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a b s t r a c t

In the cases of computationally expensive models the metamodelling technique which maps inputs and
outputs is a very useful and practical way of making computations tractable. A number of new techniques
which improve the efficiency of the Random Sampling-High dimensional model representation
(RS-HDMR) for models with independent and dependent input variables are presented. Two different
metamodelling methods for models with dependent input variables are compared. Both techniques are
based on a Quasi Monte Carlo variant of RS-HDMR. The first techniquemakes use of transformation of the
dependent input vector into a Gaussian independent random vector and then applies the decomposition
of themodel using a tensoredHermite polynomial basis. The second approach uses a direct decomposition
of the model function into a basis which consists of the marginal distributions of input components and
their joint distribution. For both methods the copula formalism is used. Numerical tests prove that the
developed methods are robust and efficient.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Model based simulation of complex processes is an efficient
approach of exploring and studying systems whose experimental
analysis is costly or time-consuming. However, these methods
generally require a large number of function evaluations to achieve
reasonable convergence and can become impractical for large
engineering problems.

One of the very important and promising developments of
model analysis is the replacement of complex models and models
which need to be run repeatedly on-line with metamodels (also
known as surrogate models).

There are different classes of metamodelling methods. Meth-
ods which make use of a statistical framework (Kriging, Gaussian
processes, Radial Basis Functions) have become very popular with
practitioners [1–3]. In this paper we consider a different class of
metamodelling methods based on orthogonal polynomial decom-
positions.

For many practical problems only low order interactions of the
input variables are important. By exploiting this feature one can
dramatically reduce the computational time for modeling such
systems. The Random Sampling-High Dimensional Model Repre-
sentation (RS-HDMR) method originally developed by Rabitz and
co-authors [4,5] has become a popular tool for building meta-
models [6]. Unlike other input–output mapping methods HDRM
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renders the original exponential difficulty to a problem of only
polynomial complexity.

RS-HDMR can also be used for global sensitivity analysis (GSA).
GSA methods evaluate the effect of a factor while all other factors
are varied as well and thus they account for interactions between
variables and do not depend on the choice of a nominal point
like local sensitivity analysis methods. Reviews of different GSA
methods can be found in [7–9].

RS-HDMR belongs to a wider class of methods known as poly-
nomial chaos expansion (PCE). A good review of PCE methods can
be found in [10,11].

The majority of known methods are designed only for models
with independent input variables. However, in practical applica-
tions input variables are often dependent.

The objective of this work is twofold: Firstly we present a
number of new techniques which improve the efficiency of the
RS-HDMR method for models with independent input variables.
Secondly, we present and compare two different metamodelling
techniques for models with dependent input variables.

The main difference with the traditional RS-HDMR is that we
use the Quasi Monte Carlo (QMC) method based on low-discrep-
ancy sequences (LDS) instead of random numbers for numerical
integration, therefore it is called Quasi Random Sampling-High Di-
mensional Model Representation (QRS-HDMR). We also introduce
a new technique for determination of an optimal polynomial or-
der and a required number of sampled points to achieve a given
tolerance.

Formodelswith dependent input variableswe consider twodif-
ferent methods. The first method consists of transforming the de-
pendent input vector into an independent random vector and then
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applying a methodology developed for the case of independent
inputs. This method is applicable in the case of inputs correlated
using a Gaussian copula. We present all important steps of this
method including the transformation between the original values
of correlation coefficients and the transformed ones (this step was
not discussed in [12] where this method was first presented). The
second method is based on the direct decomposition of the model
function using a basis depending on the marginal distributions of
the input components and their joint distribution. It can be used
with any types of copula. This method was suggested in [13], how-
ever as far aswe know it has never been used in practice before.We
compare two methods on representational benchmark examples.

This paper is organized as follows. The next section intro-
duces ANOVA–HDMR decomposition. Section 3 gives an overview
of global sensitivity indices. Section 4 presents the polynomial
approximation method for the RS-HDMR component functions.
Evaluation of SI based on RS-HDMR is discussed in Section 5. Nu-
merical recipes concernedwith determination the optimal number
of sampled points and the maximum order of polynomials are dis-
cussed in Section 6. Section 7 presents the PCE method for models
with independent inputs. Section 8 describes two method capable
of dealing with the case of dependent input variables. Truncation
of the PCE is discussed in Section 9. Section 10 presents two dif-
ferent methods for approximating PCE expansion coefficients. The
results of numerical experiments are given in Section 11. Finally,
conclusions are presented in Section 12.

2. ANOVA–High Dimensional Model Representation

Consider an integrable function f (x) defined in the unit hyper-
cube Hd. It can be expanded in the following form:

f (x) = f0 +

d
s=1

s
i1<···<is

fi1,...,is(xi1 , . . . , xis). (1)

Each of the components fi1,...,is(xii , . . . , xis) is a function of a
unique subset of variables from x. The components fi(xi) are called
first order terms, fij(xi, xj)—second order terms and so on.

It can be proven [14] that the expansion (1) is unique if 1

0
fi1,...,is(xi1 , . . . , xis)dxik = 0, 1 ≤ k ≤ s, 1 ≤ s ≤ d (2)

in which case it is known as the ANOVA–HDMR decomposition. It
follows from condition (2) that the ANOVA–HDMR decomposition
is orthogonal.

Rabitz argued [4,5] that for many practical problems only the
low order terms in the ANOVA–HDMR decomposition are impor-
tant and f (x) can be approximated by

f̂ (x) = f0 +

p
s=1

s
i1<···<is

fi1,...,is(xi1 , . . . , xis). (3)

Here p is a truncation order,which formany practical problems can
be equal to 2 or 3.

3. Global sensitivity indices based on the Sobol method

The ANOVA–HDMR decomposition (1) can be used to measure
the sensitivity of the model output with respect to the inputs or
subsets of input variables. Global sensitivity indices (SI) are defined
as follows [7,15]. Assume that f (x) is square integrable. In this
case all the fi1,...,is are also square integrable. Squaring (1) and
integrating overHd the following expression can be obtained using
orthogonality of the component functions:

f 2(x)dx − f 20 =

d
s=1


i1<···<is


f 2i1,...,isdxi1 . . . dxis . (4)
The constants

D =


f 2(x)dx − f 20 , Di1,...,is =


f 2i1,...,isdxi1 . . . dxis (5)

are called total variance and partial variances correspondingly.
The ratios

Si1,...,is = Di1,...,is/D (6)

are called global sensitivity indices (SI) [15]. From (4)–(6) it follows
that

d
s=1


i1<···<is

Si1,...,is = 1. (7)

Straightforward calculation of SI using the ANOVA–HDMR
decomposition would result in 2d integral evaluations. For high
dimensional problems such an approach is impractical. Homma
and Saltelli [16] introduced the SI for subsets of variables and the
total SI. In [15] Sobol suggested efficient formulas for calculation of
SI. This approach for SI calculation is known as the Sobol method.
These formulas were further improved in [13] and [17]. They allow
for more accurate estimates with a lower computational cost.

4. Approximation of ANOVA–HDMR component functions

The RS-HDMR method proposed in [4,5] aims to reduce the
sampling effort by approximating the component functions using
an expansion in terms of a suitable set of functions such as or-
thonormal polynomials.

Consider piecewise smooth and continuous component func-
tions of the ANOVA–HDMR decomposition. Using a complete basis
set of orthonormal polynomials they can be expressed via the ex-
pansion:

fi(xi) =

∞
r=1

αi
rφr(xi), (8)

fij(xi, xj) =

∞
k=1

∞
l=1

β
ij
klφkl(xi, xj), (9)

. . . .

Here φr(xi), φkl(xi, xj) are sets of one and two-dimensional basis
functions and αi

r and β ij
kl are coefficients of decomposition which

can be determined using orthogonality of the basis functions:

αi
r =

 1

0
fi(xi)φr(xi)dxi, (10)

β
ij
kl =

 1

0

 1

0
fi(xi)φk(xi)φl(xj)dxidxj.

In practice the summation in (8) and (9) is limited to some
maximum orders km, lm, l′m:

fi(xi) ≈

km
r=1

αi
rφr(xi), (11)

fij(xi, xj) ≈

lm
k=1

l′m
l=1

β
ij
klφkl(xi, xj), (12)

. . . .

The question of how to find maximum orders is discussed in
the following sections. In this paper we use the shifted Legendre
polynomials which are orthogonal in the interval [0, 1] with unit
weight in the case of uniformly distributed inputs and the Hermite
polynomials which are orthogonal on R with Gaussian weight in
the case of normally distributed inputs. The higher dimensional
polynomials can be expressed as the product of one dimensional
ones.
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4.1. Function approximation errors

Consider an approximation error δ(f , f̂ ) defined as

δ(f , f̂ ) =
1
D


[f (x)− f̂ (x)]2dx. (13)

An important theorem establishing relationship between δ and
the sensitivity indices in the case of independent inputs was
proven in [18]: if f (x) is approximated by a pth order RS-HDMR,
then

δ(f , f̂ ) = 1 −

p
s=1


i1<···<is

Si1,...,is . (14)

Consider p = 2, assuming that δ(f , f̂ ) is small, hence
i

Si +

i<j

Sij ≈ 1. (15)

If higher than p = 2 order interactions are important, then
δ(f , f̂ ) is large and condition (15) is not satisfied. In this case one
should include higher order interactions (p = 3) and again check
condition similar to (15) with inclusion of the third order SI or
use a technique suggested in [19], which in principle is capable of
detecting and accounting for any order interactions.

5. Evaluation of global sensitivity indices based on RS-HDMR

For a continuous function defined in the unit hypercubeHd with
piecewise derivatives the following relationship exists between
the square of the function and the coefficients of its decomposition
cr with respect to a complete set of orthonormal polynomials
(Parseval’s theorem): 1

0
f (x)2dx =

∞
r=1

(cr)2. (16)

An application of Parseval’s theorem to the component func-
tions of ANOVA–HDMR (8)–(9) yields the following formulas for
partial variances:

Di =

∞
r=1

(αi
r)

2, (17)

Dij =

∞
k=1

∞
l=1

(β
ij
kl)

2. (18)

Consequently, in the case of independent inputs from definitions
of SI (6) we obtain

Si =

∞
r=1
(αi

r)
2

D
, (19)

Sij =

∞
k=1

∞
l=1
(β

ij
kl)

2

D
, (20)

where total variance D is calculated using the original function
evaluations. These formulas are a direct result of polynomials or-
thogonality in the ANOVA–HDMR decomposition. For practical
purposes, summations truncated at somemaximum order of poly-
nomials are used similarly to (11)–(12).

6. How to choose the maximum order of polynomials

An important problem is how to choose an optimal order of
the orthogonal polynomials. In the majority of published works
by Rabitz and co-authors the fixed order polynomials (up to
the second or third order) were used. However, in some cases
polynomials up to the tenth order were used (see f.e. results for
the Ishigami function (47) in Section 11). Although no explanation
for the choice of such high order polynomials was given.

This problem of an optimal maximum order polynomials was
considered by Ziehn and Tomlin in [6]. They proposed to use
an optimization method to choose the best polynomial order for
each component function. Ziehn and Tomlin also suggested to
exclude any component function from the HDMR expansionwhich
do not contribute to the HDMR expansion. The overheads for
using an optimization method can be considerable. We suggest a
different approach to define optimal polynomial orders based on
the estimated convergence of partial variances.

Another important issue is how to define a sufficient number
of sampling points in MC or QMC integration of the polynomial
coefficients (10)–(11). In a limit

lim
km→∞

N→∞

km
r=1

(α̂i
r(N))

2
= Di, (21)

where α̂i
r(N) is a numerical approximation of αi

r(N) (the same
asymptotic rule apply for other coefficients). Practically the
accuracy of coefficients approximation depends on the number of
sampled points N : α̂i

r = α̂i
r(N). Typically, the higher the order of

the component function, the greater the number of sampled points
required to evaluate the polynomial coefficients with sufficient
accuracy [4].

Typically the values of decomposition coefficients αi
r , β

ij
kl etc.

rapidly decrease with increasing the order of r and (k, l). As a
result the truncation error is dominated by the first few truncation
coefficients. To determine an optimal number of points Nopt the
variance of α̂i

r is calculated as a function of N . N is increased
sequentially and N at which a required tolerance of the variance is
reached is taken as Nopt. We found that in most cases it is sufficient
to monitor α̂i

r(N) at r = 1, 2. Similarly, the variance of β̂ ij
kl(N) can

be monitored although it makes the algorithm more complex.
After a sufficient number of function evaluations Nopt is made,

we monitor the convergence of the first order estimated partial
variances with respect to the polynomial degree. At the fixed
maximum polynomial degree k

Di(k) =

k
r=1

(α̂i
r)

2. (22)

Consider the difference between Di(k + 1) and Di(k):

Di(k + 1)− Di(k) = (α̂i
k+1)

2. (23)
The following procedure is used for determining the maximum
polynomials degree required to achieve sufficiently accurate
values of the partial variances Di’s: for a given accuracy ϵ find k
such that
(α̂i

k+1)
2

Di(k + 1)
< ϵ and

(α̂i
k+2)

2

Di(k + 2)
< ϵ if Di(k + 1) > 10−3,

(α̂i
k+1)

2 < ϵ and (α̂i
k+2)

2 < ϵ if Di(k + 1) ≤ 10−3. (24)
Note, that to avoid isolated zeros we check that not only

contributions of αi
k+1 but also those of αi

k+2 are small. It guarantees
the robustness of the algorithm for the case when the main order
component has only odd or even orders of the polynomials in the
decomposition (8).

For the second order component functions the procedure is
more complex because it requires monitoring convergence in a
2-dimensional space of k and l polynomial orders. Details of this
procedure will be presented elsewhere.

We note that an approximation error δ(f , f̂ ) (13) has other
sources of errors additional to the ones caused by neglecting the
terms higher than order p in the ANOVA–HDMR decomposition.
These are caused by the polynomials being truncated to some
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maximum order and numerical estimation of coefficients α̂i
r(N)

and β̂ ij
kl(N) by MC/QMC integration. Further we reflect this fact in

the notation δ̂ : δ̂ ≈ δ(f , f̂ ).

7. Polynomial chaos expansion with independent random
inputs

In the previous sections the input vector x defined in Hd was
considered either deterministic or uniformly distributed. In the
general context of uncertainty propagation, x is considered as a
random vector and will be denoted X further. The cumulative dis-
tribution function (CDF) for each componentXi, denotedHXi , is sup-
posed to be known. In this case the presented above RS-HDRM
technique can be used after a transformation ofX into a random in-
put U uniformly distributed on Hd is made. This transformation is
performed on a component by component basis, namely by apply-
ing HXi to Xi. Consequently, Ui = HXi(Xi) is uniformly distributed
on Hd for all i and f (X) = f [H−1

X1
(U1), . . . ,H−1

Xd
(Ud)]. Finally, we

apply the RS-HDMR technique to the function composed of f and
the previous transformation.We notice, that the sensitivity indices
derived after the transformation can directly be interpreted on the
initial ‘‘physical’’ variables due to their independence.

The idea of the PCE technique is to expand f (X) using a suit-
able Hilbertian polynomial basis (without prior ANOVA–HDMRde-
composition). For instance, when the input ξ is a standard normal
vector and f (ξ) is square integrable then the multivariate Hermite
polynomials are a suitable basis being orthogonal with respect to
the Gaussian measure. In this case, f (ξ) is expanded as follows:

f (ξ) =

+∞
j=1

aξjψj(ξ), (25)

where ψj are the multivariate Hermite polynomials and aξj are the
decomposition coefficients.

If the input random vector has an arbitrary joint probability dis-
tribution function (PDF) it is in general not possible to transform it
directly into a standard normal or another random vector with a
known distribution. However, when the input vector has arbitrary
independent random components with known CDF, it is possible
to transform each component Xi into a selected random variable Zi
with the same CDF G, (i.e. GZi = G, ∀i) and for which a Hilbertian
basisψi is known.Hence, the choice of theHilbertian basis depends
on the selected measure associated with G. Once the transforma-
tion is made, the transformed function can be expanded using the
selected basis. Formally, Zi = G−1

◦HXi(Xi) has CDF G and inversely
Xi = H−1

Xi
◦ G(Zi) has CDF HXi and the PCE is given by

f (X1, . . . , Xd) = f

H−1

X1
[G(Z1)], . . . ,H−1

Xd
[G(Zd)]


=

+∞
j=1

aGj ψ
1,G
j (Z1) . . . ψ

d,G
j (Zd), (26)

whereψ i,G
j are the univariate polynomials orthogonal with respect

to themeasure given by G and aGj are the coefficients of the decom-
position. Notice that the PCE is not performed on the function f in
its original form but on the function after the transformation. This
technique is known as the generalized PCE [11].

In practice, as shown in (26) the multivariate orthogonal poly-
nomials are expressed as the product of one dimensional ones. The
coefficients aGj can be estimated by MC, QMC or regression meth-
ods. The decomposition needs to be truncated to a suitable order,
i.e. an order offering a reasonable compromise between a good ap-
proximation and a feasible computational time. More details are
given in Section 8.
Notice that if for each CDF HXi a corresponding univariate
orthogonal basis ψHi is known then the PCE can be made without
a transformation as follows [20]:

f (X1, . . . , Xd) =

+∞
j=1

aHj ψ
H1
j (X1), . . . , ψ

Hd
j (Xd). (27)

8. Dependent inputs

In this section we consider two different methods for dealing
with the case of dependent inputs. Further, we use the following
indexation for the PCE:
+∞
j=1

ajψ1
j (X1), . . . , ψ

d
j (Xd) =


γ∈Nd

aγψγ1(X1), . . . , ψγd(Xd). (28)

Similarly to the ANOVA–HDMR decomposition, all terms of the
expansion indexed by γ = (γ1, . . . , γd) in which only one of the
γi’s is not-zero are called the first order expansion terms. All terms
of the expansion indexed by γ = (γ1, . . . , γd) in which only two
different γi’s are not-zero at the same time are called the second
order expansion terms and so on. For a given order, the degree of
the polynomial ψγi(Xi) is the value of the corresponding γi.

We note, that in the case of dependent inputs SI cannot be
computed using the straightforward ANOVA decomposition and
a different approach based on generalization of Sobol’ formulas
should be used in this case [21].

8.1. Transformation from dependent to independent input vector

The main idea of this method is to transformwhen possible the
dependent random vector X into a Gaussian or a uniform vector
with independent components. This transformation is feasible for
instance when the marginal distributions of X and the correlation
matrix ΣX are known. The copula theory [22] is commonly used
to link the structural dependence and marginal CDFs. Sklar’s
theorem [22] gives the following relationship

HX(X) = C

H1(X1), . . . ,Hd(Xd)


, (29)

where HX is the CDF of X and C is the copula associated with X.
C

H1(x1), . . . ,Hd(xd)


is a d-dimensional uniform CDF on Hd with

uniformly distributed margins.
In order to get an independent Gaussian random vector the

following transformation is made: define the transformation T1 :

Rd
→ Rd, whereΦ is a Gaussian distribution function, such that:

ξ̄ = T1(X) =

Φ−1H1(X1)


, . . . ,Φ−1Hp(Xp)


(30)

is a multivariate Gaussian random vector with standard random
marginals. This transformation has been presented in [23] and it is
known as the Nataf transformation. We denoteΣ ξ̄ the correlation
matrix of ξ̄ which is supposed to be positive definite. The latter
is linked to the original correlation matrix ΣX via the following
relationship between correlation coefficients ρX

i,j and ρ
ξ̄
i,j

ρX
i,j =

1
σXiσXj


R2


H−1

i


Φ(ξ̄i)


− µX

i


×

H−1

j


Φ(ξ̄j)


− µX

j


ϕ2

ξ̄i, ξ̄j, ρ

ξ̄
i,j


dξ̄idξ̄j. (31)

It was shown in [24] that the following relationship between both
correlation coefficients can be used:

ρ
ξ̄
i,j = ρX

i,jF(ρ
X
i,j, δ

X
i , δ

X
j ,Hi,Hj), (32)
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where δXi is the coefficient of variation of Xi and the function F ≥ 1
is determined by the least square fitting of polynomial expressions
to exact values computed by numerical integration of Eq. (31).

To obtain a standard Gaussian uncorrelated random vector we
can use the transformation T2 defined as

ξ = T2(ξ̄) = C−1ξ̄, (33)

where C is the Cholesky decomposition matrix ofΣ ξ̄ [25] and ξ is
a standard Gaussian uncorrelated random vector. The use of the
transformation into Gaussian random vector is justified here by
the fact that the mathematical equivalence between uncorrelated
and independent random vectors only stands for Gaussian random
vectors. Hence, the transformation

ξ = TGauss(X) = T2 ◦ T1(X) (34)

allows to get the standard independent Gaussian random vector
ξ from the dependent random vector X. An additional step is
required in order to get an independent random vector uniformly
distributed onHd. It is given by the transformation TUnif defined as:

TUnif(X) = (Φ(ξ1), . . . ,Φ(ξd)). (35)

Once this transformation is applied, the methodology for the
independent Gaussian case presented in Section 7 can be used to
get the following PCE:

f (X) = f ◦ T−1
Gauss(ξ) =


γ∈Nd

aγψγ1(ξ1), . . . , ψγd(ξd). (36)

Notice that by using the Nataf transformation we assume that
the dependence structure of X is given by a Gaussian copula [26].
It is important to note that the Gaussian copula does not have
tail dependence [27]. Therefore, this choice of copula could lead
to misleading results if the real structural dependence of X has
tail dependence [26]. In this case, other copulas such as i.e.
Archimedean can be used, however the application of the method
presented in this section is limited only to the Gaussian copula.

Furtherwewill refer to themethod presented in this subsection
as Method I.

8.2. Method with direct expansion

A mathematical framework for developing polynomial chaos
expansions of any model characterized by any square integrable
function with dependent input variables was proposed in [20].
Let X = (X1, . . . , Xd) be any d-dimensional random vector as-
sociated with the distribution measure νX with the joint PDF hX.
The marginal distributions of random variables Xi are respec-
tively associated with the measure νXi and the PDF hXi . We denote
L2(Rd,R, νX) the space of square integrable functions (equipped
with its Borel field), from Rd into R, with respect to the probability
measure νX. Consider the standard inner product on L2(Rd,R, νX)
defined for all functions in L2(Rd,R, νX) as

E(g1(X)g2(X)) =


g1(x)g2(x)dνX(x). (37)

L2(Rd,R, νX)with the inner product (37) is a Hilbert space.We can
determine a Hilbertian basis of this space, i.e. find a countable set
of orthonormal functions which spans L2(Rd,R, νX). In the same
way we define L2(R,R, νXi) for i = 1, . . . , d equipped with the
standard inner product with respect to νXi .

We denote γ = (γ1, . . . , γd) ∈ Nd a set of indices. Then, for all
x belonging to the support of νX a Hilbertian basis {Ψγ , γ ∈ Nd

} of
L2(Rd,R, νX) is given by

Ψγ(x) =


hX1(x1) . . . hXd(xd)

hX (x)

1/2

ψγ1(x1), . . . , ψγd(xd), (38)
where {ψγi , γi ∈ N} is a Hilbertian basis of L2(R,R, νXi). If the
components of X are mutually independent, then the Hilbertian
basis is simplified to

Ψγ(x) = ψγ1(x1), . . . , ψγd(xd). (39)

The choice of the Hilbertian basis {ψγi , γi ∈ N} depends on the
measure νXi associated with Xi.

As shown in [12], the copula formalism can be used for the
explicit expression of the basis (38). In this case the basis (38)
becomes

Ψγ(x) =
ψγ1(x1), . . . , ψγd(xd)

c

H1(x1), . . . ,Hd(xd)

1/2 , (40)

where c(u1, . . . , ud) = ∂dC(u1, . . . , ud)/∂u1 . . . ∂ud.
Using in the independent or dependent input case the proposed

basis (39) or (38), respectively (or its ‘‘copula equivalent’’ version
(40)) for any function f ∈ L2(Rd,R, νX) the PCE decomposition has
a form:

f (X) =


γ∈Nd

aγΨγ(X), (41)

where the coefficients aγ are given by

aγ = E

f (X)Ψγ(X)


(42)

due to orthonormality of the basis functions (38) with respect to
the joint PDF hX.

We notice that, in the case of an independent random vector
X, the PCE can be written in the same form as the ANOVA–HDMR
decomposition:

f (X) =


u∈P (I)


γ∈Ku

aγΨγ(X), (43)

where P (I) is the power set of I = {1, . . . , d} and

Ku =

γ ∈ Nd, γi > 0 for i ∈ u


. (44)

In the independent input case the ANOVA–HDMR decomposition
is unique and the components of the direct ANOVA–HDMR decom-
position of f are given by

fu(Xu) =


γ∈Ku

aγΨγ(X). (45)

Furtherwewill refer to themethod presented in this subsection
as Method II.

9. Truncation of the polynomial chaos expansion

In practice the polynomial chaos expansion has to be truncated.
Consider a nonempty finite subset A of Nd, called the truncation
set, with cardinality |A|. Then, for any function f ∈ L2(Rd,R, νX)
the PCE approximation of f associated with the truncation A is
given by

f (X) ≈


γ∈A

aγΨγ(X). (46)

Truncation can be done according to the following considerations:

• most models are principally governed by low-order expansion
terms in the sense defined by (28) [12,19]. However, this
assumption is problem dependent.

• PCE with high |A| requires computation of a large number of
polynomial chaos coefficients [11,12,19]. It results in a high cu-
mulative error brought by coefficients approximations. Com-
putation of high order coefficients typically requires a large
number ofmodel evaluations. Thus, in the case of computation-
ally expensive model a truncation with high cardinality can be
prohibitive.



M.M. Zuniga et al. / Computer Physics Communications 184 (2013) 1570–1580 1575
• a high-order expansion can lead to a worse approximation of f
than a low-order one [12,19,28].

In Section 6 we proposed to use a truncation technique based
on analysis of partial variances. All steps of the technique remain
unchanged in the case of Method I as the procedure for estimation
of the truncation order is applied to a system in a transformed
space in which inputs are independent. For Method II we estimate
the truncation order by analyzing values of coefficients aγ using
a procedure described in Section 6, although in this case partial
variances do not have the same meaning as for models with
independent inputs becoming just a sum of a2γ . Other efficient
truncation algorithms were presented in [12,19].

10. Approximation of expansion coefficients

The coefficients of the PCE can be estimated by two differ-
ent methods. The first one, generally known as the projection
method is a direct estimation of the expectation (42) by integra-
tion schemes such as the Monte-carlo [4,6], accelerated Monte-
carlo with Latin Hypercube sampling [29], Quasi Monte Carlo [30]
methods, multivariate Gauss quadrature techniques and Smolyak
sparse quadrature [28]. The second method, generally known as
the regression method is based on estimating the PCE coefficients
by minimizing the mean square error of the response approxima-
tion [11,12,19]. The details are given in the following subsections.

10.1. Projection method

The rate of convergence for the Monte Carlo method is of the
order σf /

√
N , where σf is the standard deviation of f (X) and N is

the number of function evaluations. The convergence rate of MC
methods does not depend on the number of variables d although it
is rather slow. The accelerated Monte Carlo methods are designed
to increase the rate of convergence by reducing the variance of
the Monte Carlo estimator [31]. However, the rate of convergence
remains to be of the order O(1/

√
N).

The full tensor product quadrature [32] and Smolyak sparse
quadrature [28,33] in terms of the required function evaluations
are more efficient than the MC methods for smooth functions of
low and moderate dimensions (d ≤ 20).

The efficiency ofMC integration scheme can be improved by us-
ing LDS instead of random points for sampling. LDS are specifically
designed to place sample points as uniformly as possible. LDS are
also known as quasi random numbers.

For the best known LDS for functions with bounded mix varia-
tion the asymptotic rate of convergence is known to be of the order
O(1/N). Apparently, this rate of convergence is much faster than
that archived by MC.

There are a fewwell-known and commonly used LDS. Different
principles were used for their construction by Halton, Faure, Sobol,
Niederreiter and others. Many practical studies have proven that
the Sobol’ LDS is in many aspects superior to other LDS [34–36].

The Sobol’ LDS was constructed by following the three main
requirements [37]:
1. Best uniformity of distribution as N → ∞.
2. Good distribution for fairly small initial sets.
3. A very fast computational algorithm.

Points generated by the Sobol’ LDS produce a very uniform filling
of the space even for a rather small number of points N , which is
a very important point in practice. This is why it was used in the
present study.

Wenote, that in the projectionmethod coefficients of decompo-
sition are computedusingMC/QMCmethods, hence points used for
the MC/QMC integration are not used to directly fit a metamodel
unlike in other types of emulators or in the case of the regression
method, so there is no danger of ‘‘overfitting’’.
10.2. Regression method

The PCE coefficients estimation by the regression method
depends on the possibility to invert a N × |A| matrix, which is
invertible if the number of model evaluation is sufficiently large.
Practical experience shows that N = k|A| with k = 2, 3 can be
sufficient [19]. Thus the number of model evaluation is strongly
dependent on |A|.

Different methods have been proposed to build a sparse
polynomial expansion in order to minimize N and the discrepancy
between f and its polynomial chaos expansion approximation
[19,12].

11. Numerical results

11.1. Independent case

This subsection presents the results of SI calculation using
RS/QRS-HDMR methods and comparison of RS/QRS-HDMR meth-
ods with the Sobol’ method for a test function with independent
inputs. We also present the comparison between the exact model
and its HDMRmetamodels. Component functions up to the second
order were used in all ANOVA–HDMR expansions.

We consider the so-called Ishigami function. It is a highly non-
linear three dimensional function proposed in [16]:

f (x) = sin(πx1)+ 7(sin(πx2))2 + 0.1π4(x3)4 sin(πx1). (47)

Here xi, i = 1, 2, 3 are uniformly distributed on the interval
[−1, 1].

The advantage of using analytical test functions is that not
only SI but the values of the polynomial coefficients in (10)–(11)
can be computed analytically. In this way, the relative effect of
the numerical integration error and the error of the polynomial
approximation can be distinguished.

If the number of sampled points used to determine the polyno-
mial coefficients is not sufficient for the convergence, oscillations
in the profiles of approximated component functions around the
exact values can occur [4]. A comparison of analytical profiles for
the Ishigami functionwith RS-HDMRprofiles (left) andQRS-HDMR
profiles (right) presented in Fig. 1 shows that at smallN metamodel
profiles indeed exhibit oscillations. These oscillations are reduced
and metamodel profiles converge to analytical ones as the num-
ber of sampled points grow. The superior performance of the QMC
method is clearly visible: the agreement between metamodel pro-
files and analytical profiles is much closer at all presented values
of N . Similar results were obtained for all other variables.

Although the test function (47) is only three dimensional it nev-
ertheless can be quite difficult for HDMR metamodelling because
of its high nonlinearity. Polynomials up to the third order, which
were typically used in RS-HDMRmodeling in the literature, are not
able to give a good mapping of the component functions.

The algorithm presented above was used to estimate the suffi-
cient (optimal for the given threshold) number of sampled points
Nopt and the optimal polynomial orders k for the first order compo-
nent functions (8). The estimated Nopt for the QRS-HDMR method
was equal to 1024, while for the RS-HDMR method Nopt was four
times higher.

We note that for approximation of the same problem authors
of [12] used the regression method for estimating coefficients of
decomposition and in this case only 194 sampled points were
needed. Indeed, the projectionmethods based onMC or QMC inte-
grations are not as efficient in low dimensions as other integration
methods such as quadrature formulas or the regression method.

First order SI (19) can be approximated using RS/QRS-HDMR
with the numerically calculated values for αi

r coefficients at the
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Fig. 1. The output of the HDMR model using MC (left) and QMC (right) numerical integration as a function of x2 (x1 = x3 = 0.15). Approximations with different numbers
of sampled points are used. Ishigami function. The maximum polynomial order is 8.
Fig. 2. First order SI Si(k) obtained using the analytical values of polynomial
coefficients as functions of maximum polynomial orders k for the Ishigami function
(dots). The horizontal lines show the analytical values of Si .

fixed polynomial order k:

Si(k) =

k
r=1
(α̂i

r)
2

D
. (48)

Si(k) ≤ Si provided that the values of α̂i
r are computed with

high accuracy. Fig. 2 illustrates the procedure for defining themax-
imum optimal polynomial orders. It can be seen that polynomials
up to the third degree give acceptable results for the variable 1,
up to 8–10th degree for the variable 2. Values of S3 = 0, hence
all S3(k) = 0. Fig. 3 shows how the output of the HDMR model
changes with the degree of polynomials in decomposition of f2(x2)
when all other polynomial degrees are fixed at the optimal values.

Fig. 4 compares the efficiency of the Sobol and RS/QRS-HDRM
methods for evaluation of SI. The total number of function
evaluations required for calculation of a full set of main effect and
total SI for the Sobol method is NF = N(d + 2). To compute SI
using RS-HDMR or QRS-HDMR only NF = N function evaluations
are required, which is d + 2 times less than that for the original
Sobol’ method for the same number of sampled points. The root
mean square error (RMSE) versus the number of sampled points
N is calculated. To reduce the scatter in the error estimation the
values of RMSE were averaged over K = 20 independent runs. For
the MC method all runs were statistically independent. For QMC
integration for each run a different part of the Sobol’ sequence
was used. RMSE can be approximated by a trend line cN−α . Values
(−α) are given in brackets on the plots of RMSE versus N . Note
that the values are shown as functions of model evaluations NF ,
which are equal to N(d + 2) for the Sobol method and N for the
RS/QRS-HDMRmethods. It can be seen that theQMCbasedmethod
has much higher convergence rates than the MC based one. The
RS/QRS-HDRM methods show much faster convergence than the
Sobol method. However, in practice RS-HDMR or QRS-HDMR can
only provide the first and the second order SI.

11.2. Dependent case

In Sections 8.1 and 8.2 we presented two different methods to
derive a PCE for dependent inputs. This subsection presents the
comparison between these methods. We consider two different
test functions.

11.2.1. Three dimensional hyperplane function
The first test function is the three dimensional hyperplane

function defined as:

f (X) = X1 + X2 + X3, (49)

where Xi’s are Gaussian variables with zero mean and the
correlationmatrixΣ H̄ . It is assumed that only ρH̄

2,3 > 0while other
correlation coefficients are equal to zero.

Fig. 5 shows a comparison between the original output data and
the metamodel approximation using Method I. Notice that in all
comparison plots sampled points used for building metamodels
and for comparison purposes are different. We present the results
for just one value of ρH̄

2,3 = 0.5. The results for other values ρH̄
2,3 =

0.0 and ρH̄
2,3 = 0.9 are very similar to those presented in Fig. 5. The

points are centered around the y = x axis which illustrates that a
metamodel approximation is accurate. We also compute log2(δ̂)
where δ̂ is the MC estimation of (13). For the three considered
values ofρH̄

2,3 log2(δ̂) ∼ −10. The constructedmetamodel contains
only polynomials of the first order.

Fig. 6 presents the scatter plot of f̂ (X) versus (X1, X2) for the
three different values of ρH̄

2,3. Variable X1 which is independent of
the two other variables, is fixed. The plot shows the approximation
given by the metamodel and its dependence on ρH̄

2,3.
The results for Method II are presented in Fig. 7. A Gaussian

copula is used, ρH̄
2,3 is fixed at 0.5. We compare the real output

data versus metamodel approximation. The left plot corresponds
to the case when only the first order expansion terms in the PCE
are taken into account, themiddle – one up to the second order and
the right one – up to the third order. In this case, it is not sufficient
to consider only the first or the second order expansion terms for
building the metamodel. Indeed, by construction the basis (40)
introduces higher order expansion terms when input variables are
dependent. The log2(δ̂) values are equal to−3.4,−5.1,−6 from left
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Fig. 3. The output of the HDMR model using MC (left) and QMC (right) numerical integration as a function of x2 (x1 = x3 = 0.15) at N = 1024 at different orders of
polynomials for f2(x2) for the Ishigami function. Other polynomial degrees are fixed at their optimal values.
Fig. 4. RMSE of SI versus NF for variable 2, test function (47) for the RS/QRS-HDMR
and the SobolmethodusingMC/QMC integration. Straight lines are fitted trend lines
cN−α

F . The horizontal dashed line shows the 5% threshold in the relative error.

Fig. 5. Original output data versus metamodel approximations for the hyperplane
test function. Method I. N = 1024. ρH̄

2,3 = 0, 0.5, 0.9.

to right, correspondingly. We notice that the value of the lowest
error is still higher than that obtained with Method I.

Fig. 8 presents the same result for ρH̄
2,3 = 0.9. We observe that

for the same value ofN higher values of the correlation coefficients
result in higher order expansion terms and higher degrees of
polynomials. For the same N , the polynomial decomposition
coefficients of high orders and degrees are less accurate than those
for the low order ones. It results in lower accuracy of metamodel
approximations. Indeed, for this case log2(δ̂) values are equal to
Table 1
log2(δ̂) for Methods I and II at different orders of expansion terms and values of the
correlation coefficient ρ.

ρ 0 0.5 0.9

HM1O1 −10.0 −10.0 −10.0
HM2O1 −10.0 −3.4 −3.1
HM2O2 n/a −5.1 −3.2
HM2O3 n/a −6.0 −4.6
IM1O2 −7.0 −6.3 −7.4
IM2O3 −6.9 −4.3 −2.1

−3.1, −3.2, −4.6 from left to right, correspondingly. They are
significantly higher than the values of δ̂ for the case of ρH̄

2,3 = 0.5.

11.2.2. Ishigami function with dependent inputs
The second test function is the Ishigami function defined by (47)

with dependent input variables and the correlation matrixΣ Ĩ . We
suppose ρ Ĩ

1,3 > 0while all others correlation coefficients are equal
to zero.

Fig. 9 presents the original output data versus metamodel built
using Method I. ρ Ĩ

1,3 is taken to be equal to 0 and 0.9. One can
see that the metamodel approximation is very accurate: log2(δ̂) is
equal to−7.0 and−7.4 from left to right, correspondingly. The best
fit is obtained with the second order expansion terms.

Fig. 10 shows a scatterplot of f̂ versus X1 and X3 at X2 fixed at
its mean value for ρ Ĩ

1,3 = 0 and 0.9. This plot shows the effect of
correlation on the output.

Fig. 11 shows the original output versus metamodel built using
Method II. Up to the third order expansion terms and high polyno-
mial degrees are required. The same expansion terms and polyno-
mial degrees have been chosen for two values of ρ Ĩ

1,3 equal to 0.5
and 0.9. For the same value of N , the approximation is less accu-
rate than that obtained with Method I. log2(δ̂) is equal to−4.3 and
−2.15, from left to right correspondingly. When ρ Ĩ

1,3 increases the
approximation accuracy deteriorates for the same chosen expan-
sion terms, polynomial degrees and N .

Table 1 presents the values of log2(δ̂) for different values of
the correlation coefficient ρ. We denote HMiOj the value of log2(δ̂)
for the hyperplane test function with Method i and the maximum
order expansion terms j ∈ {1, 2, 3}. For the Ishigami function we
use a similar notation with the first letter H replaced by I : IMiOj.

The comparison shows that Method I outperforms Method II
for models of relatively simple structure such as hyperplanes.
Indeed, linear or quasi-linear models do not need to account for
high order expansion terms even if the inputs are correlated. The
application of Method I for the hyperplane test results in a linear
approximationmodelwhichmakes ametamodel very efficient and
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Fig. 6. Scatterplot of f̂ (X) versus X2 and X3 for the hyperplane test function. Method I. X1 is fixed to its mean value. N = 1024. ρH̄
2,3 = 0, 0.5, 0.9.
Fig. 7. Original output data versus metamodel approximations for the hyperplane test function. Method II. N = 1024. ρH̄
2,3 = 0.5. (left) Metamodel with the first order

expansion terms. (middle) Metamodel with up to the second order expansion terms. (right) Metamodel with up to the third order expansion terms.
Fig. 8. Original output data versus metamodel approximations for the hyperplane test function. Method II. N = 1024. ρH̄
2,3 = 0.9. (left) Metamodel with the first order

expansion terms. (middle) Metamodel with up to the second order expansion terms. (right) Metamodel with up to the third order expansion terms.
Fig. 9. Original output data versus metamodel approximations for the Ishigami test function. Method I. N = 1024. ρ Ĩ
1,3 = 0, 0.9.
accurate, whereas the application ofMethod II results in high order
expansion terms in the PCE brought by the dependence structure.
The second test model is highly nonlinear. Method I still performs
better than Method II but the difference in efficiency between the
two methods is smaller: Method II requires up to the third order
expansion terms, while the Method I—up to the second order.
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Fig. 10. Scatterplots of f̂ (X) versus X1 and X3 for the Ishigami function. X2 is fixed at its mean value. Method I. N = 1024. (left) ρ Ĩ
1,3 = 0, (right) ρ Ĩ

1,3 = 0.9.
Fig. 11. Original output data versus metamodel approximations for the Ishigami test function. Method II. N = 1024. (left) ρ Ĩ
1,3 = 0.5, (right) ρ Ĩ

1,3 = 0.9.
12. Conclusions

A modified version of the RS-HDMR method with enhanced
efficiency is presented. Comparisons shows that the QMC-HDMR
method based on Sobol’ sequences significantly outperforms
RS-HDMR. RS/QRS-HDMR based methods are much more efficient
than the Sobol method in evaluations of main effect SI. Tests
also show that the developed methods for choosing optimal order
of polynomials and the number of sampled points are robust
and efficient. They provide good accuracy for both SI evaluations
and model approximations with a reasonable number of function
evaluations.

We extended the RS/QMC-HDMR methods for the case of
models with dependent inputs and compared two different ap-
proaches for dealing with correlated inputs. The tests show that
for models with low interaction orders the method with the
transformation from dependent to independent inputs (Method I)
outperforms the method with the use of the general basis func-
tions (Method II). However, the advantage of Method I decreases
for models with high interaction orders. Method I is based on the
assumption that the inputs variables are linked by a Gaussian cop-
ula whereas Method II can be applied with any copula, which can
be beneficial in applications where probability distribution func-
tions have fat tails.
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