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Abstract 

First report of an attempt to apply variance reducing multipliers in Monte Carlo estimations of global sensitivity indices. 
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1. G l o b a l  s ens i t iv i ty  ind ices  

A s s u m e  that the mode l  under  invest igation is described by a square- integrable  funct ion f ( x ) ,  where  x = 

(xl  . . . . .  xn) and each xi varies f rom 0 to 1. So x E I n - an n-dimensional  unit cube. All  the mul t id imens iona l  

integrals be low are f rom 0 to 1 for each variable. 

Denote  by y a specified set o f  m variables xi, . . . . .  xi,, and let z be the set o f  n - m complemen ta ry  variables,  
so that x = (y, z), y C I m, z ~ I n-re. Let  x t be another  point  x ~ E I n , x '  = ( y ,  z~). 

Global  sensit ivi ty indices for y and z were introduced in [ 1], also in [ 2 - 4 ] .  Their  definition includes four  

integrals,  

.f /(x) dx, Dy= . / f ( x ) f ( y , z ' ) d x d z ' -  f~,  

D :  f f2(x)  d x -  f 2  Dz= f f ( x ) f ( y ' , z ) d x d y ' -  f2 ,  

that, in most  general  situations,  can be est imated by the Monte  Car lo  method  [5 ] .  
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Definition 

Sy = D y / D ,  

and 

Sz = D z / D  

S~°, t :  I - S : ,  Syz : 1 -  Sy - Sz . 

We recall that 0 < Sy <_ St~ °t < 1, and that Sy = ~ot = 0 means that f ( x )  does not depend on y while 
S,. = S~. °t = 1 means that f ( x )  depends on y only and does not depend on z. 

Remark. An equivalent definition was given in [6].  Consider uniformly distributed independent random points 
~7, 7/' in I m and (, s r/ in I n-n'. Then the global sensitivity indices are equal to correlation coefficients, 

S , , = r [ f ( r l , ( ) , f ( r l , ( ' ) ] ,  S: = r [ f ( r l ,  f ) , f ( r l l , ( ) ] .  

2. Variance reducing multipliers 

Consider the problem of numerical estimation of an absolutely convergent n-dimensional integral, 

I =f (x)p(x)dx, 
G 

where p ( x )  is a given distribution density (that is, p ( x )  > 0 and f p ( x ) d x  = 1). Let s c be a random point 
G 

defined in G with density p ( x ) .  Then the integral is equal to the mathematical expectation 1 = M ~ ( ( )  and a 
crude Monte Carlo estimator, 

N 
1 

i=l 

can be used for evaluating I. Here (t  . . . . .  (N are independent copies of ( ;  the stochastic convergence O N P ~ 1 
as N ~ oo follows from the law of  large numbers. 

We assume that the variance D~p(() is finite. Then according to the central limit theorem the variable ON is 
asymptotically normal and the probable error at large N is 

WN : 0.6745 (Dq~(~)/N)1/2 

We recall that w N shows the order of magnitude of the approximation error 10N -- 1], 

P {ION - I I < WN} ~ P {ION --11 > W N } ~ 0 . 5 0 .  

(In other words, (ON -- WN, ON -- WN) is a 50% confidence interval for I .)  
Assume that a function a ( x )  is similar to f ( x )  and Mo~(() = 1, D a ( s  c) < oo. Sometimes o~(x) is called 

an "easy function" or a "reference function". The new estimator investigated in [7] is 

0~ : 0NKN, 

with 



54 I.M. Sobol I, Yu.L. Levitan / Computer Physics Communications 117 (1999) 52-61 

N 
1 

KN 
i= I 

Clearly,  for  any k the es t imator  is consistent :  0~v ~ P  I as N ~ cx~; but it is biased,  

M0~v : 1 + O ( N - ' )  . 

However ,  a special  choice  of  A impl ies  a reduct ion of  variance,  

NDO* u : (1 - r 2 ) D ~ p ( ( )  + O ( N - l )  , 

instead of  

N D O N  = D q ~ ( ~ : )  , 

where  r is the corre la t ion  coeff icient  r = r ( q ~ ( ( ) ,  a ( ( ) ) .  
The best  value of  A is 

A0 - 1 M ~ o ( ( ) a ( ( )  
A =  1 + - -  with A 0 -  

D a ( ( )  M ~o(() 

For  large N, this choice  cannot  be worse  than k = 0 or ,~ = 1. 
The constant  A0 can be es t imated f rom a rela t ively small  number  of  tr ials No, 

N 

ao ~ ~ ~'(~'.i>a(~j~ ,P(~:.~ • 
.j=l / .j=l 

Remark. A var iance reduc ing  technique cal led weighted  uniform sampl ing  suggests  a consis tent  es t imator  

ON =ON/KN with A = 0 .  

Acco rd ing  to [8 ] ,  for this es t imator  at large N, 

ND'ON = D [q~(()  - I c e ( ( ) ]  + O ( U - l ) .  

Assertion. An inequal i ty  holds,  

D [ ~ ( ~ )  - Ice(C)]  _> (1 - rZ)Dq~(s c) . 

Proof We begin with an evident  relat ion 

( r v / - D ~ - / v / - D ~ )  2 _> 0 ,  

which is equiva lent  to 

r 2 D~ - 2rl X / ~  v/-D-~a + 12Dce >_ O. 

On the r ight  and on the left  add ( 1 - r2)D~o. Then 

Dq~ - 2rl,v/~x/-Dd~ + 12Dce _> ( 1 - r 2 ) D ~  , . 

The lef t -band side is equal  to D [ ~  - Ice]. 
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3. Computation scheme for global sensitivity indices 

55 

In order to avoid losses of  accuracy, it was recommended in [ l ] to precompute roughly f0, and to consider 
f ( x )  - )co  instead of  f ( x ) .  Then the new f0 will be near zero. In this situation the variance reducing multipliers 
(as well as the weighted uniform sampling or the importance sampling) are inefficient. Therefore we have 
decided to use one and the same easy function a ( x )  that is similar to f ( x )  for setting up three reference 
functions for computing the integrals in D s, D:  and D, while f0 is estimated by crude Monte Carlo. These 
reference functions are proportional to a ( x ) a ( y ,  zt),  a ( x ) a ( y ' ,  z )  and a2(x) ,  respectively. And integrals of  
these functions as well as integrals of their squares must be known. 

For a Monte Carlo trial we select 2n standard random numbers Yl . . . . .  3'2,, and put x = (3'1 . . . . .  y,,), 
x ~ = (y,,~l . . . . .  3/2,,). At these points we compute all the integrands and reference functions, their squares (for 
variance estimation) and products (lbr estimating the A-s) .  Sums of all these quantities are accumulated and 
after No trials we estimate al ,  a2, A3 and f0. 

Then the trials are repeated with f ( x )  - )Co rather then f ( x ) ,  and continued for large N. For the integrands 
a ( x ) a ( y ,  z ' ) ,  a ( x ) a ( y ' ,  z ) ,  aZ(x) both estimators ON and 0~v are computed; for the new f ( x )  only 0N is 

applied. 

Quasi-Monte  Carlo scheme. For a quasi-Monte Carlo trial number j we select the .jth point of  a quasi- 
random sequence in 12". Let (qj.j . . . . .  qj,2,,) be its Cartesian coordinates. Then put x = (qj.t . . . . .  q.j,,), x t = 

(qi.n+ J . . . . .  qg,2,) and proceed as above. 
In our computations Sobol's LPT-sequences were used [9].  

4. Exponential model function 

For all 1 ~ in ~ n denote 

~ [  eJ" - 1 f i  e21" - 1 
i , , , =  ' H , , , =  

t=l i=l 

The exponential function 

f ( x )  = exp ~ bixi - -  1, + co 
i=1 

H m 
- - ,  Rm = --:w-~ . 

was studied, where each 0 <_ xi _< 1. Here the constants b i  can be varied for tuning the importance of  the 
corresponding variables xi. 

For this function the integral f0 = co. However, in our experiments the value f0 was estimated numerically 
and the computations confirmed that small changes in co, 0 < co <_ 1, had no influence on the results. For this 
model, 

D = H . -  I,~ 

and all the sensitivity indices can be computed analytically. 
To simplify the notations, assume that y = (xl . . . . .  Xm), z = (Xm+l . . . . .  X.). Then 

S~. R ' ' - I  S. ( R . / R m ) - I  S,. .= ( R .  ) 
• = ' R n -  I ' " - R n -  1 ' .~ ~ -  1 Sy.  

Substituting .I,,, and H,, in Rm, the following expression can be obtained: 
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~ I  bi bi R,,, = ~-  c o t h  ~ - .  

i=1 

Models with prescribed indices. For arbitrary positive S,. and Sz that satisfy the requi rement  Sy + Sz _< l,  
one can find that 

R,,, = (1 - S . , . ) / S z .  R,, = R m ( l  - S : ) / S y .  

Assume that there are two groups of  equal ly important  variables: bl . . . . .  bm= b ~ and bm+~ . . . . .  b ,  = b". 
Then b ~ and b ~ can be computed  from equat ions 

br c o t h  = - -  c o t h  = 
-2 k, Sz ) ' 2 - ~  \ - - ~ . 1  

l l ( n - m )  

The approximate model. As a function similar  to f ( x )  we have considered a l inear  funct ion 

t l  

a ( x )  = ~ _ , b ~ ( x ~  - ½). 
i=1 

For this model ,  fo  = f a ( x ) d x  = 0 and all the necessary constants  can be found analytically.  
For l < m < n, denote  

, , , , :  " ~ b y ,  
i=l  

Then 

D:, = B , , , ,  

I11 

1 ~ - ' ~ b  4 Cm = ~ i • 
i=1 

Dz = B,, - Bin, £) = B,,, 

and the sensit ivity indices for the l inear model are 

~, = ~,o,= 8 , , , /8 , , ,  L -- 1 - ~,, ~,. = 0 .  

The three reference funct ions suggested in Section 3 are 

oq = a( x ) a ( y ,  z ' )  /Bm , 

c~2 = a ( x ) a ( y ' ,  z ) / ( B n  - Bin) , 

a3 =aZ(x)/B,,. 

Their  expectat ions Moo = M a 2  = Mot3 = 1 and their variances 

Dcrl = ( B~ + B~, - C,,,) /B2, , 

D a 2  = [B ,  2, + ( B ,  - B i n )  2 - ( C ,  - C m ) ] / ( B , ,  - B in )  2 , 

Oa3 = (2B,~ - C , ) / B ~ .  
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Discussion of  the model. If the coefficients bi are small, then a ( x )  ~ f ( x )  -Co and there are strong correlations 
between the integrands and the reference functions. Therefore, there is a considerable gain in accuracy due to 
the variance reduction. However, as a rule, accuracy requirements for sensitivity indices are moderate and in 
this situation the indices for f ( x )  and for a ( x )  can be regarded as equal. Hence, the case is not very interesting 
for Sensitivity Analysis of  Model Output. 

On the other hand, if the coefficients bi are large, there is no similarity between f ( x )  and a ( x )  and no 
variance reduction. 

The most interesting is the intermediate case when the bi-s are neither small nor large; you cannot replace 
sensitivity indices Sy, Sz [or f ( x )  by indices &,  Sz for a ( x ) ;  but you can use a ( x )  lor constructing reference 
functions and thus reduce the variances and increase the accuracy. Such examples were found in our numerical 
experiments. 

5. Ishigami  mode l  funct ion  

A nonlinear function, 

f (X1 ,  X2, X3) = sin Xl + A sin 2 Xz + B X  4 sin X1 , 

was considered, where Xj, X2, X3 are independent random variables uniformly distributed in the interval - r r  < 
x < rr [ 10]. The main peculiarity of the model is the dependence on X3: the first-order sensitivity index $3 = 0 
but S TM cannot be neglected (in the following example S t°t is almost 10%) 

3 3 • 

For this function f0 = 0, Sk = D~/D,  where 

1 B77 "4 B2"rr 8 A 2 
D l = ~ + ~ - +  5--if-; De 8 ' 

( 1  510) B 2 7 T 8  I A 2 B T " r a B 2 7 " I  "8 
D I 3 =  18 ; D = ~ + ~ - + - - ~ - - +  l---if-- 

All the other indices vanish: $3 = Si2 = 823 = 8123 = 0. 

The approximate model. We have selected an approximate model that does not depend on X3, 

a ( X j , X 2 )  = C sinX1 + Aw(X2)  , 

with C = 1 + 0.2Brr 4 and 

x 1 77" 
4 -- z _ _  for Ixl < -  

or 3' - - 2 '  
, 

4 1 -  - 3 '  f o r ~ -  _ 

= 1 2 /32 = 4A2,  b = /31 + /32 .  All the For the approximate model, $1 = D j / D ,  $2 = D2 /D where /31 7C , 
other indices vanish. 

Three auxiliary functions were introduced, 

cq = a ( x , y ) a ( x , y ' ) / / 3 j ,  

a 2 = a ( x , y ) a ( x ' , y ) / / 3 2 ,  

asq = a2( x, y)  / /3 .  
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Table 1 
Convergence of Sv and S~ ~t (Example 6.1) 

log 2 N 1000 Sy 1000 Sty! 'l 

MC Q-MC MC Q-MC 

crude mult crude mult crude mull crude mult 

8 405 264 363 349 483 554 356 353 
9 334 283 314 309 478 534 405 405 

I0 331 295 288 286 444 475 391 392 
II 310 286 304 303 453 430 384 382 
12 286 287 295 295 396 390 385 384 
13 272 283 291 291 382 375 394 393 
t4 278 284 287 287 400 392 396 396 
15 280 285 286 286 402 398 396 396 

a<~ 287 396 

The expecta t ions  M a t  = M a 2  = MoLsq = 1 and the variances 

Do',: oC4+ C2A2+ =  A4-1, 

16 A 4 ] _ ,  
Do'2 = C4 + 4 C 2 A 2  + 3 • 5 . 7  • 9 ' 

,6 
Do'sq = C4+T5 + 3 . 5 . 7 . 9  " 

Each of  these auxil iary funct ions was used as a reference function twice, 

o'j - for  f ( x , y , z ) f ( x , y ' , z ' )  and for f ( x , y , z ) f ( x , y ' , z ) ;  
o,? - f o r f ( x , y , z ) f ( x ' , y , z ' )  and f o r f ( x , y , z ) f ( x ' , y , z ) ;  

o ' ~ q -  for f ( x , y , z ) f ( x , y , z ' )  and for f 2 ( x , y , z ) .  

Integrands f ( x, y, z ) and f ( x, y, z )  f ( x', y',  z )  were treated by crude Monte  Carlo.  

6. Numerical experiments 

Example 6.1. The exponent ia l  model  f rom Sect ion 4 was computed  with n = 6 variables,  one o f  them dominant ,  

bl = 1.5,  b2 . . . . .  b6 = 0 .9 ,  co = 0 .  

For  the first variable,  Si = 0.2870,  S] °t = 0.3962. I f  we consider  y = ( x j ) ,  z = (xz . . . . .  x6) ,  then Sy~ = 0. 1092. 

For  the l inear approximat ion ,  SI = ~ot = 0.3571, S'~.~ = 0. 

Computa t ions  were  carried out twice: with ordinary pseudorandom numbers  [5] and with quas i - random 

points. In Table 1 the cor responding  results are marked as M C  and Q-MC.  The line N = oc contains  exact  

va] ues. 
F rom Table l one can see that the M C  est imates for Sy were considerably  improved  due to mult ipl iers ;  

however  the S~ °t values were  improved  only when the number  o f  trials was large, N > 211. The  crude Q - M C  

est imates  d e a r l y  outplayed the crude MC est imates but their improvemen t  due to mult ipl iers  was not significant.  
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S~ 'l (Example 6.2) 

59 

log 2 N 1000 Sy 1000 S.~ 't 

MC Q-MC MC Q-MC 

crude mult crude mult crude mult crude mult 

10 607 609 669 700 745 761 704 695 
I1 617 644 701 700 771 777 736 736 
12 650 650 669 669 761 748 732 734 
13 639 641 658 658 743 749 731 731 
14 643 639 644 644 743 743 734 733 
15 639 645 642 642 735 739 729 729 
16 635 640 643 643 736 736 733 733 

~xz 643 734 

In this example  the correlat ion coefficients related to D s, Dz and D were 0.72, 0.65 and 0.63. The model  
func t ion ' s  variation was e 6 - l = 402.4. 

Example 6.2. The same exponent ia l  model  was considered with n = 20 variables of  two types, 

b i = { 0 . 6  f o r l  < i <  10, 
0.4 for 11 < i < 2 0 ;  c o = O .  

For this model  Si = 0.05616, 1 < i < 10; S~ = 0.02504, 11 < i < 20. 

Let y =  (Xl . . . . .  x lo) ,  z = (Xll . . . . .  x~0), so that m =  10. Then 

Sy = 0.6432 S t°t = 0.7341 Sy, = 0.0908 , -.;. ~ 

while for the l inear approximat ion,  

S,. = 0 .6932 ,  .~tot = 0 .6932 ,  S,'z = O. _ - - y  

In this example  the correlat ion coefficients are 0.65, 0.71 and 0.60. However,  the funct ion f ( x )  is worse: its 
variation is e l° - 1 = 22025. No wonder  that the convergence in Table 2 is worse than that in Table 1. 

Again  the crude Monte  Carlo estimates for S s are improved due to mult ipl iers  but there is no clear improve-  
ment  for ~ot. The crude Q-MC estimates outplay crude MC only at sufficiently large N. And  the mult ipl iers  
are inefficient in quas i -Monte  Carlo. 

Fig. 1 shows the computa t ional  errors in Dy, Dz, D, respectively: ¢3j, ~2, ~3 for crude Monte  Carlo and 6 I,  
&*,, 8"3 for MC with mult ipl iers;  N is the number  of trials. These errors seem large but in fact are reasonable  
because Dy = 1.16.  104, D z = 4 . 7 9 .  103, D = 1.80.  104 are rather large. 

From Fig. 1 one can see that as a rule, the mult ipl iers  lead to smaller  errors in the D-s.  Unfor tunately ,  
somet imes  despite of  the improvemen t  in the values of  Dz and D the ratio D z / D  is not improved.  

Example 6.3. The Ishigami model  funct ion from Section 5 was considered with A = 7.0, B = 0.05. The exact 
sensitivity indices for this case are 

$1 = 0 .219 ,  $2 = 0 .687 ,  $3 = 0 ; S I2  = S23 = 0 ,  S13 = 0.0946 ; $123 = 0 .  

Hence  St°t3 = $3 + S13 + $23 + S123 = 0.0946. For the approximate model  S'1 = 0.309, $2 = 0.691, all the other 

indices vanish: ff~ = SJ2 = 323 = ,~13 = S123 = 0. 
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Fig. I. Example 6.2. Monte Carlo computation errors for Dr, Dz,D. 

Table 3 
Convergence of Si and S t°t (Example 6.3) 

3 

log 2 N 1000 Sl 

MC Q-MC 

1000 S t°t 
3 

MC Q-MC 

crude mult crude mult crude mult crude mult 

5 508 215 
7 296 251 
9 264 261 

11 251 247 
13 221 226 
15 223 223 

OO 

273 182 47 38 62 60 
203 196 28 27 88 88 
226 221 69 74 91 92 
224 221 77 77 94 94 
218 218 90 90 94 94 
219 218 92 92 94 94 

219 95 
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From Table 3 one can see that the multipliers improved Monte Carlo estimates of Sj, especially at small 
N. But in quasi-Monte Carlo calculations the multipliers were inefficient, though crude quasi-Monte Carlo is 
clearly superior to crude Monte Carlo. 

Correlation coefficients in this example vary from 0.54 to 0.79. 

7. Conclusions 

Variance reduction or quasi-Monte Carlo? In our experiments quasi-Monte Carlo computations are more 
efficient than ordinary Monte Carlo with variance reduction. We think that this situation is characteristic for 
problems where the exact and the approximate models are more-or-less of one type. 

However, the situation may be different if the main model is rather complex (e.g., it includes partial 
differential equations or an integro-differential transport equation) while the approximate model is much easier 
(e.g., an algebraic system). 

So we believe that further experiments in this direction could be suggestive. 

On multipliers in quasi-Monte Carlo. We have found that the multipliers improve Monte Carlo estimates but 
are useless in quasi-Monte Carlo. However, it was demonstrated in [7] that such multipliers may be useful in 
quasi-Monte Carlo also. We have noticed that the correlation coefficients for the examples in [7] were much 
larger than in Section 6, r > 0.90. Maybe this is the reason of different conclusions. 
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