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We introduce a new method for screening inputs in mathematical or computational models with large

numbers of inputs. The method proposed here represents an improvement over the best available

practice for this setting when dealing with models having strong interaction effects. When the sample

size is sufficiently high the same design can also be used to obtain accurate quantitative estimates

of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the

variance-based measures according to the Sobol’ and the Jansen formulas. Results demonstrate that

Sobol’ is more efficient for the computation of the first-order indices, while Jansen performs better for

the computation of the total indices.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We introduce a new method for screening inputs in mathe-
matical or computational models with large numbers of inputs. In
input screening one tries to identify active inputs in an input-rich
model with a minimum number of computer simulations. The
method proposed here competes with the best available practice
for this setting, the method of elementary effects [1–4]. Reviews
of screening methods for computer experiments are in [3,5], while
review on sensitivity analysis in general are in [6–8] and [14].
Resources for sensitivity analysis are available in [9].

The idea of the new method is to explore the space of the
model inputs by combining steps along the Xi axis, where Xi is one
of the inputs, with steps along the X�i axis, an axis where
all inputs but Xi change their values. We anticipate that such an
approach should be particularly efficient for inputs screening of
non-additive models.
2. The method

A generic model (1) is considered:

Y ¼ f ðX1;X2; . . . ;XkÞ. (1)

The new design is exemplified for a case where there are k ¼ 10
model inputs and each input is explored over l ¼ 4 different values
or levels. The reason for these choices of k and l will be apparent in
a moment. According to standard practice [2], the levels could
ll rights reserved.
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correspond to equally spaced percentiles of the distribution of
each input.

Table 1 shows how to arrange simulations so that steps in the
X�i direction are generated.

A step along the X�1 axis is obtained comparing run B1 with B2,
etc. as shown in Table 2. For example, a step along the X�10 axis is
obtained from B1 and B5 as all inputs but X10 change of levels
between B1 and B5.

In the following r will indicate the number of rows in B and Bj a
generic row of the same matrix. To obtain the complete design,
the scheme of Table 2 is extended to include steps along the Xi

axes as shown in matrix M. The result is Table 3.
The first column in Table 3 indicates the simulation/run

number. If we call N the total number of runs, we moved from
r ¼ 5 in B to N ¼ 25 runs in M. The original runs 1–5 have become
in the order runs 1;2;5;10;17. The additional runs have been
generated as follows:
Run 3 is a step in the X1 direction taken from run 1.
Run 4 is a step in the X1 direction taken from run 2.
Run 5 is the base run 3 of matrix B while:
Run 6 is a step in the X2 direction taken from run 2.
Run 7 is a step in the X2 direction taken from run 5.
Run 8 is a step in the X3 direction taken from run 1.
Run 9 is a step in the X3 direction taken from run 5.
Run 10 the base run 4 of matrix B.
Analogously:
Run 11 is a step in the X4 direction taken from run 5.
Run 12 is a step in the X4 direction taken from run 10.
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Table 1
Base matrix B.

Bi X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2

3 2 2 1 3 3 3 3 3 3 3

4 3 3 3 3 2 1 4 4 4 4

5 4 4 4 4 4 4 4 3 2 1

Run number and level selected for each input. The first column indicates the

simulation (or ‘run’ as a simulation is termed in computer jargon) Bi from i ¼ 1 to

5, Xj denotes input j and the tabled integer number indicates the level at which the

input is set, e.g. input X1 is set at level 3 in simulation B4.

Table 2
Scheme for the computation of effects of the type X�i from the runs of matrix B,

Table 1.

X�i Run Run

1 2 1

2 3 2

3 3 1

4 4 3

5 4 2

6 4 1

7 5 4

8 5 3

9 5 2

10 5 1

Table 3
Matrix M and usage of runs to compute model inputs effect.

Mi X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Type For input

1 1 1 1 1 1 1 1 1 1 1 b 1;3;6;10

2 1 2 2 2 2 2 2 2 2 2 b 1;2;5;9

3 2 1 1 1 1 1 1 1 1 1 c1(1) 1

4 2 2 2 2 2 2 2 2 2 2 c2(1) 1

5 2 2 1 3 3 3 3 3 3 3 b 2;3;4;8

6 1 3 2 2 2 2 2 2 2 2 c2(2) 2

7 2 3 1 3 3 3 3 3 3 3 c5(2) 2

8 1 1 2 1 1 1 1 1 1 1 c1(3) 3

9 2 2 2 3 3 3 3 3 3 3 c5(3) 3

10 3 3 3 3 2 1 4 4 4 4 b 4;5;6;7

11 2 2 1 4 3 3 3 3 3 3 c5(4) 4

12 3 3 3 4 2 1 4 4 4 4 c10(4) 4

13 1 2 2 2 3 2 2 2 2 2 c2(5) 5

14 3 3 3 3 3 1 4 4 4 4 c10(5) 5

15 1 1 1 1 1 2 1 1 1 1 c1(6) 6

16 3 3 3 3 2 2 4 4 4 4 c10(6) 6

17 4 4 4 4 4 4 4 3 2 1 b 7;8;9;10

18 3 3 3 3 2 1 3* 4 4 4 c10(7) 7

19 4 4 4 4 4 4 3* 3 2 1 c17(7) 7

20 2 2 1 3 3 3 3 4 3 3 c5(8) 8

21 4 4 4 4 4 4 4 4 2 1 c17(8) 8

22 1 2 2 2 2 2 2 2 3 2 c2(9) 9

23 4 4 4 4 4 4 4 3 3 1 c17(9) 9

24 1 1 1 1 1 1 1 1 1 2 c1(10) 10

25 4 4 4 4 4 4 4 3 2 2 c17(10) 10

Run type b, base run. Run type ci(j), copy of run Mi with the level of input Xj

increased of one step (with the exceptions highlighted by the * and explained

below). There are k ¼ 10 inputs and the number of base runs is r ¼ 5 (see also

formulas (2) and (3)). The total number of runs is five base runs plus 2k additional

runs for a total of r2 ¼ 25 simulations. Each base run is cloned exactly five times.

Each input is explored over four levels. The exception is marked with asterisk—the

3’s in runs 18 and 19 should have been 5’s. This type of exception occurs exactly

twice regardless of number of model inputs k. Each base run is used for four

different inputs. Generalizing: a number r of base runs can be used for k ¼

rðr � 1Þ=2 inputs explored over l ¼ ðr � 1Þ levels at a cost of N ¼ r2 simulations.

Each base run is used for exactly ðr � 1Þ inputs while each non-base (clone) run is

used only for one input.
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Run 13 is a step in the X5 direction taken from run 2.
Run 14 is a step in the X5 direction taken from run 10.
Run 15 is a step in the X6 direction taken from run 1.
Run 16 is a step in the X6 direction taken from run 10.
Run 17 the base run 5 of matrix B.
It should be clear how we have proceeded for the other runs.
Let us now discuss briefly the base matrix B and why we have

chosen to exemplify the approach with k ¼ 10 model inputs. In B,
for a generic row or run number j we can estimate ðj� 1Þ steps of
the X�i type, e.g. we compute the four steps X�7 to X�10 from row
5, three steps X�4 to X�6 from row 4 and so on. Thus the total
number k of steps of the X�i type which one can estimate with r

simulations is simply

k ¼ r � 1þ r � 2þ � � � þ 1 ¼
rðr � 1Þ

2
. (2)

Hence, for a total run number of r ¼ 3;4;5;6;7;8;9 . . . simulations
we can compute steps of the X�i type for k ¼ 3;6;10;
15;21;28;36 . . . inputs, respectively, in matrix B. In other words,
the number of matrix B simulations for a given number of inputs k

is the solution of the quadratic equation (2) above, e.g.

r ¼
1þ ð1þ 8kÞ1=2

2
, (3)

that has meaningful solutions for k ¼ 3;6;10;15;21;28;36 . . .
inputs corresponding to r ¼ 3;4;5;6;7;8;9 . . . simulations in B,
as just mentioned. In the matrix B given as example, k ¼ 10 and
r ¼ 5, with four different levels to explore for each model input. It
is easy to see that the number of levels explored is in general
l ¼ r � 1.

Note that the designs for k ¼ 3;6 are embedded into B or M.
One just has to ignore the unneeded right-most columns. With
k ¼ 6, the dimension of matrix B would have been r ¼ 4 and
we would have explored conveniently three levels. Given that the
present is a screening method, we anticipate that it will be applied
to a k higher rather than lower than 10.

Note that in runs 18 and 19 we have moved levels from 4 to 3
instead than from 4 to 5, in order not to have isolated levels 5
explored. This technicality has to be kept in mind with different
values of k as well to ensure that there will not be a level explored
only twice in M. This exception will systematically occur twice in
M irrespective of k.

To generalize the procedure for a number of inputs k, the first
row of matrix B is obtained by setting all the inputs to their first
level. Then the second row is obtained by leaving the first input as
in the previous row (which is in level 1), and increasing all the
others to level 2. The third row is obtained by leaving the second
input as in the previous row (which is in level 2), setting the first
input to the same level (level 2), decreasing the third input to level
1, and increasing all the others to level 3. The fourth row is
obtained by leaving the fourth input as in the previous row
(in level 3), setting the preceding inputs (first, second and third) to
the same level (level 3), decreasing the fifth input to level 2, the
sixth to level 1, and increasing all the others to level 4.

In general the n-th row is obtained by fixing the first input
which in the previous row has taken the level ðn� 1Þ. All inputs
preceding that one are set to the same level (i.e. ðn� 1Þ).
The subsequent inputs decrease from ðn� 2Þ to 1. The remainders
are increased by one level with respect to the previous row.

The matrix M is obtained expanding B as it follows. We
consider the first two rows of B, say B1 and B2, and select the input
which is kept fixed among the two, input X1. We create a row
which is a copy of B1 apart from input X1 which is increased to the
next level, and a row which is a copy of B2 apart from input X1

which is increased to the next level. We then consider the second
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EEa(1) EEb(1)EI1

Run 3 Run 4

Run 1 Run 2

x1   x~1
(1)(2)

x1   x~1
(1)(1) x1   x~1

(2)(1)

x1   x~1
(2)(2)X1

X~1

Fig. 1. Computational scheme for the effects of input X1 in matrix M, Table 3. Note

that effects can be obtained by comparing points both horizontally and vertically.

Table 4

Number of inputs k and total number of simulations N corresponding to a given

column dimension of matrix B.

r Number of inputs k Number of simulations N

3 3 9

4 6 16

5 10 25

6 15 36

7 21 49

8 28 64

9 36 81

10 45 100

11 55 121

12 66 144

13 78 169

14 91 196

15 105 225

16 120 256

17 136 289

18 153 324

19 171 361

20 190 400

These simulations serve to estimate a complete set of main effects and interaction

effects for all inputs.
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and third two rows of B, B2 and B3, and select the input which is
kept fixed among the two, input X2. We create a row which is a
copy of B2 apart from input X2 which is increased to the next level,
and a row which is a copy of B3 apart from input X2 which is
increased to the next level. We proceed by comparing rows of B to
find couples of rows, Bi and Bj, having a single input Xw which is
kept fixed among the two (i.e. which is set to the same level). We
create new rows that are copies, respectively, of Bi and Bj apart
from input Xw which is increased by one level. This completes the
matrix.

Given that our design in matrix M needs two additional
simulations for each model input to compute steps along
the Xi axis, the total numbers of simulations is the solution
of Eq. (3) plus twice the number of model inputs k. Hence N ¼

r þ 2rðr � 1Þ=2 ¼ r2. In the case of matrix M where r ¼ 5 this
makes N ¼ 25.

In the simulation matrix M each integer number is meant to
indicate the level at which a given model input is set. Thus,
if using M in the present form, each input would start moving
from its lowest level and would finish reaching its highest level. In
order to randomize the inputs’ path, we generate for each input Xi

a vector Li containing the l levels in randomized order, under the
condition that the difference between two consecutive levels
cannot be the maximum value of the range of variation of an input
(this is simply to avoid a ‘too big’ step which covers the whole
interval amplitude, moving from 0 to 1 in the space of
percentiles). Then for each model input i, we assume that the
integer number j in M identifies the level that occupies the j-th
position in Li. If, for example, the value in M for X1 is 3, then X1

will be set to the level Lið3Þ.
Finally note that it is possible to repeat the (entire) design a

number i of times by replicating the random choice of the levels to
be assigned to each input. The cost of such an experiment is thus
C ¼ Ni. In this case it is also possible to randomly permute model
inputs at each iteration, so that the order in which inputs are
considered changes randomly from one iteration to the other. In
the single iteration presented in Table 3 inputs are considered in
the order X1;X2; . . . ;Xk.

Having illustrated the sample design, we now move to discuss
how effects are estimated. Let us refer to input X1 in matrix M to
exemplify our approach.

Let us call Yi the model value computed on the i-th row of M.
We start with run M3 which is simply a copy of run M1 where
input X1 has been moved from level (1) to (2), and run M4 which is
a copy of run M2 were again input X1 has been moved from level
(1) to (2). Thus, indicating with levelzðjÞ the value that input Xz

takes on level j both

EEað1Þ ¼
jY1 � Y3j

jlevel1ð2Þ � level1ð1Þj

and

EEbð1Þ ¼
jY2 � Y4j

jlevel1ð2Þ � level1ð1Þj

can be taken as estimate of the so-called main effect of X1

(see Fig. 1).
The elementary or first-order effect EE1 of X1 can be estimated

via

EE1 ¼
1
2ðEEað1Þ þ EEbð1ÞÞ. (4)

In the literature the above measure is often named m�. In the
following we will adopt the common terminology and we will call
it m�. It is also clear that both the couple of runs 1;2 and 3;4
provide an effect of moving all inputs but X1. Following the
formula used in the factorial design (see [3, p. 55]), we pose that
an estimate of the interaction effect of input X1 can be gauged by

EI1 ¼
1
2jY1 � Y2 þ Y4 � Y3j. (5)

As mentioned the present approach favors number of inputs
such as k ¼ 3;6;10;15;21;28;36 . . . and the corresponding costs
are in Table 4. These numbers have to be compared with the cost
of the elementary effects methods [1,4].

When using the elementary effects method a number
of trajectories t is launched into the space of the model inputs.
In each trajectory all steps are taken along the Xi axes
(no movements over the X�i axes) and only elementary effects
are computed using systematically adjacent steps of the trajec-
tory. Within each trajectory, composed of ðkþ 1Þ lattice points,
one model input at a time is changed till all k dimensions have
been spanned. Each trajectory thus generates exactly k elementary
effects, i.e. one elementary effect per input. The cost C of this
procedure is thus the number of trajectories, t, times the number
of inputs plus one, C ¼ tðkþ 1Þ. Values of t are usually taken in the
range of t ¼ 4; . . . ;10.

In the following we will show that our design can
be convenient with respect to the elementary effects method.
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Table 5
Results for function (6) with tails cut at 20 and 80.

New design m� alone 14

m� + int 3

Elementary effects m� alone 16
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The idea is that, with the same computational cost, and still
maintaining the classic sensitivity measure based on the elemen-
tary effects, our method can provide the additional sensitivity
measure presented in formula (5) which accounts for the
interaction effects, and which can be particularly useful for
models having pure interactions.
m � þs 9

The most right column counts the number of failures.

Table 6
Results for function (6) with tails cut at 0.5 and 99.5.

New design m� alone 30

m� + int 15

Elementary effects m� alone 24

m� + s 24

The most right column counts the number of failures.
3. Experimental results

We test the new design against two benchmarks for sensitivity
analysis, and we compare its performance with that of the
elementary effects method. The two benchmarks are, respec-
tively: (i) a typically non-additive model [5], and (ii) a 10-inputs
version of the Morris’ function [1], the standard benchmark for
the elementary effects method.

The non-additive model, here taken with 10 model inputs, has
the following form:

Y ¼
X5

i¼1

OiZi, (6)

where

Zi�Nðz̄i;sZi
Þ;

Oi�NðŌi;sOi
Þ;

i ¼ 1;2; . . . ;5, (7)

with z̄i ¼ 0; i ¼ 1;2; . . . ;5, X̄ ¼ ½0:5;0:5;0:5;2;2:5�, rZ ¼ ½1;1;
0:5;2;2�, and rX ¼ ½1;1;4;5;6�.

The vector of model inputs for the analysis is thus

X ¼ ðZ1; Z2; . . . ; Z5;O1;O2; . . . ;O5Þ. (8)

Note that this model is appealing for sensitivity analysis testing
as it has the peculiarity that some model inputs have effects of
first order that are null, but at the same time a non-negligible
overall importance because of their interaction effects.

Given that the input distributions are not uniform, in order to
select the inputs’ levels it is essential to decide how to cut
the distribution tails (so to avoid exploration of ‘extreme events’).
The choice of the cut has a strong influence on the results as it
defines a different region of the space to be explored. Here we
have repeated the experiment twice: a first time by performing a
‘light’ cut, thus including more ‘extreme events’ (tails cut at 0.5
and 99.5), a second time by performing a more solid cut which
explores most likely events (tails cut at 20 and 80).

The experiment is performed with a total computational cost
of C ¼ 25, and is confronted with the elementary effects design
performed with two trajectories that correspond to C ¼ 22 model
evaluations. The comparison is carried out according to the
following criterion. Each experiment is replicated 50 times and
the number of ‘failures’ for each sensitivity measure are counted.
As we are in a screening framework, we aim to avoid type II errors,
i.e. to erroneously miss an important input. Thus we classify
as a ‘failure’ for a given measure a replicate where one or more
important inputs are not identified as important according to that
measure. The threshold to identify a model input as important is
the average value of that sensitivity measure taken over all inputs.
A model input whose measure is above the average is important.
A model input whose measure is below the average is not.

This criterion is subject to a certain level of arbitrariness and
different rules to screen unimportant model inputs can be tested.
For models where analytical values of the sensitivity indices are
available, also ranks can be used to compare the performance
of different methods. However, for most of the models where
screening techniques are employed, analytical sensitivity mea-
sures are not available and thus it is necessary to define
a threshold for discriminating influential inputs based only on
the comparison of the sensitivity measures obtained in the
experiment.

Tables 5 and 6 show the results. When looking at the sole
sensitivity measure m�, we find that both the methods produce a
non-negligible number of failures, especially for the more difficult
case where extreme sample points are explored. However, when
using the new design and introducing the measure of the
interactions given in Eq. (5), the number of failures reduces,
respectively, to 15 for the setting with a ‘light’ cut and to 3 for the
setting with a ‘strong’ cut. Also the classic elementary effects
method can make use of a sensitivity measure that estimate the
interactions and that could reduce the number of failures of m�:
the standard deviation of the elementary effects (see [1]).
However, at very low sample size, this measure tends to become
meaningless (here it represents the standard deviation of a
sample of only two elementary effects!). In our first example
(Table 5) its use allows to improve results, as it reduces the
number of failures from 16 to 9; however, the improvement is
much less pronounced than that obtained using the interaction
measure given in Eq. (5). In the second example (Table 6) its
added value is completely null.

For this test case, where the interactions play a fundamental
role, it is clear that the new design is more convenient than the
classic elementary effects one, as it offers the possibility to
compute a sensitivity measure specifically designed for the
interactions which can significantly reduce the occurrence of
type II error made by m�. This is more evident when the test case
also takes into account extreme events that enhance even more
the role of the interaction terms.

To show that results are not depending on the number
of inputs chosen, the experiment is repeated on the same test
function but with a different number of inputs: 28. The new
function has the form

Y ¼
X14

i¼1

OiZi, (9)

where

Zi�Nðz̄i;sZi
Þ;

Oi�NðŌi;sOi
Þ;

i ¼ 1;2; . . . ;14, (10)

with z̄i ¼ 0; i ¼ 1;2; . . . ;14, X̄ ¼ ½0:5;0:5;0:5;2;2:5;3;3:5;4;4:5;5;
5:5;6;6:5;7�,
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rZ ¼ ½1;1;2;2;2;3;3;3;2;2;1;1;6;7� and

rX ¼ ½1;1;0:5;0:5;0:5;0:5;3;3;4;4;5;2;6;7�.

Results, reported in Table 7, confirm our conclusions.
We now carry out the same comparison exercise on another

benchmark for sensitivity analysis, the polynomial function
introduced by Morris [1], to show the efficiency of the elementary
effects method. Here we take a 10-input version of the Morris’
function of the following form:

y ¼ b0 þ
X10

i¼1

biwi þ
X10

ioj

bi;jwiwj þ
X10

iojol

bi;j;lwiwjwl, (11)

where wi ¼ 2ðxi � 0:5Þ for all i except for i ¼ 3 where
wi ¼ 2ð1:1xi=ðxi þ 0:1Þ � 0:5Þ, xi�U½0;1�, and

bi ¼ �15; i ¼ 1;2,

bi;j ¼ 30; i ¼ 3;4,

bi;j;l ¼ 10; i ¼ 1;2;3;4.

The remaining first- and second-order coefficients are indepen-
dently generated from a standard normal distribution. The
remaining third-order coefficients are set to zero. Note that the
choice of k ¼ 10 is for comparison reasons: the number k ¼ 10
translates into a number of levels l ¼ 4, which is the standard
choice when applying the elementary effects method.

Table 8 shows the results for different computational costs, i.e.
for different numbers t of trajectories and different numbers i

of iterations of the new design. When the sample size is extremely
low (i.e. t ¼ 2, which corresponds to a single iteration, i ¼ 1, of our
design), both methods fail several times. This is due to the difficulty
of this test case at a so low sample size. The previous example had a
lower number of failures as the difference in importance among the
inputs was more pronounced and hence the correct ranking for
importance more detectable. When testing higher sample sizes,
both methods converge at the correct numbers, but the relative
performance of the two methods is unstable.

This test case shows that when the presence of interactions is
not so relevant, the benefit of using the new design disappears. In
general we believe that, in a screening setting, the method
proposed here has the potential for an added value with respect to
the standard ‘best practice’ based on the classic elementary effects
method. The test cases presented here show that the method is
Table 7
Results for function (9) and with tails cut at 20 and 80.

New design m� alone 11

m� + int 5

Elementary effects m� alone 11

m� + s 7

The most right column counts the number of failures.

Table 8
Results for function (11) at different sample sizes.

i ¼ 1 i ¼ 2 i ¼ 2

t ¼ 2 t ¼ 4 t ¼ 5

New design

m� alone 37 12 12

m� + int 21 2 2

Elementary effects

m� alone 23 5 4

m� + s 17 4 1

Numbers indicate the number of failures.
convenient when the model presents pure interaction terms but it
may be less performing on other test cases.
4. Comparison with a quantitative method

There are points of similarities between the approach
presented in this paper and that of Saltelli [10], which is an
improvement of the Sobol’ method [11] for the computation of the
so-called variance based measures.

A variance based first-order effect for a given model input Xi

can be written as

VXi
ðEX�i
ðYjXiÞÞ. (12)

The meaning of the inner expectation operator is that the mean
of Y is taken over all possible values non-Xi, i.e. over all possible
values of X�i, while keeping Xi fixed. The outer variance is taken
over all possible values of Xi.

The associated sensitivity measure (first-order sensitivity
coefficient) is written as

Si ¼
VXi
ðEX�i
ðY jXiÞÞ

VðYÞ
. (13)

Because of relation

EXi
ðVX�i
ðYjXiÞÞ þ VXi

ðEX�i
ðY jXiÞÞ ¼ VðYÞ (14)

Si will always be between zero and unit. It measures the first-
order (e.g. additive) effect of Xi on the model.

Another popular variance based measure is the total effect
term or index [10,12]:

STi ¼
EX�i
ðVXi
ðY jX�iÞÞ

VðYÞ
. (15)

STi measures the total effect (both first order and higher, e.g.
interactions) of input Xi.

Variance based methods are quantitative so that these
measures are not simply estimated over levels of the inputs but
over the entire inputs distribution using customarily Monte Carlo
methods of various sophistication. Sampling matrices will be
designed to allow the computation of measures (13) and (15).

Following Saltelli [10] we imagine to have two independent
sampling matrices A and B. We can write A as

A ¼ XðaÞ1 ; . . . ;XðaÞi ;XðaÞiþ1; . . . ;X
ðaÞ
k , (16)

where each term is a column vector of length H (the number of
simulations in the matrix). For simplicity of notation this equation
can be written as

A ¼ XðaÞi ;XðaÞ
�i , (17)

where XðaÞi will be a column vector of length H and XðaÞ
�i will be a

matrix of dimension H times ðk� 1Þ.
Analogously the second matrix B will be

B ¼ XðbÞi ;XðbÞ
�i , (18)

and two more matrices can be constructed as

Ab ¼ XðaÞi ;XðbÞ
�i ,

Ba ¼ XðbÞi ;XðaÞ
�i .

The theory of variance based measures is based on computing Si

from either the couple of matrices A;Ab or B;Ba [11]. Analogously
STi can be computed either using the couple A;Ba or matrices B;Ab

(see Table 9).
Saltelli [10] noted that all what is needed to compute both the

set of all Si and STi for the k inputs is the triplet of matrices A;B;Ba

or alternatively the triplet matrices A;B;Ab. If we use e.g. the former
triplet we can compute all Si and STi using the scheme in Table 10.
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Table 9
Possible ways of computing Si and STi .

Matrix Matrix Effect

XðaÞi ;XðaÞ
�i XðaÞi ;XðbÞ

�i
Si

XðaÞi ;XðaÞ
�i XðbÞi ;XðaÞ

�i
STi

XðbÞi ;XðbÞ
�i XðbÞi ;XðaÞ

�i
Si

XðbÞi ;XðbÞ
�i XðaÞi ;XðbÞ

�i
STi

Table 10
How to compute Si and STi according to [10].

Matrix Matrix Effect

XðaÞi ;XðaÞ
�i XðaÞi ;XðbÞ

�i
Si

XðbÞi ;XðbÞ
�i XðaÞi ;XðbÞ

�i
STi

Table 11
Generic bi-dimensional square in the hyper-lattice.

Point Point Effect

xðjÞi ; x
ðjÞ
�i xðjÞi ;x

ðjþ1Þ
�i

Si

xðjÞi ; x
ðjÞ
�i xðjþ1Þ

i ; xðjÞ
�i

STi

xðjþ1Þ
i ; xðjÞ

�i xðjþ1Þ
i ; xðjþ1Þ

�i
Si

xðjÞi ; x
ðjþ1Þ
�i xðjþ1Þ

i ; xðjþ1Þ
�i

STi

ðxðjÞi ; x
ðjÞ
�iÞ and ðxðjþ1Þ

i ; xðjþ1Þ
�i Þ represent the first and last point of the square built for

input Xi; ðx
ðjþ1Þ
i ; xðjÞ

�iÞ is the point where input i moves respect to the first point (step

along direction i); ðxðjÞi ;x
ðjþ1Þ
�i Þ is the point where all but input i change their values

respect to the first point (step along direction �i).
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Fig. 2. Si values for X4 as computed via the Sobol’ and the Jansen formulas at

different computational costs. The estimates are confronted with the analytical

value.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

Computational Cost

ST4 Sobol’

ST4 Jansen

ST4 Analytics

S T

Fig. 3. STi values for X4 as computed via the Sobol’ and the Jansen formulas at

different computational costs (number of simulations). The estimates are

confronted with the analytical value.
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Fig. 4. Si values for X10 as computed via the Sobol’ and the Jansen formulas at

different computational costs (number of simulations). The estimates are

confronted with the analytical value.
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Note that 2H simulations are needed for computing Y

corresponding to matrices A;B while kH simulations are needed
to compute Y for matrix Ba for all inputs. As a result the cost of
this quantitative method is C ¼ Hðkþ 2Þ with H usually a large
number (1000 or higher).

This has similarities with the approach taken in the present
paper, where the computation of the sensitivity effects are based
on ‘squares’ in the hyper-lattice such as Table 11. For example, the
square for input X1 in Table 3 is in Fig. 1.

Following this idea, we tried to explore the properties of our
design when moving from a screening setting to a quantitative
setting, where the aim is to produce accurate sensitivity measures
that converge to analytical values.

We stick to the same sampling design, i.e. we perform the same
simulations, but we use them differently: we arrange the simulation
outcomes so to estimate the variance-based sensitivity measures
according to the classic formulas proposed, respectively, by Sobol’
and by Jansen (see [13]). Moreover, instead of mapping matrix M
onto levels, we map them onto a sequence of Sobol’ points.

Thus, we estimate Si and STi
either as

Si ¼
E½f ðXi;X�iÞf ðXi;X

0
�iÞ� � E2

½Y �

V
, (19)

STi ¼ 1�
E½f ðXi;X�iÞf ðX

0
i;X�iÞ� � E2

½Y �

V
(20)

according to the formula of Sobol’, or as

Si ¼
V � 1

2 E½f ðXi;X�iÞ � f ðXi;X
0
�iÞ�

2

V
, (21)

STi ¼

1
2 E½f ðXi;X�iÞ � f ðX0i;X�iÞ�

2

V
(22)

according to the formula of Jansen.
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Fig. 5. STi values for X10 as computed via the Sobol’ and the Jansen formulas at

different computational costs (number of simulations). The estimates are

confronted with the analytical value.
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Results for function (6) are shown in Figs. 2–5 that show the
convergence of the sensitivity indices, both first order and total, as
estimated, respectively, using the Sobol’ and the Jansen formulas.
The graphs show that all the estimates converge to the analytical
values, confirming that the proposed design has the advantage of
being suitable also for quantitative estimates, provided that the
sampling size is sufficiently large. Moreover, it is worth noting
that, as conjectured by Chan et al. [13], the Sobol’ formula is more
effective when computing the first-order indices (as it converges
quickly to the analytical values), while the Jansen formula is more
efficient for the computation of the total indices.
5. Conclusions

In this paper we have proposed an alternative method to
screen model inputs in input-rich models. With respect to the
elementary effects method, so far a ‘best practice’ for screening
settings, the new method has the advantage of providing an
additional sensitivity measure, at no extra computational cost,
which estimates the interaction effects and that can be particu-
larly useful for models characterized by pure interactions terms.
When modified to perform in quantitative settings, the design
provides sensitivity estimates of the variance-based indices that
converge to the analytical values.
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