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From the project  

Task 1.2: Mining data for behavioral modelling (M1-12, Lead: CNR, Other: UNINA, WMG, THAB). Causal 

relationships between external and human factors, and safety-critical driver behaviors from NDS and DSE 

data are sought at the level of specific driving situations. Data mining effort seeks to find (combinations of) 

features in a way that goes beyond first order correlations. Unsupervised learning tools are used and 

implemented to investigate about the data sets. Clustering techniques and (generalized) linear mixed effect 

models are used. Feature selection via regularized regression tools (e.g., LASSO, elastic net), Random Forests, 

subset selections, and global sensitivity analysis are used. Results are invaluable for both WP2 and WP4, and 

are part of the systematic sensitivity auditing approach we take in this project. This task supports Task 1.4 in 

terms of quantitative evidence (a) for which hypotheses may be a priori meaningful to test (and which not); 

and (b) for prioritizing specific modelling requirements. 

Ongoing work  
Based on existing experience at the consortium on data mining in the context of accident analysis (Montella et 

al. 2012) and on global sensitivity analysis (Saltelli et al. 2008; 2021; Puy et al. 2022) a combination of data 

mining techniques in being geared up for the analysis […data source… naturalistic driving data]. These include 

clustering techniques and (generalized) linear mixed effect models, feature selection via regularized regression 

tools (e.g., LASSO, elastic net), Random Forests, and subset selections. Additionally global sensitivity analysis 

methods are used for selecting features, following recent developments on the use of SA of and for data mining 

(Tunkiel, Sui, and Wiktorski 2020; Antoniadis, Lambert-Lacroix, and Poggi 2021), including using the concept 

of mean dimension (Hoyt and Owen 2021). Note also section 3.4 of a recent position paper on sensitivity 

analysis (Razavi et al. 2021). Interesting as a possible linkage sensitivity analysis - sensitivity auditing also 

this paper (Bénesse et al. 2021).  

Specifically i4Driving will test on machine learning the total sensitivity indices (Homma and Saltelli 1996), 

that have already found use in an adjacent field – model selection in regression (Becker, Paruolo, and Saltelli 

2021). 

To be noted also the use of sensitivity analysis as a contribution to model interpretability (Iooss, Kenett, and 

Secchi 2022)  

Additional avenues for research are the use of pre-integration techniques for SA (Liu and Owen 2022) based 

on Paul Constantine's active subspace decomposition (Constantine, Dow, and Wang 2014). We shall also test 

new measures of sensitivity analysis based on the concept of discrepancy (Puy and Saltelli 2022) for the 

machine learning investigation of i4Driving.   

Works acknowledging i4Driving  
The project is acknowledged in a published work (Di Fiore et al. 2022), in a preprint (Saltelli and Puy 2022) 

being revised for Humanities and Social Sciences Communication, and in a submitted work (Saltelli and Puy 

2023).   

Others  
CNR is still in the process of recruiting two additional researchers to work on the project. According to the 

present procedures, these resources will join us in February 2023. 



Sensitivity analysis: a short introduction  

Summary  
Sensitivity analysis (SA) studies how much the uncertainty of a model output depends upon its inputs. 

Though it is generally agreed in existing guidelines that uncertainty and sensitivity analyses are both crucial 

for the validation or verification of a model, their application is hampered by practical difficulties, scarce 

awareness, and at times reluctance to expose the weakness of a model.  

We present here global sensitivity analysis, mainly through one class of global SA methods known as 

‘variance-based’ – considered by most practitioners as a recommended practice - and offer pointers on 

additional methods. We also suggest several hints for a successful and effective use these of these 

techniques.   

The topic  
Consider the following definitions:  

 Uncertainty analysis (UA): The quantification of the uncertainty in model output 

 Sensitivity analysis: The study of the relative importance of different input factors on the model 

output uncertainty 

As we shall discuss in this entry, the two analyses are linked.  

To a natural scientist trained in calculus, sensitivity analysis may evoke the derivative of a function of 

interest with respect to its inputs. So if the function or model has the form 𝑦 = 𝑓(𝑥1, 𝑥2, …  𝑥𝑘), where 𝑦 is 

the scalar output and 𝑥1, 𝑥2, …  𝑥𝑘 are input factors, the sensitivity of 𝑥𝑖 is simply 
𝜕𝑦

𝜕𝑥𝑖
⁄ . Economists 

likewise use elasticities such as 
𝑥𝑖0

𝑦0

𝜕𝑦
𝜕𝑥𝑖

⁄  where 𝑥𝑖0 and 𝑦0 are averages. In most ecological studies, the 

factors may vary considerably, from a few percent to orders of magnitude, and likewise will do the output, 

because of error propagation. Hence, to an ecologist, what happens to 𝑦  in a single point of the 

multidimensional space of existence of 𝑥1, 𝑥2, …  𝑥𝑘 may be uninformative; ecologists will want sensitivity 

measures that are global, i.e. concerned with the whole space of variability of the inputs.  

When the overall uncertainty in 𝑦 is modest, it is not so important to ascertain where this is coming from. 

Conversely, if 𝑦 spans orders of magnitude, then SA becomes indispensable to understand the system 

studied and pinpoint the factor(s) that convey the most uncertainty. Such information might help guiding 

further research by highlighting where efforts on data collection should focus to maximize the reduction of 

uncertainty in the output. 

Variance-based sensitivity analysis 
The starting point for UA is the analytic or computer-coded form of 𝑓(𝑥1, 𝑥2, …  𝑥𝑘), the model, and the 

probability distributions of the inputs, 𝑝1(𝑥1), 𝑝2(𝑥2), … 𝑝𝑘(𝑥𝑘). Although determining these probability 

distributions is preliminary to any analysis, it is often the most important and expensive part of the work. 

This stage of elicitation may involve experts from several disciplines and/or the collection of a considerable 

amount of data. Monte Carlo based UA consists in a series of simulations. In each of these simulations the 

value of each input factor is sampled from its distribution. The corresponding output value produced is 

recorded and the statistical properties of the output distribution are finally analysed. 

We now concisely describe the SA variance-based methods. A handbook is available for a more detailed 

treatment of the topic (Saltelli et al. 2008). These measures are mostly due to the work of Russian 

mathematician Ilya M Sobol’ (Sobol’ 1993) 



We take the variance of the output as the target of the analysis, and following statistical theory, we 

decompose it following the ANOVA (ANalysis Of VAriance) scheme:  

(1)       𝑉(𝑦) = ∑ 𝑉𝑖1

𝑘
𝑖1=1 + ∑ 𝑉𝑖𝑗

𝑘
𝑖1𝑖2,𝑖1<𝑖2

+ ⋯ + 𝑉𝑖1𝑖2…𝑖𝑘,𝑖1<𝑖2<⋯<𝑖𝑘
  

In plain English this says that the unconditional variance of 𝑦 is decomposed in terms relative to an 

individual factor, plus terms (named interactions) pertaining to two factors, three factors, and so on until 

the last single term due to interactions among all factors. Hence, we have 𝑘 first order terms, (
𝑘
2

) =

𝑘(𝑘−1)

2
 second-order terms (corresponding to all the possible combinations of interactions between two 

factors), (
𝑘
3

) =
𝑘(𝑘−1)(𝑘−2)

6
 third-order terms and so on until a single term of order 𝑘. A model with 𝑘 = 3 

factors has three first order terms, three second-order ones and one third-order one. The total number of 

terms is 2𝑘 − 1 = 7 for this model. Dividing Equation 1 by 𝑉(𝑦) and swapping the two terms of equation 

(1) one obtains:  

(2)       ∑ 𝑆𝑖1

𝑘

𝑖1=1

+ ∑ 𝑆𝑖𝑗

𝑘

𝑖1𝑖2,𝑖1<𝑖2

+ ⋯ + 𝑆𝑖1𝑖2…𝑖𝑘,𝑖1<𝑖2<⋯<𝑖𝑘
= 1 

The 𝑆‘s are the desired sensitivity coefficients, the objective of the estimation procedures of variance based 

SA methods. Without proof, we add here a few notes:  

 The first order term 𝑆𝑖 is identical to the Pearson correlation ratio 𝑖
2:  

(3)        𝑆𝑖 = 𝑖
2 = (

𝑉(𝐸(𝑦|𝑥𝑖))

𝑉(𝑦)
) 

In this expression the mean variance is taken over all factors but 𝑥𝑖, which is kept fixed, while the outer 

variance is taken over all possible values of 𝑥𝑖, e.g. in a more verbose notation  

(3𝑎)        𝑆𝑖 = 𝑖
2 = (

𝑉𝑥𝑖
(𝐸𝑥~𝑖

(𝑦|𝑥𝑖 = 𝑥𝑖
∗))

𝑉(𝑦)
) 

In other words, Equation (3) computes the mean of a moving average, see Figure 1.  

 

[Figure 1 here]: Scatterplots with moving averages (red). The straight line is the standardised regression 

coefficient of 𝑦 on 𝑥𝑖, the discontinuous line is the moving average 𝐸𝑥~𝑖
(𝑦|𝑥𝑖).  



 While one generally estimates all the first order terms, the higher order terms are not often 

computed. For a system with ten factors, there would be 45 second order terms and 1,023 in total, 

simply too many to look at. Practitioners compute a total sensitivity index 𝑇𝑖 which is written as    

(4)        𝑇𝑖 = (
𝐸(𝑉(𝑦|𝑥~𝑖))

𝑉(𝑦)
) 

𝑇𝑖 can be computed with a single estimate, without knowing all terms Equation (2).  In Equation (4) the 

inner mean is taken over 𝑥𝑖 while keeping all other factors 𝑥~𝑖 fixed, and the outer mean is taken over 𝑥~𝑖. 

 𝑇𝑖 is the sum of all terms – from the first to the 𝑘𝑡ℎ, that include factor 𝑥𝑖. While the sum of the 𝑆𝑖 is always 

less or equal to one, that of the  𝑇𝑖 can be larger than one. For a model with three factors  𝑇1 =  𝑆1 +  𝑆12 +

 𝑆13 +  𝑆123 with similar formulae for  𝑇2 and  𝑇3. 

 While Equations (3) and (4) seem to suggest a complex Monte Carlo estimation based e.g. on 

nested loops, Monte Carlo estimation of both indices is straightforward and based on a single 

Monte Carlo loop. These formulae can be found in Saltelli et al. (2008), and a discussion is in  

Saltelli et al. (2010).   

 For most applications in ecology, it is sufficient to compute the Si and the Ti. 

If all 𝑆𝑖’s are equal to the corresponding  𝑇𝑖’s the model is said to be additive, i.e. without 

interactions.  

 This information is considerably superior to that offered by the derivatives 
𝜕𝑦

𝜕𝑥𝑖
⁄   because it 

captures interactions among factors. 

 One see often in the literature SA done via incremental rations such as 
𝑦

𝑥𝑖
 where the increment 𝑥𝑖 

are taken one at a time (OAT), always stating from a central (nominal) point in the space of the 

𝑥1, 𝑥2, …  𝑥𝑘. This approach appears self-evident and ‘safe’ in the sense that, if a model crashes 

during the SA, one knows which factor is the responsible. However, OAT has many flaws both in 

terms of design (one should not always move from the same point but try many points to fully 

explore the range of variability of the model) and statistical property (it completely misses 

interactions), and hence it should not be used (Saltelli et al. 2019; Saltelli and Annoni 2010). A local 

SA – run without a Monte Carlo UA, may offer an illusory reassuring image of the predictive 

capacity of a model. 

 Variance based methods offer the following advantages: 

o They are grounded in statistical theory,  

o They decompose the variance into sets of factors, i.e. one can rewrite Equation (2) as 𝑆𝑢 +

𝑆𝑣 + 𝑆𝑢𝑣 = 1 where factors 𝑥1, 𝑥2, …  𝑥𝑘 have been partitioned in two groups 𝑢 and 𝑣, 

o They are easy to interpret; e.g. Equation (4) is the fractional variance that would be left on 

average if all factors but 𝑥𝑖 could be fixed, and   

o 𝑆𝑖’s and 𝑇𝑖’s can be linked to well-defined experimental settings – e.g. in order to decide if a 

variable can be fixed one need to use 𝑇𝑖  and not 𝑆𝑖. All this is treated in Saltelli et al. 

(2008).  

Sensitivity analysis in practice 
We pause now with the mathematics of SA and move to its philosophy with a series of suggestions for the 

ecologist practitioner. 

Chose one and only one output of interest. Since a model may produce many outputs (e.g., time-series, 

spatially-distributed), we suggest to run SA only on the output that helps answering the question posed by 

the analysis. E.g. if one is examining soil contamination, a summary measure such as the fraction of the 

area where a threshold is exceeded might do the job better that many tables of sensitivity indices.  



Be open to the possibility that the model produces uncertainties so wide as to make its predictions 

irrelevant. If this happens, it could simply mean that the quality of the evidence feeding into the model 

does not allow meaningful estimates to be produced. One should then change the model or the question 

asked from it. We recommend this approach to tame ‘modelling hubris’, e.g. the temptation to develop 

larger and larger models (Saltelli et al. 2020), see Figure 2.  

 

 

 

 

[Figure 2 here]. The conjecture of O’Neil (O’Neill 1971; Turner and Gardner 2015) suggests that while 

developing a model into more and more complex formulation the error initially decreases as the model 

becomes a better match to data, then it worsens due to the uncertainty cascade effect, i.e. the 

accumulation of error as more and more factors are included. In data analysis this corresponds to the two 

opposing effects of under- and over-parameterization. See also (Saltelli 2019). 

Consider extending the set of input factors using triggers. If one is uncertain about epistemic features 

of the model – e.g. what formula to use for a particular phenomenon in the model, a trigger may allow one 

to select two or more formulae ‘at runtime’ – e.g. if 𝑥𝑖 < 0.5 then choose formula A, if 𝑥𝑖 ≥ 0.5 use 

formula B. The same may apply to different grid resolutions, choice of algorithms in the model, and so on. 

The effect of triggers on the model output should be examined jointly with parametric uncertainties to 

capture possible interaction effects.  

Why running a model just once? In the process of building a model, time and effort can be minimized by 

running systematically the model in Monte Carlo simulations: instead of executing the model once, execute 

it one hundred times, or even maybe only ten. Interesting discoveries or question may arise: 

 Bugs can be detected more quickly and fixed, instead of carrying them forward in the model 

building.  

 An addition to a model makes no change to the output in none of the points tested; is the addition 

necessary? 

 An addition makes a change which exceed expectation; why was this the case?   

Avoid lying with SA. It is said that one can lie with statistics. One can lie with SA by varying only some 

factors, implicitly assuming that all other are perfectly known. In an adversarial setting, this risk being 

exposed by the opposing party. Scarce attention to uncertainties ultimately erodes trust in modelling. It 

happens frequently that models run to produce point estimate are revealed as non-conservative when 

uncertainties are properly plugged in (Puy, Lo Piano, and Saltelli 2020). An OAT approach is also vulnerable 



to deconstruction for the reasons discussed above. Another way of making a perfunctory SA is to bypass 

the stage of careful appraisal of the 𝑝1(𝑥1), 𝑝2(𝑥2), … 𝑝𝑘(𝑥𝑘) and perform an analysis where all factors 

have the same uncertainty, e.g. 5% or 10%. These analyses are a case of GIGO, garbage in, garbage out, as 

instances where all factors are equally uncertain are possibly non-existent in ecology.    

Consider via negativa.  Some authors, including us, recommend using models also to disprove rather than 

to prove a give thesis (Oreskes 2010; Oreskes, Shrader-Frechette, and Belitz 1994; Saltelli and Giampietro 

2017). Via negativa can provide valuable insights because:  

 ‘Wrongs’ are more evident than ‘rights’ 

 Knowledge grows by subtracting what cannot be  

 “Actions that remove are more robust than those that add because addition may have unseen, 

complicated feedback loops” (Taleb 2012).  

Other methods: The literature offers several other interesting methods for sensitivity analysis. When for 

some reasons one is not interested in the variance of the output, e.g. because its distribution is very 

skewed or long-tailed, then one may resort to moment-independent measures. These permit e.g. ranking 

factors based on how – fixing them – affects the entire probability distribution function - rather than just its 

variance. These measures are named moment-independent (Borgonovo and Iooss 2016).  

Shapley coefficients used by economists can be related to the sensitivity coefficients just discussed (Owen 

2014). Many practitioners use the method of Morris (Morris 1991), which is also close to the total 

sensitivity index 𝑇𝑖 and is recommended when only few simulations can be performed. Morris needs more 

modelling assumptions than 𝑇𝑖 and is more cumbersome to interpret as it produces two measures for each 

factor. For this we would rather suggest 𝑇𝑖 at low sample size rather than Morris (Campolongo, Saltelli, and 

Cariboni 2011).     

Large, CPU-intensive models: Variance-based indices are rather expensive to compute in terms of 

number of simulations; computing all the 𝑆𝑖’s and all the 𝑇𝑖’s may come to a cost of 𝑁(𝑘 + 2) where 𝑁 may 

be of the order of hundreds or thousands. When the model cannot afford this number, one may use 

emulators, replacement models that run cheaply. See for an example (Schöbi, Sudret, and Wiart 2015).   

Other readings: Razavi et al. (2021) describes future orientations for SA. Recent reviews are Norton (2015) 

and Wei et al. (2015).  

A worked example:  We conclude this voice with a worked example of UA and SA. The Bateman equations 

are a simple model describing radioactive chain decay – or ecological transfer of a pollutant between 

compartments without feedback terms. Here 𝑥𝑖 is the concentration of the pollutant in the i-th 

compartment:  

(5)  
𝑑𝑥1

𝑑𝑡
= −1𝑥1 

        
𝑑𝑥2

𝑑𝑡
= −2𝑥2 + 1𝑥1 

        … 

        
𝑑𝑥𝑘

𝑑𝑡
= −𝑘𝑥𝑘 + 𝑘−1𝑥𝑘−1  

Whose solution e.g. for the last term in the chain is  

(6) 𝑥𝑘 =
𝑥𝑘

0

𝑘
∑ 𝑖𝑖𝑒−𝑖𝑡𝑘

𝑖=1  ; 𝑥𝑘
0 is the amount at time equal zero, 𝑥𝑗

0 = 0 for 𝑗 < 𝑘 and  



      𝑖 = ∏
𝑗

𝑗−
𝑖

𝑘
𝑗=1,𝑗≠𝑖  

 

The concentration 𝑥𝑘 of the pollutant in the final compartment thus depends on the uncertainty in lambda, 

which we describe with a log-uniform distribution with support (102, 10) to make all rates equally 

uncertain. We set the number of compartments at 𝑘 = 3 and 𝑥1 = 100. 

[Figure 3 here]: The Bateman equations; a) Dynamics for 𝑘 = 3 and𝑡 = 20. b) Uncertainty analysis. c) 

Sensitivity analysis.  
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