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The present work is a sequel to a recent one published on this journal where the superiority of ‘radial
design’ to compute the ‘total sensitivity index’ was ascertained. Both concepts belong to sensitivity
analysis of model output. A radial design is the one whereby starting from a random point in the
hyperspace of the input factors one step in turn is taken for each factor. The procedure is iterated a
number of times with a different starting random point as to collect a sample of elementary shifts for
each factor. The total sensitivity index is a powerful sensitivity measure which can be estimated based
on such a sample. Given the similarity between the total sensitivity index and a screening test known
as method of the elementary effects (or method of Morris), we test the radial design on this method.
Both methods are best practices: the total sensitivity index in the class of the quantitative measures
and the elementary effects in that of the screening methods. We find that the radial design is indeed
superior even for the computation of the elementary effects method. This opens the door to a sensitivity
analysis strategy whereby the analyst can start with a small number of points (screening-wise) and then
– depending on the results – possibly increase the numeral of points up to compute a fully quantitative
measure. Also of interest to practitioners is that a radial design is nothing else than an iterated ‘One
factor At a Time’ (OAT) approach. OAT is a radial design of size one. While OAT is not a good practice,
modelers in all domains keep using it for sensitivity analysis for reasons discussed elsewhere (Saltelli
and Annoni, 2010) [23]. With the present approach modelers are offered a straightforward and economic
upgrade of their OAT which maintain OAT’s appeal of having just one factor moved at each step.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty and sensitivity analyses study how the uncertain-
ties in the model inputs (X1, X2, . . . , Xk) affect the model’s re-
sponse Y , which for simplicity we assume to be a scalar:

Y = Y (X1, X2, . . . , Xk).

Uncertainty analysis quantifies the output variability while Sensi-
tivity Analysis (SA) describes the relative importance of each input
in determining this variability. The importance of SA in the model
building process has been extensively demonstrated in many sci-
entific areas and has been also recognized in official guidelines of
international institutions [6,8,20].

Sensitivity analysis methods can be broadly classified into lo-
cal and global methods. Local sensitivity measures, often referred
to as One At a Time (OAT) measures, are based on the estima-
tion of partial derivatives, and assess how uncertainty in one factor
affects the model output keeping the other factors fixed to a nom-
inal value. The main drawback of this approach is that interactions
among factors can not be detected, since they become evident
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when the inputs are changed simultaneously. A possible way to
overcome this problem is to include multi-dimensional averaging
of local measures [18,16,38,39].

Global measures offer instead a comprehensive approach to
model analysis, since they evaluate the effect of a factor while
all others are varying as well, exploring efficiently the multi-
dimensional input space. A wide range of global SA methods is
available (for reviews see [25,28,31,27,11,21]), ranging from qual-
itative screening methods [18,3,29,15] to quantitative techniques
based on variance decomposition [34,12,24,19].

Using sensitivity techniques capable of detecting interactions
among factors is of key importance to completely assess the model
prediction [35,36]. Examples of application of SA tools to test the
role of interactions in real models range in very diverse fields, from
chemistry (see e.g. [27]), ecological modeling (see e.g. [4]), to hy-
draulic modeling (e.g. [9]).

Among variance-based measures, the total order sensitivity in-
dex ST [12] measures the total effect of a factor, including its first
order effect and interactions of any order:

STi = V Ti(Y )

V (Y )
= EX∼i (V Xi (Y | X∼i))

V (Y )

= 1 − V X∼i (E Xi (Y | X∼i))
, (1)
V (Y )
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where X∼i denotes the matrix of all variables but Xi . In EX∼i

(V Xi (Y | X∼i)) the inner variance V of Y is taken over all possible
values of Xi while keeping X∼i fixed, while the output expectation
E is taken over all possible values X∼i [12]. Different designs have
been developed in order to compute efficiently sensitivity indices,
spanning from the well known approach of the Latin hypercube
[17,10] to the recently design developed in [30]. One efficient pos-
sibility is to use a radial design where factors are moved of one
step starting from the same random point in the hyperspace of
the input factors.

In a different class of SA methods, the class of screening tests,
the method of the elementary effects, introduced by Morris [18]
and refined by Campolongo and co-workers [3], is – in the opin-
ion of the authors – a good practice. This method investigates the
model answer to a change in the inputs by varying one factor at
a time, while keeping all the others fixed. The method associates
to each factor its so-called elementary effect, defined as the ra-
tio between the variation in the model output and the variation
in the input factor itself (see also Section 2). In order to obtain
a global measure, different elementary effects for each factor are
estimated and averaged. Here, adopting the terminology proposed
by Campolongo and co-workers, we refer to the Elementary Effect
method as to the EE method, and to its sensitivity measure, which
is the average of the elementary effects in absolute values, as to
μ∗ . As described next, the average is customarily taken over points
generated via a trajectory-based design [18,3]. A trajectory based
sampling is very similar to the so-called winding stairs sampling
[5]. In both methods one factor at a time is moved. In winding
stairs there is a single trajectory linking all sampled points while
in the trajectory-based, as used e.g. in [18], a new trajectory is
started each time all factors have been moved once. A variant of
this latter is used in [3] as discussed below.

Which SA method to use depends upon the model to be an-
alyzed and goal of the experiment [26]. By quantitative methods,
we mean those methods which estimate a sensitivity index whose
meaning has a clear interpretation in terms of variance decomposi-
tion. In other words, quantitative sensitivity indices estimate which
percentage of output variance each factor is responsible for, due to
its first order component and/or its interactions with the other fac-
tors. However, to obtain good estimates of quantitative sensitivity
indices, a high number of model evaluations is needed. For compli-
cated models, where the number of involved factors is large and/or
the model is time consuming, the estimation of quantitative sen-
sitivity measures could be unfeasible and screening experiments
need to be developed instead. Screening experiments provide sen-
sitivity measures that do not have a straightforward interpretation
in terms of variance decomposition. They only provide a ranking
saying that a factor is more important than another, and allow to
identifying the subset of non-important factors in a model with
few model runs.

This paper proposes a novel sampling strategy based on Sobol’
numbers [32,33] which allows performing screening experiments
first and then, if the computational cost of the model allows it,
moving towards a quantitative experiment without the need to
discard any model run. The logic of the work runs as follows:

• Campolongo and co-workers [3] empirically demonstrated that
there exist similarities in sensitivity results obtained using μ∗
and the variance-based total sensitivity index. For screening
purposes, where the aim is to isolate the set of non-influential
factors with few model runs, μ∗ has proven to be provide ef-
fective results.1

1 The EE method has been recently compared to derivative-based global sensitiv-
ity measures [16,38] and it has been demonstrated that the latter approach can be
• Saltelli and co-workers [30] compared the estimates for the
total sensitivity index obtained using a radial sampling strat-
egy with those obtained via a trajectory-based sampling and
showed that the former outperforms the latter.

• Elsewhere [23] it has been noted that, although it can be
proven to be inefficient, purely OAT (a radial of size one) is
the most widespread practice not only for sensitivity analysis
purposes but also for model verification purposes (e.g. verifi-
cation of results, verification of the sign of the effects, . . .).

• Hence, if it could be shown that by iterating OAT one can com-
pute efficiently the EE statistics, such an approach should be
received with favor by modelers.

• This approach could be made even more appealing by the pos-
sibility of seamlessly computing together with the EE the total
sensitivity index, by merely increasing the sample size used
for EE, within the same batch of computer simulations.

As discussed in [23] modelers have several reasons to like OAT,
including the fact that if only one factor has been moved then
the change in the model response can be safely attributed to that
factor. Thus we can imagine a modeler starting with a pure OAT,
one point surrounded by k additional points (one per factor). The
modeler can add then a second ‘star’ of (k+1) points, and then an-
other. Already with few such stars one can compute μ∗ according
to the original developer [18]. If convenient and computationally
affordable, the modeler can then decide to continue the procedure
generating a few hundred of stars and estimate the total sensitivity
index, without discarding any of the previous simulations.

To check whether this approach is convenient we test a radial
sampling strategy – the one we use normally to compute the total
sensitivity index [22] – in a screening experiment for the esti-
mation of μ∗ using EE. The strategy, which makes use of Sobol’
quasi-random sequences [32,33] to build the sample, is tested on
a series of mathematical functions. This is a batch of ‘difficult’ test
functions. The same was previously used to identify the best sam-
pling algorithm for the total sensitivity index [30]. The batch is
enriched here of the test function used by Morris in [18], the stan-
dard benchmark for the EE method.

We compare the results obtained via a radial design with ex-
isting strategies used to compute the EE measure: the strategy of
the trajectories [18], the strategy of the optimized trajectories [3],
and a new strategy recently proposed by Saltelli and co-workers in
[29].

The paper is organized as follows. The next Section briefly re-
views the best practice for screening experiments, which is the
EE method and its sampling strategies. Section 3 describes how to
use Sobol’ quasi-random sequences to build a radial OAT design
for screening experiments. Section 4 focuses on numerical experi-
ments and the last section concludes.

2. The elementary effect method

Screening methods aim at identifying the subset of non-influent
factors in a model using a small number of model evaluations.
Screening is used for the investigation of large and/or compu-
tationally expensive models, where the use of more demanding
quantitative techniques is not affordable due to simulation time.
The EE method has proven to be an effective screening method
since its origin. It is based on a sample where factors are moved

sometimes more accurate. However, as also stressed in [16,38], high accuracy of es-
timates may not be required for screening purposes, where the aim is the detection
of non-important factors with few model runs.
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Fig. 1. Example of trajectory in 3 dimensions for the original EE method.

OAT of a step �i in the inputs’ domain. The sensitivity test is based
on the elementary effect, from which the name of the method:

EEi = Y (x1, . . . , xi−1, xi + �i, xi+1, . . . , xk) − Y (x1, . . . , xk)

�i
. (2)

r different elementary effects are estimated by randomly sampling
r different trajectories; the final sensitivity measure adopted is the
average of these effects:

μi =
∑r

i=1 EEi

r
.

The original version [18] of the EE method is based on a sample
of r trajectories where factors are moved OAT on a grid of levels
covering the inputs’ domain, see Fig. 1 for a 3-dimensional case.
The number of points of each trajectory is (k + 1), where k is the
number of factors of the model. Along a trajectory each input is
increased or decreased by the same step �.2 In Fig. 1 the trajectory
is composed of the four points {x(1), . . . ,x(4)} and � = 0.25. If we
consider, for instance, the first two consecutive points x(1) and x(2) ,
they differ only in the second component, which is increased by �:

EE2 = Y (x(2)) − Y (x(1))

0.25
.

A second measure is proposed in [18], which assesses the ex-
tent of interactions and non-linear effects of each factor:

σi =
∑r

i=1(EEi − μi)
2

r
.

In [3], Campolongo and co-workers presented an improved ver-
sion of the EE method, where:

• The sampling strategy is improved so to better scan the in-
put domain using the same number of points. This is achieved
by first generating a high number of different trajectories (e.g.
M ∼ 500–1000) and then selecting the r trajectories with the

2 We assume that each input is uniformly distributed in [0,1]. For non-uniform
factors, we sample quantiles in [0,1] and derive the input values through the in-
verse distribution function.
Fig. 2. Scheme of the cell-based sampling strategy.

largest dispersion in the input space.3 We call this improved
strategy that of ‘optimized trajectories’.

• A new measure μ∗ is defined which alone assesses the factors’
importance:

μ∗
i =

∑r
i=1 |EEi|

r
. (3)

The use of the absolute value of the EE allows to solve the
problem of the effects of opposite signs which occurs when
the model is non-monotonic. In [3] it was also empirically
demonstrated that for screening purposes there exists simi-
larities between results obtained via μ∗ and via the variance-
based total index ST .

A different design, that we call ‘cell-based’, is presented in [29],
where the input space is explored combining steps along the Xi

axis with steps along the X∼i axis, an axis where all inputs but Xi

change their values.4 Fig. 2 exemplifies how the sampling strategy
works. Starting from the first run x(1)

i x(1)
∼i , the strategy first moves

in the direction ∼ i, i.e. to the second run x(1)
i x(2)

∼i and then along

the i axis to the third run x(2)
i x(1)

∼i . The last run, where all factors
are changed respect to the first run, completes the cell.

With respect to the optimized trajectories strategy, this design
has the advantage of providing, at no extra computational cost, an
additional sensitivity measure (on top of the classic ones based on
the elementary effects) to assess interaction effects:

EI = 1

2

∣∣Y (1) − Y (2) + Y (4) − Y (3)
∣∣, (4)

where the super-indices refer to the corresponding input points in
Fig. 2. This second measure can be useful for non-additive mod-
els characterized by pure interactions terms. However tests on two
relevant benchmarks [29], the typically non-additive model intro-
duced by Saltelli et al. in [28] (see also Section 4), and a 10-inputs
version of the Morris function [18], showed that results obtained
via the cell-based strategy only slightly outperforms the ones ob-
tained via the design based on trajectories. Such findings are con-
firmed in the present study based on a larger set of test functions.

3 In [3] a dispersion measure is defined in terms of distance between couples of
trajectories.

4 Despite X∼i refers to (k − 1) variables, we will point to a variation of these
(k − 1) variables as a step taken onto the Xi axis.
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Fig. 3. Example of a radial sample in three dimensions.

Table 1
Block of size (k + 1) runs for a Monte Carlo simulation for sensitiv-
ity analysis. Radial (left-hand) and trajectory (right-hand) schemes
are compared. The left-hand block as such – i.e. if not comple-
mented by other blocks – corresponds to an OAT design as often
seen in the literature. For a proper screening, a number r > 1 of
such blocks is needed, for a total computation cost of N = r(k + 1).

Radial sampling Trajectory sampling

a1,a2,a3, . . . ,ak a1,a2,a3, . . . ,ak

b1,a2,a3, . . . ,ak b1,a2,a3, . . . ,ak

a1,b2,a3, . . . ,ak b1,b2,a3, . . . ,ak

a1,a2,b3, . . . ,ak b1,b2,b3, . . . ,ak

. . . . . .

a1,a2,a3, . . . ,bk b1,b2,b3, . . . ,bk

3. Using Sobol’ numbers to build a radial OAT experiment

The alternative design to compute the elementary effects pre-
sented here is based on a radial-like configuration. The radial-like
configuration is presented in Table 1 for k factors and exemplified
in three dimensions in Fig. 3. Table 1 also reports for compari-
son the trajectory-like configuration discussed above.5 a and b are
two different k-dimensional random vectors which can be used
to realize the so-called Xi steps [30]. An Xi step is made of two
points which are apart only for one coordinate, i.e. only for factor
Xi , all others being the same. An Xi step is used for the com-
putation of an elementary effect for that factor and a series of
such steps allows an estimate of the factor’s importance μ∗ . In
radial design (left-hand side in Table 1) one goes back to the first
point (a1,a2,a3, . . . ,ak) after each step, while in trajectory sam-
pling one keeps moving away after each step, so that starting from
(a1,a2,a3, . . . ,ak) one ends in (b1,b2,b3, . . . ,bk). Following [14]
the trajectory design is also known as ‘winding stairs’, although
in the proper winding stairs design one keeps moving away from
(b1,b2,b3, . . . ,bk) in order to start the second block [5], while in
trajectory sampling one starts over a new trajectory with a fresh
random number, see e.g. the original design of Morris [18]. One
can call a the baseline point and b the auxiliary point. Note that
compared to the Morris sampling strategy presented in the previ-
ous section and exemplified in Fig. 1, the random points a and b
are such that the steps taken by different factors can be different.

5 The cell-based configuration is not reported.
In [30] we have extensively tested the two designs to com-
pute the total sensitivity index, and found the radial design su-
perior. Given the similarity between ST and the elementary effect
measure [3], we have done here a similar comparison using the
same set of test functions, augmented by the twenty-factor func-
tion of Morris which was not included in [30]. In keeping with
[30], in place of using plain random numbers to generate the ran-
dom vectors a and b, we use Sobol’s quasi-random numbers [32,
33] – the so-called LPτ sequences. As discussed in [30], Sobol’s se-
quences outperform crude Monte Carlo sampling in the estimation
of multi-dimensional integrals [37].

The first eight points of a ten-dimensional Sobol’s quasi-random
sequence are given, as an example, in Table 2. This matrix could be
used for a ten-dimensional test case with r = 4 repetitions, using
the first four rows of Table 2 for the four baseline points a’s, and
the next four for the auxiliary points b’s. In other words the first
row of Sobol’ numbers in Table 2 would be used for point a in
Table 1 (left-hand side), and the fifth row of the Sobol’ matrix for
point b. Next, moving from r = 1 to r = 2, the second and sixth
rows of Table 2 would be used for the next couple of a, b numbers
and so on. Although the approach above would be the most natural
to build a pure screening analysis, we adopt a slightly different
strategy – in line with the findings of [30] – to ensure that the
same points can be used to compute the total effect indices. The
idea is to generate a matrix of quasi-random Sobol’ numbers of
dimensions (r,2k), r being the number of points/trajectories and k
being the number of inputs, and use the left half of the matrix for
the points a and the right half of the matrix for the points b. As in
the first points of the Sobol’ sequence the values of the coordinates
tend to repeat (i.e. for the first point they are all equal to 0.5, for
the second they are alternates couples of 0.25 and 0.75 and so on,
see Table 2), in order to achieve different coordinates’ values for
the points a and b, we need to generate a quasi-random matrix of
Sobol’ numbers of size (R,2k), with R > r, and discard the first few
points for the auxiliary points, i.e. shifting the k rightmost columns
downward.6 We obtain good results by systematically discarding
four points (R = r + 4). Thus, denoting as xi, j the element of the
matrix of quasi-random Sobol’ numbers in row i and column j, the
first base point is a = (x1,1, x1,2, . . . , x1,k) and its auxiliary point is
b = (x4,k+1, x4,k+2, . . . , x4,2k).

Note that for each couple of a, b points one need to estimate
the model Y a total of (k + 1) times, so that the total cost of the
analysis is r(k+1), with r the number of repetitions.7 We have also
tested ‘higher economy’ configurations, such as the one described
by the following two steps:

1. Using LPτ rows one and two for the first couple a, b. We have
to compute the output for the point8 x(1)

i x(1)
∼i as well as for the

k points x(2)
i x(1)

∼i . Thus k effects for (k + 1) simulations.
2. Using LPτ rows one and three for the second couple a, b. As

above, but we have already point x(1)
i x(1)

∼i , so we only need to

compute the k points x(3)
i x(1)

∼i . Now we obtain k effects from

the couples x(1)
i x(1)

∼i , x(3)
i x(1)

∼i as well as an additional k effects

from the couples x(2)
i x(1)

∼i , x(3)
i x(1)

∼i .

6 In the following we refer to this strategy as the shifted LPτ sequence.
7 Note that, in the radial strategy, the model is estimated for the baseline point

y(a1,a2,a3, . . . ,ak) and for the k additional points y(a1,a2, . . . ,bi , . . . ,ak), though
it is not estimated for the auxiliary point y(b1,b2,b3, . . . ,bk).

8 We indicate as x(1)
i x(1)

∼i the point where all coordinates come from the first row

of the sampling matrix, and as x(2)
i x(1)

∼i , with i = 1,2, . . . ,k, the k points where all
coordinates are from the first row of the sampling matrix but the coordinate ith,
which is from the second row of the same matrix.
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Table 2
Ten-dimensional Sobol’ quasi-random sequence, first eight points. The support of each dimension is [0,1].

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.7500 0.2500
0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.2500 0.7500
0.1250 0.6250 0.8750 0.8750 0.6250 0.1250 0.3750 0.3750 0.8750 0.6250
0.6250 0.1250 0.3750 0.3750 0.1250 0.6250 0.8750 0.8750 0.3750 0.1250
0.3750 0.3750 0.6250 0.1250 0.8750 0.8750 0.1250 0.6250 0.1250 0.8750
0.8750 0.8750 0.1250 0.6250 0.3750 0.3750 0.6250 0.1250 0.6250 0.3750
0.0625 0.9375 0.6875 0.3125 0.1875 0.0625 0.4375 0.5625 0.8125 0.6875
The configuration above is economic as it gets 3k elementary
effects from (1 + 2k) simulations, against the k effects per (k + 1)

simulations of the basic radial design (Table 1). As discussed in
[30], the enhanced efficiency is achieved at the expenses of the
exploration of the input factors’ space. This was confirmed in the
present work, as the ‘higher economy’ results – not reported here
– were not better than the plain economy ones.

As already stressed above, unlike the classic EE sampling strate-
gies described in the previous section, when using a radial design
each effect is computed over a different step size, equal to the dis-
tance between e.g. x(u)

i x(u)
∼i and x(v)

i x(u)
∼i which is to say the differ-

ence between x(u)
i and x(v)

i , where u and v denote two rows of the
sampling matrix chosen as described above. Under this notation,
the absolute value of the elementary effect has been computed as:

EEi =
∣∣∣∣

y(x(u)
i x(u)

∼i ) − y(x(v)
i x(u)

∼i )

x(u)
i − x(v)

i

∣∣∣∣ (5)

and the screening test μ∗ has been taken as the average of r such
effects for each factor, as described in formula (3) of the previous
section.

Via the screening experiment the modeler gets a first insight of
the model behavior and can for instance understand if a revision
is needed, due for instance to the fact that some factors intended
as important are actually not influencing the model response. In
alternative, using the proposed design, if the computational cost
of the model allows it, the modeler can increase r, the number
of repetitions, up to achieve a sample size compatible with the
estimation of the global sensitivity index ST . In this case one must
replace the estimator (5) for the EE method with an estimator for
ST (Eq. (1)). As discussed in [30] we recommend the estimator of
Jansen [14,13]:

EX∼i

(
V Xi (Y | X∼i)

) = 1

2r

r∑
j=1

(
y
(
a( j)

1 ,a( j)
2 , . . . ,a( j)

k

)

− y
(
a( j)

1 ,a( j)
2 , . . . ,b( j)

i , . . . ,a( j)
k

))2
,

where a( j) is the jth baseline point and b( j) is the jth auxiliary
point. An example of convergence towards the total sensitivity in-
dices is presented in Section 4.

As already mentioned, another advantage of the radial design
is that it is a natural extension of the OAT approach preferred
by most modelers. While OAT per se is inefficient [23], its iterated
form here described is a good practice.

4. Numerical experiments

4.1. Test cases

The radial design presented in the previous section is compared
with the optimized trajectories strategy [3] and with the cell-based
design [29] by performing SA experiments on the following set of
functions with k = 20 input factors:
1. A modified version of the Sobol’ G function [1] introduced in
[30]:

G∗(X1, . . . , Xk;a1, . . . ,ak, δ1, . . . , δk,α1, . . . ,αk)

=
k∏

i=1

g∗
i , (6)

g∗
i = (1 + αi) · |2(Xi + δi − I[Xi + δi]) − 1|αi + ai

1 + ai
, (7)

where Xi are the input factors, uniformly distributed in the in-
terval [0,1]. ai > 0 are the traditional G function parameters,
δi ∈ [0,1], αi > 0 are shift and curvature parameters respec-
tively, while I[Xi + δi] is the integer part of (Xi + δi). The
relative importance of the factors depends on the choice of
the parameters. Two different sets of parameters are investi-
gated (see Table 3) where the number of important factors is
either 4 (G∗

4 function) or 10 (G∗
10 function).

2. The function introduced by Bratley et al. [2] and also used
in [16]:

K =
k∑

i=1

(−1)i
i∏

j=1

X j, (8)

where Xi are uniformly distributed in the interval [0,1]. In
this function there are few dominant variables (basically X1
and X2) and interaction increases for variables with higher in-
dices.

3. The non-additive function by Saltelli et al. in [28]:

B =
m∑

i=1

Xi · Xm+i, (9)

where m = k/2, Xi ∼ N(Xi, σXi ), i = 1,2, . . . ,k and N(X, σ )

denotes the normal distribution with mean X and standard
deviation σ . Depending on the choice of the normal distribu-
tion parameters, the importance of the factors and the role of
the interactions can be calibrated. We choose a setting result-
ing in a moderate number of important factors. However it has
to be stressed that, opposite to the case of the G∗ and K func-
tions, the non-important factors have a non-nihil effect.

4. The Morris function [18]:

M = β0 +
20∑

i=1

βi wi +
20∑

i< j

βi, j wi w j

+
20∑

i< j<l

βi, j,l wi w j wl (10)

+
20∑

i< j<l<s

βi, j,l,s wi w j wl ws, (11)

where wi = 2(Xi − 0.5) for all i except for i = 3,5,7 where
wi = 2(1.1Xi/(Xi + 0.1) − 0.5), Xi ∼ U [0,1], and



F. Campolongo et al. / Computer Physics Communications 182 (2011) 978–988 983
Table 3
Parameters and total order sensitivity indices for the test functions used in the SA experiments. ST corresponds to analytic values while ŜT to estimated values.

G∗
4 G∗

10 K
ST (%)

B M

ŜT (%)a α ST (%) a α ST (%) X σX ST (%)

1 100 1 0.00 100 1 0.00 75.00 0 0.5 0.39 26.00
2 0 4 69.32 0 4 65.57 25.00 0 0.5 0.62 25.60
3 100 1 0.00 100 1 0.00 8.33 0 1 1.55 10.10
4 100 1 0.00 100 1 0.00 2.78 0 1 1.55 25.70
5 100 1 0.00 100 1 0.00 0.93 0 2 12.41 10.80
6 100 1 0.00 100 1 0.00 0.31 0 2 22.34 9.50
7 1 0.5 3.28 1 0.4 8.21 0.10 0 1 3.49 5.80
8 0 3 55.80 10 3 52.78 0.03 0 0.5 1.40 12.30
9 100 1 0.00 0 0.8 20.24 0.01 0 1.5 20.25 13.80

10 100 1 0.00 0 0.7 17.37 0.00 0 2 36.00 12.40
11 0 2 38.68 9 2 41.23 0.00 1 2 0.31 0.20
12 100 1 0.00 0 1.3 32.73 0.00 2 2 0.31 0.20
13 100 1 0.00 100 1 0.00 0.00 2 1 0.31 0.10
14 100 1 0.00 100 1 0.00 0.00 2 1 0.31 0.30
15 1 0.5 3.28 4 0.3 5.06 0.00 3 1 1.24 0.30
16 100 1 0.00 100 1 0.00 0.00 3 3 11.17 0.20
17 100 1 0.00 100 1 0.00 0.00 1.5 3 2.79 0.20
18 0 1.5 27.05 7 1.5 33.75 0.00 3 3 0.70 0.10
19 100 1 0.00 100 1 0.00 0.00 2 5 17.46 0.20
20 1 0.5 3.28 2 0.6 13.92 0.00 2 5 31.03 0.20
βi = 20, i = 1,2, . . . ,10,

βi, j = −15, i = 1,2, . . . ,6,

βi, j,l = −10, i = 1,2, . . . ,5,

βi, j,l,s = 5, i = 1,2, . . . ,4.

The remaining first- and second-order coefficients for this
function are independently generated from a standard normal
distribution. The remaining third-order coefficients are set to
zero. In this function the first 10 factors are important either
because of their main effect (X8, X9, X10) or because of com-
bination of main effect and interaction effects. The remaining
factors (X11, . . . , X20) are non-relevant.

The values of the parameters and the corresponding total order
sensitivity indices are reported in Table 3 as follows:

• Function G∗ . We consider two different cases, with 4 and 10
important factors, labeled as G∗

4 and G∗
10 respectively. In the

table we present analytic values for the total order sensitivity
indices for these functions. Note that the sensitivity indices do
not depend on the coefficients δi [30] and thus the values of
the δi are randomly assigned.

• Functions K and B: analytic values [30].
• Function of Morris: the ST are estimated via an experiment

performed using the standard method [22] with sample size
N = 172,032.

4.2. Simulation results

For each function, the measure μ∗ is estimated using the radial
OAT sampling, the optimized trajectories design, and the cell-based
strategy. For the radial sampling we present the results obtained
using the shifted LPτ sequences as described in Section 3. For the
optimized trajectories design, we use for each factor a grid of p = 4
levels and, following [18], we set � = p/[2(p − 1)]. It is worth
noting that, while in the trajectories and in the radial sampling for
each r we derive one EE per input, when using the cell method we
obtain two EEs per input, as these correspond to the two sides of
the square. For this reason, when comparing SA results, we build r
trajectories for the optimized trajectories method, r points for the
radial strategy and s = r/2 squares for the cell sampling. r is varied
in the set {2,4,8}, in order to investigate the performance of the
methods at very low sample size (r = 2) or at sample sizes typical
of the EE method (r = 4–8).

The computational cost of each SA exercise for the optimized
trajectories and the radial OAT strategies varies between N = 42
(i.e. N = r(k + 1) = 2 · 21) and N = 168 (i.e. N = r(k + 1) = 8 · 21),
corresponding respectively to r = 2 and r = 8 points/trajectories.
For the cell-based method the cost is higher and ranges between
N = 49 and N = 196 model evaluations (for details see [29]).
A Monte Carlo experiment is performed where the SA exercise is
repeated 1000 times for each method.

We use μ∗ values to ascertain relevant factors from non-
relevant ones and define the following criterion to compare re-
sults:

• Based on the total order sensitivity indices (analytic ST or es-
timated ŜT), a relevant factor is defined as one whose ST is
greater than 1/k, where k is the number of input factors. Let
us label as ϕ the set of important factors and let I be the car-
dinality of this set. For all our functions k = 20 and thus only
factors with ST > 5% are considered to be relevant.

• Using Table 3, this implies that the number of relevant factors
for the functions G∗

4, G∗
10, K , B and M are respectively I = 4

(i.e. factors X2, X8, X11, X18), I = 10 (i.e. factors X2, X7, X8,
X9, X10, X11, X12, X15, X18, X20), I = 3 (i.e. factors X1, X2, X3),
I = 7 (i.e. factors X5, X6, X9, X10, X16, X19, X20) and I = 10
(i.e. factors X1, X2, . . . , X10).

• In the screening experiments factors are ranked according to
μ∗ . Let us label as ξ the group of the first I important factors
according to μ∗ .

• The factors in ϕ and ξ are compared and the following score
g is assigned:

g = card(ϕ
⋂

ξ)

I
, (12)

where card is the cardinality of the set. For instance, in the
case of the G∗

4 function (I = 4), if one relevant factor is not
identified by the method, the intersection between ϕ and ξ

will be composed of 3 elements and g will be equal to 0.75
(= 3/4).9

9 Note that from the definition of the score g , it follows that whenever an impor-
tant factor is not recognized as relevant, a non-important factor is recognized to be
relevant.
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Table 4
Results of the SA experiments: statistics for the g score defined in formula (12). Statistics are computed using 1,000 replicas.

Function r Radial OAT Optimized trajectories Cell

Average StDev Average StDev Average StDev

2 0.8852 0.1411 0.7933 0.1720 0.6935 0.1893
G∗

4 4 0.9147 0.1306 0.8023 0.1608 0.7628 0.1762
8 0.9530 0.1015 0.9043 0.1276 0.8227 0.1602

2 0.9956 0.0210 0.8758 0.1097 0.8086 0.1197
G∗

10 4 0.9973 0.0168 0.8995 0.0993 0.8884 0.1037
8 0.9998 0.0045 0.9885 0.0337 0.9483 0.0786

2 0.9907 0.0550 0.8587 0.1797 0.8553 0.1732
K 4 0.9920 0.0510 0.8833 0.1652 0.9007 0.1525

8 0.9970 0.0105 0.9197 0.1426 0.9347 0.1324

2 0.8614 0.0684 0.9053 0.0915 0.8871 0.0982
B 4 0.9790 0.0510 0.9696 0.0592 0.9520 0.0713

8 0.997 0.006 0.9949 0.0274 0.9846 0.0444

2 0.9266 0.0700 0.9628 0.0559 0.9000 0.0781
M 4 0.9799 0.0428 0.9972 0.0165 0.9463 0.0627

8 0.9992 0.0089 1 0 0.9886 0.0321
Since the peculiarity of the cell design is to provide the addi-
tional measure of the model’s interactions defined in Eq. (4), for
this method relevant factors are identified by making use of both
μ∗ and this second measure, i.e. one factor is important if at least
one of the tests (μ∗ or Eq. (4)) captures it.

Table 4 shows the statistics for g (mean and standard devia-
tion), for each function and each design, using the 1000 MC sim-
ulations. Results demonstrate that the radial design visibly outper-
forms the other methods for the G∗ and the K . For the B function
the radial design outperforms the other two methods only slightly
for r = 4,10 while for r = 2 the optimized EE design provides the
best results. For the M function, the best results are obtained with
the optimized EE design; only for high sample size (r = 8) the
methods give similar results. On average over all results the ra-
dial method is best. Also in light of its convergence properties, the
radial design can be considered the best practice.

To further investigate the relative performance of the methods,
the distribution of the number of unrecognized important factors
is shown in Figs. 4–6. Within each figure, different columns of
graphs refer to different functions and each of the three rows of
plots show results for one of the selected strategy. The bars in
each graph count the number of MC runs where the strategy fails
in recognizing one or more important factors, as defined by the
criteria presented above. All the sample sizes tested are presented,
i.e. r = 2 (black bars), r = 4 (grey bars) and r = 8 (white bars). The
graphs show that for the radial design the most populated bucket
is always the 0 one (except for the B and M functions and r = 2),
i.e. the design allow recognizing in most of the runs all relevant
factors. Moreover, except in two cases (B and M functions, r = 2),
the distribution for the radial OAT is always decreasing and the
last bucket is rarely populated. As expected, for all strategies the
size of the first bar is increasing with increasing the number of
points/trajectories/cells while the size of the other bars is decreas-
ing, i.e. the strategies improve their performance with increasing
the sample size.

Fig. 7 shows for the three significant factors of the K function
the convergence of the estimated variances V Ti obtained using the
radial design, towards its analytical value. We show on the x axis
the logarithm of the number of considered trajectories/points. The
left vertical axis shows the values of the output conditional vari-
ances V Ti as defined in Eq. (1). The solid lines with the squares
plot the estimated conditional variances which converge towards
the analytical values represented by the dashed lines. The right
axis present for exemplification only the value of μ∗ for the three
factors.
This convergence exercise thus confirms that the proposed de-
sign represents a unified approach valuable both for screening
purposes and in quantitative SA settings. Note that the proposed
strategy also allows to estimate error bounds for the effect of each
factor. This can be done using bootstrap as proposed in [7]. As an
example we use again the K function. Table 5 shows for its three
most significant factors the analytic variances, the estimated vari-
ances at r = 512, and the respective standard errors based on 25
boot replicas.

5. Conclusions

The present paper suggests a possible unified practice covering
both screening and quantitative sensitivity analysis, using the same
design and the same sample to move seamlessly from the former
to the latter.

The practice involves:

1. Determine a plausible space of variation for the uncertain in-
put factors and mapping those to the unit hyper-cube.

2. Start with a set of few different baseline points and use a ra-
dial design to complete the sample: for each point build a
‘star’ with factors randomly shifted around the baseline. Quasi-
random Sobol’ numbers are used to build the radial OAT sam-
ple.

3. Estimate the effect of each factor by using existing screening
measures.

4. If computationally affordable, using the same design and in-
creasing the sample size, estimate total order sensitivity in-
dices based e.g. on Jansen’s formula [14,13].

5. Use bootstrap to compute error bounds for the effect of each
factor [1,30].

6. Use a stopping rule based on (3) above to decide if increasing
the number of data points.

This approach allows modelers to change one factor at a time,
within each ’star’, as well as to increase the number of stars
without wasting the points already explored. The approach is
straightforward to implement based on the formulae given in the
present paper, and the quasi-random sequences are freely avail-
able.10

10 http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm.

http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm
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Fig. 4. Distributions of the number of unrecognized relevant factors for the two G∗ functions. The distributions are built using results of the 1000 Monte Carlo replicas of the
SA experiment.
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Fig. 5. Distributions of the number of unrecognized relevant factors for functions K and B . The distributions are built using results of the 1000 Monte Carlo replicas of the
SA experiment.
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Fig. 6. Distribution of the number of unrecognized relevant factors for function M .
The distribution is built using results of the 1000 Monte Carlo replicas of the SA
experiment.

Fig. 7. Left vertical axis: convergence of the estimated variances for the three signif-
icant factors of the K function with increasing the sample size r. The right vertical
axis shows the value of the screening measure μ∗ .

Table 5
Analytic variances for factors one to three of the K function together with the es-
timated variances at r = 512 and the respective standard errors based on 25 boot
replicas.

Factor V Ti

analytic
V̂ Ti

estimated
Standard
error

X1 0.04166 0.0427 0.0026
X2 0.01389 0.0138 0.0009
X3 0.00463 0.0036 0.0004
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