Computer Physics
Communications

ELSEVIER Computer Physics Communications 117 (1999) 52-61

On the use of variance reducing multipliers in Monte Carlo
computations of a global sensitivity index
I.M. Sobol’ !, Yu.L. Levitan

Institute for Mathematical Modelling of the Russian Academy of Sciences, 4 Miusskaya Square, Moscow 125047, Russian Federation
Received 12 March 1998

Abstract

First report of an attempt to apply variance reducing multipliers in Monte Carlo estimations of global sensitivity indices.
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1. Global sensitivity indices

Assume that the model under investigation is described by a square-integrable function f(x), where x =

(x1,...,x,) and each x; varies from O to 1. So x € I" — an n-dimensional unit cube. All the multidimensional
integrals below are from 0 to 1 for each variable.
Denote by y a specified set of m variables x; , ..., x;, and let z be the set of n — m complementary variables,

so that x = (y,z), vy € I", z € I"7", Let x’ be another point x’ € I", x' = (v, 7).
Global sensitivity indices for y and z were introduced in [1], also in [2-4]. Their definition includes four
integrals,

fo=/f(x) dx. Dy=/f(x)f(y,1’)dxdz’—fS,

D:/ﬂ(x) dx - f§. Dz=/f(x)f<y’,z)dxdy’—fé,

that, in most general situations, can be estimated by the Monte Carlo method [5].
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Definition
S,=D,/D, S.=D./D
and
SU=1-S, S.=1-5-5.

We recall that 0 < §, < 8 < 1, and that S, = S = 0 means that f(x) does not depend on y while
Sy = S;f" =1 means that f(x) depends on y only and does not depend on z.

Remark. An equivalent definition was given in [6]. Consider uniformly distributed independent random points
7,1’ in I and £, ¢’ in "™, Then the global sensitivity indices are equal to correlation coefficients,

S;~=r[f(ﬂ»§),f(ﬂ»§')l ’ S:=r[f(na{)vf(7’l9§)]

2. Variance reducing multipliers

Consider the problem of numerical estimation of an absolutely convergent n-dimensional integral,

I= /so(x)p(X) dx,

G
where p(x) is a given distribution density (that is, p(x) > 0 and fp(x) dx =1). Let ¢ be a random point

G
defined in G with density p(x). Then the integral is equal to the mathematical expectation / = Mg(¢) and a
crude Monte Carlo estimator,

1 N

can be used for evaluating /. Here &1, ..., ¢y are independent copies of &; the stochastic convergence 8y RNy
as N — oo follows from the law of large numbers.

We assume that the variance Dg(€£) is finite. Then according to the central limit theorem the variable 8y is
asymptotically normal and the probable error at large N is

wy = 0.6745 (Dg(£) /N)'"/?.
We recall that wy shows the order of magnitude of the approximation error |6y — I|,
P{|0N —I| < WN} =~ P{lHNWIJ > WN} =~ 0.50.

(In other words, (8y — wy,8x + wy) 1s a 50% confidence interval for 1.)
Assume that a function a/(x) is similar to f(x) and Ma(£) = 1, Da(§) < oo. Sometimes a(x) is called
an “easy function” or a “reference function”. The new estimator investigated in [7] is

0}:/ = HNKN N

with
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N

1
kv= A+ (=5 D alé).

i=1
Clearly, for any A the estimator is consistent: 8y LNy as N — oo; but it is biased,
Moy =1+0(N").
However, a special choice of A implies a reduction of variance,
ND@y = (1 - r")De(&) +0(N7'),
instead of

NDOy =De(£),

where r is the correlation coefficient r = r(@(£), a(£)).
The best value of A is

A=1+

Ao—1 . Me(&a(®)
Date) " N ML

For large N, this choice cannot be worse than A=0or A= 1.
The constant Ay can be estimated from a relatively small number of trials Ny,

No No
Ao~ Y el€palé) /Z e(&)) .
J=1 Jj=1
Remark. A variance reducing technique called weighted uniform sampling suggests a consistent estimator
Oy = Oy/ky Wwith A=0.
According to [8], for this estimator at large N,
NDBy =D [¢(£) — [a(£)] +O(N7").
Assertion. An inequality holds,
Dle(&) — la(£)] 2 (1 = r*)De(é).
Proof. We begin with an evident relation
(ry/Dg — IVDa)? > 0,
which is equivalent to
rZDgo - 2r1\/ﬁg;\/m+ I"Da >0.
On the right and on the left add (1 — 7?)Dg. Then
Do — 2ri\/DevDa + I’Da > (1 — r})De.

The left-hand side is equal to D[¢ — l«].
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3. Computation scheme for global sensitivity indices

In order to avoid losses of accuracy, it was recommended in [1] to precompute roughly fo, and to consider
f(x) — fo instead of f(x). Then the new f; will be near zero. In this situation the variance reducing multipliers
(as well as the weighted uniform sampling or the importance sampling) are inefficient. Therefore we have
decided to use one and the same easy function a(x) that is similar to f(x) for setting up three reference
functions for computing the integrals in D,, D, and D, while fy is estimated by crude Monte Carlo. These
reference functions are proportional to a(x)a(y,z’), a(x)a(y’,z) and a(x), respectively. And integrals of
these functions as well as integrals of their squares must be known.

For a Monte Carlo trial we select 2n standard random numbers y;,...,¥, and put x = (¥1,.... %),
x' = (Ypit1s...,¥2n)- At these points we compute all the integrands and reference functions, their squares (for
variance estimation) and products (for estimating the A-s). Sums of all these quantities are accumulated and
after Ny trials we estimate A, Az, Az and fy.

Then the trials are repeated with f(x) — fo rather then f(x), and continued for large N. For the integrands
a(xya(v,z’), a(x)a(y',z), a*(x) both estimators fy and 8% are computed; for the new f(x) only Oy is
applied.

Quasi-Monte Carlo scheme. For a quasi-Monte Carlo trial number j we select the jth point of a quasi-
random sequence in I°". Let (gj1,...,49;20) be its Cartesian coordinates. Then put x = (gj1,...,g;.), x'=
(Gjn+1s--->4;20) and proceed as above.

In our computations Sobol’s LP;-sequences were used [9].

4. Exponential model function

For all 1 < m < n denote

mo b mo 2,
e’ — 1 e — 1 H
Int=H b ’ H”':HT’ R, = 1_2,”
i i

i=1 i=1 m

The exponential function

n
f(x) = expzbixi ~Ii+co
i=1
was studied, where each 0 < x; < 1. Here the constants b; can be varied for tuning the importance of the
corresponding variables x;.
For this function the integral fo = co. However, in our experiments the value f, was estimated numerically
and the computations confirmed that small changes in ¢g, 0 < ¢g < 1, had no influence on the results. For this

model,

D=H, I}
and all the sensitivity indices can be computed analytically.
To simplify the notations, assume that y = (xy,...,Xn), 2 = (Xp41,...,X,). Then
Rm —1 (Rn/Rm) —1 Rn
Sy = —-. S, = —F—7"7, Se={=——-1)85,.
! Rn —1 ) Rn -1 e Rm ’

Substituting I, and H,, in R, the following expression can be obtained:
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Models with prescribed indices. For arbitrary positive S, and S, that satisfy the requirement S, + S, < 1,
one can find that

RNI:(I_S_\')/SZv Rn:Rm(l_Sz)/S,\"

— — L
c=b,=b".

Assume that there are two groups of equally important variables: b = ---=b,, = 4" and b, = - -
Then &' and »” can be computed from equations

y b 1 — S" 1/m b b | — Sz 1/ (n—m)
Y [h e - ] e [h - = - .
7 N7 ( S, > IR ( S,

The approximate model. As a function similar to f(x) we have considered a linear function

a(x) = Zb,‘(xi -5
i=1

For this model, f, = Ja(x)dx =0 and all the necessary constants can be found analytically.
For 1 < m < n, denote

m n

Then

D)'=Br71, bz:Bn_Bnn 5=Bl1s

and the sensitivity indices for the linear model are

Sy=8"=8B,/B,, S=1-8, §,=0.
The three reference functions suggested in Section 3 are

ay=a(x)a(y,z')/Bu,
) =a(x)a(,vlv Z)/(Bn - Bm) s
a3 =a2(x)/B,,.

Their expectations Ma; = Ma; = Maj; = | and their variances

Da; = (B? + B: - C,) /B2,

Da; = [B; + (By — By)® — (Cy — Co)] /(By — Ba)?,
Da; = (2B - C,)/B?.
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Discussion of the model. If the coefficients b; are small, then a(x) ~ f(x)—cg and there are strong correlations
between the integrands and the reference functions. Therefore, there is a considerable gain in accuracy due to
the variance reduction. However, as a rule, accuracy requirements for sensitivity indices are moderate and in
this situation the indices for f(x) and for a(x) can be regarded as equal. Hence, the case is not very interesting
for Sensitivity Analysis of Model Output.

On the other hand, if the coefficients b; are large, there is no similarity between f(x) and a(x) and no
variance reduction.

The most interesting is the intermediate case when the b;-s are neither small nor large; you cannot replace
sensitivity indices Sy, S; for f(x) by indices S"‘., §. for a(x); but you can use a(x) for constructing reference
functions and thus reduce the variances and increase the accuracy. Such examples were found in our numerical
experiments.

5. Ishigami model function

A nonlinear function,
F(X1, X2, X3) =sin X; 4+ Asin® Xy + BX3sin X; ,

was considered, where X, X7, X3 are independent random variables uniformly distributed in the interval —7 <
x < ar [ 10]. The main peculiarity of the model is the dependence on Xj: the first-order sensitivity index S; = 0
but S§' cannot be neglected (in the following example S5 is almost 10%).

For this function fo =0, Sy = Dy/D, where

D_1+B7r4+327r8_ D_AZ_
'T27 s 50 TR

11N . 1 A Bm* B7®
Dy=(——-=—|B%® D=+ 4+ :
13 (18 50) 7 I IR

All the other indices vanish: 85 = §12 = $23 = S123 = 0.

The approximate model. We have selected an approximate model that does not depend on X3,
a( Xy, X2) =CsinX; + Aw(Xy),
with C = 1 + 0.2B7* and
2
4£)~—, forlx|§z,
T 3 2
w(x) = N
x T
4(1—1—‘)——, for — <I|x| <.
T 3 2
For the approximate model, S; = D,/D, S, = D,/D where D, = 1ce, D, = AA%, D = Dy + Dy. All the
other indices vanish.
Three auxiliary functions were introduced,
ay =a(x,y)a(x,y") /Dy,
ay=a(x,y)a(x',y)/D;,
Qagq = az(x,y)/f).
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Table |
Convergence of S, and Sy (Example 6.1)

log, N 1000 S, 1000 S‘v"‘
MC Q-MC MC Q-MC
crude mult crude mult crude mult crude mult
8 405 264 363 349 483 554 356 353
9 334 283 314 309 478 534 405 405
10 331 295 288 286 444 475 391 392
11 310 286 304 303 453 430 384 382
12 286 287 295 295 396 390 385 384
13 272 283 291 291 382 375 394 393
14 278 284 287 287 400 392 396 396
15 280 285 286 286 402 398 396 396
00 287 396

The expectations Ma; = Ma, = Mag = | and the variances

2
Da, = (L) [gc“ + ACPAT + (%)~A4} _1.

D
1\? 16
1 ~4 4 242 4
= = ~C 2 C°A — A" -1,
Da> <D2> [4C + 3z +3_5.7.9 ]

2
] 3,4 4 ~2 42 16 4
Doy, = = =C =CA — A" — 1.
akq <D) |:8 -+ 15 +3579

Each of these auxiliary functions was used as a reference function twice,

ay - for f(x,y,2) f(x,y",2") and for f(x,y,2) f(x,¥'.2);
ay - for f(x,y,2)f(x',y,z') and for f(x,y,2) f(x",y,2);
asq - for f(x,y,2) f(x,y.2') and for f*(x,y,2).

Integrands f(x,v,z) and f(x,v,z)f(x’,y,z) were treated by crude Monte Carlo.

6. Numerical experiments
Example 6.1. The exponential model from Section 4 was computed with n = 6 variables, one of them dominant,

b|=1.5, b2=-~~=b6=0.9, C()ZO.

For the first variable, S; = 0.2870, $* = 0.3962. If we consider y = (x1), z = (x2,...,X¢), then Sy, = 0.1092.
For the linear approximation, §| = §‘l°‘ =0.3571, §‘ =0.

Computations were carried out twice: with ordinary pseudorandom numbers [5] and with quasi-random
points. In Table 1 the corresponding results are marked as MC and Q-MC. The line N = oo contains exact
values.

From Table 1 one can see that the MC estimates for S, were considerably improved due to multipliers;
however the S' values were improved only when the number of trials was large, N > 21!, The crude Q-MC
estimates clearly outplayed the crude MC estimates but their improvement due to multipliers was not significant.
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Table 2
Convergence of Sy and S} (Example 6.2)

log, N 1000 S, 1000 S_{f"

MC Q-MC MC Q-MC

crude mult crude mult crude mult crude mult
10 607 609 669 700 745 761 704 695
Il 617 644 701 700 771 777 736 736
12 650 650 669 669 761 748 732 734
13 639 641 658 658 743 749 731 731
14 643 639 644 644 743 743 734 733
15 639 645 642 642 735 739 729 729
16 635 640 643 643 736 736 733 733
o0 643 734

In this example the correlation coefficients related to Dy, D, and D were 0.72, 0.65 and 0.63. The model
function’s variation was e® — 1 = 402.4.

Example 6.2. The same exponential model was considered with # = 20 variables of two types,

b = 0.6 fori <i<10,
7104 for11<i<20; cp=0.

For this model §; = 0.05616, 1 <i<10; § =0.02504, 11 < i <20.
Let y=(x1,...,Xx10), 2 = (X11,...,X2), so that m = 10. Then

S, =0.6432, Sﬁ.‘" =0.7341, S,, =0.0908,

while for the linear approximation,

S, =0.6932, g_zvoz =0.6932, S, =0.

In this example the correlation coefficients are 0.65, 0.71 and 0.60. However, the function f(x) is worse: its
variation is e'? — 1 = 22025. No wonder that the convergence in Table 2 is worse than that in Table 1.

Again the crude Monte Carlo estimates for S, are improved due to multipliers but there is no clear improve-
ment for S, The crude Q-MC estimates outplay crude MC only at sufficiently large N. And the multipliers
are inefficient in quasi-Monte Carlo.

Fig. I shows the computational errors in D,, D, D, respectively: ), 83, 83 for crude Monte Carlo and o7,
05, 65 for MC with multipliers; N is the number of trials. These errors seem large but in fact are reasonable
because D, = 1.16 - 10*, D, =4.79 - 10°, D = 1.80 - 10* are rather large.

From Fig. 1 one can see that as a rule, the muitipliers lead to smaller errors in the D-s. Unfortunately,
sometimes despite of the improvement in the values of D, and D the ratio D, /D is not improved.

Example 6.3. The Ishigami model function from Section 5 was considered with A =7.0, B = 0.05. The exact
sensitivity indices for this case are
Sy =0.219, S, =0.687, S3=0; S =813=0, Sl3=0-0946§ Si23 =0.

Hence S¥' = Sz + 813 + S23 + Si23 = 0.0946. For the approximate model §1 = 0.309, §2 = 0.691, all the other
indices vanish: 83 = S12 = $53 = 813 = S123 = 0.
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Fig. |. Example 6.2. Monte Carlo computation errors for Dy, D.,D.

Table 3
Convergence of §; and S}“" (Example 6.3)

log, N 1000 §; 1000 S;"‘
MC Q-MC MC Q-MC
crude mult crude mult crude mult crude mult
5 508 215 273 182 47 38 62 60
7 206 251 203 196 28 27 88 88
9 264 261 226 221 69 74 91 92
11 251 247 224 221 77 77 94 94
13 221 226 218 218 90 90 94 94
15 223 223 219 218 92 92 94 94

219

95
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From Table 3 one can see that the multipliers improved Monte Carlo estimates of S, especially at small
N. But in quasi-Monte Carlo calculations the multipliers were inefficient, though crude quasi-Monte Carlo is
clearly superior to crude Monte Carlo.

Correlation coefficients in this example vary from 0.54 to 0.79.

7. Conclusions

Variance reduction or quasi-Monte Carlo? 1In our experiments quasi-Monte Carlo computations are more
efficient than ordinary Monte Carlo with variance reduction. We think that this situation is characteristic for
problems where the exact and the approximate models are more-or-less of one type.

However, the situation may be different if the main model is rather complex (e.g., it includes partial
differential equations or an integro-differential transport equation) while the approximate model is much easier
(e.g.. an algebraic system).

So we believe that further experiments in this direction could be suggestive.

On multipliers in quasi-Monte Carlo. 'We have found that the multipliers improve Monte Carlo estimates but
are useless in quasi-Monte Carlo. However, it was demonstrated in [7] that such multipliers may be useful in
quasi-Monte Carlo also. We have noticed that the correlation coefficients for the examples in [7] were much
larger than in Section 6, r > 0.90. Maybe this is the reason of different conclusions.
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