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1. INTRODUCTION

Chemists routinely create models of reaction systems to under-
stand reaction mechanisms, kinetic properties, process yields
under various operating conditions, or the impact of chemicals
on manhumans and the environment. As opposed to concise
physical laws, these models are attempts to mimic the system by
hypothesizing, extracting, and encoding system features (e.g., a
potentially relevant reaction pathway), within a process that can
hardly be formalized scientifically.1 Amodelwill hopefully help to cor-
roborate or falsify a given description of reality, e.g., by validating a
reaction scheme for a photochemical process in the atmosphere, and
possibly to influence reality, e.g., by allowing the identification of
optimal operating conditions for an industrial process or suggesting
mitigating strategies for an undesired environmental impact.

These models are customarily built in the presence of uncertain-
ties of various levels, in the pathway, in the order of the kinetics
associated to the pathway, in the numerical value of the kinetic and
thermodynamic constants for that pathway, and so on.

Propagating via the model all these uncertainties onto the
model output of interest, e.g., the yield of a process, is the job of

uncertainty analysis. Determining the strength of the relation
between a given uncertain input and the output is the job of
sensitivity analysis.2,2a

A straightforward implementation of the “sensitivity” concept
is provided by model output derivatives. If the model output of
interest isY, its sensitivity to an input factorXi is simplyY0Xi= ∂Y/∂Xi.
This measure tells how sensitive the output is to a perturbation of
the input. For discrete input factors, local sensitivities might be
impossible to evaluate as wide perturbations of the input would
be implied. If a measure independent from the units used for Y
and Xi is needed, S

r
Xi = (X

0
i /Y

0)(∂Y/∂Xi), which denotes the so-
called elasticity coefficient, can be used, where X0i is the nominal
value of factor Xi and Y0 is the value taken by Y when all input
factors are at their nominal value. The nominal (or reference, or
design) value X0i can be the mean (or median) value when an
uncertainty distribution (either empirical or hypothesized) is
available. In this latter case an alternative measure is SσXi =
(σXi/σY)(∂Y/∂Xi), where the standard deviations σXi, σY are
uncertainty analysis’ input and output, respectively, in the sense
that σXi comes from the available knowledge onXi, while σYmust
be inferred using the model.

Wheras SrXi is a dimensionless version of the pure derivative
(∂Y/∂Xi) and, hence, still a purely local measure (i.e., relative to
the point where the derivative is taken), SσXi depends upon the
uncertain range of factor Xi, and is in this sense a more
informative measure.Coeteris paribus, factors with larger standard
deviations, have more chance to contribute significantly to the
uncertainty in the output.

Local, derivative-based sensitivity measures can be efficiently
computed by an array of techniques, ranging from automated
differentiation (where the computer program that implements
the model is modified so that the sensitivities are computed with
a modicum of extra execution time3,3a) to direct methods (where
the differential equations describing the model are solved directly
in terms of species concentrations and their derivatives4). There
is a vast amount of literature on these sensitivity measures.5�10,11

The majority of sensitivity analyses met with in chemistry and
physics are local and derivative-based. Local sensitivities are
useful for a variety of applications, such as the solution of inverse
problems, e.g., relatingmacroscopic observables of a system, such
as kinetic constants, to the quantum mechanics properties of the
system,6 or the analysis of runaway and parametric sensitivity of
various types of chemical reactors.8 Contexts where local sensi-
tivity has been widely used are as follows: (1) to understand the
reaction path, mechanism, or rate-determining steps in a detailed
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kineticmodel with a large number of elementary reactions, e.g., in
photochemistry or in combustion chemistry,4,7,9 (see ref 12 for
an alternative approach in this context), (2) to extract important
elementary reactions from a complex kinetic model to obtain a
reduced model (e.g., a minimal reaction scheme) with equivalent
predictive power7 or to select important reactions for further
analysis,13,14 (3) to estimate the output of a computer program in
the neighborhood of a given set of boundary conditions (BCs)
without rerunning the program [This is often the rationale for
using automated differentiation software.3,15 This approach may
be effective for deviations of up to 10�20% away from the base-
line BC.], and, (4) for variational data assimilation, to reconcile
model predictions with observations.6,16,17

In these local sensitivity measures the effect of Xi is observed
while assuming all other factors fixed. This approach falls, hence,
in the class of the one-factor-at-a-time (OAT) methods.
A nonlocal OAT approach, often met in the literature, makes
use of incremental ratios taken by moving factors one at a time
away from their baseline value by a fixed (e.g., 5%) fraction,
irrespective of the factor’s presumed uncertainty range.18

Using derivative or otherwise OAT methods for the purpose
of assessing the relative importance of input factors, e.g., to
decide which factor mostly deserves better measurements, can
only be effective if themodel is linear in all its factors, unless some
form of averaging of the system derivatives over the space of the
input factors is performed.18a,b The same reservation holds if the
purpose of the sensitivity analysis is to screen the factors as to fix
those which are less influential on the outputalthough when the
factors’ derivatives differ by orders of magnitudes from one
another, their use in screening might be safe enough. In general
a single measure such as SσXi = (σXi/σY)(∂Y/∂Xi) can take care of
the fact that different factors have different ranges of uncertainty
but not of model nonlinearities due to the same factors.

Second-order derivatives can improve the sensitivity analysis
offered by the first-order methods14,19 and are useful for varia-
tional data assimilation.16

Additional software sources for local methods are given in ref 3.
Among these, we would like to recommend as a suggested
practice the KINALC package.92 KINALC is a postprocessor
to CHEMKIN, a widespread simulation program, and carries out
processing sensitivity analysis including principal component
analysis of the sensitivity matrix. As argued in ref 7, a principal
component analysis (PCA � a multivariate statistics technique)
is a useful postprocessing tool to local sensitivity analysis when
the output is not a scalar but a vector of, e.g., species concentra-
tions. PCA can extract at no additional cost relevant features of
the chemical mechanism and can assist in the setup of the
parameter estimation step.

In the 1970s chemists20�23 applied Fourier transforms to
sensitivity analysis. Their motivation was the realization that
most models met in chemistry are of a rather nonlinear nature.
Nonmonotonic, nonadditive features, to which we shall return
later in this review, are also not uncommon. For these models,
OAT methods can be of limited use if not outright misleading
when the analysis aims to assess the relative importance of
uncertain factors. OAT methods do not identify interactions
among factors and are extremely poor at exploring multidimen-
sional factors spaces, as one can ascertain with elementary
geometric considerations.16a A good sensitivity measure should
be model-free, i.e., independent from assumptions about the
model linearity or additivity. To this effect, Cukier, Schaibly, and
co-workers developed the Fourier amplitude sensitivity test

(FAST),20�23defined as the Walsh amplitude sensitivity proce-
dure (WASP) later made computationally available by Koda,
McRae, and others.25,26 variant For discrete input factors, despite
the possibility to transform them into continuous uniform dis-
tributions over a unit interval, FAST is an approximate method.
A reformulation of the analysis has been proposed by Pierce and
Cukier24 using Hadamard ordered Walsh functions, obtaining
exact expressions for the sensitivity measures of discrete input
factors that are intrinsically two-valued.

What FAST does, in a nutshell, is to explore the hyperspace of
the input factors with a periodic curve (trajectory) built using a
different frequency for each factor. This can then be used to
decompose the variance V = σY

2 of Y using spectral analysis, so
that V = V1 + V2 + ... +Vk + R, where Vi is that part of the variance
of Y that can be attributed to Xi alone, k is the number of
uncertain factors, and R is a residual. Thus, Si = Vi/V can be taken
as ameasure of the sensitivity of Ywith respect toXi. We will offer
a precise definition of Vi and R in section 2.

Although FAST is a sound approach to the problem, it has
seen moderate use in the scientific community at large, including
among chemists, and few applications of FAST are available in
the literature.27�30 Further chemical applications of FAST are
cited in ref 4. At the time of its development, FAST was laborious
to implement and computationally expensive. Some researchers
were uncomfortable with moving away from the mathematical
appeal of derivatives[The review System Analysis at Molecular
Scale by H. Rabitzstates, “Generally the emphasis in sensitivity
analysis is not on the explicit introduction of any particular
variation [in the input] but rather on the computation and
examination of the sensitivity coefficients [the derivatives], as
they are independent of any special variation in the parameters”. The
same author later contributed considerably to the development of
global sensitivity analysis by introducing a new class of high-
dimensional model representation (section 2).]. For these reasons
FAST is mentioned in some reviews of sensitivity analysis
methods4,7,8,31�35 but ignored in others.10,36 Renewed interest in
FAST has been associated to the use of random balanced design for
variance decompositions; see ref 36a for a review.

In the 1990s, several investigators, sometimes without realiz-
ing it, developed Monte Carlo-based estimates of the FAST
sensitivity measure; see refs 37�44. In these approaches, the
space of the input factors was explored using Monte Carlo-based
techniques (such as Latin hypercube, pseudorandom or quasi-
random sampling), rather than by the Fourier trajectories, but in
general the same sensitivity measure Si = Vi/V was computed.52

The best formalization of this approach is due to Sobol’.42

At the same time, practitioners in risk analysis were using for
the purpose of sensitivity analysis various kinds of Monte Carlo
(MC)-based linear regression.31 In these approaches, the space
of the input factors was sampled via theMonte Carlomethod and
a linear regression model was built (e.g., by a least-squares
calculation) from the values of Y produced by the model.

We anticipate here thatThe standardized regression coeffi-
cients βi thus generated, where βi = (σXi/σY)bi and bi is the
estimate of the regression coefficient, are related to the FAST
measure, as well as to SσXi. In fact, for linear models βi

2 = Si =
(SσXi)

2. In ref 45 we compare different sensitivity measures with
respect to their effectiveness in apportioning the variance in the
output to different inputs. In this sense SσXi is an effective measure
for linearmodels,βi is an effectivemeasure formoderately nonlinear
models, for which an effective linear regression model can be built,
and Si is the model-free extension that works even for strongly
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nonlinear models and nonmonotonic relationships between input
and output.

Rabitz and co-workers46,47 developed alternative strategies for
global sensitivity analysis that are inspired by the work of Sobol’,
and, hence, homologous to FAST, but are based on decomposing
the model output of interest on the basis of finite differences built
along lines, planes, and hyperplanes that pass through a given
selected point in the space of the input factors. Rabitz’s approach
can be seen as “in between” derivative-based methods and global
methods, such as, e.g., those based onMonte Carlo and/or meta-
modeling.can also be used to compute the variance-based
sensitivity indices Si.

A class of global methods of interest is that of the variance-
based measures. These aim to apportion the variance of the
output of interest into bits due to factors and their combinations.
The latest scientific production of Rabitz and co-workers in
sensitivity analysis has focused on Monte Carlo-based estimates
of variance-based indices, see, e.g., ref 47a and 47b, bringing this
line of research into the mainstream of meta-modeling-based
sensitivity analysis described in section 2.10.

Finally, it is important to note that using variance-based tech-
niques in numerical experiments is the same as applying ANOVA
[analysis of variance33,48 (here and in the following we shall list
references in chronological order)] in experimental design, as the
same variance decomposition scheme holds in the two cases.
One could hence say that modelers have converged with experi-
mentalists treating Y, the outcome of a numerical experiment, as
an experimental outcome whose relation to the control variables,
the input factors, can be assessed on the basis of statistical
inference. Sacks, Welch, and others49,50 were among the first to
think along these lines. Morris developed an effective experi-
mental design scheme for numerical experiments which has
similarities to a variance-based measure.

Today the Bayesian community has developed a school of
model experimentation via Gaussian emulators. which sees itself
as the heir of these investigators.50a�c More in general, meta-
modeling-based sensitivity analysis has strongly developed in a
number of promising directions, since Blanning's and Kleijnen's
seminal ideas:50d,e kriging69 (of which Gaussian process model-
ing is itsmost common variant), nonparametric regressions,70,70a,70b

polynomial chaos expansions,71,72 and others.
This convergence of FAST-based and sampling-based strate-

gies for sensitivity analysis and also a convergence between these
and experimental design theory, which escaped earlier reviews,8

vindicate the original intuition of the FAST developers that Siwas
a good measure for chemical models. Both FAST and MC
computation schemes have been upgraded in recent years,2a,45,65c

becoming less expensive and easier to apply, as we shall see in the
next sections. A further element of convergence can be seen in
screening methods for sensitivity analysis, which also have
important similarities to a variance-based measure.51,51a

As already mentioned, OAT approaches still dominate the
chemical literature16a even when the purpose of the analysis is to
assess the relative importance of input factors in the presence of
factors uncertainty.

To contrast this poor practice, we shall select and review those
which we consider as the most promising modern approaches to
sensitivity analysis, with emphasis on methods in the FAST
family variance-based methods, comparing, with the help of
worked examples, the performances of these with different
kinds of local, regression, meta-modeling, or screening-based
measures.

The literature (see, e.g., refs 2, 61, 64a, 70a, 93�96, and 103)
offers more methods for sensitivity analysis than are reported in
the present review. Some of these methods are domain-specific,
such as, for instance, methods for use in reliability engine-
ering;97 others require a direct intervention of the analyst on the
model (such as automated differentiation). We have privileged
general methods that treat the model as a black box and that are
not too laborious to implement. A few computational recipes
are also offered for the reader.

2. METHODS

2.1. A Simple Example, Using Local Sensitivity Analysis
It would be impossible to describe all sensitivity analysis

methods within the purpose of the present work. Available
reviews are refs 4�8, 10, 11, 16a, 18, 31, 34�36, and 55�57.
Those of Rabitz,5,6 Tur�anyi and Tomlin,4,7 and Varma and
Morbidelli8 are of particular interest for chemists. References
31 and 34 cover well Monte Carlo-based regression methods,
ref 10 focuses on local strategies, and ref 56 focuses on
experimental design methods.

A wide spectrum of different perspectives and approaches
can be found in ref 2, a multiauthor book with input from
practitioners such as Rabitz, Tur�anyi, Helton, Sobol’, the
authors of the present review, and others. A primer for
beginners is ref 2a. Our plan here is to offer a selection of
sensitivity analysis methods, with emphasis on global methods,
which might be of relevance to and applicable by the Chemical
Reviews readership. The methods are illustrated by examples.
We start with a simple reversible chemical reaction A T B,
with reaction rates k1 and k�1 for the direct and inverse
reactions, respectively, whose solution, for the initial conditions
(ICs)

½A�ðt ¼ 0Þ ¼ ½A�0
½B�ðt ¼ 0Þ ¼ 0

ð1Þ

is

½A� ¼ ½A�0
k1 þ k�1

ðk1e�ðk1 þ k�1Þt þ k�1Þ,

½B� ¼ ½A�0 � ½A� ð2Þ
Figure 1 gives the time evolution of the concentrations of

species A and B. This model is so simple as to allow a chara-
cterization of the system sensitivity by analytic methods, but we
shall work it out as if it were a system of partial differential equa-
tions for a large reaction model, as tackled by chemists using
solvers such as FACSIMILE,58 CHEMKIN,59 or others, where
the relative effect of the uncertain inputs in determining the
uncertainty of the output of interest is unknown. We assume that
the reaction rates are uncertain and are described by continuous
random variables with known probability density functions
(pdf’s) that characterize their uncertainty.

k1 ∼ Nð3, 0:3Þ
k�1 ∼ Nð3, 1Þ ð3Þ

where the symbol ∼ stands for “distributed as” and N stands for
normal distribution. Thus, both uncertain factors are normally
distributed with mean 3. The standard deviation is 0.3 for k1 and
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1 for k�1. Figure 2 gives the absolute values of the derivative-
based sensitivities, i.e.:

½A�0k1 ¼ ∂½A�
∂k1

,

½A�0k�1
¼ ∂½A�

∂k�1

ð4Þ

computed at the nominal value k1 = k�1 = 3, as well as the
absolute values of the Sσ sensitivities:

Sσk1 ¼ σk1

σ½A�

∂½A�
∂k1

, Sσk�1
¼ σk�1

σ½A�

∂½A�
∂k�1

ð5Þ

The value of σ[A] used in Figure 2 is not the exact one but has
been computed using the approximationσ2Y≈∑ki=1σ

2
Xi(∂Y/∂Xi)

2

to model Y = f(X1,X2,...,Xk), which for our simple two-factor model
of eq gives

σ2
½A� = σ2

k1

∂½A�
∂k1

� �2

þ σ2
k�1

∂½A�
∂k�1

� �2

ð6Þ

(identity only holds for linear models) or equivalently:

ðSσk1Þ
2 þ ðSσk�1

Þ2 = 1 ð7Þ
We discuss the applicability of this approximation in a

moment. It is evident from Figure 2 that Sσk1 and Sσk�1
offer a

more realistic picture of the relative importance of k1 and k�1 in
determining the uncertainty of [A] than [A]0k1 and [A]

0
k�1
, as the

sigma-normalized sensitivity measures are capable of weighting
the larger role of k�1, which descends from its larger standard
deviation (one expects that more uncertain factors propagate
more uncertainty into the output). This is not to say that [A]0k1
and [A]0k�1

are useless. We have used them, for instance, to com-
pute an approximate map of [A] as a function of k1 and k�1 using
a simple Taylor expansion (see Figure 3). This kind of
approximation60 becomes very valuable when the model under
analysis is expensive to run. [Throughout this work, computation
cost must be understood as the number of times one needs to run
the model that computes Y = f(X1,X2,...,Xk). The time needed to
compute the sensitivity statistics (e.g., Sσ, Si, ...) is usually
negligible in comparison.] More accurate tools for this kind of
model approximation, also shown in Figure 3, are discussed in
section 2.5. Note that the entire Taylor representation in Figure 3
was built using for each plot just the function value at k1 = k�1 = 3
plus the two derivatives [A]0k1 and [A]0k�1

at the same point.

Derivative-based measures such as ∂[A]/∂k1 and Sσk1 are
members of a large class of local measures used in chemistry,
which includes, e.g., functional sensitivities and feature sensi-
tivities.3,4�10,11 These are extensively dealt with in the literature.
Methods to compute these derivatives for large systems of
differential equations include the Green functions method, the
direct method, the decoupled direct method, the adjoint method,
and others.7,8,11 Increasing use of automatic differentiation
techniques is made in chemistry whereby pieces of code are
automatically generated from the existing computer model code
for the evaluation of derivatives of the type ∂[A]/∂k1 (automatic
differentiation tools are, for example, ADIFOR, ADIC, and
ADOL-C).3,3a Given that the emphasis of the present review is
on global methods, we will not describe them here. Automated
differentiation methods, whereby the modeler modifies the
simulation model so that it can compute derivatives with a
minimum of extra computing time, are also extensively used in
chemistry.

The Sσk1 and S
σ
k�1

curves in Figure 2b are an example of quantit-
ative, albeit approximate, sensitivity analysis. Imagine that k1 and k�1

are two poorly known rates of a more complex system and that we
need to know which of them—once properly determined in the
laboratory—would give us better chances to reduce the uncertainty
in the output [A] of interest. Figure 2b would allow us to say that, if
we need to reduce the uncertainty of [A] at the beginning of the
process (t=0.05), then k1 is a better candidate than k�1. The reverse
is true if we are interested in [A] near equilibrium (t = 0.4, when
concentrations nearly stabilize; see Figure 1). Considerations of this
nature are also relevant for the purpose of model calibration (see
section 2.6). The reader will believe Figure 2 conditionally upon the
applicability of approximation eq 7,which tells us that the variance of
[A] can be partitioned in bits proportional to the squared Sσk1 and
Sσk�1

. We reconsider the validity of this approximation in the next
section.

2.2. Monte Carlo Methods on the Simple Example
We move now into Monte Carlo simulation, drawing inde-

pendent samples from the distributions of k1,k�1 (eq 2) and
running the computer program that evaluates the solutions to eq 2.

Figure 2. Absolute values of (a) [A]0k1 = ∂[A]/∂k1 and [A]
0
k�1

= ∂[A]/∂k�1

and (b) Sσk1 = (σk1/σ[A])(∂[A]/∂k1) and S
σ
k�1

= (σk�1
/σ[A])(∂[A]/∂k�1)

as a function of time.

Figure 1. Time evolution of [A] and [B] from eq 2.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-000.png&w=240&h=192
http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-001.png&w=155&h=128
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This would be a slow step if eq 2 were a large system of
partial differential equations to be solved numerically. Imagine
we run eq 2 just 64 times (this number is chosen arbitrarily; a
practical guide for choosing the sample size of a computer
experiment is available11a), obtaining 64 different estimates
[A]i, with i = 1, 2, ..., 64, each corresponding to a sample k1i,
k�1i, where the two factors have been drawn independently from
one another but in such a way that each of them is a sample from
its distribution (eq 2).

One way to use these estimates in sensitivity analysis is to
make scatter plots (see Figure 4; scatter-plots at time t = 0.3
and t = 0.6) which allow a visual impression of the in-
put�output relationship, including, e.g., the degree of linear-
ity and monotonicity, or the existence of modes.31,61 For
mathematical models with tens of uncertain factors, scatter

plots become impractical, and a more concise description of
the model sensitivities can be obtained by feeding [A]i, k1i,
and k�1i into a regression algorithm, searching for a linear
model of the form

½A� ¼ b0 þ b1k1 þ b�1k�1 ð8Þ

The bi coefficients are dimensioned, and in order to make the
coefficients comparable they are standardized to obtain

½~A� ¼ β1~k1 þ β�1
~k�1 ð9Þ

where [~A] = ([A] � μ[A])/σ[A] and ~ki = (ki � μki)/σki are
standardized variables, μ[A] and μki are the means of [A] and ki,
respectively, σ[A] and σki are the standard deviations, βi =
(σ[A]/σki)bi are the so-called standardized regression coefficients
(SRCs), and we have used ki to indicate either k1 or k�1. It is a
known result of linear regression analysis62 that, if the factors are
independent and the model is linear, then for the model in eq 2:

β21 þ β2�1 ¼ 1 ð10Þ
If the model, as in our case, deviates from linearity, then the

sum of the squared β’s will quantify the deviation. More often,
this statistics is computed directly from the simulation data and
the regression model results:

R2
½A� ¼ ∑

N

i¼ 1

ð½A��i � μ½A�Þ2
ð½A�i � μ½A�Þ2

ð11Þ

whereN is the number of simulations, 64 in this case, [A]i are the
simulation results, and [A]*i are the values of [A] provided by the
regression model (eq 8). R[A]

2 , known as the model coefficient of
determination, is a positive number in [0,1] which indicates
which the fraction of the original model variance is explained by the
regressionmodel.When this number is high, e.g., 0.7 or higher, then
we can use the standardized regression coefficients for sensitivity
analysis, albeit at the price of remaining ignorant about that fraction
of the model variance not explained by the SRCs. An application of
this strategy to a kinetic model (KIM) for tropospheric oxidation of
dimethyl sulfide (DMS) is in ref 63, where a rather high value of R2

allowed factors to be ranked confidently in a system with about 50
temperature-dependent chemical reactions.

Note that an improvement of the performance of the regres-
sion-based approach, i.e., a higher value of RY

2, can be obtained by
transforming both the input and the output sample vectors to
ranks, e.g., rankN for the highest Y and rank 1 for the lowest, and
the same for the input factors.64,64a Rank transformation can
substantially linearize a nonlinear, albeit monotonic, function.
The problem with this approach is that the conclusions of the
sensitivity analysis apply to the rank version of the model rather
than to the model itself.65

The identity β2k(1 = (Sσk(1)
2 for a linear model is evident

(eqs 7 and 10). Yet, when the model is even partially non-
linear, the standardized regression coefficients are superior to
the normalized derivatives, first, because they allow the degree
of nonlinearity of the model to be estimated and, second, as
they offer a measure of the effect of, e.g., k1 on [A] which is
averaged over a sample of possible values for k�1, as opposed

Figure 3. First-order Taylor expansion (dotted straight lines) and first-
order ANOVA-HDMR decomposition fk1, fk�1

(solid black lines). The
star represents the base value, at which the Taylor expansion is
constructed.

Figure 4. Scatter plots of [A] versus k1,k�1 at time t = 0.06 and t = 0.3. k1
appears more influential than k�1 at t = 0.06, while the reverse is true at
t = 0.3.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-002.png&w=240&h=188
http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-003.png&w=240&h=188
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to being computed at the fixed point k�1 = 3, as was the case
for Sσki.

In Figure 5 we have plotted the Sσki and βki for both k1 and
k�1. We see that for this test model (eq 2) the two measures
are equivalent. The model coefficient of determination for
these data is very high and ranges from R[A]

2 = 1 at the initial
time point to R[A]

2 = 0.98. To stay with our pretension that the
model in eq 2 is something expensive to estimate, we have
performed only 64 model evaluations, and we have, hence,
computed the error bounds (2 standard deviations) on the βi’s
using bootstrap;65a i.e., we have reestimated the regression
(eq 8) by drawing 100 different samples (with replacement) of
size 64 of the original 64 simulations. This procedure helps us
to decide whether N should be increased beyond the present
value of 64, e.g., when the uncertainty bounds are too wide for
our purposes.

On the basis of the value of R[A]
2 and on the basis of Figure 5,

we can say that the exploration of the space of the input factors
ki’s used in the computation of the βki’s does not make much of a
difference, so that eq 7 (based on a single point in that space) is a
valid approximation for this model. Yet what would happen if we
had a model with a low RY

2? Obtaining a measure of the average
local sensitivity, e.g., <∂[X]/∂ki>, the effect of kinetic rate ki
over the concentration of species X averaged over all the space
of the uncertain input k’s, was the main motivation of Cukier
and co-workers in the 1970s to develop a new method, the
Fourier amplitude sensitivity test (FAST), suited to nonlinear
problems.

Before moving into a discussion of it, let us make the point of
the preceding discussion. In summary, derivatives can provide
detailed information about system behavior. Yet, usual practice
to estimate them at a single point in the space of the input limits
their applicability away from that point, which is something
needed in sensitivity analysis when there are sensible consider-
able uncertainties in the input factors. In ref 16a it is shown that
the use of the central or baseline point for sensitivity analysis is
also a problem. Even when using an OAT approach, which is in
principle nonlocal, moving one step at a time exploring one
dimension at a time leaves a large portion of the input factors
space unexplored, which for, e.g., a 10-dimensional problem can
be shown16a to be >99% of the entire factors space.

Equation 7 can help, by allowing a combination of local
derivatives and input factors variation. Yet to trust eq 7 on its

own, without a check of the linearity of the system, would be
unwarranted. A quick glance at the space of the input, even with a
handful of data points as done by our regression analysis with 64
points, is straightforward and safer. The model coefficient of
determination can help to identify problems, such as, e.g., a
nonmonotonicity between input and output (Figure 6), which
would result in low or zeroβi and S

σ
i even for an influent factorXi.

In this case, in order to build a regression-based sensitivity
analysis, one would have to look at various trial nonlinear
regression models,61,70,70a e.g., via a brute force search for the
most convenient regression variables (and combinations of).
Software packages are available to do that, but the search may
be computationally expensive. Finally one might combine Monte
Carlo and derivative by computing derivatives at different
points.18a,b As we shall see later, this method can complement
the variance-based approach described next.

2.3. Variance-Based Methods Fourier Amplitude Sensitivity
Test (FAST)

Variance-based sensitivity analysis methods work irrespective
of the degree of linearity or additivity of the model. Let us call Si
the variance-based sensitivity index for a generic factor Xi which
feeds into a model Y = f(X1,X2,...,Xk) with k independent
uncertain factors. It is standard practice2 to We can assume that
all factors are continuous random variables uniformly distributed
in [0,1](This is standard practice.2Input factors can then be
mapped from the unit hypercube to their actual distribution.), so
that the space of definition of f is a unit hypercube in k
dimensions. Input factors can then be mapped from the unit
hypercube to their actual distribution. This mapping can also be
built for discrete or even qualitative inputs, although FAST-based
methods are not suggested in this case.53

We plan to illustrate that Si is a model-free extension of the
standard regression coefficients βi, in the sense that Si = βi

2 for
linear models.

Before showing how Si can be computed numerically using
Fourier analysis FAST or Monte Carlo, a possibly intuitive
description is now given. We ask ourselves if we can reduce the
uncertainty in Y by removing the uncertainty (e.g., by measure-
ment) in some of the Xi’s. There will surely be factors more
promising than others for this kind of analysis. Let us call V(Y)
the variance of Y, and VX‑i

(Y|Xi =Xi*) the variance that we would
obtain if we could fixXi to some value. The subscriptX�i ofV is to
remind us that this variance is taken over all factors other than Xi,
which is fixed.

Xi* could be the true value of Xi determined with a measure-
ment. If we could compute VX‑i(Y|Xi =Xi*) for all factors at
all points, we would surely find the one with the smallest

Figure 6. Scatter plot for model Y = ∑i=1
k αiXi

2 andXi≈N(0,1) for all i’s.
βi’s are zero for this model (k = 2; αi = 1 in the plots). FAST indices are
instead Si = αi

2/∑αi
2.

Figure 5. (i) R[A]
2 versus time; (ii) Sk1

σ and βk1 with confidence bounds
versus time (descending lines); (iii) Sk�1

σ and βk�1
with confidence

bounds versus time (ascending lines). Error bounds are based on 100
bootstrap replicas of the 64 original data points.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-004.png&w=240&h=95
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VX‑i(Y|Xi = Xi*), but at this point, we would be past sensitivity
analysis, having determined all uncertain factors. What can we
do before having actually taken the measure, i.e., before know-
ing Xi*? A natural answer is the average of VX‑i

(Y|Xi = Xi*) over
the possible values of Xi*. We would write this as EXi

(VX�i
(Y|Xi)).

We have dropped the dependency from Xi*, as the quantity
EXi

(VX�i
(Y|Xi)) is independent of any particular point in the

distribution of Xi. This quantity is relevant to the solution of the
problem just posed; i.e. Thus, the factor with the smallest
EXi

(VX�i
(Y|Xi)) is now the desired most promising candidate

for measurement, in terms of expected reduction of the variance
of Y. A known algebraic result is that

VðYÞ ¼ EXiðVX�iðY jXiÞÞ þ VXiðEX�iðY jXiÞÞ ð12Þ

so that the smallest EXi
(VX�i

(Y|Xi)) will correspond to the largest
VXi

(EX�i
(Y|Xi)). The FAST variance-based sensitivity index is

simply

Si ¼ VXiðEX�iðY jXiÞÞ
VðYÞ ð13Þ

Equation 13 has been discussed by Pearson as early as 1905
under the name of correlation ratio.65b

Si is hence the educated answer to the question: “If one wants
to reduce the variance of the output, which factors should be fixed
first?”We have called this question “factor prioritization setting”
and have argued that such a framing of the sensitivity analysis
with respect to a setting allows an otherwise vague concept of
factor importance to be clarified.45,54 In sensitivity analysis a
setting allows the analyst to specify what is meant by “factor’s
importance” for a particular application.45,54 Leaving instead the
concept of importance undefined could result in several tests
being thrown at the problem and in several rankings of factor
importance being obtained, without a basis to decide which one
to believe.

As stressed in ref 54, the “factor prioritization” setting has to be
considered in a betting context. Therefore, there is no warranty
that fixing the most important factor at a given value within its
range will reduce the response variance. In some instances, for
nonadditive models, the response variance could even be
augmented.

The values of Sk1 and Sk�1
for the model in eq 2 would practically

coincide with the βi of Figure 5, due to model’s quasi-linearity
(shown by the very high R2 for every t), and hence, we do not plot
them here. Before introducing the next model, which will make
these measures worth using, we briefly illustrate two computational
strategies to estimate eq 13: FAST and the method of Sobol’.

2.4. FAST-Based Methods
When using FAST,20�27 Si is computed by exploring the

k-dimensional space of the input factors with a search curve
defined by a set of parametric equations

xi ¼ GiðsinðωisÞÞ ð14Þ

with i = 1, 2, ..., k, where s is a scalar varying in (�∞,+∞), theωi

are a set of different angular frequencies associated with each
factor, and the Gi are properly selected transformation functions
(e.g., xi = 1/2 + arcsin(sin(ωis))/π is used in ref 53). Scanning
eq 14 for different values of s results in a curve in the k-dimensional

hypercube whereby each dimension is explored with a different
frequency ωi. Fourier analysis of the signal derived from the
values of the output Y along this curve allows the computation of
VXi

(EX�i
(Y|Xi)), on the basis of the signal at ωi and few of its

higher harmonics. The implementation of the method requires
care, mostly in avoiding interferences, based on accurate selec-
tion of the set of k frequencies ωi.

26,27 Extensions of the FAST
method are described in refs 53 and 66.

Cukier and co-workers23 noted that the FAST indices could be
seen as the first-order terms in the decomposition of the
unconditional variance, which for independent factors can be
written as

VðYÞ ¼ ∑
i
Vi þ ∑

i < j
Vij þ ∑

i < j < l
Vijl þ ::: þ V123:::k ð15Þ

where

Vi ¼ VXiðEX�iðY jXiÞÞ ð16Þ

Vij ¼ VXiXjðEX�ijðY jXi,XjÞÞ � Vi � Vj ð17Þ

Vijl ¼ VXiXjXl ½EX�ijlðY jXi,Xj,XlÞ� � Vij � Vjl � Vil � Vi

� Vj � Vl ð18Þ
Note that in writing, e.g., VXiXj

(EX�ij
(Y|Xi,Xj)) we mean that

the inner expectation is over all factors but Xi,Xj and the
outer variance is over Xi,Xj.

In classic FAST (e.g., refs 25 and 26) only the main effect
terms Si are computed, and the success of a given analysis is
empirically evaluated by the sum of these terms: if this is high,
as a rule of the thumb greater than 0.6,30 then the analysis is
successful (i.e., we have explained more than 60% of the
variance of the output).

The Vi describe the so-called “additive” part of a model. In turn,
additive models are defined as those for which ∑iSi = 1. Extended
FAST53 allows the computation of higher order terms.

It is easy to verify45 that for linear models both relations ∑iβi
2 = 1

and ∑iSi = 1 hold. Yet the second relationship holds also for models
that are nonlinear albeit additive. To make a trivial example, Y = ∑i=1

k

αiXi
2 is nonlinear and nonmonotonic if the distribution function of the

Xi’s is centered at zero (Figure 6). Yet, this is an additive model, for
which V(Y) = ∑iVi and ∑iSi = 1. For our almost linear model (eq 2),
∑iSi = Sk1 + Sk�1

= 0.995 at t = 0.06 and = 0.991 at t = 0.3, while the
remaining bit of variance, Sk1k�1

= 0.005�0.009 for t in [0,0.3],
describes the insignificant interaction effect of k1 and k�1. In experi-
mental design, Sk1k�1

is also known as a second-order or two-way effect.
Unlike the case of local sensitivity analysis, where the cost of

computing a second-order term is, in general, affordable,3 terms of
higher order in eq 15 are seldom used in global sensitivity analysis,
because of their number and computational cost. There are in fact

k
2

 !
terms of the second-order (Vij),

k
3

 !
terms of the Vijl

type, and so on, for a total of 2k� 1 terms in eq 15. This problem is
known among practitioners as “the curse of dimensionality”. It has
been argued46,47 that terms above the second-order ones should
not be too frequent in sound models of physical systems, but we
find this assumption unsafe.

The computation of the first-order sensitivity indices using FAST
today can be greatly accelerated using random balance designs36a,66

(RBDs), which is the method we recommend as a good practice.
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The estimator of RBDs is exactly the same as in FAST; however,
the sampling strategy is different. Let us illustrate this procedure
on a simple example with N = 8 points and k = 2 model inputs.
We first select N equally distributed points within the range
(�π, π):

Two independent random permutations of its elements are
obtained:

Finally, the design points (uniformly distributed within 0 and 1)
are obtained by applying the transformation

to the vectors s1 and s2, obtaining the following sample matrix x
with 2 rows and 8 columns:

Consider that the symmetry of the sine function with respect
to x =( π/2 can produce same xi,j values for different si,j points:
for example, si,j = (3/8)π and si,j = (5/8)π correspond to xi,j =
(7/8). Now, the model f is evaluated at each column of the
sample matrix x

obtaining a row vector

The first-order sensitivity measure for X1 is obtained by
calculating the Fourier spectrum of this series:

which is a resorting of the output values {yi}"j = 1, 2, ..., N such
that the elements of the corresponding vector s1 appear in
increasing order (exactly as the vector s). Then, for X2, the {yi}
have to be resorted as

such that the elements of s2 are in increasing order. In general, for
k inputs, there are k independent random permutations of s, and
k resortings of {yi}.

In summary, the first-order sensitivity measure for input Xi is
estimated by
(i) reordering the model outputs such that the design points

are in increasing order with respect to input Xi;
(ii) calculating the Fourier spectrum of the reordered model

output at frequencies 1, 2, ..., M (generally, M = 6);
(iii) summing up the amplitudes of the Fourier spectrum;
(iv) dividing by the total unconditional variance of the model

output.
This four-step procedure is repeated for each inputXi to obtain all

the other sensitivity measures. If one is only interested in the
estimation of the first order indices, we suggest using RBD, more
efficient than the method of Sobol’ (see next section), as each
model run contributes to the estimation of all the sensitivity indices.

RBD has a number of other advantages with respect to FAST:
no problem of aliasing, hence the absence of a lower limit for the
size of N; no need to have an algorithm for the calculation of
frequencies free of interferences; and estimates are more accurate
than FAST as potential interference effects are absent. One final
caveat about FAST is that it is impractical if the input factors are
sampled from discrete distributions.53

2.5. Monte Carlo Implementation of Variance-Based Meth-
ods Monte Carlo-Based Version of FAST and the Work of
Sobol’

Several Monte Carlo-based estimates of the first-order terms
Vi have been proposed.

37�44 It will be sufficient here to consider
the work of Sobol’.42 Sobol’ moves from a decomposition of the
function/model terms of increasing dimensionality, i.e.,

Y ¼ f ðX1,X2, :::XkÞ

¼ f0 þ ∑
i
fiðXiÞ þ ::: þ ∑

i < j
fijðXi,XjÞ þ :::f12:::k

ð27Þ

There are infinite ways of decomposing f, but for independent
factors there is a unique decomposition in orthogonal terms
which ensures:

Vi ¼ VXiðfiÞ
Vij ¼ VXiXjðfijÞ ð28Þ

and so on. The fi’s, fij’s, ... are known as terms of the ANOVA-
HDMR,46 where HDMR stands for high-dimensional model
representation and ANOVA refers to the analysis of variance
from experimental design.48 In particular fi = E(Y|Xi) � E(Y),
and fij = E(Y|Xi,Xj)� E(Y|Xi)� E(Y|Xj) + E(Y), where E(Y) = f0
and so on for higher-order terms.42 As discussed in section 2.10
(and Figure 3), fi can be estimated from smoothing splines and
used for sensitivity analysis.75

Sobol’ offered a Monte Carlo strategy to compute indices of
any order, that is based on aMonte Carlo exploration of the input
space. To make an example, to estimate Vi, the best available
strategy is65c

V̂ i ¼ 1
N ∑

N

j¼ 1
f ðxbj1, xbj2, :::, xbjk, Þ

� f ðxaj1, :::, xajði � 1Þ, x
b
ji, x

a
jði þ 1Þ, :::, x

a
jkÞ � f 20 ð29Þ

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-008.jpg&w=240&h=45
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where N is the sample size of a MC simulation, k is the
number of independent factors, and the superscripts a and b
stand to indicate that two independent input matrices have
been used:

A ¼
xa11 3 3 3 xa1k
3 3 3 3 3 3 3 3 3
xaN1 3 3 3 xaNk

0
BB@

1
CCA, B ¼

xb11 3 3 3 xb1k
3 3 3 3 3 3 3 3 3
xbN1 3 3 3 xbNk

0
BB@

1
CCA
ð30Þ

and for each factor a new matrix is built taking all columns from
matrix A, but for column i which is taken from matrix B.

Equation 29 says that in order to compute V̂ i one has to
resample all factors but Xi. While it takes some reasoning67 to
demonstrate that V̂ i is an estimate of the partial variance VXi

-
(EX�i

(Y|Xi)), it is intuitive that V̂ i is large when Xi is influent. If Xi

controls the output, then large values of f will be multiplied with
one another in eq 29, and the same is true for low values. If Xi is
noninfluent, low and high values of f will be randomly combined,
resulting in a lower value of V̂ i. We suggest a sequential approach
for the evaluation of the above indices, whereby new model
evaluations are executed only if the user needs to increase the
precision of the estimates: the rows of matrices of eq 30 are
augmented until the desired convergence is achieved.

Sobol’ noted that an important objective of the sensitivity
analysis is to identify those factors that have no sensible
important effect on the output. To tackle the problem, he
rewrote eq 15 for sets of factors as

VðYÞ ¼ VUðEZðY jUÞÞ þ VZðEUðY jZÞÞ þ VUZ ð32Þ
where all factors in X have been partitioned in two sets, (1) a trial
set U of supposedly noninfluential factors and (2) the remaining
factors Z. VUZ is the pure interaction effect between the two sets
and can be easily computed by difference. If V(Y) = VZ(EU(Y|Z)),
then one can conclude that the set U is truly noninfluential.
Note that the condition of noninfluence implies VU(EZ(Y|U)) +
VUZ = 0, and not simply VU(EZ(Y|U)) = 0. We shall go back to
this in section 2.7 in a moment.

As mentioned in the Introduction, decompositions such as in
eqs 15 and 27 are common in experimental design, where one
varies control variables; e.g., for a chemical experiment one would
vary temperature, catalyst, and concentrations among a set of
pre-established levels (often just two, high and low, for each
variable) as tomaximize the number of effects (first order, second
order, ...) one can determine for a given cost in terms of number
of experiments.48 More precisely, if we had sampled the points in
the k-dimensional hypercube with a nk factorial design as {0, 1/
(n � 1), ..., (n � 2)/(n � 1), 1}, thus forming a uniform grid,
then the fi(Xi) of eq 27 would be identical to the ANOVA
estimate of the main effect in a full factorial design.33,48 It has also
been suggested to use the functions in eq 27 directly for the
purpose of sensitivity analysis.49

We have plotted in Figure 3 fk1 and fk�1
for the model in eq 2.

No other functions are needed for this model, as [A] = fk1 + fk�1
+

fk1k�1
is in this case [A] ≈ fk1 + fk�1

(as the reader can ascertain

comparing the values of [A] in Figure 1 with fk1 and fk�1
from

Figure 3) and the interaction term fk1k�1
is negligible.

This direct use of functional decompositions such as fki for
sensitivity analysis is elegant and informative, but employing the
above-mentioned nk factorial design can become impractical
when the number of factors and/or of their nonzero interactions
increases.

Representations such as eq 27 of multivariate functions by
superposition of simpler functions such as projection pursuit,
radial basis functions, and others are common in Mathematics46

and have a long history.47,68 This idea feeds in the strong recent
development of meta-modeling-based sensitivity analysis (see
section 2.10). Rabitz and co-workersfurther proposed an alter-
native model representation that is based on knowing the model
values on lines, planes, and hyperplanes that pass through a
selected point in the space of the input factors. He calls these cut-
HDMR, to distinguish them from the ANOVA-HDMR of eq 11.

An example of cut-HDMR for the model in eq 1 is also in
Figure 3, together with the Taylor expansion (based on local
derivatives at the midpoint) of the same factors.

The three model representations are substantially equivalent
for this quasi-linear model.

The cut-HDMR has been applied to chemical problems. An
interesting property of the cut-HDMR is that it can be used as a
basis for efficiently computing the ANOVA-HDMR (the terms
in eq 11). We shall discuss the merits of the HDMR with an
application in the next section. Yet, the method still depends on
the assumption that in eq 13 terms of order higher than two or
three are negligible.

2.6. The Second Test Case
Wemove now to show that it is better to have global sensitivity

analysis in terms of FAST or Monte Carlo estimates of Si, rather
than in terms of βi or derivatives. [Although, as discussed in
section 2.2, Si

σ and βi can provide an approximate estimate of Si.]
To do this, we introduce our second example.

This is a thermal runaway analysis of a batch reactor, with
exothermic reaction A f B

d½A�
dt

¼ � kðTÞ½A�n ð33Þ

where n is the order of the reaction, and

Fcv
dT
dt

¼ ð�ΔHÞkðTÞCn � svuðT � TaÞ ð34Þ

where F is the density of the fluid mixture [kg/m3], cv is the mean
specific heat capacity of the reaction mixture [J/(K mol)],ΔH is
the molar reaction enthalpy [J/mol], sv is the surface area per unit
volume[m2/m3],u is theoverall heat transfer coefficient [J/(m2 sK)],
and Ta is the ambient temperature.

The initial conditions are [A] = [A]0, T = T0, and t = 0.
The model can be is customarily rewritten in dimensionless

form:

dx
dτ

¼ exp
θ

1 þ θ=γ

� �
ð1� xÞn ¼ F1ðx, θÞ

dθ
dτ

¼ Bexp
θ

1 þ θ=γ

� �
ð1� xÞn � B

ψ
ðθ� θaÞ ¼ F2ðx, θÞ

ð35Þ
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with initial conditions (IC’s) x = 0 and θ = 0, at τ = 0, and the
dimensionless variables

x ¼ ½A�0 � ½A�
½A�0

; θ ¼ T0 � T
T0

γ; τ ¼ tkðT0Þð½A�0Þn�1

ð36Þ

and dimensionless parameters:

B ¼ ð�ΔHÞ½A�0
FcvT0

γ : dimensionless heat of reaction

γ ¼ E
RgT0

: dimensionless activation energy

ψ ¼ ð�ΔHÞkðT0Þð½A�0Þn
svuT0

γ : Semenov number

¼ ðheat release potentialÞ=ðheat removal potentialÞ

This system has been widely analyzed in the last century to
characterize thermal runaway at varying operating conditions.8

At given rate constant and ambient temperature, the system
is completely determined by the parameters B and ψ, and
critical conditions are usually illustrated in the B�ψ parameter
plane.

A reactor under explosive conditions is sensitive to small
variations in, e.g., the initial temperature, while, under nonex-
plosive conditions, the system remains insensitive to such varia-
tions. Thus, boundaries between runaway (explosive) and
nonrunaway (nonexplosive) conditions can be identified on
the basis of its sensitivity to small changes in the operating
parameters. The system can also be characterized by the deriva-
tive of the maximum temperature reached in the reactor versus
the initial temperature, i.e.,73 S(θ*,θ0) = dθ*/dθ0.

The runaway boundary is defined as the critical value of each
parameter for which the sensitivity to the initial condition is
maximum; e.g., for the Semenov numberψ, we have the results in
Figure 7.

For ψ values smaller than ψc, the system is in nonrunaway
conditions; i.e., the maximum temperature reached in the reactor
is not very high, and this maximum is insensitive to small
variations in the inlet temperature. With an increase in ψ, both
the maximum temperature and its sensitivity to T0 smoothly
increase until, in proximity to ψc, there is a sharp rise for both of
them that rapidly brings the reactor to a strong temperature
increase. Forψ values higher thanψc, the sensitivity goes back to
smaller values, leaving unchanged the extreme temperature rise
reached at ψc. From this, fixing reaction kinetic (n,γ) and
ambient temperature (θa), the curve in the B�ψ plane can be
obtained (Figure 8).

Let us consider the case of a system with nominal parameter
design B = 20, γ = 20, n = 1, θa = 0, and ψ = 0.5. Under these
conditions, the system should be within the nonrunaway region.
The system, however, is characterized by uncertainties. So, let us
assume the following probability density functions for model
parameters:

B ∼ Nð20, 4Þ
γ ∼ Nð20, 2Þ
ψ ∼ Uð0:4, 0:6Þ
θa ∼ Nð0, 0:2Þ

ð37Þ

θ0 ∼ Nð0, 0:2Þ
where U indicates a uniform distribution and N is a normal
distribution with mean and standard deviation represented by
the first and second coefficients in parentheses.

Under the chosen operating conditions (γ = 20), a 0.02
standard deviation for the ambient and initial dimensionless
temperatures corresponds to an about 30 K standard deviation in
the absolute temperature scale.

We perform a Monte Carlo simulation, whose total cost is
6 144 model evaluations (see section 2.7 for computational
details; here, again, we choose an arbitrary number of sample
points. A rule of thumb for the selection of an initial sample size
is available.11a), and analyze the behavior of the temperature
maximum. In Figure 9 we can see that, even if the nominal
conditions of the reactor are stable, there are threshold values
for B, θa, and ψ for which the maximum temperature in the
reactor can have a sharp rise (absolute temperature can double,
with a rise of, e.g., 300 K). This striking result vindicates the use of
global (e.g., Monte Carlo) exploration methods for uncertainty
analysis even in the presence of moderate factors uncertainty.
This result is due to the nonlinear and nonadditive nature of

Figure 7. S(θ*,θ0) = dθ*/dθ0 versus Semenov number ψ for model
(33, 37).

Figure 8. Runaway versus nonrunaway in the plane B,1/eψ for fixed
(n,γ) and (θa) (e is the number of Neper).
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the problem, as shown by the different sensitivity measures for θ*
(see Table 1).

Let us look at the βi
2 and Si in Table 1 first. The sensitivity

based on the βi’s can only capture 40% of the variation of the
maximum temperature. Considering the variance-based main
effects, we can arrive at 43%. This implies a 57% interaction
between the model parameters. We could stop the analysis at this
point, or we might pursue our investigation to achieve a full
mapping of the input/output relationship. Stopping here would
mean that we are happy with having learned that the parameter
which offers a better chance of reducing the variance in the
maximum temperature is ψ. Yet, this factor only accounts
for∼18% of the variance, and the large unknown interactions might
suggest that a much larger reduction in variance can be achieved if
one could identify the interacting factors and try to fix them.

One avenue to do that would be to compute individual interac-
tion terms.74,75 In this example all the second- and third-order
interaction terms could be computed at no extra cost; see also
section 3.74 The full variance decomposition in this example
could be obtained with a total cost of 6 144 model runs. If only
first-order indices were of interest, only a single shot of 500 runs
would be sufficient, applying the method of Ratto et al. either RBD
or any of the meta-modelingmethods discussed in section 2.10. To
compute only first and total effects (see section 2.7 next), leaving
out second-order effects from the analysis, 3 000 runs would have

been sufficient. For this example, meta-modeling is also able to
provide quite accurately the full decomposition and the total effects
(see section 2.10).] We get that the most significant second-order
interaction terms Sij = Vij/V(Y) are SBψ = 0.17, Sψθa = 0.17, and
SBθa

= 0.166. Given that B, θa, and ψ seem to be the factors that
interact the most, we may further compute the overall effect of
these three factors. This comes out to be 0.961, i.e., almost the
total variance. [ Note that the sum of all effects of the factors B, θa,
and ψ is made of their first-order terms, plus the three second-
order terms, plus the single third-order term. This sum can also be
written as Vψ,B,θa

(Eγθ0(Y|ψ,B,θa,))/V(Y) and computed as such,
i.e., without computing all the terms.], i.e., almost the total
variance. If we measure the third-order interaction term, we
obtain Sψ,B,θa

= 0.032.
This example points to the importance of identifying interac-

tions in sensitivity analysis.
We now apply to the example both ANOVA- and cut-

HDMR. In Figure 10 we show the approximated first-order
ANOVA-HDMR terms fB, fθa

, and fψ for the most important
factors, obtained using smoothing splines.75 These show that the
first-order relationships are monotonic, which explains why βi

2

gives an acceptable estimate of the first-order sensitivities in
Table 1, with an overall error of about 0.03.

In Figure 10 we also show the approximated ANOVA-HDMR
terms fi, obtained by passing through the third-order cut-HDMR
expansion of the most important factors (B,θa,ψ). The approx-
imation is fairly good and illustrates the standard usage of cut-
HDMR, i.e., as an efficient way to estimate the ANOVA-HDMR,
such as fi.

In Figure 11 we show the approximated second-order ANO-
VA-HDMR terms of the subset (B,θa,ψ), again obtained through
cut-HDMR smoothing splines.75 All statistics (βi

2, Si, and STi)
are obtained using a quasi-Monte Carlo sample of dimension
512: the approximation is fairly good and illustrates one advan-
tage of meta-modeling, which not only provides estimates for

Figure 9. Relative temperature change at the maximum [(Tmax� T0)/
T0] versus the uncertain model parameters. A rise in the ordinate to
about 1.2 corresponds to a temperature shift of about 300 K for the
operating conditions assumed.

Table 1. Sensitivity Measures for Model (eqs 33�37) (Total
Number of Simulations Used to Compute Si and STi is 6 144;
512 Simulations Were Used for βi

2)

βi
2 Si STi (introduced in section 2.7)

Ψ 0.176 0.178 0.674

θa 0.117 0.164 0.556

B 0.104 0.080 0.469

γ 0.003 0.002 0.032

θ0 0.002 0.002 0.013

sum 0.402 0.426

Figure 10. Most significant first-order ANOVA-HDMR terms fB, fθa
,

and fψ when the output is the maximum relative temperature rise
(Tmax � T0)/T0 (mean value of (Tmax � T0)/T0 is 0.1) estimated
through smoothing splines.75 All the lines have zero mean; i.e., ANOVA-
HDMR functions plot the change with respect to the overall mean
(which is about 0.1). The sample size used for smoothing splines
estimation was 512.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-017.png&w=240&h=191
http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-018.png&w=240&h=194
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sensitivity indices but also is an efficient way to estimate the
ANOVA-HDMR.

The grid of points for the cut-HDMR expansion up to the third
order was of size 16 for each factor, for a total cost of 4912 runs.

2.7. Total Sensitivity Indices
Is there a more compact way to analyze the model in eqs

33�37 without computing all (25� 1) = 31 terms of our 5-factor
model? Surely for larger dimensionalities of the input factors
space, a more compact measure would be useful. This is offered
by another variance-based measure, which was implicit in our
discussion of the Sobol’ “group” sensitivity (eq 32), though it was
introduced formally in ref 43. Imagine that the set U in eq 32
contains only one factor, Xi, and that as a result Z = X�i. Hence,
eq 32 becomes

VðYÞ ¼ VXiðEX�iðY jXiÞÞ þ VX�iðEXiðY jX�iÞÞ þ VXiX�i

ð38Þ

The condition for Xi to be truly noninfluential is
that VX i

(EX�i
(Y|Xi)) + VXiX�i

= 0, which is the same as
V(Y)� VX�i

(EXi
(Y|X�i)) = 0. Because of eq 12, this is the same

as to say that EX�i
(VXi

(Y|X�i)) = 0. In summary, if Xi is
noninfluential, then STi = EX�i

(VXi
(Y|X�i))/V(Y) = 0. We call

STi the total sensitivity index of factor Xi. It is easy to prove
45 that

the condition STi is necessary and sufficient for Xi to be
noninfluential. The descriptive power of this measure is evident
by looking at the last column of Table 1. Even if we had not
computed all second- and third-order interaction effects, it would
now be evident from the difference between the Si and STi values
for each factor that B, θa, and ψ are involved in significant
interactions. From the total indices we can also see that all the
interaction terms of factor γ with (B,θa,ψ) cover most of the
3.9% of total variance unexplained by the group (B,θa,ψ). Other
advantages of the STi measure are as follows:
(i) With STi, we no longer have to limit our analysis to additive

models.
(ii) It dispels the curse of dimensionality. One does not need

to calculate all the (2k �1) terms in eq 15 but just the 2k

measures Si and STi, to obtain a good characterization of
the system.

(iii) STi can be computed using extended FAST53 or more
easily using the extended Sobol’methods.74,65c Attempts
are ongoing to estimate total indices with RBD.65d

(iv) When eq 15 holds, e.g., when the input factors are
independent, STi can be easily seen to be equal to the
sum of all terms (first-order plus interactions) that
include factor Xi. For a simple three-factor model, this
would imply that ST1 = S1 + S12 + S13 + S123.Even when
the factors are not independent, STi is an effective
measure to use, e.g., if one wants to reduce the variance
of the output acting on a subgroup of factors. It is intuitive
that when interactions are present, a reduction in the
variance of the output can be achieved by determining
simultaneously the true values of two or more interacting
factors.

Note that when one wants to criticize the use of Si as a
sensitivity measure, one usually builds a test case where a factor
has a zero first-order term and important nonzero higher order
terms. These criticisms are, in our opinion, unfounded, as Si is
the right measure to use for factors prioritization, as we
discussed above. If one factor has a zero first-order term, no
variance reduction can be expected by determining the true
value of just that factor. On the other hand, if the analyst intends
to identify noninfluential factors in order to remove them from
the variance propagation analysis, then a broader concept of
importance must be invoked, which corresponds to the STi
measure.

STi = EX�i
(VXi

(Y|X�i))/V(Y) is, in fact, the expected variance
that would be left if all factors but Xi were determined and
provides the educated answer to the question, “Which factor can
be fixed anywhere in its range of variability without affecting the
output?”, the answer being all those factors whose STi is zero. We
call this the “factors fixing” setting.45

Computing Si and STi for each factor Xi, while still being far
from a full factors mapping, gives a fairly instructive description
of the system.

It is evident that for independent input factors STi will always
be larger or equal to Si. For nonindependent factors this is not the
case because fixing a factor modifies the distributions of its
correlated factors, which in turn may either increase or decrease
the variance; see also ref 45, p 27. For nonindependent factors we
still recommend to use Si for factors prioritization. For factors
fixing it may happen that STi is zero for a given factor while its Si is
nonzero. This happens if Y is not a function of Xi while the joint
pdf depends upon it. In this case both STi and Simust be zero for a
factor to be fixed.

We give here our best recipe to compute simultaneously a full
set of Si and STi for each factor Xi, based on refs 65c and 74. Note
that this recipe is a good practice only if one wants to compute
both sets of indices. To compute the Si alone, the accelerated
procedures described in sections 2.4 and 2.10 (e.g., RBD ormeta-
modeling) should be used.
(i) Compute the model outputs corresponding to the two

input matrices A and B (eq 30).
(ii) Compute the model outputs corresponding to the k

matrices Ab
i which can be generated by replacing each

column of A in turn with the corresponding column of B.
Steps (i) and (ii) cost N(K + 2) runs in terms of model
evaluations.

Figure 11. Most significant second-order ANOVA-HDMR terms of the
maximum relative temperature rise, estimated through a smoothing
splines ANOVAmodel.75 The sample size used for estimating the meta-
model was 512.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-019.jpg&w=240&h=175
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(iii) Compute Si from the estimator given in eq 29 and STi
using the following estimator for~VTi:

With this recipe, in addition to the first-order and total indices
computed with (k + 2)Nmodel runs, all the interaction terms of
order (k� 2) can be obtained at no extra cost.74 At the additional
cost of kN model runs, double estimates of all the first-order,
second-order, (k � 2)th order, and total indices can be
obtained.74 [This sampling design scheme has been applied in
the test case of section 2.6, with N = 512 (this sample size was
selected arbitrarily), k = 5, and an overall cost (2k + 2)N = 6144.]
Finally, any other interaction term between the third and the
(k � 3)th can be estimated at the further additional cost of
N model runs each.

When using Monte Carlo methods to estimate the sensitivity
indices, random numbers can be used to generate the sample
matrices A and B (eq 30) for the analysis. A valid alternative is to
use quasi-random numbers (our recommended practice; scripts
to generate them are available at ref 89]. These are sequences of
multidimensional points characterized by “optimal” space-filling
properties.84,85

A popular form of sampling that also aims to scan efficiently
the input factors space is the Latin hypercube sampling (LHS),
considered by some as the most effective strategy when the
model is expensive to evaluate.86 The space-filling properties of
LHS can be enhanced by optimization algorithms, but their
application can easily make calculations cumbersome.49,49a

The authors of the present review—based on several analyses
using a battery of test functions—find quasi-random numbers
superior to the LHS-based ones for the computation of sensitiv-
ity indices, although this depends both on the dimensionality of
the problem and the property of the model (e.g., at high
dimensionality all methods perform like purely random sam-
pling; for a thorough discussion, see ref 86a). Because on the
issue of the relative merits of LHS versus quasi-random sampling
the community of practitioners is rather polarized, the reader is
referred to the tools available at ref 89 for a direct analysis.Of
course the estimators of eqs 29 and 39 work for purely random
numbers as well.

As mentioned above, the couple of indices Si and STi can also
be used when the input factors are not independent. Also in this
case the indices are the right measure to use for the settings
“prioritization” and “fixing”,54 although with nonindependent
input factors the variance decomposition formula 15 no longer
holds, the sum of the first indices is no longer bound to be <1,
neither it is true in general that Si e STi

45 as discussed above.
Even for nonindependent factors, one can use the recipe

above, with the added complication that all matrices A, B, and Ab
i

must be drawn from appropriate conditional distributions, i.e.,
respecting the dependencies among factors.65e

An alternative unbiased estimation procedure for the non-
independent case is available for first-order indices and is based
on replicated LHS.87,88 This is also easy to code,45 and the cost to
estimate all the first-order indices isNrmodel runs, where r is the
number of replicates needed (usually at least 10) and the cost is
independent of the number of factors. The convergence rate of
this approach is slow: better precision of the sensitivity estimates
can be attained only by increasing considerably both N and r.

Xu and Gertner overcome the independency limitation of
the conventional FAST by extending the technique to models
with correlated inputs.88a They proposed reordering the inde-
pendent sample so that the sampled points honor the required
correlation structure. Through the reordering, the variance
contribution of both the input of interest and its correlation with
other inputs is captured. Alternative indices for the sensitivity
analysis with nonindependent inputs have been suggested in
ref 47a. These indices are not linked to settings as the original Si
and STi.

54

As shown in section 2.10, meta-modeling-based estimation of
total sensitivity indices is often achievable in practical cases, when
the degree of interaction of the model at hand is not large.
However, the procedure described in this section remains the
only general recipe for total effects, which is applicable regardless
of the complexity of the model.

2.8. A Screening Method The Method of Morris
Another useful sensitivity measure, which is computationally

less expensive than the variance-based methods, is the measure of
Morris,51 which is particularly suited when the number of
uncertain factors is high and/or the model is expensive to
compute. It belongs, thus, to the family of screening sensitivity
analysis methods.80

At times the program code that computes the model’s
output is expensive to run, and/or there are many uncertain
factors. In either case one may desire to obtain a first estimate
of which factors do matter and which do not. This is a
screening problem, for which the practice to compute the full
set of indices Si and STi as described above can be impractical,
as, e.g., one cannot afford the required number of model
simulations.

In the literature the most popular method for screening is that
of Morris.51 Rather than describing this method in its original
formulation51 and variants,82,82a we offer here an alternative and
more efficient approach51a that makes use of the same design
described in section 2.7 for the STi measure. Other screening
designs, including supersaturated designs with fewer runs than
factors, are described in ref 80.

To start, we reconsider the matrices in eq 30. The N(k + 2)
points of matrices A, B, and Ab

i can be seen as “radial” design.65c

Take the first row of A and the first rows of the kmatrices Ab
i . It is

easy to say that these points can be viewed as a star, with the point
from A at its core and the other k points as its rays. The same
holds for rows from 2 to N, so that the A plus Ab

i design can
be seen as made ofN stars that span the input space. What about
the additional N points from B? Each of these is a point made
of pure “rays” coordinates. These points will not be needed for
the screening design being introduced here. Note that this design
(radial design or radial sampling in the following) can also be
seen as an iterated OAT. In fact we will show that the radial
design is a best-available practice in screening and that it is
nothing other than an iteration of the OAT approach espoused
by most modelers; in other words the best way to overcome the
limitations of OAT is to iterate it at different points in the
hyperspace of the input factors.16a,51a

When using the radial design for screening, we also suggest
choosing carefully the points in the hyperspace, e.g., by using
quasi-random numbers to locate the core of the stars.51a This
implies using quasi-random numbers to generate matrix A. The
design makes use of “elementary effects”, where an elementary
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effect is the absolute value of the incremental ratio computed
over the ray of a star:

The radial screening measure is simply the average of the N
elementary effects. The standard deviation of the same elemen-
tary effects can also be used as an additional indicator of the
strength of nonlinear effects.

To illustrate this approach, we employ the dimethylsulfide
(DMS) example mentioned in section 2.2. The model KIM12,63

describes temperature-dependent tropospheric air and droplet
chemistry for DMS. DMS chemistry is extensively investigated
for its climatic implications.81 In a work published in 1999, the
KIM model included about 50 chemical reactions and 68
uncertain input factors, mostly kinetic and Henry law constants,
which could be screened down to the 10 most important ones
using the method of Morris.82 The analysis was then completed
by applying extended FAST to the 10 most important factors for
a quantitative analysis using the Si and STi indices. Here In
Figure 12, an updated version of KIM83 is considered where the
number of uncertain input factors is cut down to 56, and the
sensitivity of the model is investigated via the Morris method
radial design method.51a In an explanatory fashion, results are
also compared with what would be obtained with a point
derivative-based analysis.

The method of Morris varies one factor at a time across a
certain number of levels selected in the space of the input factors.
For each variation, a factor’s elementary effect is computed,
which is an incremental ratio for that factor:

A set of stepwise curves scan the factors levels, as to generate
for each factor r different estimates of elementary effects ui. The
mean μi and the standard deviation σi of the elementary effects ui
over the r repetitions are used to assess the factors’ importance.
A high value of μi flags a high linear effect for a given factor, while
a high value of σi flags either nonlinear or nonadditive factor
behavior. It is useful also to compute the modulus version μi* of
the Morris method, i.e., the average of the |ui|, and the impor-
tance of input factors is often assessed by plotting factors on the
(μi*, σi) axes (Figure 12). The factors closest to the origin are less
influential.

μi* The screening test proposed here has similarities with the
STi index, in the sense that it tends to produce a ranking of the
factors very similar or identical to that based on the STi indices.

45

Looking at Figure 13 (comparative ranking for the input factors
using ∂Y/∂Xi, Si

σ, and the average of the elementary effects) for
the KIM model suggests that ranking of factors is markedly
different when using derivative-basedmeasures. If the rankings of
the different measures were equal, we would have points in the
left panel of Figure 13 aligned on a monotonic curve, while in the
right panel points would stay on a straight line of unit slope.
Conversely, both high and low importance factors are completely
shifted if derivative-based measures are used. Only the least
important factors seem to have a similar ranking, even if
significant changes are detected also in this case (see points in
the gray oval in the right panel of Figure 13).

The lack of reliability of the derivative-based measures is due
to the nonlinearity of the present version of the KIM model, as

confirmed by performing a regression-based analysis through
Monte Carlo simulation which generates a R2 value of 0.57.

The radial screening test presented here has a strong advan-
tage with respect to other existing screening approaches: when
the computational cost of the model allows it, the modeler can
increaseN, the number of repetitions, up to achieve a sample size
compatible with the estimation of the global sensitivity index STi.
In this case one can replace the estimator average of the
elementary effects with the estimator for STi proposed in eq 39
to obtain a more accurate quantitative measure. Note that, for
both radial screening and STi, the cost of the analysis is N(k + 1)
[it becomes N(k + 2) when both Si and STi need to be
computed]. The difference is in the value of N, which can be
as low asN = 4 for radial screening and on the order of hundreds/
one thousand for STi. The present approach thus offers a unified
strategy for sensitivity analysis: the analyst can start with a small
number of points (screening-wise) and then—depending on the
results—possibly increase the numeral of points up to compute a
fully quantitative measure.

Note that in the literature alternative methods are available for
models with very high number of factors, such as supersaturated
fractional factorial designs, where factors are iteratively perturbed
in batches.41,80 However, these methods preclude an effective
exploration of the space of the inputs, as they mostly operate at
very few factor levels and require strong assumptions on the
model behavior. To make an example, Bettonvill, reviewed in ref
80, assumes that the input/output (I/O) function is known to be
monotonic. a knownmonotonic relationship between the output
and each of the inputs.

2.9. Monte Carlo Filtering� An overview
Sensitivity analysis plays an important role in the verification

of the formal correctness of models. It is rare to perform a SA
without identifying model formal or coding errors, whose
correction is thus made possible. For a discussion of the

Figure 12. Screening of input factors based on the radial design. Factors
away from the origin are the most important, while the factors clustered
in (0,0) can be fixed. RHLO3 is theHenry’s law constant for ozone (O3).
Watliq is the water liquid content. Y0OHRAD is the initial concentra-
tion of the OH radical. The R and B parameters represent rate con-
stants of gas-phase reactions, while the W parameters indicate rate
constants of liquid-phase reactions. A more detailed factors description
is in ref 82.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-021.jpg&w=240&h=37
http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-022.jpg&w=240&h=178
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motivation for sensitivity analysis in the scientificmethod, see the
last chapter in ref 45. In the present review we discuss two In
addition to “factors fixing”, another possible objective for sensi-
tivity analysis is, i.e., “factors mapping” and factor importance
analysis (see the last chapter in ref 45 for additional objectives),
The cut-HDMR is effective for both, as it allows for an efficient
though approximate estimate of the fi terms (mapping), on which
a sensitivity measure such as Si can be computed (importance).
At times, the objective of a model-based analysis is to measure
which aims at measuring what fraction of the model realizations
falls within established bounds or regions, and what factors are
responsible for this. This objective can be pursued using aMonte
Carlo method known as Monte Carlo filtering (MCF76�78). In
MCF, one samples the space of the input factors as in the plain
MC method and then categorizes the corresponding model
output as either within or without the target region (the terms
behavior (B) or nonbehavior (NB) are used). This categorization
is then mapped back into the input factors, each of which is thus
also partitioned into a behavioral and a nonbehavioral subsample.
When the two B, NB samples for a factor are statistically different,
then the factor is an influential one. This approach to SA is also
known as regionalized sensitivity analysis (RSA). MCF is often
used in calibration, as it can successfully point to the existence of
alternative behavioral regions in the multidimensional space of
the input. In this case, a combination of MCF and variance-based
sensitivity analysis of the likelihood (the probability of the data
given the model) can be helpful. This and the pros and cons of
RSA and its extensions are reviewed in ref 45.

2.10. Meta-Modeling for Sensitivity Analysis
In the 1970s, roughly in the same period when Cukier and co-

workers developed FAST, the use of meta-models for sensitivity
analysis purposes was pioneered by Blanning and Kleijnen.50d,e

The effectiveness of meta-modeling depends on the assumption
that in eq 27 terms of order higher than two or three are negli-
gible. In several practical cases this is verified, justifying the recent
wide development of meta-modeling in the context of sensitiv-
ity analysis: kriging33,69 and Gaussian process models,50b,c,99

smoothing and nonparametric regressions,70,70a polynomial
chaos expansions,71,72 and others.

All meta-models use aMC “training” sample to learn about the
mapping between input factors and the model output of interest.
Then the estimated meta-model is used to approximate the
behavior of the model output for any new input sample, at a
much smaller computational cost than the original computa-
tional model. Once the appropriate meta-model is generated,
model predictions and good sensitivity estimates can be cheaply
obtained, in many practical cases also including total effects.
Meta-models are recommended when CPU time is very large.
They are superior to factorial designs, in that they operate on
distributions, not on levels, for the input factors. Note that meta-
models can be unsuccessful for particularly nonsmooth models.

In kriging, the analyst needs to implement, e.g., using a
Bayesian updating approach, the algorithm to estimate the model
itself at “untried” points.49 The basic assumption of kriging69,69a

is that training simulation experiments closer to the new point to
be predicted should receive more weight. This assumption is
formalized through a stationary covariance process with correla-
tions that decrease as the distances between the inputs of observa-
tions increase. Moreover, the kriging model is an exact interpolator;
i.e., predicted outputs equal simulated outputs at training samples,
which is attractive in deterministic simulation. Interpolation, in
principle, makes the estimation of kriging emulators very efficient, as
confirmed by the many successful applications described in litera-
ture, and justifies the great success of this kind of emulator among
practitioners. Gaussian process emulation and Bayesian sensitivity
analysis98,99 are special cases of kriging, whereby the latter is put
into a strict Bayesian (Gaussian) formulation. More in general,
kriging allows more flexible (non-Gaussian) forms for the covari-
ance, as provided by the DACE toolbox.75a

Smoothing and nonparametric regressions, as well as poly-
nomial expansions, are also widely used to build meta-models:
the main difference with respect to kriging is that these kinds
of meta-models are not exact interpolators. Rather, they treat
computer experiments assuming a residual or “error” term in
their model specification. In practice, thesemeta-models are built
in the form of an ANOVA-HDMR expansion, truncated at second-
or third-order terms. Moreover, such an ANOVA expansion is built
employing regressor-selection procedures that include only the
statistically significant ANOVA terms in the meta-model.75,75b,75c

Figure 13. ∂Y/∂Xi (circles) and Si
σ (stars) versus the screening test, average of the elementary effects. Left panel: logarithmic plots. Right panel: rank-

rescaled measures (high importance = high rank; i.e., the most important factor has rescaled measure = 56).

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-023.jpg&w=500&h=185
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The inclusion of the “error” term, albeit often regarded as a major
drawback by the kriging community, turns out to be an advantage
in some applications, because it implies that emulation (and
therefore “prediction” at new untried sample values) is per-
formed only using statistically significant ANOVA terms, often
enhancing the robustness of out-of-sample performances,75

especially for highly complex models.
An application of ANOVA smoothing splines75 for the model

in eq 2 is shown in Figure 3, together with the Taylor expansion
(based on local derivatives at the midpoint) of the same factors.
The two model representations are substantially equivalent for
this quasi-linear model.

When considering the model (eqs 33�37), meta-modeling
displays more clearly its powerful features in providing efficient
estimates of sensitivity indices (Table 2) and of ANOVA
expansions (Figures 10 and 11). In Table 2 one can see that
the main effects are estimated accurately by meta-models when
compared to the large sample size Sobol’ estimates. Moreover,
we can note the key features of the two classes of meta-models.
Smoothing does not include in the ANOVA expansion γ and θi
(their sensitivity indices are zero), reflecting the procedure of
component selection: this is a useful property in that the meta-
model is built in the most parsimonious way given the available
computer experiments. Moreover, when truncating the ANOVA
expansion at second-order interactions, total effects turn out to
be underestimated, although the sensitivity pattern is still cor-
rectly reflected. On the other hand, in this case, kriging is almost
able to replicate the entire interaction structure of the model,
providing excellent estimates of both main and total effect.
Kriging is particularly well-suited for this kind of model, char-
acterized by a small number of input factors. In general, as
thoroughly discussed in ref 75, the performance of kriging versus
smoothing can be strongly case-dependent, and validation checks
can address the users on the most suitable meta-modeling
strategy for the problem at hand.

In the present review, we concentrated our attention to the
most classical case where the model output of interest is a scalar
value. To conclude this short overview ofmeta-models, we would
like to mention new developments that concern the case of
distributed model outputs and, in particular, dynamic models. In
this latest context, a new class of “dynamic meta-models” has
been developed,100which aims at reproducing the entire dyna-
mical features of large computational models. This new class of
meta-models is suited for a more general and flexible range of
applications: data-assimilation and signal processing, control and

planning, and engineering system design. In the context of
nondynamic models, investigations are ongoing to develop
emulators with nonseparable covariance structures. 100a

3. CONCLUSIONS: WHEN TO USE WHAT

The choice of the proper sensitivity analysis technique can
depend upon many factors, including (i) the computational cost
of running the model, (ii) the number of input factors, (iii) the
degree of complexity of the model coding, (iv) the amount of
analyst’s time involved in the sensitivity analysis, and (v) the
objective of (or the setting for) the analysis (e.g., factors’ fixing,
mapping,...), see Figure 14.

For models that require a modest amount of CPU time (i.e.,
up to the order of 1 min per run), and with a number of input
factors which does not exceed, say, 20, the class of the variance-
based techniques yields the more accurate pattern of sensitivity.
Both the method of Sobol’ (very easy to code; see, e.g., ref 65c)
and the extended FAST (less easy53) provide all the pairs of first-
order and total indices at a cost of (k + 2)Nmodel runs for Sobol’
and ∼kN model runs for the extended FAST, where k is the
number of factors andN is the number of rows of the matrices
A and B in eq 30. Typically, N≈ 500�1000. To give an order
of magnitude of the computational requirement, for a model
with 10 factors and 0.5 min of CPU time per run, a good
characterization of the system via Si and STi can be obtained at
the cost of ∼42�84 h of CPU time. Given the greater effort
needed to code FAST (and its inadequacy when input factors
are sampled from discrete distributions), we would re-
commend the Sobol’ design as implemented in ref 65c for
this situation of moderate number of factors and com-
putational time.

What makes this computation expensive is the estimation of
the total effect indices STi. If one is happy with just estimating the
Si, the cost can bemuch lower using, e.g., RBD ormeta-modeling.
Also, when the degree of interactions in the model is not very
large, meta-modeling can still be of help in getting useful
estimates of STi at a smaller cost, provided that the quality of
the meta-modeling has been tested.

For higher order indices as well as total indices in the case of
correlated input, one has to apply a brute force approach
whereby the operators V and E (eq 9 ) are to be written in
explicit form (i.e., as the variance of a mean, involving a double
computing loop). The computational cost is thus Nr model
runs per index.

All these techniques are implemented in SIMLAB, a free
software package.

A class of techniques that is attracting increasing attention
among practitioners, again for models that require a modest
amount of CPU time, and with a number of input factors that
does not exceed, say, 12, is that of density-based importance
measures, also called moment-independent importance
measures.101In these techniques, the associated global sensitivity
measures explicitly consider the entire model output density
instead of relying on a particular moment of this density (e.g., the
variance). They are well-suited when output densities are skewed
or multimodal, and thus variance cannot completely capture the
uncertainty of the model output. An application of this impor-
tance measure to the thermal runaway analysis of a batch reactor
is also available. 102

Less expensive alternatives to the variance-basedmethods are the
standardized regression coefficients, SRCs. With a single batch of a

Table 2. Sensitivity Measures for Model (eqs 33�37), As
Obtained Using Meta-Models Trained with 512 Model Runs
(For Smoothing and Kriging); Results from Sobol’ Are the
Same as in Table 1

Si STi

smoothing75 kriging75a Sobol’ smoothing75 kriging75a Sobol’

ψ 0.2184 0.2142 0.1781 0.6117 0.6651 0.6738

θa 0.1594 0.1577 0.1641 0.4253 0.5399 0.556

B 0.0957 0.0949 0.08 0.3846 0.4921 0.4692

γ 0 0.0055 0.0019 0 0.0126 0.0322

θi 0 0.000 0.0015 0 0.0031 0.0128

sum 0.4735 0.4722 0.43
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few hundred sampled points (say,N≈ 100 points or less depending
on the cost of the model), the SRCs and their rank-transformed
version can be estimated for all the input factors.

As mentioned, the SRCs are only effective for linear or quasi-
linear models, i.e., for high values of R2. Regression-based

sensitivity techniques are often productively coupled with the
examination of scatterplots to provide needed insights into
nonlinear and possibly interacting effects that lead to regression
models with low R2 values. Regression methods are always useful
to be looked at in order to investigate the degree of linearity of

Figure 14. “When to use what”. Illustration of the various techniques available and their use in function of computational cost of the model, complexity
of the model, dimensionality of the input space, and analyst’s time. Note that this is a simplification, e.g., when computing for instance radial screening or
STi, the sample size, and hence the CPU time, are not independent from the number of variables.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200301u&iName=master.img-024.png&w=380&h=568
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the model and, if regression is not effective, In this latter case,
meta-modeling can be applied, using nonparametric smoothing
or kriging.

When the CPU time increases (say, up to 10min per run) or the
number of factors increases (say, up to 100), themethod ofMorris,
of which an extension is implemented in SIMLAB, the screening
method based on radial sampling described in section 2.8 offers the
best result.51a Radial sampling requires N(k + 1) points, where k is
the number of input factors, and N is in this case set to N ≈ 4�8
(it was 500�1000 for STi). Tomake an example, with 80 factors and
5 min of CPU time per run, all the model outputs can be ready in
27 h if N = 4 is taken. The main drawback of this method is that
samples are taken from levels, while both the SRC and the variance-
based methods take samples from distributions.

A useful practice (ref 51a) would be to start a simulation with a
radial design using the estimator for the elementary effect
(section 2.8), and then possibly increase the number of points,
moving, without waste of simulation points, to the estimator for
STi (section 2.7). At each number of simulations, a bootstrap68,65c

procedure can be used to estimate the confidence bounds on the
sensitivity indices.

Automatic differentiation techniques3 can also be used when
CPU time is very large. They are inherently local. In addition,
they require intervention of the analyst in the computer code that
implements the model. However, for expensive models, these
methods may offer an approximate solution for factors impor-
tance assessment and are very informative for factors mapping, as
well as for data assimilation applications.17 If higher order deriv-
atives are computed,16 these give information about multifactor
curvature effects and could be seen as a bridge between local and
global methods; e.g., a second-order term of the type ∂2Y/∂Xi∂Xj
gives information about a possible interaction effect between Xi
and Xj, although the Sij variance-based measure will include an
element of averaging over the entire space of the factors. The
advantages of higher order (second, third) local sensitivity
analysis in the presence of nonlinear outputs (e.g., an ozone
peak concentration) are discussed in ref 19. In a Taylor-expan-
sion framework, higher order terms allow a better exploration
further away from the baseline. According to ref 14, while first-
order sensitivities can predict ozone concentration at about a
25% factors variation away from their baseline, with second-order
terms the prediction is good up to 50% variations away from the
baseline values.

As an alternative, a Monte Carlo based approach to estimation
has also been tried in chemistry, which includes a quantitative
sensitivity analysis step.45,90,91

Sensitivity analysis is also driven by the setting.45 When the
purpose of the analysis is to prioritize factors, the first-order
sensitivity indices Si are a natural choice. If the objective is to fix
noninfluential factors, then the total sensitivity indices STi, or
(if the model is expensive) the measure of Morris screening,
come into use. If a particular region in the space of the output
(e.g., above or below a given threshold) is of interest, thenMonte
Carlo filtering and associated methods can be tried as an
alternative or complement to the measures just mentioned.
If the purpose of the analysis is a diagnostic mapping of the
input/output relationship, then various estimates of functional
decomposition (eq 27) can be tested (see Figures 10 and 11). At
all of these settings, the computation of derivatives, especially if
achieved with a modicum of extra computing, is advisable for a
general understanding of the model.

4. Other Methods and Ongoing Research. In Bayesian sensitivity
analysis, the analyst needs to implement, by Bayesian updating, the
algorithm to estimate the model itself at “untried” points. Once the
appropriate sample is generated,model values and good estimates of
Si can be very cheaply generated. Bayesian methods can be
recommended when CPU time is very large. They are superior to
factorial designs, in that they operate on distributions, not on levels,
for the input factors. Note that the Bayesian approach can be
unsuccessful for particularly stiff models.

Approaches that demand extensive analysis of the model
also require that the model remains stable in time, as each
model revision, especially in the Bayesian approach, will
call for a new analysis of the model prior to sensitivity
calculation.

Present research in sensitivity analysis focuses on how to
accelerate the computation of the sensitivity indices (Si and
higher order). The Bayesian method already cited is a possible
avenue, as well as the cut-HDMR-based approach illustrated in
Figure 10. Another strategy, easier to code, is based on random
balance designs and uses Fourier analysis to estimate all the first-
order indices at a total cost ofNmodel runs (i.e., the same cost of
SRCs). State-dependent parameter (SDP) modeling, a nonpara-
metric model estimation approach based on recursive filtering
and smoothing estimation, is also being applied successfully to
produce both the ANOVA-HDMR f iterms and the relative Si at
the same cost of SRCs.
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