the sensitivity auditing checklist

should provide ammunition to anticipate objections of this nature.

Sensitivity auditing can then be seen as a user guide to criticize the model-based

studies and SA is a part of this guide. In the following section, we go back to sensitivity

analysis in order to conclude and give some perspectives.
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Conclusion

This introductory paper has presented the SA aims and objectives, the SA and sensitiv-

ity auditing basic principles, the different methods explained in the chapter papers by

positioning them in a classification grid, useful R software packages and the notations

used in the chapter papers. The chapter’s Editor, Bertrand Iooss, would like to sin-

cerely thank all authors and co-authors of the “Sensitivity Analysis” chapter for their

efforts and the quality of their contributions. Dr. Jean-Philippe Argaud (EDF R&D),

Dr. Géraud Blatman (EDF R&D), Dr. Nicolas Bousquet (EDF R&D), Dr. Sébastien da

Veiga (Safran), Dr. Hervé Monod (INRA), Dr. Matieyendou Lamboni (INRA) and Dr.

Löıc Le Gratiet (EDF R&D) are also greatly thanked for their advices on the different

chapter papers.

The papers in this chapter the most widely used methods for sensitivity analy-

sis: the deterministic methods as the local sensitivity analysis, the experimental design

strategies, the sampling-based and variance-based methods developed from the 1980s

and the new importance measures and metamodel-based techniques established and

studied since the 2000s. However, with such a rich subject, choices had to be made for

the different chapter papers and some important omissions are present. For instance,

the robust Bayesian analysis [1], [24] is not discussed, while it is nevertheless a great

ingredient in the study of the sensitivity of Bayesian answers to assumptions and uncer-

tain calculation inputs. Moreover, in the context of non-probabilistic representation of

uncertainty (as in the interval analysis, the evidence theory and the possibility theory),

a small amount of SA methods has been developed [22]. This subject is deferred to a

future review work.

Due to their very new or incomplete nature, several other SA issues are not

discussed in this chapter. For instance, estimating total Sobol’ indices at low cost re-

mains a problem of primary importance in many applications (see Saltelli et al [60] for
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a recent review on the subject). Second-order Sobol indices estimations have recently

been considered by Fruth et al [16] (by way of total interaction indices) and Tissot

and Prieur [67] (by way of replicated orthogonal-array LHS). The latter work offers a

powerful estimation method because the number of model calls is independent of the

number of inputs (as in the spirit of permutation-based technique [38], [37]). However,

for high-dimensional models (several hundreds inputs), estimation biases and computa-

tional costs remain considerable; De Castro and Janon [8] have proposed to introduce

modern statistical techniques based on variable selection in regression models. Owen

[46] has introduced generalized Sobol’ indices allowing to compare and search efficient

estimators (as the new one found in Owen [45]).

Another mathematical difficulty is the consideration of the dependence between

the inputs Xi (i = 1 . . . d). Non-independence between inputs in SA has been discussed

by many authors such as Saltelli and Tarantola [55], Jacques et al [27], Xu and Gertner

[72], Da Veiga et al [7], Li et al [36], Kucherenko et al [31], Mara and Tarantola [39]

and Chastaing et al [5]. Despite all these works, much confusion still exists in practical

applications. In practice, it would be useful to be able to measure the influence of the

potential dependence between some inputs on the output quantity of interest.

Note that most of the works in this chapter focus on SA relative to the overall

variability of model output (second order statistics). In practice, one can be interested in

other quantities of interest, such as the output entropy, the probability that the output

exceeds a threshold and a quantile estimation [56], [15], [35]. This is an active area of

research as shown in this chapter (see Moment Independence Importance Measures and

a Common Rationale), but innovative and powerful ideas have recently been developed

by Owen et al [47] and Geraci et al [18] using higher order statistics, Fort et al [14]

using contrast functions and Da Veiga [6] using a kernel point of view.
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Finally, in some situations, the computer code is not a deterministic simulator

but a stochastic one. This means that two model calls with the same set of input

variables lead to different output values. Typical stochastic computer codes are queuing

models, agent-based models, and models involving partial differential equations applied

to heterogeneous or Monte Carlo-based numerical models. For this type of code, Marrel

et al [40] have proposed a first solution for dealing with Sobol’ indices. Moutoussamy

et al [43] have also tackled the issue in the context of the metamodel building of the

output probability density function. Developing relevant SA methods in this context

will certainly be subject of future works.
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