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A Quantitative Model-Independent Method for 
Global Sensitivity Analysis of Model Output 
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Italy 
(andrea.saltelli@jrc.it) 

(stefano.tarantola@jrc.it) 
(karen.chan@jrc.it) 

A new method for sensitivity analysis (SA) of model output is introduced. It is based on the Fourier 
amplitude sensitivity test (FAST) and allows the computation of the total contribution of each input 
factor to the output’s variance. The term “total” here means that the factor’s main effect, as well 
as all the interaction terms involving that factor, are included. Although computationally different, 
the very same measure of sensitivity is offered by the indices of Sobol’. The main advantages 
of the extended FAST are its robustness, especially at low sample size, and its computational 
efficiency. The computational aspects of the extended FAST are described. These include (1) the 
definition of new sets of parametric equations for the search-curve exploring the input space, (2) 
the selection of frequencies for the parametric equations, and (3) the procedure adopted to estimate 
the total contributions. We also address the limitations of other global SA methods and suggest 
that the total-effect indices are ideally suited to perform a global, quantitative, model-independent 
sensitivity analysis. 

KEY WORDS: Computational model; Fourier amplitude sensitivity test (FAST); Nonlinear and 
nonmonotonic models; Total sensitivity indices. 

1. INTRODUCTION 

The objective of sensitivity analysis (SA) of model out- 
put can be defined (loosely) as “to ascertain how a given 
model (numerical or otherwise) depends on its input fac- 
tors.” Thus, SA can be of use in the growing field of nu- 
merical simulation, where mathematical and computational 
models are used for the study of systems, especially com- 
plex ones. SA helps to understand the behavior of a model, 
the coherence between a model and the world, and how 
different parts of the model interplay. Beyond these quite 
general statements about the role of SA lies the large vari- 
ety of problem settings that may be encountered in actual 
SA studies (Saltelli and Scott 1997). 

In practice two different schools of thought may be iden- 
tified, the local SA school and the global one. In the first, 
the local response of the output(s), obtained by varying in- 
put factors one at a time, is investigated while holding the 
others fixed to a central (nominal) value. This involves par- 
tial derivatives, possibly normalized by the nominal value 
of the factor or by its standard deviation. The analysis is 
run at a given central point in the space of the input factors, 
and the volume of the region explored is nil. The second SA 
school is more ambitious in two respects: First, the space of 
the input factors is explored within a finite (or even infinite) 
region and, second, the variation of the output induced by a 
factor is taken globally-that is, averaged over the variation 
of all the factors. 

The local sensitivity school has produced impressive re- 
sults, especially for the treatment of large systems of dif- 
ferential equations [e.g., see the work on differential anal- 
ysis and adjoint techniques by the Oak Ridge group in the 

80s (Cacuci 1981a,b; Oblow, Pin, and Wright 1986)]. Ra- 
bitz (1989) used local SA to ‘correlate quantum mechanic 
factors to macroscopic observables such as chemical ki- 
netic constants. For a review carefully covering the local 
SA methods, see Turanyi (1990). 

Although local SA and differential analysis are almost 
synonymous, several different approaches have been at- 
tempted for global sensitivity analysis, due to the intrin- 
sic difficulty of building an effective and rigorous mea- 
sure over a finite space of variation for the inputs. A 
qualitative type of global SA is that offered by some 
screening methods, aimed at identifying the active fac- 
tors of a model at a low computational cost (e.g., see 
Morris 1991; Saltelli, Andres, and Homma 1995). By us- 
ing screening methods, factors can be ranked in order of 
their importance. The percentage of the output variation 
that each factor is accounting for cannot be quantified, 
however. 

The work of researchers like Iman, Conover, and Hel- 
ton helped to promote the use of global SA (see Helton 
1993 for a review). These investigators have tested robust 
methods based on Monte Carlo regression and correlation 
analysis and on the use of scatterplots. Standardized regres- 
sion coefficients (SRC), correlation measures (Pearson), and 
partial correlation coefficients (PCC) have been used with 
some success. 

@ 1999 American Statistical Association 
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The ordering of importance of the input factors based on 
these statistics is as good as the associated model coeflicient 
of determination R2. In other words, the closer R2 is to 1, 
the better are the results. When R2 is lower than 1, say .6 or 
.8, it implies that there is a fraction of the output variance 
(40% and 20%, respectively) that is left unaccounted for. 
This does not imply that the analysis is useless but only 
that its results cannot be taken as quantitative. 

Factors are ranked in order of influence on the output, 
but their relative weight remains unknown, and perhaps the 
ranking could change as well if one were capable of at- 
tributing the remaining variance to this or that factor. In 
other words, SRC gives information on the linear regres- 
sion model that is used to describe the system model, not 
on the system model itself. 

The same authors recommended the use of rank trans- 
formed measures [standardized rank regression coefficients 
(SRRC), Spearman correlation, partial rank correlation co- 
efficients (PRCC)] for nonlinear models. Rank-based meth- 
ods offer a robust and easy-to-implement SA, provided that 
the input-output relationship is monotonic. 

Rank-transformed statistics only work (high R2 on the 
ranks) for monotonic models; moreover, the rank transfor- 
mation modifies the model under analysis, thus rendering 
its conclusion even more qualitative (Saltelli, Andres, and 
Homma 1993; Saltelli and Sobol’ 1995). 

Nonlinear, nonmonotonic problems are often encoun- 
tered in everyday model building. These problems call for 
an SA that is independent from assumptions about the 
model structure. 

The Fourier amplitude sensitivity test (FAST), introduced 
in the 70s (Cukier, Fortuin, Shuler, Petschek, and Schaibly 
1973; Schaibly and Shuler 1973; Cukier, Schaibly, and 
Shuler 1975; Cukier, Levine, and Shuler 1978) and compu- 
tationally upgraded by Koda, McRae, and Seinfeld (1979), 
offers such a method (see Sec. 2). FAST was at the time 
(and probably still is today) one of the most elegant methods 
for SA and works for monotonic and nonmonotonic models 
alike. The core feature of FAST is that the multidimensional 
space of the input factors is explored by a suitably defined 
search-curve. 

A variation to the basic scheme of FAST is given by the 
Walsh amplitude sensitivity procedure (WASP, Pierce and 
Cukier 1981), a method for discrete models in which the 
factor variation is intrinsically two-valued. 

FAST computes the “main effect” contribution of each 
input factor to the variance of the output, a quantity that 
later investigators indicated as “importance measure” (Hora 
and Iman 1986; Ishigami and Homma 1990; Iman and Hora 
1990; Saltelli et al. I 993; Homma and Saltelli 1996) or “cor- 
relation ratio” (Krzykacz 1990; McKay 1996). As discussed 
in this article, all these measures estimate the same under- 
lying statistical quantity (i.e., all these methods converge at 
large sample size). The quantity, in Bayesian notation, is 
given by 

v=x P(W)1 
w(Y) ’ (1) 
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where Y denotes the output variable, X denotes an input 
factor, E(YIX) denotes the expectation of Y conditional on 
a fixed value of X, and the variance varx is taken over all 
the possible values of X. 

The success of a given analysis is empirically evaluated 
by the sum of these terms: If the sum is high (close to 
l), then the analysis is successful (e.g., see Liepmann and 
Stephanopoulos 1985). 

The preceding statistics are usually introduced in the 
textbooks on design of experiments (DOE; e.g., see Box, 
Hunter, and Hunter 1978). DOE textbooks also indicate how 
to compute the so-called interaction effect-that is, the ef- 
fect due to two factors, say x1 and x2, that is not amenable 
to the linear combination of the effects of x1 and 22. 

DOE implies the decomposition of the response into 
terms of increasing dimensionality (main effects, two-way 
interactions, higher-order interactions). The same decompo- 
sitions are seen in analysis of variance (ANOVA) studies, 
the variance being decomposed into partial variances of in- 
creasing dimensionality. We shall call these decompositions 
ANOVA-like, FAST being one of the examples [see Archer, 
Saltelli, and Sobol’ (1997) for a discussion of these decom- 
positions in different settings]. 

The sensitivity measure of Sobol’ (1993), first published 
in Russian in 1990, is an original extension of DOE to the 
world of numerical experiments. The indices of Sobol’ are 
superior to FAST in that the computation of the higher 
interaction terms is allowed and in a way similar to the 
computation of the main effects. In the measure of Sobol’, 
each effect (main or otherwise) is computed by evaluating 
a multidimensional integral via the Monte Carlo method. 

A paradox seems to emerge when comparing DOE (for 
physical experiments) with SA (for numerical experiments): 
In physical experimental design, the variation in the factors 
is often moderate (due to cost, for instance), and as a result 
the interaction terms tend to be small. That is, all models 
tend to be additive over a small interval of factors variation. 
In numerical experiments, on the other hand, factors are var- 
ied generously over orders of magnitude, and the interaction 
effects can be very significant and even predominant over 
the main effects. In spite of this obvious remark, in DOE 
interaction terms are usually dealt with, but in numerical 
experiments this is seldom, if ever, the case. Exceptions to 
this are the work of Cotter (1979), Sacks, Welch, Mitchell, 
and Wynn (1989), and Sobol’ (1993). An estimate of inter- 
actions was also offered by the screening test proposed by 
Morris (1991). 

One reason for this apparent paradox is perhaps in the 
number of factors involved. In industrial experiments for 
process optimization, and in physical experiments aimed at 
mechanism identification, there are usually fewer factors, 
and consequently the number of interaction terms is mod- 
erate. 

In numerical models, however, the tendency is to vary all 
the factors. The total number of terms involved in a variance 
decomposition is 2% - 1, where n is the number of factors, 
which can become prohibitive even for moderate values of 
12. Furthermore, the larger the number of factors, the higher 
the likelihood of nonnegligible higher-order terms. 
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This discussion leads to the conclusion that the most rig- 
orous and theoretically sound approach to global SA avail- 
able today-that based on partial variances and on the de- 
composition of the output variance into partial variances of 
increasing dimensionality-is hindered by a dimensionality 
barrier. 

The method of Sobol’ can escape the dimensionality 
curse. This is done by computing, for each of the n sys- 
tem factors, the so-called “Total Sensitivity Index” (5$-i), 
defined as the sum of all the sensitivity indices involving 
that factor (Sobol’ 1993; Homma and Saltelli 1996). For 
example, let us suppose that we have only three factors in 
our model and that we wish to measure the total effect of 
factor 1 on the output variance; then the S*i is given by 

ST1 = sl + s12 + '913 + &23r (2) 

where Si is the so-called first-order sensitivity index for 
factor 1, Sij is the second-order sensitivity index for the 
couple of factors 1, and j(# 1)-that is, the interaction 
between factors 1 and J’(# l)-and so on. 

Total indices are especially suited to apportion the model 
variation to the input factors in a complete and quantitative 
fashion (see Fig. 1). 

The effectiveness of the Sobol’ method is that the S’T~ can 
be computed with just one Monte Carlo integral per factor. 
A comparison of the Sobol’ method against the factorial 
sampling plan of Morris (1991) was given by Campolongo 
and Saltelli (1997). 

A feature of FAST that is very appealing in the context 
of numerical experiments is that it appears to be compu- 
tationally more efficient than Sobol’, albeit with some bias 
problems (Saltelli and Bolado 1998). This would suggest 
that one should seek a method that would combine FAST 
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better efficiency with Sobol’ capacity to compute total ef- 
fects. Such a method has been developed and its perfor- 
mance assessed in this article. The main objectives of this 
article are (1) an improvement of the classic (main-effect) 
FAST method, (2) the development of an extended FAST- 
based technique to compute the total-effect indices, and (3) 
a discussion of the relevance of the total indices for mod- 
elers. 

In Section 2, the fundamentals of the classic FAST are 
recalled. The definition of a new sampling procedure for 
FAST is introduced in Section 2.1. A comparison between 
the classic FAST and the new sampling procedure for the 
first-order indices is presented in Section 3, and an exten- 
sion of FAST for total-effect computation is given in Sec- 
tion 4. Two analytic and one numeric simulation studies are 
presented in Section 5. The conclusions (Sec. 6) highlight 
the relevance of the total indices and the superiority of the 
FAST-based implementation, also due to FAST capacity to 
compute, with the same sample, both the main-effect and 
the total-effect index for a given factor. 

2. REVIEW OF FAST 
Let us consider the model y = f(x). The output y is 

linked through the model f to a set of n input factors x = 
(51152,. . . ,x,). Let us assume that the domain of input 
factors is the unit hypercube 

K” = (x(0 < xi 5 1; i = 1,. ) 72); (3) 

y can be obtained either by an analytical representation of f 
or directly as the output of a computer program (computa- 
tional model). Let us assume that x is a random vector with 
an assumed pdf P(x) = P( 21, x2, . ,2,) even if, actually, 
the Q’S are not random variables. A summary statistic that 
will be useful in the following is the rth moment of y: 

mm.... m : ;* . . . XI x2 XII 
Input factors 

CD 
A 

(Y”‘) = j=... fT(m,22,... ,Zn)P(Xl,ZZ,...,Zn)dX. (4) 

Cukier et al. (1978) noted that, using multidimensional 
Fourier transformation of f, it would be possible, in princi- 
ple, to perform an ANOVA-like decomposition of the vari- 
ance of y Bs function of the input x in order of increas- 
ing dimensionality, thus computing main effects and inter- 
actions of any order. The computational complexity of a 
multidimensional frequency decomposition of f led the au- 
thors to suggest a monodimensional Fourier decomposition. 
This is done along a curve exploring the space K”. The 
curve is defined by a set of parametric equations, 

mirical distribution 01 

<Y’ 
output 

xi(s) = Gi(sin wis), Vi=1,2 ,..., n, ‘(5) 

where s is a scalar variable varying over the range -CC < 
s < +oo, Gi are transformation functions whose properties 
aredefinedinSection2.1,and{Wi},Vi=1,2,...,n,isaset 
of different (angular) frequencies, to be properly selected, 
associated with each factor. 

Figure 1. General Scheme of a Quantitative Sensitivity Analysis 
Method. The total variance of the output is apportioned to the various 
input factors, as shown by the pie diagram. 

As s varies, all the factors change simultaneously along 
a curve that systematically explores K”. Each xi oscillates 
periodically at the corresponding frequency wi, whatever 
Gi is. The output y shows different periodicities combined 
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where the Fourier coefficients Aj and Bj are defined as 

A,i = $ /li f(s) cosjsds, 
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with the different frequencies w,, whatever the model f is. 
If the ith factor has strong influence on the output, the oscil- 
lations of y at frequency wi shall be of high amplitude. This 
is the basis for computing a sensitivity measure, which is 
based, for factor xi, on the coefficients of the corresponding 
frequency wi and its harmonics. 

The exploring curve drives arbitrarily close to any point x 
of the input domain if and only if the set of frequencies used 
is incommensurate. To ensure this, none of the frequency 
must be obtainable as a linear combination of the others 
with integer coefficients; that is, 

L/i J-x 

Bi = L 271. -T f(s) sinjs ds 
J 

(12) 
71 

over the domain of integer frequencies j E 2 = 
(-00,. .) -1, 0, 1, . . , i-co}. The spectrum of the Fourier 
series expansion is defined as Rj = A: + Bf with j E 2. Be- 
cause f(s) is a real-valued function, Aj , B3, and Rj have the 
following properties: A-, = Aj, Be7 = -Bj, A-j = hj. 
By evaluating the spectrum for the fundamental frequency 
wZ and its higher harmonics pwz, we can estimate Di-that 
is, the portion of the output variance D arising from the 
uncertainty of factor i: 

2 r,wi # 0, -CQ<<i<+CQ. (6) 
i=l 

In this case we say that the curve is space-filling and, ac- 
cording to the ergodic theorem (Weyl 1938), the quantities 
in (4) can be computed by evaluating the model along the 
curve 

f’(Zl(S), 22(s), ‘. , ,x,(s)) ds- (7) 

that is, by a one-dimensional integral. Already, in this equa- 
tion and in the remainder of the article, we have dropped the 
pdf’s, assuming without loss of generality that all factors 
are identically and uniformly distributed in the unit cube of 
Equation (3). Weyl’s theorem implies that 

(y/“‘) c ,-Cd. (8) 

The variance D of the model is 
D = (y(2)) _ (y(1))2 E ~(2) _ (y(l))2 (9) 

and can be computed by evaluating one-dimensional inte- 
grals as Equation (7). 

A space-filling curve is only an idealization because the 
frequencies {wi} cannot be truly incommensurate due to the 
finite precision of computers. For the computation of main 
effects, the sets of frequencies recommended by Schaibly 
and Shuler (1973) have been used. 

These sets are commensurate; hence there exists a fi- 
nite positive rational number T such that f(s) = f(s + 
T); that is, the curve describes a closed path and Equa- 
tion (8) no longer holds. For convenience we shall write 
f(x1(~),~2(~), . . , h(s)) as f(s). 

Cukier et al. (1973) showed that, if the w,‘s are positive 
integers, then T = 2n-. By considering f(s) within the finite 
interval (-7r; 7r), Equations (7) and (9) become 

$9 = 1 J R f’(s) ds 
27r p-X Ij = y(2) - (y”‘)” 

=- 2; -L.f2(s)ds- 
J 

We may expand f(s) in a Fourier series 

y = f(s) = +e {Ai cos js + Bi sin js}, (11) 
j=-00 

+W 

di = C Apw, = 2Cil,,%, (13) 
p=l 

where 2’ = 2 - (0) indicates the set of all relative integer 
numbers except the 0. The quantity given in (13) is the same 
as the numerator in (1). 

By summing all the Aj, j E 2O, we may estimate the total 
variance 

i3= C hi =ZCA,j, (14) 
jE20 j=l 

Formulas (10) and (14) provide the same quantity because 
Parseval’s theorem states that 

c Ai zz 1 jE2 2;1- - f’(s) ds = g(‘). J 7r 
The ratio Dill?,, denoted by ,!?FAST, is the needed estimate 
of the main effect of xi on y. Its magnitude does not depend, 
in principle, on the choice of the set of frequencies used in 
computations. 

In Appendix A, the minimum sample size to be used in 
classic FAST (Cukier et al. 1973) is introduced as 

Ns = 2hfw,, + 1, (15) 

where M is the interference factor (usually 4 or higher) and 
wmax is the largest among the set of wi frequencies. 

Other technical details on the computation of FAST 
are given in Appendixes A-C. These concern the problem 
of aliasing and interferences and the symmetry properties 
of f(s). 

Saltelli and Bolado (1998) showed that S,FAST is equiva- 
lent to the sensitivity indices of the first order (Sobol’ 1993) 
as well as to other measures proposed by Iman and Hora 
(1990), Krzykacz (1990), and McKay (1996) all of which 
can be reconduced to Equation (1). Classic FAST is cheaper 
to compute than the indices of Sobol’ because in FAST a 
single sample composed, say, of N, model evaluations can 
be used for computing all siis, i = 1,2, . . , n, but in Sobol’, 
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a different sample (of size N, or different) is needed for 
each >i. 

For each xi, the computation of fii involves only the 
sum of squares of the Fourier coefficients at the fundamen- 
tal and all the harmonics of wi. There are, therefore, several 
frequencies that are not used for the computation of any of 
the Di. These frequencies give information on the interac- 
tion effects among factors (see Sec. 4). 

2.1 Choice of the Search-Curve 
This section discusses the choice of suitable transforma- 

tions (5), providing a uniformly distributed sample for the 
factors x,, V i = 1,2,. ,n, in the unit cube P. 

Various transformations have been proposed. Cukier et 
al. (1973) suggested 

2i = Zi,Csinw,s 1 V’i=l,...,n, (16) 

where ZZ~ is the nominal value of the ith factor, Vi defines 
the endpoints of the estimated range of uncertainty for Xi, 
and s varies in (-7r/2,7r/2). 

We plotted Equation (16) with vi = 5, zi = ee5, and 
wi = 11 in Figure 2(a). A histogram of the empirical distri- 
bution of xi corresponding to this transformation is given 
in Figure 2(b). This is based on a sample of 89 points cho- 
sen at a regular interval along the search-curve s. The his- 
togram appears to be strongly asymmetric because the ma- 
jority of the sample points lie at the lower end of the dis- 

(a) 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

(b) 
I, 8.0 

6.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

W 

-1.6 -0.8 0.0 0.8 1.6 

(4 

I.0 0.2 0.4 0.6 
1 
3.8 

Figure 2. Plot of Three Different Transformations (a), (c), and (e). 
Their respective empirical distributions are given in (b), (d), and (f). 

tribution. Clearly this transformation is only suitable for a 
factor whose pdf is long-tailed and positively skewed. 

Later on, Koda et al. (1979) suggested the use of 

2i = Zi(l + V, sinwis), (17) 

which has been plotted in Figure 2(c) with Zi = l/2, V, = 1, 
and wi = 11. 

In Figure 2(d), the corresponding histogram with 89 
points shows a symmetric U shape. The tails area is 
highly sampled, but the middle region is poorly represented. 
Hence, this transformation also fails in providing a sample 
that is uniformly distributed. 

In a review article, Cukier et al. (1978) proposed a general 
differential form to be solved to deduce the optimal search- 
curve, 

where Pi is the pdf of xi and is assumed constant in this 
work. 

Here we propose another transformation; namely, 

1 1 
Xi = 2 + ; arcsin(sin WiS). (19) 

This is a set of straight lines oscillating between 0 and 1 
[see Fig. 2(e)]. As can be seen in Figure 2(f), the empirical 
distribution of xi (with 89 sample points) can be regarded 
as uniform. Our formula is also a solution of (18). 

To illustrate the differences between the transformations 
in (17) and in (19), we have plotted in Figure 3, (a) and 
(b), the sample points generated in a case with two factors 
in which {wi, w2} = { 11,21}. The sample points are more 
uniformly distributed in the unit square when Formula (19) 
is used. 

(a) (b) 

CC) (4 

Figure 3. Scatterplots of Sampling Points in a Two-Factors Case 
Based on (a) the Transformations Given in (17), (b) the Transforma- 
tions Given in (19), (c) and (d) the Transformations Given in (20) With, 
Respective/x One and Two Resamplings. 
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Table 1. Ranges of gi Function and the Relative importance of the 
Corresponding Input Factors Xi’s for Some Specific Values of a, 

ai Factor x, 

0 Very important 
1 Important 
9 Unimportant 

99 Nonsignificant 

Range of gi 

0 i g,(x) 2 2 
.5 5 g,(x) 5 1.5 
.9 5 gJx) < 1.1 

.99 5 g,(x) < 1.01 

2.2 Random Phase-shift and Resampling 
Here we propose a modification of (19) to obtain a more 

flexible sampling scheme. 
The transformations (16), (17), and (19) have a drawback: 

They always return the same points in K” as s varies in 
(-7rl‘A K/2). 

To make more efficient use of the model evaluations, we 
suggest using 

5i = Jj + i arcsin(sin(wis + cpi)), (20) 

where pi is a random phase-shift chosen uniformly in 
[0,27r). The advantage of (20) is that the starting point of 
the curve can be anywhere within Kn, as shown in Fig- 
ure 3(c) for the case in which {WI, w2} = { 11,21}. Formula 
(20) represents the set of equations proposed for the search- 
curve in I(“. 

The symmetry properties of f(s) (see Appendix C) are 
no longer fulfilled, even if odd frequencies are used, due 
to the shifting along s introduced by (pi. The curve must 
therefore be sampled over (-rr, 7r). By selecting various 
sets (PI, ~2, . . , cp,}, different curves (realizations) can be 
generated in Kn. Let this procedure be named resampling, 
and let N, indicate the number of curves used. Figure 3(d) 
shows an example with N, = 2. In the resampling scheme, 
the sample size given in (15) must be redefined as 

N, = (2Mw,,, + l)N,. (21) 

Formula (21) will be adopted in the rest of this work. 
The Fourier analysis is performed independently over 

each of the N, curves, obtaining Bl, i$‘, . . as well as esti- 
mates of the total variances fi’, a”, . . Finally, fii and fi 
are obtained by computing the arithmetic means over the 
N, estimates. 

3. A SIMULATION STUDY: CLASSIC VERSUS 
EXTENDED FAST 

In this section a simulation study is carried out to com- 

pare the performances of the extended FAST [using (20)] 
with those of the previous technique [using (17)]. We use a 
function introduced by Saltelli and Sobol’ (1995), referred 
to as the gfunction of Sobol’: 

(22) 
i=l 

where 71 is the total number of input factors, xi’s, and gi(Zi) 
is given by 

!A(%) = ’ 
42i-2(+U, 

1 + a,i 

for 0 5 xi _< 1 and ai 2 0. (23) 

This function is relevant to the present investigation because 
it allows an automatic tuning of the relative importance 
of factors, as well as of their interactions, by appropriate 
values of a,‘s (see Table 1). It also allows analytic evaluation 
of the sensitivity indices of any order. 

The number of input factors is taken in the range [5, 111. 
We consider four cases in which the ai’s are all identically 
OS, all Is, all 9s, and all 99s because the cases in which all 
the ai’s are equal are the most difficult for SA (Saltelli and 
Sobol’ 1995). 

We calculate the first-order indices & for all cases, as 
well as the averages over the factors; that is, (&) = 
l/n Cy=“=, 5’;. The sample size used in the extended FAST 
is N,(2Mwm,, + l), where M is set to 4 and N, to 2. The 
sample size used in the classic FAST is fixed to 4Mw,,, + 
1; that is, it is set to a higher value with respect to the min- 
imum required by the Nyquist criterion (Appendix A). This 
is done to ensure a fair comparison of the two methods us- 
ing comparable sample sizes. Table 2 gives the sample sizes 
and the sets of integer frequencies {wi} for i = 1,2, . . . , ‘II 
used in the simulations. 

For any given 12, all the Si’s are the same because all 
the ai’s are equal. For the case ai = 0, the averages ($)‘s 
obtained from both methods are plotted in Figure 4(a), and 
the single estimates &‘s are shown in Figure 4(b). The esti- 
mates from the extended FAST are closer to the analytical 
values than those obtained by the classic FAST. There is a 
clear improvement, using the new transformation, when the 
number of input factors is low, say up to 9. The two meth- 
ods converge to the analytical values as the sample size 
increases, following the increase in the number of factors 
and, hence, in the w,,, [see Eq. (2 1 )I. 

Table 2. Number of Input factors and the Corresponding Sample Sizes and Frequencies Used in the Simulation Study 

No. of input Sample size Frequencies 
factors, n N* {W!l 

5 625 { 11, 21, 27, 35, 39) 
6 393 {I, 21, 31, 37, 45, 49) 
7 697 (17, 39, 59, 69, 75, 83, 87) 
8 1,001 (23, 55, 77, 97, 107, 113, 121, 125) 
9 1,289 {19,59, 91, 113, 133, 143, 149, 157, 161) 

IO 1,641 (25, 63, 103, 135, 157, 177, 187, 193,201,205} 
11 1,977 (41, 67, 105, 145, 177, 199, 219, 229, 235, 243, 247) 

NOTE: Ns = 4Mwmax+ 1 is the sample Size used in the old technique (see Saltelli and Solado 1998). 
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Figure 4. (a) Hot of the Averages (Sn) 3 and (b) Plot of the Sing/e 
Estimates Si, Versus the Number of lnpuf Factors in the Case a; = 0: 
., Analytical Value; o, Old FAST; *, New FAST In (b), values are slightly 
shifted sideways. 

Similar conclusions can be drawn for the case in which 
all a,‘s are Is, though the improvement is not so apparent 
as in the previous case. Results for all unimportant and all 
nonsignificant factors are not shown because the estimates 
obtained from both methods and the analytical values are 
indistinguishable when plotted in the same scale of Figure 
4(a). This happens because the output function is rather flat 
so that the estimates do not depend on uniform or nonuni- 
form sampling. 

4. TOTAL-EFFECT INDICES 

4.1 The Method 
Let us consider the frequencies that do not belong to 

the set {p1w1,p2~2, . ,pnw,} with p, = 1,2, , co,V’i = 
1,2,. , n. These contain the residual variance D - xi Di 
not accounted for by the first-order indices and include in- 
teractions among factors of any order. 

It would be desirable to identify those frequencies so that 
the residual variance can be apportioned to the various com- 

ponents. This involves the analysis of all the linear combi- 
nations among the w%‘s, however, and the complexity of this 
task is the main reason Fourier analysis of the higher-order 
terms has never been exploited. 

In this chapter, we propose an extension of FAST to es- 
timate the total (all-effects) contribution of each factor to 
the output variance, as in Equation (2). The computation of 
the STi’s does not give a complete characterization of the 
system because this could only be achieved by computing 
all the 2” - 1 sensitivity indices. Nevertheless, it allows a 
full quantification of the importance of each xi. 

We proceed by assigning a frequency wi for the ith fac- 
tor and a different frequency value w(i’) to all the remaining 
factors. Thus, by evaluating the spectrum at the frequency 
wCzJ) and higher harmonics pw(i’), we can estimate the par- 
tial variance DC+), where the index -i stands for “all but 
C-that is, complementary to i-and the DC+ now in- 
cludes all effects of any order that do not include the factor 
i. Similarly, 6% is obtained by using Equation (13). The total 
variance is computed as before from Equation (10). 

Exactly as in the case of Sobol’ indices, we can now esti- 
mate DT~ from the variance of the complementary set DC-~) 
because DTi = D - DC-~) (Homma and Saltelli 1996). This 
approach has two advantages: First, for each factor i, we 
only need to choose two values for the frequencies, w, for 
the factor i and ti(i/) for the complementary set, whatever 
the number of factors. Second, the problem of interference 
is eliminated because we can always find a couple of fre- 
quencies that do not interfere up to an arbitrarily high M 
(Appendix B). 

The most intuitive choice for the frequencies is to assign 
a high value to wi and a low one to ~(~0, the best possible 
value for w(i/) being 1. In fact this latter assumption, though 
viable, is not the recommended one, as discussed in Section 
4.2, but it will be kept as valid for the purpose of the present 
section. 

Let us consider in Figure 5, as an example, an artificial 
spectrum with w, = 20 and w(i’) = 1. Let us note that the 
components at {pwi} = {20,40,60,. . .} contribute to Di 
and decrease rapidly in amplitude as p increases. The partial 

.05 

.oo 
0 20 40 60 80 

frequency 

Figure 5. Plot of an Artificial Spectrum in a Typical Configuration with 
wi = ZOandw(-;, = 1. 
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46 A. SALTELLI, S. TARANTOLA. AND K. P-S. CHAN 

variance DC-~) of the z:(+)‘s can be estimated from the first 
few spectral components (because the higher harmonics of 
w(~~) = 1 are 2, 3, 4, . and usually converge to 0 after a 
few terms). If this were not the case, we could still obtain 
good estimates for DC+ by including more terms in the 
summation (in this example we could easily consider the 
first 15 components). 

Finally, the information about the term D+,), represent- 
ing the interaction between xi and x-i, can be read at all 
the other frequencies in [l, MU,,,]. In particular, it is con- 
centrated around each of the pwi’s for p = 1,2, . . M. 

Figure 5 shows that the spectral components related to 
DC-,) and D,(+) in the range [l, 201 are well separated and 
have similar widths. If some overlaps were to occur, then a 
higher value for wi should be used. 

Let us assume, for example, that there is no further infor- 
mation contributing to DC-i) after the frequency 4, having 
selected 1 as wit. Then we are quite sure that an overlap 
between DC+) and Di(-i) will not occur if we choose wi 
to be greater than 8. Indeed, with tii = 9 we are at the safe 
side because at frequencies 1, 2, 3, and 4 we have all the in- 
formation about DC+) and at frequencies 5, 6, 7, and 8 we 
have part of the contribution to Di(+). Thus, the procedure 
of computing BcPi) for the ith factor can be automated by 
adding all the spectral components in the frequency range 
[l, wi/2] to avoid the potential overlap region. 

So far we have detailed an approach to compute &-i for 
a given factor i. What strategy should then be adopted to 
computethefullsetofSTi,Vi=l,...,n? 

In principle we could select w(~!) = 1, as said before, and 
the same wi for all i’s (see Sec. 4.2). Note that a new set 
(sample) of model evaluations will be needed to evaluate 
each of the S~~,‘di = l,..., n. Thus, we have lost one of 
the attractive features of the FAST method, that all indices 
were computed from a single curve; this was the price paid 
to capture the total effect terms. 

The total number of model evaluations required for a 
complete SA-that is, the computational cost C of the 
analysis-is, hence, 

c = nN,(2Mw,,, + l), (24) 

where w,,, = IXLX{Wi, Wzl} SE Wi. 

4.2 Selection of the Frequencies 
We shall rediscuss here the assumption w(~/) = 1. Imag- 

ine that two factors zil and zi2 belong to the complemen- 
tary set z;-~, for which the same frequency wci,) = 1 is 
taken. We show an example with N, = 2, M = 4, and wi 
= 20. 

A plot of the two sampling curves in the two-dimensional 
space (:cil 3 z,,) with 161 points per curve is given in Figure 
6(a). Each curve describes a squared trajectory starting and 
ending at the same random point. This trajectory hits the 
boundary of the subspace (sil, azi2) at an angle of exactly 
45”, and both xi1 and 2iz make one complete oscillation 
inside their ranges as s varies in (+r, x). 

(4 

0.0 0.2 0.4 0.8 0.8 1.0 

Figure 6. Plot of a Sampling Curve (a) in a Two-Dimensional Sub. 
space, (b) and (c) in a Three-Dimensional Subspace. 
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Table 3. Sets of Frequencies tic-i) Obtained by Using the Criterion Described in this Section for an Eight-Factors Case 
at Different Sample Sizes 

NS wi max{+lJS Step Wl UP w3 w4 w5 W6 w7 w&l 

65 8 1 0 1 1 1 8 1 1 1 1 
129 16 2 1 1 2 1 16 1 2 1 2 
257 32 4 1 1 2 3 32 1 2 3 4 
513 64 a 1 1 2 3 64 5 6 7 8 

1,025 128 16 2 1 3 5 128 9 11 13 15 
2,049 256 32 4 1 5 9 256 17 21 25 29 
4,097 512 64 8 1 9 17 512 33 41 49 57 
8,193 1024 128 16 1 17 33 1024 65 81 97 113 

NOTE The assumed factor of interest IS the fourth (i.e., w,=wq). 

Figure 6(a) is an orthogonal projection over (xi1 i ziZ) of 
what happens in the whole P. If we could see the same 
curves going through the full complementary space z-i, we 
would see a very sparse space-filling curve; see Figure 6(b) 
for the case in which the complementary space is simply 
three-dimensional. 

A better coverage of K3 can be obtained by using a 
different strategy-that is, by adopting different frequen- 
cies for the factors in the complementary set. Let us in- 
dicate these frequencies as {w(-~,} E (~(~0. ~(~(0, w(~~,~), 
. 1. 

These frequencies must be very similar and, in any case, 
much lower than the wi. In the three-dimensional case, by 
selecting ~(~0 = l,~(~~~) = 2, and ~J(~(u) = 3, we have ob- 
tained a better scanning of K3 [see Fig. 6(c)] at no extra 
computational cost because the number of model evalua- 
tions is dictated by the highest frequency, w, = 20 in this 
case. 

To make a different example, in a case with eight factors 
we could use, alternatively, for the complementary factors, 
two sets of frequencies: 

1. {w(+,} = { 1,2,3,4,5,6,7}, with step = 1 between 
frequencies. 

2. {WC-Q} = {1,3,5,7,9,11,13}, with step = 2. 

The spread of the spectral components that contribute to the 
complementary variance DC+) increases as the frequency 
step increases. In the two cases, we have (1) spread = M x 
max{w(-i)} = 28, as M = 4 and max{w(-,)} is 7, and (2) 
spread = 52. 

The larger the spread, the higher is the probability that an 
unwanted overlap with upper frequencies occurs. To avoid 
this, a larger value for wi must be selected. For the previous 
example, we should have at least w, = 2x spread = 56 and 
at least wi = 2x spread = 104. To limit the sample size 
and, at the same time, avoid overlap, we adopt the strategy 
of assigning the same frequency twice (i.e., to two different 
factors) or more. In the two cases we would have {w(+,} = 
{1,2,3,4,1,2,3} and {w(-~,} = {1,3,5,7,1,3,5}. By so 
doing, max{w(+)} is roughly halved. A same frequency is 
now assigned to two factors of the subset x(+). 

An automated algorithm has been implemented to select 
the preceding frequencies. The algorithm is structured as 
follows: 

1. The maximum allowable frequency for the comple- 
mentary set is given by max{w(-,I} = (l/M)(wi/2)-that 
is, l/M of the whole spread of the spectrum of the X(-Q. 

2. The other frequencies for the complementary set 
are chosen to exhaust the whole range between 1 and 
max{wcPi,}, and according to the two following conflict- 
ing requirements (1) the step between frequencies must 
be as large as possible and (2) the number of factors to 
which the same frequency is assigned must be as low as 
possible. 

Let us refer to Table 3 to illustrate the algorithm for 
an eight-dimensional problem, where 54 is the factor of 
interest. In the first three rows-that is, at low sample size- 
the maximum value of the complementary frequency is 1, 
2, and 4, respectively. 

These values are all lower than the number of factors in 
the complementary set (i.e., 7). This means that it is neces- 
sary to assign the same frequency to more than one factor. 
This is no longer the case at larger sample sizes (4th row 
onward), where the maximum value for the frequency of 
the complementary set (8, 16, 32, . .) is bigger than 7 and 
we are allowed to use different values for all frequencies in 
the complementary set. 

The preceding implies that N, = 65 is a lower bound 
imposed by wi = 8. Lower values of wi are not advisable. 

4.3 Optimizing the Number of Resamplings N, and the 
Frequency Wi for a Given Sample Size N, 

For a given N,, the recommended values for wi---the fre- 
quency assigned to the factor of interest-and for the num- 
ber of repetitions N, can be chosen according to Figure 7. 
Within the suggested region the ratio wz/NT varies be- 
tween 16 and 64 and all the possible choices are equiva- 
lent for a given N,. The rationale behind the suggestion 
of Figure 7 is a balance between the values for w, and 
N,.: 

1. If wi is low and N,. is high, the sampling over each 
curve is too sparse. 

2. A high value for wi and a low value for N, im- 
ply a too dense sampling over a small number of closed 
paths. 

The optimal region is hence in between, as shown in Fig- 
ure 7, and the recommended boundaries were determined 
empirically. 
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suggested region 

/ 

Case A corresponds to the most nonmonotonic case. Case 
B is still nonmonotonic, but y is a weak function of the x~‘s. 
In set C the factors are in order of decreasing importance, 
and set D is an example of factors in random order of im- 
portance. The analytical values of the Sri’s are shown in 
Table 4. 48 

32 

16 NS= 770 
NS 513 

8 
NS- 337 

forbidden t - 
region - 

1 2 3 4 N, 

Figure 7. Plot of urnax Against Nr at Different Values of NS. The 
recommended values for wi and Nr for a given NS are those lying inside 
the conic region. The shaded region is allowed but not recommended. 
The constraints are that w, must be greater than or equal to 8 and that 
Nr is an integer. 

When using very low sample sizes, we could be forced 
to select values lying outside the recommended region. For 
example N, = 65 implies N, = 1 and wi = 8 as discussed 
in the previous section. 

In summary, once the investigator has provided the num- 
ber of factors n, the sample size N,, and the interference 
factor M, the rule illustrated in Figure 7 and the algorithm 
for the choice of the complementary frequencies (Sec. 4.2) 
can be employed. These have been adopted systematically 
in the simulation studies described throughout the rest of 
this article. 

5. SIMULATION STUDIES: TOTAL EFFECT- 
FAST VERSUS SOBOC 

In this section a comparison between the extended FAST 
and the method of Sobol’ for total sensitivity estimates is 
illustrated on two simulation studies. The comparison is 
aimed at low sample sizes. At large ones, Sobol’ and FAST 
estimates converge to the analytical values, although Sobol’ 
is computationally more expensive in terms of number of 
model evaluations. 

The simulation studies are based on two analytic func- 
tions, the g function introduced in Section 3 and the Le- 
gendre polynomial, as well as on a numerical test case, the 
Level E, derived from nuclear safety studies. Although the 
analytical test cases have been selected on purpose because 
of their nonnegligible interaction terms, the Level E test 
case can be considered as representative of a large class 
of physicochemical processes-that is, all those involving 
mass transfer with chemical reaction. 

5.1 Test Case 1 
The first test function is the g function of Sobol’ de- 

scribed in Section 3. The number of input factors has been 
set to 8. Four sets (A, B, C, and D) of values for the ai’s are 
chosen (Table 4). Both the sets A and B represent the ex- 
treme case in which all input factors are equally important. 

In all the four cases, the method of Sobol’ has been per- 
formed at sample size N, equal to 64, 128, 256, 512, and 
1,024. Very similar values have been adopted for the ex- 
tended FAST. 

The robustness of the extended FAST is investigated by 
repeating the experiment Nrep times for each of the four 
cases and at each sample size. For the extended FAST, gen- 
erating Nrep samples is straightforward: A different start- 
ing point of the space-filling curve for each replicate can 
be chosen using the random phase-shift procedure (see Sec. 
2.2). For the method of Sobol’, described by Sobol’ (1993), 
the only way to randomize is to permute the columns of 
a random data matrix used as input. In this test case we 
have 8! possible permutations and we randomly select Nrep 
from these. In cases A and B the ai’s coefficients [Eq. (23)] 
are all equal so that the number of replicates that can be 
generated is limited to 8. In cases C and D, Nrep is taken 
to be 100. 

The comparisons between the two methods are based on 
the total absolute error (TAE); namely, 

n 

i=l 

The arithmetic means and the standard deviations of these 
Nrep TAE’s are computed and are plotted against the sample 
sizes in Figure 8; the standard deviations are presented as 
error bars. 

For all four cases and for both methods, the means of 
the TAE’s decrease and the error bars become narrower as 
the sample size increases. In general, the Sobol’ estimates 
present wider error bars than FAST. In cases A, C, and D, 
FAST performs better than Sobol’. In case B, in which all 
the factors have weak influence on y, the method of Sobol’ 
gives better results. As noted in Section 3, cases A and B 
are difficult tests for SA, which explains why the TAE’s are 
higher for these cases than for cases C and D. 

5.2 Test Case 2 
The second analytical test function is based on the Legen- 

dre polynomials of order d, denoted by &(z) (Abramowitz 
and Stegun 1970). The test case was suggested by McKay 
(1996). We use this test function also to investigate the sen- 
sitivity of the new FAST computation to the Nyquist cri- 
terion, as well as comparing its performance with that of 
Sobol’. The model Lo has two input factors: z is uni- 
formly distributed in [-1, +l] and d is a discrete uniformly 
distributed variable in [ 1, 51. 

The analytical values of the partial variances Ddr D,, are 
given in Table 5, as well as the total partial variances com- 
puted as 

&d = D - D, C-26) 
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GLOBAL SENSITIVITY ANALYSIS OF MODEL OUTPUT 49 

Tab/e 4. Choice of a, Values for the g Function as Described in Section 3 and the Corresponding Analytical Values 
Of ST, ‘s for the /npUt Factors Xi’s 

Case 

A 

ai for i = 1, 2, ., 8 

OVi 

Analytical value of ST/ 

,278 Vi 
B 99vi ,125 Vi 
C (0, 1, 4.5, 9, 99, 99, 99, 99) {.787, ,242, ,034, ,010, 1.05 x 10-4, 1.05 x 10-4, 1.05 x 10p4, 1.05 x 10-4} 
D (99, 0, 9, 0, 99, 4.5, 1, 99} (6.82 x 10-5, ,512, ,007, ,512, 6.82 x 10-5, .022, ,158, 6.82 x 10p5} 

and cates are possible using the method of Sobol’. To assess 
the robustness of Sobol’ estimates, the bootstrap technique 

D Tz = D - Dd. (27) has been employed. At any given sample size in the range 
explored, 100 bootstrap replicas of the sample have been 

The corresponding sensitivity indices are shown in bold. obtained, providing 100 bootstrap estimates of 5’~~. The 
Given that the model has two input factors, only two repli- arithmetic mean and the range (minimum and maximum) 

Case A 
8 replicates 

5\ 

OO I1 200 1 400 600 800 I I 1000 i I 1200 I 

Sample Size 

Case C 
100 

0.30 
replicates 

/T 
0.25 1~ 

8 t 0.20 - 
w 
a 
; 0.15 - 

2 
i3 
5 0.10 
l- I 

Case B 
8 replicates 

2.5 I I ( I I 
I 
i 

2.0 / 1 
i 

- Sobol’ 
i 

I 

--- FAST -I 
I 

Sample Size 

Case D 
100 replicates 

0.5 t 
1 

0’ 0 200 400 600 800 1000 1200 
Sample Size 

0.0; 1 200 1 400 1 I 600 ! 800 1000 1 1 121 ’ 

Sample Size 

4 

i 

30 

Figure 8. Plots of Means and Error Bars of the Total Absolute Errors Versus Sample Sizes for Case A, Strongly Nonmonotonic Function; Case 
6, Weak Function; Case C, Factors in Decreasing Order of Importance; and Case D, Factors in Random Order of Importance. 
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Table 5. Analytical Values of the Partial Variances and the Total Partial 
Variances and Their Corresponding Sensitivity Indices (shown in bold) 

lnpuf Partial variance Total partial variance 
factor Dinput CJ - D-mput 

d 0 .1405 
0 .a 

X .0351 .I756 
.2 1 

NOTE: N denotes “not:’ 

of the 100 bootstrap estimates have been calculated. The 
set of sample sizes used in the method of Sobol’ is 64, 128, 
256, 512, 1,024, and 2,048. 

For the extended FAST, we repeat the experiment 100 
times as done for the g function. The frequencies, wi for 
i E {d, z}, are chosen according to the algorithm proposed 
in Section 4.2. Two sets of results are obtained using the 
extended FAST, one with the minimum Nyquist criterion- 
namely N,3 = N,(2Mw,,, + 1) (which we refer to as 
“FAST l”)-and the other with N, = N,(4Mw,,, + 1) 
(“FAST 2”). The maximum frequency wmax is chosen such 
that the sample size used in FAST is as close as possible 
to the one used by Sobol’. At sample size 64, the 5’~~‘s of 
“FAST 2” are not available because the minimum value for 
w,,,~~ is 8, yielding the minimum sample size 129. 

Results of this test case for six sample sizes (up to 
N 2: 050) are shown in Figure 9. The scale and label of 
the z axis are not the actual values but are presented as 
groups of the six sample sizes. For example, in the second 
group the actual sample size for both “FAST 1” and “FAST 
2” is 129; that for Sobol’ is 128. For factor a! [Fig. 9(a)], 
the estimates of the 5’~~‘s with “FAST 2” converge to the 
analytical value quicker than “FAST 1.” Moreover, the es- 
timates of “FAST 2” tend to be less variable than those of 
“FAST 1” as the sample size increases. The ranges of the 
bootstrap estimates based on Sobol’ decrease slowly as the 
sample size increases, and they are wider than those of both 
the “FAST 1” and “FAST 2.” In summary “FAST 2” yields 
better estimates than the Sobol’ and “FAST 1” methods in 
terms of precision and variability. 

For factor 5 [see Fig. 9(b)], the ranges of the 100 Sobol’ 
bootstrap estimates are again wider than those of the “FAST 
1” and “FAST 2.” Both estimates of “FAST 1” and “FAST 
2” converge to the true value, but, as for factor d, the es- 
timates of “FAST 1” seem to converge to a value slightly 
below the analytical value, indicating a possible bias in the 
estimates. The “FAST 2” method tends to be more robust 
and precise than “FAST 1.” It is also worth noting that, un- 
like in the method of Sobol’, FAST estimates can never be 
greater than 1. 

McKay (1996) commented that the variance-based mea- 
sures of importance, which use the variance of the condi- 
tional expectation of the output-namely, varx [E(Y IX)]- 
may not always be effective as indicators of importance and 
hinted that additional notions of importance might be nec- 
essary for assessing uncertainty importance. As shown in 
Table 5, the Sri’s offer such additional notions. If consid- 
ered singularly, both factors d and CC appear to be irrelevant 
to the output variation (the first-order sensitivity indices 
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Figure 9. Plots of the Estimated Total Sensitivity Indices (Sn) 
Against Various Sample Sizes for (a) Factor d and (b) Factor x. FAST- 
based SE’s are obtained for Ns = Nr(2Mwmax+ 1) (FAST 1) and with 
Ns = Nr(4Mwmax + 1) (FAST 2). For both plots (a) and (b), FAST-based 
results are based on 100 replicates. The symbols represent the arith- 
metic means (short horizontal lines) and ranges (long vertical lines). A 
value of M equal to 4 was selected, and wmax and Nr were chosen 
by the automated algorithm described in Section 4.2. The same plots 
also show for comparison the results from the method of Sobol’. The 
asterisk denotes the estimates based on a single replicate (*), and the 
range from the bootstrapping procedure (100 estimates) is shown as a 
thin vertical line. The analytical values of the ST/ of the two factors are 
STY = .8 and STY = 1.0 (dashed horizontal lines). 

being Sd = 0 and S, = .2), although their total effects are 
STY = .8 and STY = 1.0. This means that a large interaction 
occurs between d and x: 

S&z = 1 - sd -s, = 1 - .o - .2 = .8. 081 
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Notation 

T 

4 
kc 
“(1) 
e(l) 
R(l) 
&I) 
& 
e(2) 
#q(Z) 

&2) 
bc 

Tab/e 6. Lisf of input Factors and Their pdf for the Level E Exercise 

Definition Distribution Range Units 

Containment time Uniform /I 00, 1 ,ooo/ yr 
Leach rate for iodine Log-uniform 110-3, lo@/ yrr’ 
Leach rate for Np chain nuclides Log-uniform /I o-6, 1 o-5/ yrr’ 

Water vel. in geosphere’s 1st layer Log-uniform 110-3, lo-‘/ mlyr 

Length of geosphere’s 1 st layer Uniform /loo, 500/ m 

Uniform II, 51 - Retention factor for I (1st layer) 
Factor to compute ret. coeff. for Np (1 st layer) Uniform 13, 301 - 

Water vel. in geosphere’s 2nd layer Log-uniform no-‘, 10-l/ mlyr 
Length of geosphere’s 2nd layer Uniform 60, 200/ m 

Retention factor for I (2nd layer) Uniform 11, 51 - 

Factor to compute ret. coeff. for iVp (2nd layer) Uniform 13, 30/ - 

Stream flow rate Log-uniform 1105, 1071 m31yr 

Hence, both factors influence the output, even though nei- arising from nuclide i is computed by 
ther a! nor 5 alone can explain the output variation. This 
test case confirms the identity of McKay’s correlation ratio 
with Sobol’/FAST first-order indices. 

dosei = pi x F,!2)(Z(2), t), i = 12g1.237Np,233U,22gTh, 

5.3 Level E Test Case 
The Level E test case (OECD/NEA PSAC User Group 

1989; Saltelli et al. 1993) displays interesting nonmonotonic 
features that are suitable for testing the extended FAST 
and for comparing it with the method of Sobol’. Level E 
case study simulates the transport of radionuclides from 
an underground disposal vault containing nuclear waste up 
to man, by way of migration through a system of natu- 
ral and engineered barriers. The main barrier considered in 
the model is the geosphere itself, which includes a two- 
layer pathway, where nuclide dispersion, advection, reten- 
tion, and radioactive decay are considered. After a delay 
representing primary containment failure, the release of ra- 
dionuclides to the geosphere depends only on leach rate and 
inventory. 

The isotope 12gI and the decay chain 237Np --+ 233U + 
22gTh are the migrating species. The model has a total of 
33 factors, 12 of which are taken as uncertain; the pdf’s 
that are used to characterize their uncertainties are given 
in Table 6. The core of the model is a set of partial differ- 
ential equations that describes the nuclide migration in the 
geosphere; to give an example, for 233U the equation is 

(k) (k) (k) (k) = -XuR, F,y +XNRN FN , 

where U stands for 233U and N for 237Np, (Ic) refers to 
geosphere layer number (1 or 2), Ri is the retardation co- 
efficient for nuclide i (dimensionless), F,(x, t) is the flow 
(amount transported per unit time) of nuclide i in the geo- 
sphere at position 2 and time t (mols/yr), v is the water 
travel velocity in the geosphere (m/yr), d is the dispersion 
length in the geosphere (m), and Xi is the decay constant 
for nuclide i (yr-l). The geosphere flow is assumed to en- 
ter a stream, which is used for drinking water. The dose 
received depends on the ratio of the drinking-water con- 
sumption and the stream-flow rate. The dose [in (Sv/yr)] 

where pi is a dose conversion factor and is assumed fixed, 
F,(2)(1(2), t) is the flow of nuclide i at the end of the second 
layer (the output to the biosphere), w denotes the individual 
drinking-water requirement and is taken to be .73 m3/yr, 
and W and I(“) are defined in Table 6. The output con- 
sidered in the discussion to follow is the total annual dose 
xi dosei( 

The STi’s computed using the method of Sobol’ are plot- 
ted in Figure 10(a) as a function of time. It can be seen that 
the four most influential factors are, in order of importance, 
the water velocity in the first layer (v(l)), the stream-flow 
rate (IV), the length of the first layer (2(l)), and, finally, the 
retardation factor for Np chain nuclides in the first layer 
($I), which becomes important after lo5 years. 

Even for this test case the bootstrap technique has been 
applied. Plots of the arithmetic means and the ranges of 100 
bootstrap ST% estimates against time at sample sizes 8,192 
and 1,024 are shown in Figure 11, (a) and (b), respectively. 
The plots refer to the factor v(l). It can be seen from these 
figures that the 100 bootstrap estimates at 1,024 sample size 
are more erratic than those obtained with sample size 8,192; 
the ranges are generally wider, particularly at times below 
lo5 years and above 3 . lo6 years. The same happens for 
the other factors. This suggests that neither 1,024 runs nor 
8,192 runs are sufficient to give reliable information about 
the ranking of importance of the factors. 

For FAST, 100 estimates have been obtained for the fac- 
tor w( 1) at sample size 1,025 (N, = 1, wi = 128, and 
M = 4) and at sample size 257 (N, = 1, wi = 32, and 
M = 4). Results are shown in Figure 12, (a) and (b). The 
estimates at sample size 1,025 appear to be more stable than 
those of Sobol’ at 8,192; this implies that FAST gives con- 
sistent estimates of the ST~‘s at lower sample size. Results 
at sample size 257 show that FAST can yield consistent 
estimates at even lower sample size; therefore, the 5‘~~ es- 
timates for all the factors at sample size 257 have been 
plotted in Figure IO(b). At this low sample size, FAST is 
capable of pinpointing the four most important factors con- 
sistently with Sobol’. 
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Figure 10. Plots of the Sn Estimates for all Factors Against Time 
Using (a) Sobol’ Method al Sample Size 8,192 and (b) FAST at Sample 
Size 257. 

Another important feature of the FAST method should be 
emphasized. When using the method of Sobol’ there is no 
difference, from the point of view of the computational cost, 
between a first-order term $ and a total-effect index 3~~. 
The formulas involved in their computation are formally 
identical (see Sobol’ 1993), although different samples are 
needed to compute either an ,!& term or an 3~~ one. In other 
words, the test model must be executed (n + l)Ns times 
(where n is the number of factors and N, is the sample 
size) for computing any of the &‘s given in Figure 13(a) 
and another (,n + l)Ns times for computing all the ,C&‘S 
given in Figure 10(a). 

FAST is capable of yielding both the main- and the total- 
effect index for a certain factor from the same set of model 
evaluations. Indeed, by adding together the spectral compo- 
nents in [l, 4/2] and at frequencies wi, 2~4, . ( Mwi, the 
quantities D-i and Di, respectively, can be estimated. This 
means that, besides the ,!&‘s given in Figure 10(b), we 
can also obtain, at no extra computational cost, all the $‘s 
shown in Figure 13(b). 

From the comparison of results given in Figures 10(b) 
and 13(b), the predominance of the higher-order terms is 
evident. The &‘s stay below .l for almost the entire time 
span, with local maxima at about .2. The 3~~‘s are much 
higher and often close to 1. Hence, it can be said that the 

1.5 

,.,* IO4 lo5 lo6 10' 
Time (years) 

(b) 

lo5 IO6 10' 
Time (years) 

Figure 11. Plot of the Averages and Ranges of 100 Sobol’ Bootstrap 
Estimates of ST, for Factor v(l) Against Time at Sample Size (a) 8,192 
and (b) 1,024. 

TECHNOMETRICS, FEBRUARY 1999, VOL. 41, NO. 1 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
ts

bi
bl

io
te

ke
t i

 B
er

ge
n]

 a
t 0

2:
44

 0
3 

Ju
ly

 2
01

5 



1.0 
(4 

- minlmax 
.._...... average (a) 

0.4 “I ’ . “I ” “I ’ ” 

ro7 H : V(1) 

r-7 
k---A: L(1) 
H:W 

0.0 I’,/ A ““‘I ““” “‘. 
10” lo5 IO6 

Time (years) 

(b) 

GLOBAL SENSITIVITY ANALYSIS OF MODEL OUTPUT 53 

Furthermore, the total sensitivity indices, either in the 
implementation of Sobol’ or in that based on the extended 

i FAST introduced here, are especially suited for a quanti- 
tative, model-independent global sensitivity analysis. The 
method also allows a rigorous but intuitive display of the 
results (such as the pie-chart in Fig. 1). Alternative global 
methods, based on correlation or regression coefficients 
such as SRC, are model dependent, and hence often they 
may only offer a qualitative picture of model sensitivity. 
Furthermore, they may fail altogether for nonmonotonic 
models. To overcome this limitation the user of those meth- 
ods can resort to the manual or automated investigation of 
scatterplots (Kleijnen and Helton 1998). 

10’ 10’ 10 IO’ 
Time (years) 

Figure 12. Plot of the Averages and Ranges of 100 FAST Estimates 
of Sn for Factor v(1) Against Time at Sample Size (a) 1,025 and (b) 
257. 

factors’ influence is mostly due to interaction terms rather 
than to linear effects. 

Level E shows that the relevance of the interaction terms 
is not just an artifact of made-on-purpose analytic mathe- 
matical functions. 

6. CONCLUSIONS 

We have shown how the classic (main-effect) FAST co- 
efficients are identical to Sobol’ indices of the first order 
and that these in turn are equal to the so-called importance 
measures or correlation ratios introduced by several inves- 
tigators. All these measures are estimates of Equation (1). 
It is hence a matter of preference which term is used to 
define them. 

Time (years) 

03 
0.4 [“‘I r “““1 ““‘( ““‘, 

Time [years) 

Figure 13. Plot of the First-Order Estimates Against Time Using (a) 
Sobol’ at Sample Size 8,192 for the Three Most lmportant Factors [v(I), 
l(i), and W] and (b) FAST at Sample Size 257 for all Factors. 
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Global methods for reliability analysis, such as the first- 
order reliability method (FORM, Cawlfield and WU 1993), 
offer a valid alternative for the problem setting in which 
only a specific (e.g., high-risk) space of the input factors is 
of interest. 

for the same set of model evaluations, both the first-order 
indices and the total ones. 

APPENDIX A: ALIASING AND SAMPLE SIZE 

The total indices are computationally more expensive 
than both the correlation/regression measures and the 
screening tests such as that of Morris (1991). The Morris 
method is especially effective in its capacity to discriminate, 
at low sample size, among noninfluential, linearly influen- 
tial, and influential by way of either nonlinear or interaction 
effects. The total sensitivity indices offer something more at 
a higher price-that is, the capacity to rank quantitatively 
the factors, based on all effects, whether they are additive 
or not. 

The computational cost of an SA coincides with the cost 
of running the model f because usually the cost of elabo- 
rating the model evaluations to extract the sensitivity mea- 
sures is negligible. When we move from a screening method 
to one of the variance-based tests addressed here, we usu- 
ally shift from a computational cost in the range from tens 
to hundreds to one in the range from hundreds to thou- 
sands model executions. Whether this is affordable or not 
depends on the computational cost of a single run of the 
model. The ever-increasing power of computers would sug- 
gest that global methods may also become affordable for a 
large class of models. 

The method of Sobol’ was, up till now, the only proce- 
dure that allowed the computation of the total sensitivity 
indices; the extended FAST is now a convenient alternative 
technique. There is another important implication related to 
the use of the sensitivity indices that has not been discussed 
so far; the total indices are in fact only one among the pos- 
sible ways of combining elementary (main or otherwise) 
effects. Sobol’ (1993) tackled the problem of ascertaining 
if a given subset of the input factors could account for most 
of the output variance so that the others could be “frozen” at 
their midpoint. This approach was linked to an optimization 
problem. The generalized formulation of variance decom- 
position is D = D, + D, + D,,, where v and w are any two 
complementary subsets of x. One implication of this feature 
is that one can apportion the output variation to groups of 
factors (e.g., near-field, far,field, biosphere in the Level E 
example) or to factors of different logical types. This can be 
done either via the extended FAST or the Sobol’ approach, 
and the computational cost is lower than for computing all 
indices for all factors individually. 

We describe the relationship between aliasing and sample 
size in the classic (Cukier et al. 1973) FAST. 

In FAST, the model f must be evaluated at N, equally 
spaced sample points along the closed path in the inter- 
val (-7r, x). Aliasing is the unwanted process by which 
a discrete sampling adds frequency information that has 
escaped the analysis back into the explored frequency 
range. The sequence Of sampled VdUeS iS gk = f(sk) 

with Sk = 7r/N,(2k - N, - l), V k = 1,2,. . . , N,, so that 
SN, = -sl = ~(1 - (l/N,)). It is useful to choose N, odd 
to include also the point s = 0 in the symmetric set of 
samples. 

and 

Let As = (SN, - sl)/(N, - 1) = (27r/N,)(N, - l)/(Ns - 
1) = (an/N,) denote the distance between consecutive sam- 
ples. The expansion (11) becomes 

yk = f(Sk) = c{Aj cosjsk + Bj sinjsk}, 
+z 

where 

z= C -y )‘..) -1,0,1,..., Jy} cz 

’ k=l 

With N, values in s domain, we will evidently be able 
to produce no more than N, independent values for A, 
and Bj in the frequency domain. For any choice of N, 
equally spaced points in (-.ir, .ir), there is a special fre- 
quency WN, = 27r . (1/2As), called the Nyquist critical 
frequency. It allows the study of the spectral components 
that lie inside the frequency range (-wNz/,UNV). By mak- 
ing explicit the dependency of As on N,, we have 

NS ‘d,,,, = -. 
2 L4.2) 

From the results shown in this article it seems that the ex- 
tended FAST (searching in the space of the frequencies) is 
generally more efficient than the method of Sobol’ (search- 
ing the space K”), thus confirming the strategy of the clas- 
sic FAST developers of tackling the sensitivity problem in 
the transformed frequency space. 

The frequency resolution dw is the distance between con- 
secutive points in the frequency domain. From Equation 
(A.2), we have dw = 1. 

Both the method of Sobol’ and the extended FAST have 
a common limitation; that is, they cannot estimate all the 
STi’s with a single set of model evaluations, but several 
samples equal to the number of factors are needed. Un- 
like Sobol’, however, the extended FAST approach offers, 

A problem may occur if the model f, in the frequency 
space, contains harmonic components that lie out of the 
range (-WN,, WN,). In this case, it turns out that any of 
these components is aliased (falsely translated) into that 
range by the very act of discrete sampling. Ways to over- 
come aliasing are (1) to estimate the bandwidth of the func- 
tion f(s) and (2) to sample at a rate sufficiently high to 
increase the Nyquist critical frequency up to capture the 
entire bandwidth by an appropriate choice of {wi}; i = 1, 
2,. . ,n. 
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Naturally, the higher the sampling rate As, the larger is 
N,, the base sample size. Let us assume that we are us- 
ing a set of integer frequencies {wl, wa, . ) w,}. Then, the 
frequency components of f(s) at {plwl,p2w2,. ,p,w,}, 

v Pl,P2,...,Pn E {l,..., +a}, can be used to com- 
pute the partial variances due to each factor, and the en- 
tire frequency axis can be explored to obtain the total 
variance. 

Normally, the spectral components decrease as the pi’s 
increase, and we expect most of the information to be ac- 
counted for by the low p values. To keep the sample size 
low, we assume f(s) to be approximately bandwidth limited 
in (-Mu,,,, Mu,,,), where wmax = max{wi, ~2, . . , w,} 
and A4 is an integer number indicating how many higher 
harmonics are considered-that is, the maximum value for 
the pi’s. Generally M is taken to be 4 or 6. 

Because WN, has to be greater than Mw,,, and given 
(A.2), the minimum number of sample points required in the 
computation of a given partial variance is N, = 2Mwma, 
+ 1. 

APPENDIX B: THE PROBLEM OF INTERFERENCES 

We describe in this subsection the problem of selecting 
frequencies while avoiding interference in the classic FAST, 
following Cukier et al. (1978). 

The use of integer ̂ frequencies implies some limitation 
when evaluating the Di’S. In a case with only two factors 
IC~ and 22 and their associated frequencies wi and ~2, there 
exists at least a combination of harmonic indices, p1 and 
~2, such that plwl = p2w2. The spectrum at frequency plwl 
contains information that mixes together the contributions 
due to both fii and &?, and there is no way to separate 
them. This interference could lead to overestimating all the 
&‘s, but the error may be kept low if we let interference 
occur at high frequencies only, where spectral information 
is smaller. 

In a model with several factors the linear combinations 
among the {wi}‘s may produce interference. We adopt 
the recursive algorithm proposed by Cukier et al. (1975) 
to obtain a linearly independent set of frequencies such 
that 

03.1) 

where the ai’s are relative integer numbers and M’ is a 
positive integer at our choice. 

The set of frequencies is said to be free of interferences 
“up to order M’.” Normally it is sufficient to consider M’ = 
M because it is believed that further harmonic effects are 
negligible. 

The problem of choosing the frequencies becomes more 
and more difficult as the number of factors increases. In 
conclusion, the building blocks for the sensitivity measure, 
given in (13) and (141, can be rewritten as 

M (NC1)/2 

p=l 

where Rj = A: + B; and A, and Bj are given in (A.1). 

APPENDIX C: SYMMETRY PROPERTIES 

We describe the use of the symmetry properties in the 
classic FAST, following Koda et al. (1979). 

The investigation of the symmetry properties of a 271. peri- 
odic curve may be helpful in reducing the number of model 
evaluations. 

By using a set {wi} of odd integer frequencies, the 
function f(s) shows a symmetry around s = f7r/2. We 
may then restrict the range of integration from (-7r, 7r) 
to (-7r/2,7r/2) halving the number of model evaluations 
required (indicated in the following as NL). The frequen- 
cies proposed by Cukier et al. (1975) are, actually, odd in- 
tegers, and therefore they may be suitably used for this 
purpose. Koda et al.‘s procedure consists of sampling the 
function f(s) in (-7r/2,7r/2) including s = 0 by using 
Sk = 7r/2((2k - Ni - l)/NL),‘dk = 1,2,. . , NL, where 
N; = (N, + 1)/2. A s is the same as before, and this is 
also true for wNY. The frequency resolution is now dw = 2, 
and the new expressions for the Fourier coefficients A, and 
Bj are 

$ { f(SNo) + x2, ifho+q) + f(sN,-q)] 
Aj = x cos (j$l)} if j even 

0 if j odd 

0 if j even 

Bj = j$ { ci$3 Lf( sNo+q) - f(SNo-q)l 

x sin (j$)} if j odd, 

where N4 = (Ni - 1)/2 and N, = (Ni + 1)/2. 
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