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Abstract 

This Invited Lecture covers classic and modern designs, and their metamodels. Classic resolution-III designs including fractional-
factorial two-level designs assume first-order polynomial metamodels. Resolution-IV and resolution-V designs assume such 
polynomials augmented with two-factor interactions. Central Composite Designs (CCDs) assume second-degree polynomials. 
Simulations with many factors require modern factor-screening designs; e.g., sequential bifurcation and Morris’s designs. 
Globally fitted Kriging metamodels require space-filling designs; e.g., Latin Hypercube Sampling (LHS). Sensitivity analysis 
also serves optimization of the simulated system. Classic Response Surface Methodology (RSM) is popular. Novel methods 
select one of the multiple simulation outputs as goal variable, and satisfy given constraints on the other outputs and the inputs. 
Taguchian robust optimization allows for uncertainties in some (environmental) inputs. 
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1. Overview 

This Invited Lecture gives an overview of Sensitivity Analysis (SA) of simulation models (also called computer 
codes), treating the simulation model as a black box; i.e., the SA uses only the Input/Output (I/O) data of the 
simulation model (not the internal variables and functions). To obtain these I/O data, the SA should use proper Design 
Of Experiments (DOE). This DOE should depend on the (tentative) metamodel (also called emulator, response 
surface, surrogate), which approximates the I/O function that is defined by the underlying simulation model. A local 
experiment may be used to estimate the gradient, so the analysts may assume a first-order polynomial metamodel. For 
such a polynomial, a Resolution-III (R-III) design suffices; such a design may be a factorial two-level design, which 
consists of all 2k  combinations of the two extreme values for each of the k  1 “factors” or simulation inputs. Such a 
design gives more accurate Ordinary Least Squares (OLS) estimators of the k first-order or main effects (say) j (j =1, 
…, k) and the intercept (say) 0 than changing one factor at a time; see Kleijnen (2008, p. 29). However, if there are 
more than two factors (k > 2),  then only a fraction of these 2k  combinations needs to be simulated; e.g., if k = 3 then 
there are only 4 effects to be estimated so instead of 23 combinations only 23 – 1 combinations are simulated. In 
general, some R-III designs or Plackett-Burman designs are 2k – p designs with a proper selection of p. However, for k 
= 11 only 12 instead of 211 = 2,048 combinations are needed; obviously, these 12 combinations are not a 2k  - p design. 
Both types of R-III designs are tabulated in Kleijnen (2008, pp. 36-40). A first-order polynomial metamodel may turn 
out not to be valid; e.g., the popular coefficient of determination R2 may be much smaller than one, or cross-validation 
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gives significant prediction errors; see Kleijnen (2008, pp. 54-63). The analysts may then augment the first-order 
polynomial with two-factor interactions (cross-products). A Resolution-IV (R-IV) design then gives OLS estimators 
of the first-order effects (and the gradient) that are not biased by these two-factor interactions. The computational 
extra cost is the doubling of the number of combinations (say) n: so-called foldover principle, which augments the R-
III design (say) D with its negative or “mirror image”, –D; see Kleijnen (2008, pp. 42-43). If the analysts wish to 
estimate the individual two-factor interactions, then they should use Resolution-V (R-V) designs, which require the 
simulation of many more factor combinations because the number of polynomial coefficients or regression parameters 
(say) q increases to 1 + k + k(k – 1)/2. Examples are 25 – 1 and 211 - 4 designs; see the table for 5  k  11 in Kleijnen 
(2008, p. 48). However, there designs are not so “efficient”: n >> q. There are also (less popular) saturated R-V 
designs; i.e., design with n = q; see Kleijnen (2008, pp. 48-49). The preceding designs of various resolution may be 
used to find out whether specific factors are unimportant; i.e., they have no first-order effects and do not interact with 
other factors. Some authors call this use of the preceding classic designs screening. However, if the number of factors 
is (say) 1000, then these designs require too much simulation time because they require at least k + 1 combinations. 
The analysts may then use special screening designs; e.g. sequential bifurcation and Morris’s designs; see Kleijnen 
(2008, pp. 159-172). For the important factors the analysts may assume a second-order polynomial metamodel, 
especially when they wish to estimate the optimal factor values. Unbiased estimators of the polynomial coefficients 
are provided by the popular Central Composite Designs (CCDs). A CCD augments the R-V design with the “central 
point” x = 0 and 2k “axial points”, which change factor j (j =1, …, k ) from its central value 0 to –c and c respectively 
with c  0, while keeping the other k – 1 factors at their central values. Note that all factor values in the various 
designs are standardized between (say) -1 and 1; see Kleijnen (2008, pp. 29-32).  All these classic designs assume 
low-order polynomials plus white noise so OLS gives optimal estimators; otherwise the analysts may apply either 
Weighted or Generalized Least Squares, bootstrapping, etc.; see Kleijnen (2008, pp. 73-100). 

Besides first-order or second-order polynomial metamodels, there are many modern types of metamodels; see 
Kleijnen (2008, p.  8). The most popular alternative is the Kriging (or Gaussian Process) metamodel (named after 
Danie Krige). Such a metamodel gives a good global fit over a large experimental area. Mathematically, Kriging uses 
a linear combination of the n “old” simulation outputs, to predict the output for the “new” input combinations where 
the weights decrease as the old input combination lies farther away from the new input combination. The optimal 
weights are estimated assuming a specific covariance stationary process that quantifies how the correlations among 
outputs vary with the distance among their inputs. To compute the Kriging metamodel, the analysts can use free and 
well-documented Matlab Kriging software called DACE.  Designs for generating the necessary I/O simulation data (to 
be analyzed by Kriging) are space filling. The most popular design is Latin Hypercube Sampling (LHS), for which 
there is ample software. However, sequential designs are more efficient, because they analyze the available I/O data 
before selecting the next input combination. Details on Kriging metamodels and their designs are given by Kleijnen 
(2008, pp. 139-156). 

SA may also serve optimization of the simulated system. A classic method is Response Surface Methodology 
(RSM), which is a stepwise heuristic that starts with a local experiment using a R-III design, estimates the gradient, 
changes the factors through Steepest Ascent, and ends with a second-order polynomial to estimate the optimum. 
Modern variants allow for multiple simulation outputs, and select one output as the goal while satisfying constraints 
on the remaining outputs and on the k inputs. These variants either generalize RSM or fit a Kriging metamodel for 
each of the multiple simulation outputs, and combines these Kriging models with a Nonlinear Programming 
algorithm to estimate the optimum.  Finally, robust optimization also accounts for uncertainty in the environmental 
inputs, which are beyond management’s control. Optimization is discussed by Kleijnen (2008, pp. 101-138). 
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