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Abstract 

We examine a conceptual framework for accounting for all sources of uncertainty in complex prediction problems, involv- 
ing six ingredients: past data, future observables, and scenario, structural, parametric, and predictive uncertainty. We apply 
this framework to nuclear waste disposal using a computer simulation environment - GTNCHEN - which "deterministically" 
models the one-dimensional migration of radionuclides through the geosphere up to the biosphere. Focusing on scenario 
and parametric uncertainty, we show that mean predicted maximum doses to humans on the earth's surface due to 1-129, 
and uncertainty bands around those predictions, are larger when scenario uncertainty is properly assessed and propagated. 
We also illustrate the value of a new method for global sensitivity analysis of model output called ex tended  FAST. @ 1999 
Elsevier Science B.V. 
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l. Introduction: the importance of prediction 

It is arguable  (e.g.,  [9] ) that predict ion of  observ- 

able quant i t ies  is, or at least ought  to be, the central 
activity in science and decis ion-making:  bad models  
make bad predict ions (that is one of  the main ways 

we know they are bad) .  Predict ion (a lmost )  always 
involves a m o d e l  embody ing  facts and assumpt ions  
about  how past observables (data)  will relate to future 
observables,  and how future observables will relate to 
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each other. Full determinist ic  unders tanding  of  such 
relationships is the causal goal, rarely achieved at fine 
levels of  measurement .  Thus  we typically use models  
that blend de te rmin ism and chance,  

Yi = f ( x i )  4- e i ,  

("determinis t ic" '~  ~- ("s tochast ic" '~  
obse rvab le=  \ componen t  / ' \ c o m p o n e n t /  ' 

(1) 

for outcome y and predic tor(s )  x (often a vector) ,  as 
i ranges across the observat ions from 1 to n ( say) ,  and 
in which we may or may not pretend that f is known.  
The hope is that successive ref inements  of  causal un-  
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Here the eli  represent pred i c t i v e  u n c e r t a i n t y  - residual 
uncertainty after the deterministic structure has done 
its best to "explain" variations in y - and 0.1 describes 
the likely size of the eli .  

To specify structure, an empiricist looking at Fig. 1 
might well begin with a linear relationship between x 
and y, 

Si: y i = f l l o + / 3 1 1 x i + e l i ,  V ( e l i ) = o ~ ,  (4) 

with/3m and fllJ serving as p a r a m e t e r s  (physical con- 
stants) whose values are unknown before the data are 
gathered. However, nonlinear relationships with small 
curvature are also plausible given the Forbes data, e.g., 

Fig. 1. Scatterplot of Forbes' data, from [ 29i, relating barometric 
pressure to the boiling point of water, with linear fit superimposed. 

derstanding over time will add more components to x, 
shifting the bulk of  the variation in y from e to f ,  until 
(for the problem currently under study) the stochastic 
part of the model is no longer required. 

In the period in which causal understanding is 
only partial, many uncertainties are recognizable in 
attempts to apply Eq. ( 1 ). An initial example - illus- 
trating in a simple setting all the ingredients found in 
the more complicated case study in Sections 2 and 
3 - is given by F o r b e s '  L a w  [29],  which quantifies 
the relationship between the boiling point of water 
and the ambient barometric pressure. Around 1750 
the Scottish physicist Forbes collected data on this 
relationship, at 17 different points in space and time 
in the Swiss Alps and Scotland, obtaining the results 
plotted in Fig. l. 

In the problem of interest to Forbes, denoting pres- 
sure by y and boiling point by x, a deterministic model 
for y in terms of x would be of the form 

Yi = f ( x , ) ,  i =  1 . . . . .  n =  17, (2) 

for some function f whose choice plays the role of  
an assumption about the s t ruc ture  of the model. For 
simple f this model will not fit the data perfectly, e.g., 
because of  imperfections in the measuring of x. A 
stochastic model describing the imperfections might 
look like 

Yi = f ( ~ ' i )  - -  e l i ,  

,I,, ~) 
el, ~ N(0,  o- . (3) 

$2 : log(yi) =/320  q-/321xi  -~- e2i, V(e2i) = 0.~, 

S3 : Yi = 133o +/331 log(x/) + e~i, V ( e3i) = 0.~ , 

84 : log(3'/) =/340  -~- /3411og(x i )  + e4i ,  

V(e4,) = 0.4. (5)  

Closer examination of  Fig. 1 does in fact reveal a subtle 
upward curvature - Forbes himself theorised that the 
logarithm of pressure should be linear in boiling point, 
corresponding to structure ,72. 

If you were proceeding empirically in this situ- 
ation, your s t ruc tura l  uncertainty might be encom- 
passed, at least provisionally, by ,5 = {& . . . . .  $4}, 
with each element in ,5' corresponding to a different 
set of parameters, e.g., Os, = ( f l lo ,  f l i t ,  o-1 ) . . . . .  Os~ = 
(/340,/341, o4).  Note that changing from the raw scale 
to the log scale in x and y makes many components 
of  the parameter vectors Os~ not directly comparable 
as j varies across structural alternatives. 

P a r a m e t r i c  uncertainty, conditional on structure, is 
the type of uncertainty most familiar to quantitative 
workers. With the data values in Fig. I, inference about 
the /3j~ and 0.j can proceed in standard Bayesian or 
frequentist ways, e.g., with little or no prior informa- 
tion the n = 17 Forbes observations - conditional on 
structure S 2 - yield /~20 = -0 .957  ± 0.0793,/~21 = 
0.0206±0.000391, grz = 0.00902::k0.00155 (although 
a glance at Fig. 1 reveals either a gross error in Forbes' 
recording of  the pressure for one data point or a mea- 
surement taken under sharply different meteorological 
conditions). 

The final form of potential uncertainty recognizable 
from the predictive viewpoint in Forbes' problem is 
s c e n a r i o  uncertainty, about the precise value xi of  fu- 
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ture relevant input(s) to the structure characterising 
how pressure relates to boiling point. For example, if 
in the future someone takes a reading of pressure at an 
altitude where the boiling point is x* = 200°F, Forbes' 
structural choice ($2) predicts that the corresponding 
log pressure log(y*) will be around/320 +/321x*, give 
or take about ¢r2. Here you may know the precise value 
of  the future x*, or you may not. 

Thus (see [6] for more details) six ingredients 
summarise the four sources of  uncertainty, arranged 
hierarchically, in Forbes' problem: 
• Past observable(s) D, in this case the bivariate data 

in Fig. 1. 
• Future observable(s) y, here the pressure y* when 

the boiling point is x*. 
• Model scenario input(s) x, in this case future 

value(s) x* of  boiling point (about which there 
may or may not be uncertainty). 

• Model structure S E S = {SI . . . . .  Sk},k = 4. In 
general structure could be conditional on scenario, 
although this is not the case here. 

• Model parameters Os,, conditional on structure (and 
therefore potentially on scenario); and 

• Model predictive uncertainty, conditional on sce- 
nario, structure, and parameters, because even if 
these things were "known perfectly" the model pre- 
dictions will still probably differ from the observed 
outcomes. 
Each of  the last lbur categories - scenario, struc- 

tural, parametric, and predictive - is a source of un- 
certainty which potentially needs to be assessed and 
propagated if predictions are to be well-calibrated [4],  
e.g., in order that roughly 90% of your nominal 90% 
predictive intervals for future observables do in fact 
include the truth. 

2. Nuclear  waste disposal risk assessment: The 
case of  GESAMAC 

A key issue in the consolidation process of  the nu- 
clear fuel cycle is the safe disposal of  radioactive 
waste. Although in the 1970s disposal of  nuclear waste 
in deep sea sediments was considered [2],  and de- 
spite some objections today [ 17], deep geological dis- 
posal based on a multibarrier concept is at present 
the most actively investigated option. Visualise a deep 
underground facility within which radioactive mate- 

rials such as spent fuel rods or reprocessed waste, 
previously encapsulated, are emplaced, surrounded by 
other man-made barriers. While the safety of  this con- 
cept ultimately relies on the safety of the mechanical, 
chemical and physical barriers offered by the geolog- 
ical formation itself, the physico-chemical behaviour 
of  such a disposal system over geological time scales 
(hundreds or thousands of  years) is far from known 
with certainty [21,24]. 

We have been involved since 1996 in a project for 
the European Commission, GESAMAC 2 which aims in 
part to capture all relevant sources of uncertainty in 
predicting what would happen if the disposal barriers 
were compromised in the future by processes such as 
geological faulting, human intrusion, and/or  climatic 
change. One major goal of  the project has been the de- 
velopment of  a methodology to predict the radiologic 
dose for people in the biosphere as a function of  time, 
how far the disposal facility and the other components 
of  the multibarrier system are underground, and other 
factors likely to be strongly related to dose. The em- 
phasis of the study is on the methodology, including 
the use of  uncertainty and sensitivity analysis. 

2.1. Description of the system model 

The system model on which our work is based con- 
sists of  a hypothetical underground radioactive waste 
disposal system represented by three coupled submod- 
els: the nearfield (the source term), afarf ie ld  (the 
geosphere), and a biosphere. The first submodel - 
the near field (the repository itself) - does not in- 
clude any consideration of spatial structure or chem- 
ical complexities. It assumes an initial containment 
time for the wastes (only radioactive decay is con- 
sidered), followed by a constant leaching rate of  the 
inventory present at the time containment fails. The 
third submodel - the biosphere - is very simple and 
assumes that the radionuclides leaving the geosphere 
enter a stream of water from which a human popula- 
tion obtains drinking water, so that the dose received 
depends on the ratio of  the drinking water consump- 
tion to the stream flow rate. This is clearly not a real, 

2 GEosphere modeling, geosphere Sensitivity Analysis, Model 
uncertainty in geosphere modeling, Advanced Computing in 
stochastic geosphere simulation: see h t t p : / / w w w . c i e m a t . e s /  
sweb/gesamac/. 
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site-specific safety study, but a simplified setup for the 
illustration of the methodology. 

The main focus of our computer simulation work 
deals with the second submodel, the geosphere. The 
first version of our code, GTM-I [22,24,25], was 
developed in 1989 3 and tested via extensive Monte 
Carlo simulations, through its inclusion in several 
versions of the LISA code and in the international 
PSACOIN benchmark exercises [19,20]. The new 
release of our code, GTMCHEM, developed in the 
framework of GESAMAC, expands on GTM-1 by incor- 
porating other chemical phenomena than adsorption 
by linear isotherm (the only process included in the 
first release). 

The geosphere submodel in GTMCHEM estimates the 
transport of radionuclides by groundwater through 
the geologic formations, represented by a one-dimen- 
sional column of porous material whose properties 
can change along the pathway and in which different 
chemical reactions (homogeneous or heterogeneous) 
can take place. The equation solved is 

aCi - - V c)Ci c~2Ci 
at a--x + D - ~ _  + SoSi, (6) 

where C represents concentration (mols/m3), t is 
time (yr), X is the space coordinate (m), V is the 
groundwater velocity (m/yr) ,  D is the hydrodynamic 
dispersion (m2/yr),  and SoSi is the source/sink term 
in which the chemical reactions are included. 

Apart from the radioactive decay and the linear re- 
tention factor, the chemical phenomena modeled by 
GTMCHEM in the SoSi term are [7]: equilibrium com- 
plexation in solution; homogeneous first-order chem- 
ical kinetics in solution; slow reversible adsorption; 
and a sink associated with filtration or biodegradation. 
It is up to the user to choose which phenomena to be 
included in the simulation. 

GTMCHEM solves Eq. (6) by means of a two-step pro- 
cedure: first the advective and dispersive terms (and 
the equilibrium reaction in solution) are approximated 
by finite differences, following an implicit Crank- 
Nicolson scheme; and then the intermediate concen- 
tration values obtained in the first step are used to 
solve the physico-chemical reactions considered in the 

Supported by a collaborative contract between the European 
Commission Joint Research Centre in lspra and ENRESA, the 
Spanish radioactive waste management company, in Madrid. 
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SoSi term. The sum of the values obtained by the two 
intermediate steps yields the final concentration val- 
ues at each new time point. The output of GTMCHEM is 
"deterministic" in the sense that identical inputs will 
always lead to identical outputs. 

For slow chemical reactions the error of decoupling 
the transport and chemical reaction parts is negligible 
if 

AX R AX 2 R 
Tc - < TR and TD -- - -  < TR , (7) 

V D 

where TR, Tc, and TD are the time scales of the chem- 
ical reactions, convective transport, and dispersive 
transport, respectively. For heterogeneous reactions 
the two-step procedure without iteration leads to 
greater truncation errors than in the homogeneous 
case, but a good approximation still results if Eq. (7) 
is fulfilled. By definition this condition cannot be met 
for fast exchange. 

The user, through logical options in the input file, 
selects the system model to be simulated (e.g., alter- 
native source term models and analytical solutions) 
as well as the output desired. The code produces the 
peak fluxes at the end of each geosphere layer and the 
peak dose for each nuclide, as well as the associated 
time of the peak. The program may also be run with 
a fixed set of time points at which the tluxes and/or 
doses through space may be saved. Although this sim- 
plified mono-dimensional code is likely to be replaced 
by site specific 3D representations, GTMCHEM is good 
at modelling slow chemical processes involving the 
stationary phase, thus allowing the investigation of the 
relevance of these processes. 

2.2. The GESAMAC uncertain O, framework 

The uncertainty framework developed above in Sec- 
tion 1 has a direct parallel in the GESAMAC context, as 
follows (Fig. 2): 
• Past data D, if available, would consist of readings 

on radiologic dose under laboratory conditions rel- 
evant to those likely to be experienced in the geo- 
sphere or biosphere. (Fortunately for humankind, 
but unfortunately for the creation of a predictive 
accuracy feedback loop in our modeling - which 
would allow us to assess the most plausible struc- 
tural and parametric possibilities - there have been 
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G T M C H E M  

Geosphere / Chemical I i ,. _ i .  _ 
Inputs --~'1 Processes ~ t-'reatcrea • Outputs 

(Scenario) [ (Structural) 1 

........ ~" ....... (Predictive) 

Chemical Constants 
(Parametric) Actual 

Outputs 

Fig. 2. Schematic illustration of the four sources of uncertainty in 
GESAMAC. 

no accidents to date of  the type whose probabilities 
we are assessing.) 

• Future observables v* consist of dose values at 
given locations L, t years from now, as L and t vary 
over interesting ranges. 

• Scenarios ,V detail different sets of likely geosphere 
conditions at locations L and times t, as a result of  
human intrusion, faulting, and/or  climate. We have 
lkmnd it useful to conceptualise scenario uncertainty 
in two parts: 
• Macro-scenarios, consisting of  high-level state- 

ments of  future geosphere conditions relevant to 
dose, such as climatic change; and 
Micro-scenarios, which are low-level character- 
isations of  how the macro-scenarios - e.g., how 
forces of  climatic change such as erosion and de- 
position - would unfold chemically. 

• Structural possibilities 8 include different combi- 
nations of  chemical processes (e.g., sorption, equi- 
librium, and matrix diffusion) and different sets of 
partial differential equations (PDEs, such as (6) )  
to model them. 

• Parametric uncertainty arises because the precise 
values of  some of  the relevant physical constants 
appearing in the PDEs are unknown. Note that pa- 
rameters may be specific not only to structure but 
also to scenario (e.g., an early ice-age climatic sce- 
nario would have certain chemical constants driving 
it, whereas a worst-case geologic fracture scenario 
would be governed by different constants) ; and 

• Predictive uncertainty is as speculative (at present) 
as past data in this project, and might be based on 
things like discrepancies between actual and pre- 
dicted lab results, extrapolated to field conditions. 

2,3. Uncertainty calculations 

With the six ingredients above, the goal in uncer- 
tainty propagation is to produce two types of  pre- 
dictive distributions: scenario-specific and composite. 
The only hope of  doing this in a way that captures all 
relevant sources of  uncertainty appears to be a fully 
Bayesian analysis (e.g., [5] ). 

In the Bayesian approach past data D (if any) 
are known; future observable outcome(s)  y* are un- 
known, and to be predicted; and we must pretend that 
the sets A:' and S of possible scenarios and structures 
are known. Then the scenario-specific predictive dis- 
tribution p(y*lS, x, D) for y* given D, S, and a par- 
ticular scenario x is given by 

P(Y*'S ,x ,D)  = / /  P(y*IOs, S,x) p( Os]S,x,D) 

xp(SIx,  D) dOs dS, (8) 

and the composite predictive distribution 
p(y*lS, 2(,D) fory*  given D,S, and 2( is 

p ( y * ] S , X , D )  = / p ( y * l S ,  x ,D)  p(xlD) dx.  (9) 
. j  

X 

Here p(y*lOs, S,x) is the conditional predictive 
distribution for y* given specific choices for sce- 
nario, structure, and parameters, and p(Os]S,x, D), 
p( Slx, D ), and p( x[D ) are posterior distributions 
for the parameters, structure, and scenario (respec- 
tively) given the past data. Each of these posterior 
distributions depends on prior distributions in the 
usual Bayesian way, e.g., the posterior p(SIx, D) for 
structure given the data and a particular scenario x 
is a multiplicative function of the prior p(SIx) on 
structure and the likelihood p(D]S,x) for the data 
given structure, 

p( Slx, D) -- c p( Slx) p( DIS, x ) ,  (10) 

where c is a normalising constant. 

2.4. Challenges to the Bayesian approach 

This approach to full uncertainty propagation in- 
volves two major types of  challenges: technical and 
substantive. 
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• Technical challenge: Computing with Eqs. ( 8 ) -  
(10)  above requires evaluation of  difficult, often 
high-dimensional  integrals - for instance, the like- 
lihood p(D]S ,x )  in Eq. (10)  is 

/,(DIS, x) = f p(DlOs, S,x)p(OslS)dOs, (11) 
0 

and the parameter  vector Os given a particular struc- 
ture S may well be of  length l > 50. The lead- 
ing current technology for overcoming this chal- 
lenge is (Markov Chain) Monte Carlo integration 
(e.g.,  110,11]) .  

• Substantive challenges: 
• Q :  How can you be sure that 2( contains all the 

relevant scenarios, and $ contains all the plausi- 
ble structural choices? 
A: You can ' t ;  in practice you try to be as exhaus- 
tive as possible given current understanding and 
resource limitations. There is no good way in this 
(or  any other) approach to completely hedge 4 
against unanticipated combinations of  events that 
have never happened before• 

• Q: Where do the prior distributions p ( x )  and 
p (S)  on scenarios and structures come from? 
A: One good approach [4,6] is to start with ex- 
pert judgement ,  use sensitivity analysis (SA)  to 
see how much the final answers depend on these 
priors, and tune them using predictive calibration: 
( 1 ) compare the observed outcomes to their pre- 
dictive distributions given past data - if the ob- 
served outcomes consistently fall in the tails, then 
the priors may have been inaccurately specified, 
so (2)  respecify them and go back to (1) ,  iterat- 
ing until the predictions are well-calibrated. 

4 At the SAM098 meeting at which this paper was presented, 
a booklet of promotional material featured a product for risk 
analysis. The advertising for this product included the section 
heading, in large, bold letters, "Account for all possible events 
- not  ,just the most likely ones?" and went on to claim, "With 
I this product l, your spreadsheet model goes from representing one 
possible scenario ... to several hundred ... to all possible scenarios 
- jus l  by running a simulation!" This is arrant nonsense, of course; 
the result of any such exercise is always conditional on the set 
,9( upon which the simulations are based, and this set (almost) 
always falls far short of "all possible events". 

3. GESAMAC p r e l i m i n a r y  r e s u l t s  

We have used Monte Carlo methods to approximate 
the integrals in Eqs. (8 ) ,  (9) .  For instance, to simu- 
late in a way that fleshes out all four sources of  uncer- 
tainty in Section 2, we would first draw a scenario at 
random according to an appropriate probabili ty distri- 
bution, and then select one or more structural choices 
(e.g., chemical processes and /o r  PDEs to implement 
them) internal to our computer  program GTMCHEM ac- 
cording to a second probabili ty distribution specific to 
the chosen scenario. Parameters (chemical  constants) 
specific to the chosen structure(s)  would then be cho- 
sen according to a further set of  appropriate probabil-  
ity distributions, yielding one or more GTMCHEM out- 
puts, e.g., predicted maximum dose and dose values at 
locat ion(s)  L and t ime(s )  t. We would then compare 
these with actual outputs ( i f  available) to estimate the 
likely size of  GTblCHEM's prediction errors; making a 
final series of  draws (one for each value of  L and t) 
from probabili ty distributions to incorporate predictive 
uncertainty, which would then be added to GTMCHEM's 
predicted outcome values, would complete one iter- 
ation of  the Monte Carlo. Repeating this simulation 
many times, making histograms or density traces of  
the resulting outputs, amounts to approximating the 
desired predictive distributions by Monte Carlo inte- 
gration. 

Since we have no past data D available on actual 
underground accidents (and we also have not made 
use of  laboratory data in our work so far),  there is no 
updating in the results given here from, e.g., a prior 
distribution p ( x )  on scenarios to the corresponding 
posterior distribution p(xJD) .  If we had past data 
available to support such updating, the Monte Carlo 
integration would become more complicated; Markov 
chain Monte Carlo (MCMC,  e.g., [10] )  would then 
become a natural s imulation-based alternative. 

To obtain the preliminary results reported here, 
• We focused on the scenario and parametric inputs 

to GTMCHEM of greatest interest in the standard ref- 
erence test case in the nuclear safety community,  
the PSACOIN Level E hltercomparison [ 19]. The 
Level E test case tracks the one-dimensional migra- 
tion of four r a d i o n u c l i d e s -  iodine (1-129), and a 
chain consisting of neptunium (Np-237) ,  uranium 
(U-233) ,  and thorium (Th-229) - through two 
geosphere layers charactcrised by different hydro- 
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Table 1 
Example of parametric inputs to GTMCHEM in the simulation study: Fast Pathway scenario, iodine 1-129 nuclide 

Variable Meaning Distribution Raw-scale 

Min Max 

CONTIM 

RLEACH 

VREALi 

XPATHi 

RETI 

STREAM 

C21F 

C2iB 

No-leakage containment time 
Leach rate after containment failure 
Geosphere water travel velocity in layer I 
Geosphere layer I length 
Layer I retardation coefficient 
Stream flow rate 
Slow reversible adsorption forward rate 
Slow reversible adsorption backward rate 

uniform 100 1000 
log uniform .001 .01 
log uniform . I 1 
uniform 200 500 
uniform I 2 
log uniform le4 le6 
uniform le-9 le-7 
uniform le-9 le 7 

geological properties (sorption, hydrodynamic 
dispersion, and ground water velocity); 
We developed a new test case called Level E/G 
( [23] )  by modifying a reference scenario in five 
different ways, to create a total of six scenarios: 

Reference (REF): Level E; 
• A fast pathway (FP) to the geosphere, corre- 

sponding to a geological fault passing directly 
through the containment chamber, or to the re- 
duction of the geosphere pathway by erosion of 
the upper layer, or to the bypassing of the second 
layer through human activities. This scenario thus 
represents a reduction in radionuclide travel time 
through a reduction in the geosphere pathlength; 
An additional geosphere layer (AG), the oppo- 
site situation from the previous scenario. This 
case arises, for instance, from a retreating glacier 
leaving behind another barrier layer between the 
repository and the biosphere, or when a geolog- 
ical event creates an alternative pathway that is 
longer than that in the reference case; 
Glacial advance (GA), related to the AG scenario 
but arising from an advancing rather than retreat- 
ing glacier; 
Human disposal errors (HDE), corresponding to 
deficiencies in the construction of the repository 
and/or in waste disposal operations leading to 
premature failing of the near-field barriers; and 
Environmentally induced changes (EIC), arising 
from human activities or geological events that in- 
directly are responsible fbr the modification of the 
disposal system conditions, such as the drilling of 
a pumping well or mining tunnel at a dangerously 

small distance from the containment chamber. 
These test cases were arrived at by creating a 

total of nine micro-scenarios - three in each of 
the categories geological changes, climatic evolu- 
tion, and human activities - and merging similar 
micro-scenarios into lhe five non-Reference scenar- 
ios listed above; and 
We ignored structural and predictive uncertainty, fo- 
cusing only on the scenario and parametric compo- 
nents of overall uncertainly. 

3.1. Radionuclide migration calculations and the 
parallel Monte Carlo driver 

The Monte Carlo simulations of iodine migration 
were made by coupling the transport code GTMCHEM to 
a program we have written called the Parallel Monte 
Carlo Driver (PMCD). PMCD is a software package for 
risk assessments developed for the GESAMAC project 
and written for a parallel computing environment. In 
developing this package, the aim was to offer to po- 
tential users of the code a high-performance comput- 
ing tool that is user-friendly. The package is imple- 
mented using the Message Passing Interface (MPI) 
and the code presently runs on an IBM-SP2 parallel 
supercomputer. 

Monte Carlo simulations are an ideal application 
for parallel processing in that every simulation can be 
made independently of the others. We have used lhe 
Single Program Multiple Data paradigm (SPMD) to- 
gether with a master-slave approach. In brief, PMCD 
generates an input data matrix (master node), the 
rows of which are input parameters to the GTMCHEM 
code coupled to it. These parameters are sampled from 
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Table 2 

Scenario-specific output summaries: note bow much more 1-129 gets into the biosphere with the Fast Pathway scenario 
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Scenario Number of geosphere layers Maximum dose R 2 Number of model inputs 

Min Max 

REF 2 6.65e-  10 5.81e--6 .977 10 
FP I 2.12e--4 1.64e-- I .9998 8 

AG 3 6 .64e-9 5.89e-5 .982 15 

GA 2 3.21e--I1 6 .35e-8 .961 I1 

HDE 2 5.06e-- I 0 1.77e-- 5 .966 14 
EIC 2 3.06e-9 2.69e-5 ,984 12 

probabili ty density functions. Each slave node uses 
information from the input matrix to perform a set 
of  GTMCHEM migration calculations. Whenever a slave 
node completes  them, it sends a message to the master 
which, in turn, sends back more work to that slave. 

We performed 1000 runs of GTMCHEM for each sce- 
nario. Because the set of input parameters specified 
by the Level E / G  test case for the iodine nuclide re- 
suits in relatively fast runs, the strength of  PMCD is 
not fully appreciated in this study. The run times and 
number of  nodes varied in accordance with which sce- 
nario was being simulated: e.g., for 1000 simulations 
the number of  nodes varied between 4 and 25 and the 
run times between 10 and 96 minutes. 

In our simulations the inputs to GTMCHEM were ran- 
dom draws from uniform or log-uniform distributions, 
with minima and maxima given (e.g.)  in the last two 
columns of  Table I for scenario FP for the iodine nu- 
clide I-129. Full details on the Level E / G  test case are 
available in [23].  

3.2. A variance-based sensitivity analysis 

In this section we present results for the maximum 
dose of the iodine nuclide 1-129, which was close to 
lognormally distributed in all scenarios (we examine 
the total annual dose in a later section).  We regressed 
a standardised version of  log max dose on standard- 
ised versions of  scenario-specific inputs, expressed on 
the raw or log scales as appropriate to produce approx- 
imate uniform distributions. All inputs were approx- 
imately pairwise uncorrelated. The regressions were 
well-behaved statistically; there was small (not  practi- 
cally significant) evidence of nonlinearity in only one 
i n p u t  ( V R E A L 1 ) .  As may be seen from the R 2 values 

Table 3 

Regression results for the Reference scenario; L at the beginning 

of a variable name means that variable entered the regression on 
the log scale 

Variable Standardised Variance in log max dose 

coefficient "explained" by variable 

CONTIM .00151 .000 
LRLEACH -.00261 .000 

LVREALI .628 .394 
XPATH1 - .  I 13 .013 
RET1 - .200  ,04{} 
LVREAL2 .0676 ,005 
XPATH2 - .0147 .000 
RET2 - .0452 .002 
LSTREAM - .724  .525 

"error" .023 

in Table 2, nearly all of the variation in log max dose is 
"explained" by the simulation inputs entered linearly 
(with no interactions or nonlinear terms).  Because the 
model is so additive in this case, a simple variance- 
based sensitivity analysis will suffice - more compli-  
cated methods are not needed (but see Section 3.4 
below).  

Table 3 gives an example of  the regression results, 
in this case for the Reference scenario. When the re- 
gression is performed with standardised versions of  
the outcome y and all of  the predictors x j ,  the squares 
of the standardised coefficients may be used as a mea- 
sure of the variation in y (on the variance scale) "ex- 
plained" by each of  the xj,  provided the predictors are 
(close to) independent. In this case we have dealt  with 
sample correlations of  small size between the x j by av- 
eraging the squared standardised coefficients over all 
possible orderings in which the variables could be en- 
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Table 4 
Summary of the important variables (those that "explain" 5% or 
more of the variance in log max dose), by scenario 

Scenario Variable Standardised Variance in log max dose 
coefficient "explained" by variable 

REF VREALI .628 .394 
STREAM -.724 .525 

FP RLEACH .419 .185 

STREAM --.897 .815 

AG VREAL1 .593 .375 
STREAM --.720 552 

GA VREALI .800 .645 

RET1 --.252 .063 
STREAM --.478 .229 

HDE VREAL1 .633 .392 
STREAM --.719 .505 

EIC VREALI .633 .413 
STREAM -.717 .531 

scenarios and within scenarios, the second of  which 
represents the component  of  uncertainty arising from 
lack of  perfect knowledge of  the scenario-specific pa- 
rameters. The relevant calculations are based on the 
double-expectation theorem (e.g., [ 8 ] ) :  with y as 
max dose, and scenario i occurring with probabili ty Pi 

and leading to estimated mean and standard deviation 
(SD)  o f y  of/2i and O" i. respectively (across the 1000 
simulation replicat ions) ,  

f ' ( y )  = Vs[ E ( y l S )  ] + E s [ f / ( y l S )  ] = gr 2 

k k 
= ' _ ; , ) 2  + 

i=l i=I 

= ~ scenario + ~scena r io  , (12)  
\ variance \ variance 

where 

tered sequentially into the regression equation. From 
Table 3 VREAL1 and STREAM are evidently the high- 
impact inputs for the Reference scenario. 

Table 4 summarises the important variables for each 
scenario, by retaining only those inputs which "ex- 
plain" 5% or more of  the variance in log max dose. 
(The standard errors of  the standardised coefficients 
ranged in size from .0041 to .0063; and VREALi, 
RLEACH, and STREAM entered the regression on the 
log scale.) It is evident that, apart from occasional 
modest influence from other variables, the two inputs 
having to do with water travel velocity play by far the 
biggest role in the predicted variations in 1-129, and 
in opposite directions: VREALi and max dose are pos- 
itively related (large values of  VREALI lead to faster 
travel times through the geosphere to the biosphere) ,  
whereas it is small  values of  STREAM that lead to large 
iodine doses (arising from less dilution of  the fluxes 
coming from the geosphere to the biosphere) .  

3.3. A model  uncertainty audit  

k 

E ( Y )  = Es[ E ( y I S )  ] = ~-~piiz~ = ~ .  
i=l 

(13)  

Table 5 presents the scenario-specific mean and SD 
estimates, together with three possible vectors of  sce- 
nario probabilities. We obtained the first of  these vec- 
tors by expert elicitation of the relative plausibili ty of  
the nine micro-scenarios described at the beginning of 
this section, and created the other two, for the purpose 
of sensitivity analysis, by doubling and halving the 
non-Reference-scenario probabili t ies in the first vec- 
tor. 

Table 6 then applies Eqs. (12) ,  (13)  using each of  
the three scenario probabil i ty vectors. It may be seen 
that the percentage of  variance arising from scenario 
uncertainty is quite stable across the three specifica- 
tions of scenario probabilities, at about 30% of  the 
total variance 5 

Alternative approaches to the inclusion of  scenario 
uncertainty in risk analysis have been put forward by 

How much of  the overall uncertainty about maxi- 
mum dose is attributable to scenario uncertainty, and 
how much to parametric uncertainty? To answer this 
question, following [ 5 ], we performed a kind of  model  

uncertainty audit, in which we partitioned the total 
variance in max dose into two components,  between 

5 In fact. taking the vector of scenario probabilities to be p = 
(pt, ap2), where P2 is the last five values in the fourth column of 
Table 5 and pj = I - A ~-~=l P2i, and letting a vary all the way 
from 0.01 (corresponding to only 0.001 probability on the non- 
Reference scenarios) to 10 (at which point the Reference scenario 
has zero probability), the proportion of the variance in max dose 
arising from scenario uncertainty only drops from 30.9% to 25.7%. 
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Table 5 
Scenario-specific estimated means and standard deviations of max dose, together with three possible sets of scenario probabilities 
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Scenario Estimated Scenario probabilities (Pi) 

Mean (/2,.) SD (&i) I 2 3 

REF 2.92e--7 5.63e--7 .90 .80 .95 
FP 1.49e-- 2 2.23e-- 2 .0225 .045 .01125 
ttC 2.47e-6 5.18e-6 .0125 .025 .00625 
GA 4.1 l e -9  5.96e- 9 .0125 .025 .00625 
HDE 5.82e--7 1.24e--6 .02 .04 .01 
EIC 1.17e--6 2.44e-- 6 .0325 .065 .01625 

several investigators: see [ 1 ], as well as a recent spe- 
cial issue devoted to the treatment of  aleatory and epis- 
temic uncertainty [ 12]. There, predictive uncertainty 
is partit ioned into stochastic (aleatory)  and subjec- 
tive (epis temic) ,  the former corresponding to scenar- 
ios and the latter to model structures and parameters 
in our formulation. An older example of  categorisa- 
tion of  uncertainty in risk analysis is [ 16]. Applica- 
tions to risk assessment for nuclear waste disposal are 
in [ 12,14]. Such categorisations, as explained in [ 1 ], 
are lbr convenience only, as the two types of  uncer- 
tainty are indistinguishable under the Bayesian frame- 
work. In the present work no distinction is made be- 
tween scenarios and other factors as far as uncertainty 
is concerned. 

Table 6 says that the mean maximum dose of I- 129 
is 600-2300 times larger when scenario uncertainty 
is acknowledged than its value under the Reference 
scenario, and the uncertainty about max dose on the 
SD scale is 5 0 0 0 - I 0 0 0 0  times larger. 

Fig. 3 presents scenario-specific estimated predic- 
tive distributions for log maximum dose, and also 
plots the composite  predictive distribution with sce- 
nario probabil i ty vector 1. The Fast Pathway and 
Glacial Advance scenarios lead to max dose val- 
ues which are noticeably higher and lower than the 
other four scenarios, respectively. Principally because 
of this, the composite  distribution is considerably 
heavier-tailed than lognormal, in particular including 
a small but significant contribution of very high doses 
from scenario FP. 

c5 

Z'~o 

GA //\.. REF HDE EIC 
,'~ \ /~,P~,, >:~.', AG 

/ .......... 

FP 

-25 -20 -15 -10 -5 0 
Log max dose 

{5 

d3 

8 
c5 

-25 -20 -15 -10 -5 
Log max dose 

Fig. 3. Scenario-specific estimated predictive distributions (top 
panel) for max dose on the log scale, and composite predictive 
distribution (bottom panel) using sccnario probability vector I. 

3.4. SA results.for total annual dose in the REF 
scenario 

Here we describe the results of a sensitivity analysis 
for total annual dose, arrived at by summing across 
all four nuclides monitored in Level E /G .  It turned 
out that regression models relating this outcome to the 
inputs of our simulations were highly non-additive, 
meaning that simple variance-based methods of  the 
type employed in Section 3.2 were insufficient as a 
basis for SA in this case. 

To deal with such situations, we have developed a 
new method for global sensitivity analysis of  model 
output [26] based on the Fourier Ampli tude Sensitiv- 
ity Test (FAST; [3] ). We have named the new method 
extended FAST because of  its ability to evaluate total 
effect indices for any uncertain factor involved in the 
model under analysis. The classic FAST is incomplete 
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Table 6 
Sensitivity analysis of results as a function of scenario probabilities 

Summary Scenario probabilities 

I 2 3 

Overall mean max dose /2 3 . 3 6 e - 4  6 . 7 2 e - 4  1 .68e -4  
Overall SD & 4 . 0 1 e - 3  5 . 6 6 e - 3  2 . 8 4 e - 3  

Overall variance /'r 2 1 .61e-5  3 . 2 0 e - 5  8 . 0 8 e - 6  
Between-scenario variance 4 . 9 0 e - 6  9 . 5 7 e - 6  2 . 4 8 e - 6  

Within-scenario variance 1 .12e-5  2 . 2 4 e - 5  5 . 6 1 e - 6  

c~ of variance between scenarios 30.4 29.9 30.6 
/2//2REF 1153 2305 577 
&/&RLF 7128 10045 5049 

in characterising the full model behaviour because it 
can only estimate the first-order (main) effects; the 
outcomes of the classic FAST are, however, accept- 
able for additive models. 

The first-order index for a given factor measures the 
effect on the output uncertainty due to the variation of 
the factor itself, over its range of uncertainty, while all 
the others are allowed to vary simultaneously. The total 
effect index for a given factor includes the first order 
effect as well as all the interaction terms involving that 
factor, thus yielding an overall summary of the factor's 
influence on the output uncertainty. We argue that each 
factor has to be described by a pair of indices - first- 
order and total - and that this kind of representation 
allows an exhaustive and computationally inexpensive 
characterisation of the system under analysis. 

Another method of SA currently employed by 
many analysts is based on the Sobol' measure [27]. 
Although computationally different from extended 
FAST, we have proved [26] that the Sobol' measure 
and FAST in fact lead to identical SA findings. In 
other words, the theory underlying FAST, Sobol' and 
another sensitivity measure, the correlation ratio [ 18 ], 
has been unified. 

These approaches descend from a common root: the 
decomposition of the output variance. According to 
the analysis of variance, the total output variance D 
may be uniquely decomposed into orthogonal terms 
of increasing dimensionality, 

k 

D = Z D , +  ~ Di i+ '"+D,~. . . k ,  (14) 
i=1 1 <i<.j<k 

where k indicates the number of factors and the terms 

{ Oili2...i,, i~, <_ k} are called partial variances. By di- 
viding these terms by D, sensitivity indices (which 
thus add up to one by definition) can be obtained: 
Si,...i, = Di,...i,/D. Formally, the total effect index for 
factor i is given by 

Syi = Si ~- ~ Si.] -4- ~ Sift ~- " "  -4- S12...k • 

.]e:i .i<l÷i 
(15) 

Suitable summary measures can then be obtained by 
* = S  k , further normalisation: S~, i Ti /~j=j  STIj. The S~- i are 

called the total normalised sensitivity indices. 
The extended FAST is computationally more effi- 

cient than the Sobol' measure (see [28] for a compar- 
ison of the performance of the two methods). Indeed, 
the pair of first order/total effect indices for a given 
factor can be estimated via the same sample when 
FAST is used, while the Sobol' measure requires a 
different sample for each index to be computed. The 
number of samples required for computing the whole 
set of sensitivity indices via the Sobol' method is 2k, 
whereas by using extended FAST only k samples are 
needed. The total number of model evaluations is ob- 
tained by multiplying the number of samples needed 
by the sample size, which is chosen as a function of 
the desired accuracy for the indices. The total number 
of model evaluations essentially determines the total 
cost of the analysis. Indeed, the computational cost 
of evaluating the sensitivity indices, given the set of 
model outputs, is nil. 

An illustration of the first order and total sensitivity 
indices is given in Fig. 4 for the REF or base case 
scenario (Level E). The results are expressed as a 
function of time, from l 0 4  t o  l 0 7  years into the future. 
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Fig. 4. Results from the base case (REF) scenario. 

We chose a sample size of  257 to run the model, The 
curves displayed in panel (a) of the figure are the 
result of  3084 model evaluations. We used them both 
for estimating R 2 ( b )  and for evaluating first order 
(c) and total normalised indices (d) for all 12 factors 
of  the underlying model (257 x 12 = 3084). A much 
more restricted set of  model outputs (257 x 2 = 514) 
is sufficient to estimate the total normalised indices 
for engineered and natural barriers (e).  Indeed, once 
the sample size is fixed, the computational effort is 
proportional to the number of  factors or subgroups 
considered in the analysis. 

Panel (b) of  Fig. 4 shows that the underlying model 
is strongly nonlinear, given that R 2 is always below 
0.2. A cumulative plot of  first order indices is given 
in (c).  The model under investigation is not additive 
because the shaded region is below 0.6 everywhere. 
More than 40% of the output uncertainty is due to 
interactions occurring among the factors. 

153 

0 . 2 !  

- - first order 
total effect ] 

°°o~ ~ ~ to" ,o ~ 108 
t ime (years)  

Fig. 5. Results from the Level E/G test c~se: first order and total 
sensitivity indices for the 'scenario' parameter. 

A cumulative plot of  the total indices for the 12 fac- 
tors is given in panel (d).  The most important factors 
can readily be identified: 
• u(1) = water velocity in the geosphere's first layer 

(VREAL1 in Section 3.2); 
• l( 1 ) = length of the first geosphere layer (XPATH1) ; 
• Rc(1)  = retention coefficient for neptunium (first 

layer; RET1 for Np-237) - note how the importance 
of this factor grows over time; and 

• W = stream flow rate (STREAM). 
In panel (e) the total normalised indices are dis- 

played for the factors being grouped into two sub-sets 
(natural and engineered barriers). The modest role 
of engineered barriers is highlighted, as confirmed by 
risk assessment practitioners. 

3.5. SA results for  total annual dose in Level E/G 

The results of  a FAST computation for the total 
annual dose in Level E / G  are described in this section. 
The first order and the total sensitivity indices for the 
parameter selecting among the various scenarios have 
been estimated via a set of 5763 model evaluations. 
The results, displayed in Fig. 5, are expressed as a 
function of  time from 103 to 4 - l 0  7 years into the 
future. It seems that one parameter has the function of  
triggering the development of  different scenarios, and 
this parameter interacts with all the factors entering in 
each and every scenario. 

In our example the first order index for the 'sce- 
nario' parameter is small but its total effect is close 
to I! This can be considered as an obvious result, but 
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has implications for the theory of sensitivity analysis. 
It has been argued that when one (group of) factor(s) 
is important, its first order effect should be high. This 
could in some instances allow all the other factors to 
be fixed without loss of model accuracy [27]. On the 
other hand, Jansen [ 15] argues that the real reduc- 
tion in model variability that one can achieve by elim- 
inating a factor i (i.e., by considering the ith factor 
as a perfectly known quantity) is given by its STi. In 
our example, if we were able to eliminate the 'sce- 
nario' (or 'triggering') parameter (i.e., by selecting 
the proper scenario), we would reduce the model vari- 
ability around 95%, at most of the time points. This is 
indeed a measure of how much the 'scenario' param- 
eter influences the output uncertainty. 

Hence, in the problem setting where one seeks a 
group of factors accounting for most of the variance so 
that the others can be fixed, one should indeed focus 
on the total effect of the target group, and not on its 
first order effect. 

4. Discuss ion 

Ongoing GESAMAC work expands the modeling to 
two-dimensional chemical transport and incorporates 
structural and predictive uncertainty. Even before we 
reach that stage, however, it is clear (a) that propaga- 
lion of uncertainty both within (parametric) and be- 
tween scenarios in risk assessment work of this type 
can have a dramatic effect both on the predictive mean 
outcome values and the uncertainty bands; and (b) 
that total sensitivity indices are useful in quantifying 
SA results with nonlinear, non-additive models. Our 
goal, as we continue our study, is to contribute to the 
process of providing more realistic uncertainty assess- 
ment than ever previously performed in nuclear waste 
disposal risk management. 
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