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Rank transformations are frequently employed in numerical experiments 
involving a computational model, especially in the context of sensitivity and 
uncertainty analyses. Response surface replacement and parameter screening 
are tasks which may benefit from a rank transformation. Ranks can cope with 
nonlinear (albeit monotonic) input-output distributions, allowing the use of 
linear regression techniques. Rank transformed statistics are more robust, and 
provide a useful solution in the presence of long tailed input and output 
distributions. 

As is known to practitioners, care must be employed when interpreting the 
results of such analyses, as any conclusion drawn using ranks does not translate 
easily to the original model. In the present note an heuristic approach is taken, 
to explore, by way of practical examples, the effect of a rank transformation on 
the outcome of a sensitivity analysis. An attempt is made to identify trends, 
and to correlate these effects to a model taxonomy. 

Employing sensitivity indices, whereby the total variance of the model 
output is decomposed into a sum of terms of increasing dimensionality, we 
show that the main effect of the rank transformation is to increase the relative 
weight of the first order terms (the 'main effects'), at the expense of the 
'interactions' and 'higher order interactions'. 

As a result the influence of those parameters which influence the output 
mostly by way of interactions may be overlooked in an analysis based on the 
ranks. This difficulty increases with the dimensionality of the problem, and 
may lead to the failure of a rank based sensitivity analysis. 

We suggest that the models can be ranked, with respect to the complexity of 
their input-output relationship, by mean of an 'Association' index L.. L may 
complement the usual model coefficient of determination R 2 as a measure of 
model complexity for the purpose of uncertainty and sensitivity analysis. 

1 I N T R O D U C T I O N  

Numerical  experiments  meant  to assess the uncer- 
tainty in model  prediction belong to the domain of 
Uncertainty Analysis (UA).  Although U A  is not 
restricted to the uncertainty originating f rom the input 
data (see, for instance, the discussion on structural 
uncertainty in Ref. 13), uncertainty in the value of the 
model  input parameters  is surely a major  concern in 
modelling. On this note we focus on those numerical  
expe r imen t s - -o f t en  implemented  together  with (or as 
part  of) a U A - - w h i c h  aim to apport ion the output  
uncertainty to the uncertainty in the input parameters .  
This is usually referred to as Sensitivity Analysis (SA). 

In fact the definition 'Sensitivity analysis' may be 
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applied to a number  of very different problem 
settings, such as: 

. 

. 

Paramete r  screening, where the task is to 
identify active factors in a system with many 
parameters .  Examples  of this approach are Refs 
8, 39, 35, 2, 52, 1. 
Global  SA, where the emphasis  is on apport ion- 
ing the output  uncertainty to the uncertainty in 
the input parameters .  In this approach the 
uncertainty range given in input reflects our 
imperfect  knowledge of those parameters .  Often 
this kind of analysis is implemented  by means of 
regression, correlation techniques (see eg Refs 
32, 25, 23, 26, 28, 22, 17, 16, 18). One particular 
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case of global SA is a variance analysis such as 
that produced by the Fourier Amplitude 
Sensitivity Test (FAST,  m'11~46~34"31) or by Sobol' 
sensitivity indices. 49 
System analysis by way of local sensitivities, 
where the emphasis is on the impact of the 
parameters not of the model variance but of the 
model itself. This is usually achieved by 
computing partial derivatives of the output 
functions with respect to the input variables 
(Jacobian). To this effect, in order to numerically 
compute the derivative, the input parameters are 
given a small interval of fractional variation 
around the nominal value. The interval is usually 
the same for all variables and has no relation to 
our degree of knowledge of the variables. 2~'46"3~ 

A recent review of UA techniques was published in 
this journal; ~5 strategies for SA are compared in Refs 
24, 16, 42. Rank transformation is a fairly common 
procedure in uncertainty and sensitivity analysis of 
model output,  and has found applications especially in 
settings (1) and (2) above. This derives mostly from 
the use of the rank transform in regression. A 
regression based sensitivity analysis aims to screen 
model input parameters based on the absolute value 
of the regression coefficients of the parameters.  For 
instance, standardised regression coefficients (SRC) 
can be used, as well as correlation measures such as 
the Pearson coefficient, and the partial correlation 
coefficients (PCC). ~2 This approach may become 
impractical for nonlinear models, especially when the 
model output  has a long tailed distribution. Insofar as 
the input output relationship is monotonic,  a rank 
transformation of the problem may allow a successful 
sensitivity analysis at no extra computational cost, 
replacing, for instance, the SRC by their rank 
equivalent (the standardised rank regression 
coefficients SRRC). A discussion of this approach is 
given in the appendix of Ref. 17. 

The problem setting for the present investigation 
can be stated as follows: 

• A model y = f ( x )  is given, where y ---(II1 . . . . .  Yr) 
is a vector of output variables linked through the 
model f t o  a set of input variables x ~-(X ~ , . . . ,  X,,). 
Throughout  this work we shall assume that the Xj's 
are independent.  Each Xj is characterised by its 
probability density function which is assumed as 
given. 

The model can be seen as a set of mathematical 
functions y~ =- f ( X  1 . . . . .  Xn) , s = 1 . . . .  , k ,  but 
often the form of the function is not available, 
being the result of a numerical integration, or, more 
generally, the prediction of a computer  code. The 
expression 'computational model '  has been prop- 
osed for such a problem setting. 35 For each output 
variable ~ ,  a vector of N values (y,1 . . . . .  y~N) was 

generated by repeatedly evaluating the model f for 
a set of N sampled vectors (x~ . . . . .  x~,,) . . . . .  
(XNI . . . . .  XX,,) 
where n is the number  of variables. Each column 
vector xq, ( i =  1 , 2 , . . . , N )  is a sample from the 
probability density function of Xj. 

Subsequently the ~ ' s  values assumed in the N 
simulations are replaced by their ranks, R(Y~), i.e.: 

R(y~r) = 1 ify~r = Max (Ys, ]i = 1, 2 . . . . .  N); 

R(y,,) = N if y,, = Min (y~ ]i = 1, 2 . . . . .  N) 

• For clarity we shall refer in the following to the 
'Y-Rank transformed model ' ,  which is the one 
obtained when y, -=f (X~ . . . . .  X,,) is replaced by 
R(y,)-= f f  (X~ . . . . .  X,,). Note that the transformed 
model is also a function of the sample, (size, scheme 
used, random seed . . . . .  ). The rank of the output 
obtained in run number 'i', R(y , i )  depends, in fact, 
on the entire sample matrix X, and not on the xq, 
j =  1,2 . . . .  n alone. This dependency will be 
neglected in the formalism, though it will be kept in 
mind in the following discussion. 
• In some instances another kind of transformed 
model is used in sensitivity analysis, in which not 
only the output, but also the input xq's are ranked, 
to yield a model of the type R(y,)-= i f*  
(R(XI) . . . .  , R ( X , ) )  (again neglecting sample de- 
pendence).  This model i f*  (which could be called a 
XY-Rank transformed model) is the one used, for 
instance, when computing the Spearman correlation 
coefficient of the Standardised Rank Regression 
Coefficients. Here  the effect of X~ on y, is estimated 
by looking at the effect of R ( X j )  on R (y,). Note 
that also, in this setting, the model is always 
evaluated on the original (raw) data x~'s ,  and that 
the ranks are only taken afterward. 
• The outcome of a sensitivity analysis based on the 
ranks is hence compared with that obtained without 
the rank transformation. 

Rank transformations are associated with the 
'multiple evaluation' of the model, which entails a 
sampling strategy (eg pure Monte Carlo, Latin 
hypercube, importance, stratified, quasi-Monte Carlo, 
factorial . . . . .  ), whose aim is to scan the space of the 
input parameters.  Rank transformations are hence 
used for global sensitivity analysis rather than for local 
SA. 

In many of the applications quoted above a 
correlation/regression based SA is performed using 
techniques such as the Standardised Rank Regression 
Coefficients (SRRC) and the Partial Rank Correlation 
Coefficients (PRCC). The linear version of these 
statistics, ie the standardised regression coefficients 
SRC or the partial correlation coefficients PCC are 
used in practice only when the problem is proven to 
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be linear in all the influential variables in x, using, for 
instance, the model coefficient of determination Ry2.12 

In spite of the widespread use of linear techniques 
in SA, there are instances in which the rank 
transformation cannot linearise the model. This 
happens, for instance, for nonmonotonic  models. As 
shown in Refs 42 and 40, this leads to a failure of 
S R R C / P R C C  based SA. It should be stressed that 
although automated non-linear regression techniques 
are available, these are not frequently seen in the 
literature, the linear rank-based techniques being by 
far the most popular. 

Another  reason for taking the ranks may be linked 
to the limited robustness of SA statistics when applied 
to the raw values. Robustness of an SA estimator here 
means its capability to reproduce its prediction (eg on 
the order  of importance of the input parameters)  
when repeating the analysis on a different sample of 
the same population. Evidently reproducibility can be 
achieved by increasing the sample size, but this is not 
always possible. 

Iman and Hora  27 investigate the performance of a 
sensitivity measure based on the percentage variance 
in f explained by any variable Xj. This technique is 
known as measure of importance, 2° and its use is 
associated with the estimation of the quantity 

Varxj[E(f [Xj)] (1) 

Var ( f )  

where E(f[Xj)  indicates the expectation value of f 
when the jth variable is fixed to the value Xj, Varxj[ o] 
stands for the variance of the argument over all the 
possible values of X i and Var ( f )  is the unconditional 
(total) variance of f .  

Iman and Hora  27 observe that, although mathemati- 
cally correct, this importance measure lacks robust- 
ness, and can be highly influenced by outliers 
associated with long tailed input distributions. They 
suggest an alternative measure based on replacing 
f with log(f)  and estimating E(log(f lXj))  using 
linear regression. This solution has the advantage of 
robustness, bu t - -as  observed by the authors- - the  
conclusions based on log(f)  are not easily converted 
back to f .  Similar consideration apply to the rank 
transformation. As shown in the examples of Section 
3, a given input parameter  could be the main 
contributor to the variance of the rank (or the log) of 
Y, but not to the variance of Y itself. 

A discussion of the increased robustness of the rank 
version of SA statistics can be found in Refs 44, 42. 
Rank versions of the importance measure were tested 
in Refs 40, 19 and 33. 

The use of rank with the importance measure is 
conceptually different from the use of rank in a 
regression based sensitivity analysis technique. As far 
a s - - say - - the  SRRC's are concerned, the rank 
transformation is essential to the analysis. It allows the 

detection of parameters non linearly correlated with 
the output  and which could otherwise be overlooked. 
In the same spirit the use of the rank version of the 
importance measure finds its justification in its ability 
to detect nonlinear and nonmonotonic  relationships, 
which could escape detection even using the SRRC's.  
Yet the importance measure could yield the same 
result even without the rank transformation. The 
reason for the transformation lies in this case in the 
limited robustness of the raw value version of the test, 
which would make the sample size needed for a 
reliable SA unacceptably high. 

For the reasons discussed above, a rank transforma- 
tion may be the only viable choice for a given 
problem. Hence it would be desirable to have an idea 
of the error involved in replacing f with either f *  (as 
in the importance measure) or f**  (as in the rank 
regression/correlation techniques). In the following 
we shall always use the f* ,  f**  symbols to denote the 
rank-transformed versions of the model f ,  although 
this notation is somewhat improper; as mentioned 
before,  f *  and f**  are in fact also influenced by the 
particular sample of input values taken. In order  to 
guard against possible fluctuations, all the examples 
discussed in this work were computed at large 
(>1,000) sample size (the sample dependence 
decreases with increasing sample size). Fur thermore 
random variation associated with the sample selection 
would not alter our conclusions. 

In order  to compare f with f* ,  f**  two elements 
are needed. An investigator should first have an 
analytical tool to quantify the differences between f 
and f* ,  f**.  Then, some kind of taxonomy of model 
linearity or monotonicity should be taken in order to 
relate the above difference to an accepted scale. The 
sensitivity indices developed by Sobol '49 and further 
elaborated by other investigators 19'43 are an ideal tool 
to investigate the difference between f and f* ,  f**.  

The sensitivity indices are discussed in Section 2. A 
model taxonomy is indeed missing, and our work will 
proceed mostly by way of examples. In Section 3, two 
families of functions are taken as reference scales, 
whereby models are ordered by their linearity, and by 
the influence of synergistic terms among variables. A 
practical test case will be discussed as well. The 
worked examples will show that the difference 
between f and f* ,  although not predictable on a 
systematic basis, displays a clear typology. In the 
A N O V A  terminology, the variance of a model can be 
thought of as decomposed in 'main effects', 'interac- 
tion effect' and 'higher order  interactions' (see eg the 
factorial design chapters in Ref. 3; see also Ref. 14). 
Adopting this terminology we can say that the rank 
transformation tends to make the model more 
additive, reducing the relative contribution of the 
' interaction' and 'higher order interactions' effects. 
Given that the possibility of important parameter  
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interaction increases with the number of model input 
parameters,  the differences between f and f*  are likely 
to increase with the dimensionality of the problem. 
This may lead to significant errors when using ranks in 
sensitivity analysis and in a response surface 
replacement.  

We suggest in Section 4 a new statistic to 
characterise this aspect of model complexity, an 
'Association index ' /y ,  which will be higher for models 
where interaction effects among influential parameters 
plays an important role. Low values of R> 2, and high 
values of !,. characterise 'difficult' models. 

2 S E N S I T I V I T Y  I N D I C E S  

The sensitivity indices were developed by Sobol',  49 
and have conceptual similarities with another  well 
known SA method,  the Fourier Amplitude Sensitivity 
Test (FAST, see references in Section 1). Both 
methods allow the total model variance D to be 
written as the sum of terms of different dimension. 11 

Furthermore the sensitivity indices have much in 
common with the importance measure discussed in 
S e c t i o n  1. 2°'27 Especially after the modification to the 
importance measure made by other investigators 29'3°'4° 
the measure of importance was seen to coincide--  
even from the computational point of view--with the 
Sobol' sensitivity index of the first order. 19 Sensitivity 
measures similar to the sensitivity indices have also 
been used by Cotter  ~ and by Sacks et al. 3~ 

A derivation of the Sobol' global sensitivity 
estimates is given in Ref. 49: computational 
improvements are given in Ref. 19. Some essential 
features are repeated here for reader 's  convenience 
(Ref. 49 was in Russian; a translation became 
available in 1993, see references). 

We assume that, without loss of generality, each of 
the X~'s lies with uniform probability between 0 and 1, 
so that the sample space of f ( x ) = f ( x ~  . . . .  , x,,) is the 
n-dimensional unit cube: 

K" ={x 10 <-xi -< = 1 ; i = 1  . . . . .  n} (2) 

Under  assumptions described in Ref. 49 it is 
possible to decompose f (x )  into summands of 
different dimensions, eg: 

. . . .  E E  
i--1 1 <=- i<~j~=--n 

+ ... +fl2 ..... (xl, x2, ... x,,) (3) 

In this formula fl is a constant, a generic term f, (x~) 
is a function only of variable x~, the term f/,~ (x~, xj) is a 
function of only variables xi, x~ and so on. It can be 
proven 49 that the expansion (2) is unique whenever 
f (x~ . . . .  , x , )  is integrable over K ". 

As an example, f (x~) can be computed as 

f,'f  f (x,) = ... f (x)dx_,  - f), (4) 

where the notation dx_i means integration over all 
the variables x~ ..... x,, except for variable xi. 
Analogous formulae hold for the higher order  terms. 
The terms in the series development  are orthogonal to 
each other. 

At this point the sensitivity index Si,...S~, can be 
introduced: 

Si, . . .Si ,  - DilD'''i', where D = JK,, f2 (x) dx - f~ (5) 

is the total variance of f (x )  and 

I)' f,, 1 
D~I ..,, = . . .  f 2 , . . . i dX i l . . . dx i s  (6) 

where f~...i, denotes a generic term of the series 
development  (3). As shown in Ref. 49: 

D =  ~ D ,  + ~ ] ~  D o + ... + D12 ..... (7) 
i-- 1 I ~--i<=j-<---n 

An analogous expression was derived by Cukier et 
al. 1~ in the framework of the FAST method for 
sensitivity analysis. Similar decompositions are dis- 
cussed in Refs 8, 9, 14 and 39. A consequence of (7) is 
that: 

E Sil...i~ : 1 

# 

where the ~n notation indicates the sum over all the 
combinations of indices. S~...~, can be considered as 
true global sensitivity estimates, as they give the 
fraction of the total variance of f (x) which is due to 
any individual parameter  or combination of para- 
meters. This approach can be compared to that of 
Sacks et al. 39 where inspection of plots of the functions 
f l...i, in the development  (3) is used for SA. 

The applicability of the sensitivity indices S~l...i~ to a 
large class of functions f (x) is linked to the possibility 
of evaluating the multidimensional integrals above via 
Monte Carlo methods. This is detailed in Ref. 49. As 
an illustration, for a given sample size N the following 
estimates are possible: 

1 N 
~0 = ~ , . ~ ,  f (x.,) (9) 

where x. ,  is a sampled point in the space K,, and 

1 U 
/ )  - - J ~ 2  0 : ~m~=if2(xm) (10) 

The one-indexed terms S~ can be obtained from Di,  
which is estimated as 

1 N 
b i  q_ ~20 = ~ , , ~ ,  f (Uim,  X , , , ) f ( v i , , , X i , , )  (11) 

where u and v denote projections of x on K "-~, ie the 
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original space excluding the variable 2(,.. Eqn (11) 
indicates that in estimating f (U~m, X,,,) all the Xj's are 
sampled, while f (Vim, X,,,) is estimated by re-sampling 
all the X[s  but Xi . The higher order  Si,.i~ are 
estimated in the same manner.  

Unfortunately one separate sample (of size N) is 
needed to compute each of the Si,. i,. Given that the 
number  of terms in the development  (7) is 2" - 1, 
and that one sample is needed for )~, then N × (2") 
model evaluations are to be computed. 

In applications with a large number  of variables this 
number  can be prohibitive. For this reason a new 
statistic ST~ was proposed in Refs 19, 43: 

Sri = 1 - S,., (12) 

where S,.i equals the sum of all the SiL..i, terms where 
the index T is excluded. Consequently Sri equals the 
total effect of variable Xi. Imagine a system with just 
three input variables; then for variable X~: 

ST1 = S 1 + S12 q- S13 + S,2 3 (13) 

Sd can be computed with just one Monte Carlo 
integral, thus reducing the number  of model 
evaluations to N x (n + 1) i.e. one sample for fo plus 
one sample for each variable. This approach may be 
classified as a 'one-factor-at-a-time' (OAT)  treatment.  

Both Si~i, and Sr~ can be computed on ranks as 
well, with a net gain in robustness. 4°'m These new 
measures are indicated with the symbols S* and S*~. il . . . i~ 

To make an example, the steps needed to compute the 
first order  terms S* are as follows: 

• The N x ( n + l )  row vectors xo, j = l  ..... n are 
sampled (see details in Refs 40 and 49). 
• The corresponding N × (n + 1) output values Y,i 
are computed. 
• In order  to compute the D*j (eqn (11)) the two 
N-dimensional vectors containing f(uj,, ,  Xjm), 
f(vj,,,, Xjm) are replaced by their ranks. Note that, 
unlike the case of the rank based correlation 
measures (eg Spearman) we do not need to rank the 
input vectors xq, j = 1 . . . . .  n. 

For the present work the Monte Carlo integrals are 
computed with large sample sizes, using Sobol'  LP~ 
sequences for the sampling. 47"48"5° As discussed in Ref. 
50, quasi random numbers are characterised by an 
enhanced convergence, i.e. the N-'/2 stochastic 
convergence rate of the crude Monte Carlo can-- in  
some cases and depending on the nature of the 
function under invest igat ion--become as large as 
N -1+" with an arbitrary small E > 0 .  Subroutines to 
generate LPr  sequences are available. 7,s' The use of 
L P r  sequences in multidimensional integration is 
discussed in Ref. 5. In Section 3 both analytical and 
numerical formula have been used to estimate SiLi,; 
S*iL i, has always been estimated numerically. The 
error  on the numerical estimates was evaluated using 

as a yardstick for our computations the probable error 
associated with the crude Monte Carlo estimate; for 
example, the probable error on ~i is: 

aL = az3, z3iaz3 
^ + /3----- 7 -  ( 1 4 )  D 

where the errors o n / ) i  a n d / )  are the probable errors, 
eg: 

6/~i = ~0"6745V'ff- I 2 and Pr{lDi - /~i[ - < 3/~,} = 0.5 

(15) 

with 
1 N 

F = ~ / , ~  I f  (ui,,, x , , , ) f  (Vim, Xim)] e (16) 

1 U 
I = ~ ,,=,~" f (Uim, Xim)f (Vim, Xim) (17) 

In (14, 15) )72o and its error were neglected. This is 
justified as the problem is usually scaled before 
computing the variances, so that fo  2 is small. A similar 
expression can be written for 613. 

In the following section we shall use the difference 
between S i l . . . i  ' and S ' i ,  (or their estimates) as a 
measure of the differences between f and f* .  It is 
important to note that such an exercise would have 
been hardly possible without the sensitivity indices. 
Although the FAST method can in principle yield the 
same information, its computational complexity would 
make the evaluation of the higher order indices a 
major obstacle to the exercise. On this subject see also 
Ref. 31. 

In spite of the simplification imposed by the rank 
transformation discussed in this article, the rank-based 
global sensitivity indices S*i are superior to the 
SRRC's. These are, in fact, unable to screen 
parameters in the presence of nonmonotonic  relation- 
ships. On the other hand, the S*i are more expensive 
to compute (being an O A T  test) than the SRRC. For 
other  examples of O A T  treatments capable of 
capturing high dimension effects see also Refs 8, 39 
and 35. Those authors are reviewed in Ref. 19. An 
application of the global sensitivity indices to a 
chemical reactions system is given in Ref. 41. 

O A T  techniques are often compared unfavourably 
against alternative approaches such as factorial 
design. 3 Nevertheless, the computation of the higher 
order terms (the interaction effects) using the 
sensitivity indices differs substantially from the 
analogous computations done with factorial design. To 
make an example, the computation of an ' interaction 
effect' among two variables computed with a factorial 
design at two leveP is based on the assumption that 
the relation between those variables and the output is 
linear, or at least monotonic. Such assumptions are 
not needed for the sensitivity indices. 
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Having introduced the sensitivity indices we are 
now able to give a working definition of an 
'influential', or ' important '  parameter, at least in a 
relative sense. 

It is clear that the relative importance of input 
parameters depends on the sensitivity measure 
adopted. In local sensitivity analysis Xj is more 

aYs  a E  
important than X, if 1~-~1 is greater than I~,1  at the 

selected point x ° = x ~ , x ~  . . . . .  x~,{. When using a 
regression method X: is more important than X,  if it is 
given a larger weight in the regression model for ~ .  A 
natural definition of importance, which descends from 
the sensitivity indices, is the following: )(/. is more 
important (or influential) than Xk if Xj - -e i ther  by 
itself or in combination with other parameters--  
accounts for a larger fraction of the variance of Y, 
than that accounted by Xk, i.e. if S r ( X j )  > ST(Xk ) .  

This also allows us to make precise the meaning of a 
sensitivity analysis 'error'  in the present context. This 
is an incorrect ranking of the order of importance of 
the input parameter, the extreme case being the non 
identification of an influential parameter. As shown in 
Section 3, the error arises when the 'importance' of X: 
to ~ is markedly different from that of 
&(or R(x,)) to R(E). 

Furthermore, given that the contribution of X: to 
the variance of R ( y , )  is the same if X~ is varied 
between 0 and 1, or if R ( X / )  varies between 1 and the 
sample size N, then within the scope of the present 
analysis the difference between f and f*  can be taken 
as identical to the difference between f and f**. Note 
that this would not be the case if the sensitivity 
analysis were to be performed using a regression 
method, where the input values (or their rank) enter 
directly into the computation of the sensitivity 
coefficients (eg Pearson, Spearman, S(R)RC). 

3 T H E  N U M E R I C A L  E X P E R I M E N T  

In this section we explore, through a practical 
application and some test functions, the nature of the 
differences between f and f*,  trying to evaluate the 
error associated with a rank transformation. It may be 
important to recall at this point that in all our 
examples the input variables are assumed indepen- 
dent, and that the effect of the sample on f* is 
neglected. This is justified as this effect decreases 
asymptotically with the sample size, and large samples 
(N > 1000) have been used here. 

3.1 Level  E test case. 

The Level E test case  36"40 displays interesting 
nonmonotonic features that are suitable for testing SA 

strategies. For this reason it has also been used for an 
international exercise on sensitivity analysis. ~7 Level E 
simulates the transport of radionuclides from an 
underground disposal vault containing nuclear waste 
up to man, by way of migration through a system of 
natural and engineered barriers. The main barrier 
considered in the model is the geosphere itself, which 
includes a two-layer pathway, where nuclide disper- 
sion, advection, retention and radioactive decay are 
considered. The isotope 129I and the decay chain 
237Np-233U-EZ9Th are the migrating species. The system 
includes twelve uncertain parameters whose input 
(Table 1) is in the form of probability distributions. 
The core of the model is the set of partial differential 
equations which describe the nuclide migration in the 
geosphere; to give an example, for 233U, the equation 
is: 

' k '  OF :, ' ' 
t, + v{k) _ v(k) d{k) _ 

R(k)u at OX cOX 2 

~,~k) F~) (18) - Av R ~k)~, F{,f ~ + AN , ,~ 

where: 

U stands for the 233U isotope 
N for 237Np 

the superscript (k) refers to geosphere layer number 
k (1 or 2) 
R is the nuclide retention (adimensional) 
f is the nuclide flux (mol/a) 
t is time (a) 
v is the water travel velocity in the geosphere layer 
(m/a) 
x is space (m) 
d is the dispersion length in the geosphere layer (m) 
A is the nuclide decay constant ( l /a )  

The geosphere path segments have length 1 (l) and 
l{2) 

The model and its predictions are discussed at 
length in the references quoted above. Here we show 
(Fig. 1, triangles) the model coefficients of determina- 
tion R 2 computed on the raw values and on the ranks 
for a sample size N = 1024 using Sobol' quasi random 
numbers. The R 2 coefficient 12 provides a measure of 
how well the linear regression model based on either 
SRC's or SRRC's can reproduce the actual output 
vector Y. In particular: 

E i(y, - f )2  
N 

E i(Yi - )7 )2 (19) 
N 

where f is the mean of the output values yi and the 33i 
are the model predictions based on the S(R)RC's, so 
that R 2 represents the fraction of the variance of the 
output vector explained by the regression. The 
difference between the SRC's (and the related R 2) on 
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Fig. 1. Model coefficient of determination R 2 (triangles) 
and association index ,(,, (circles) for the Level E case study 
as function of time (y). Empty symbols refer to the original 
model, full symbols to the ranked one. The output variable 
is always the total annual dose, and R~ always refers to the 
regression model based on all the 12 variables given in Table 
1. The arrows indicate the points where the SRRC of 
variable v ") changes its sign. Also highlighted is the region 
where the total dose is dominated by Iodine(left), by 

Neptunium decay chain (right) or by both (centre). 

one hand and the SRRC' s  on the other is that the 
former  are based on the raw values of input and 
output,  while the latter are based upon ranks. The 
closer R 2 is to unity the bet ter  is the regression model  
per formance  and the quality of the associated SA. The 
R 2 values associated with the SRC's  are generally 
lower than that associated with the SRRC's ,  especially 
for non-linear models. This is also the case in Fig. 1. 
The low values of the SRC-based Ry 2 indicates that 

a SA method based on linear SA estimators (like the 
SRC, the Pearson test, etc.) are ineffective. The 
mult imodal  shape of the Ry ~ curve based on the SRRC 
similarly indicates that for the low R~ 2 points even the 
nonparametr ic  estimators (SRRC, Spearman,  etc.) are 
inappropriate.  The value of the SRRC' s  as a function 
of t ime for the most  important  variables is given in 
Fig. 2. As discussed in Ref. 40 when the fraction of 
variance accounted for by the regression coefficients is 
low, it is not possible to rank the parameters  based on 
these coefficients. 

In the same article it was shown, by means of 
input-output  scatterplots, that the most  influential 
pa ramete r  for most  of the time points is the water  flow 
velocity in the first layer of the geosphere (v~l)), which 
is linked to total dose in a nonmonotonic  fashion. The 
local minima of the R~ 2 curve correspond to those 
points where the total dose vs v m scatter plot (on 
ranks) is almost symmetrically bell-shaped and the 
corresponding SRRC for this variable passes through 
zero (Fig. 2, same sample of N = 1024, quasi random).  
Although the influence of v ~1) is evident from the 
scatter plots (not shown here),  SRRC predict zero 
sensitivity for v ~1) at those time points, drawing a 
horizontal line across the scatterplots. Depr ived of its 
most influential parameter ,  sensitivity analysis fails 
(Ry 2 is very low on both the raw values and the ranks). 

In Fig. 3 the first order sensitivity index (Si, empty  
symbol) and the total effect (Sri, full symbol) have 
been plotted for the three most important  variables of 
the Level E exercise. Each index for each variable has 
been computed  using a different sample of size 1024 
simulations using Sobol '  LP~ sequences. 

A few computat ional  details can be given here. The 
constructive dimension (cd) of a Monte  Carlo 
algorithm was defined by Sobol '5° as the number  of 

Table 1. Input data for the Level E exercise. Note: for uniform and log-uniform distributions the attributes are the interval 
endpoints. For the normal distributions these are the mean and the standard deviation. For the log-normal mean and standard 

deviation refer to the logarithm (base 10) of the variable 

Notation Definition Distribution Attributes (endpoints) Units 

T 
kl 
kc 
V (l) 
! (1) 

R c  ~t) 

V (2) 
1 ~2) 

R / 2 )  

R c  (2) 

W 

containment time 
leach rate for Iodine 
leach rate for Np chain nuclides 
water velocity in geosphere's first layer 
length of geosphere's first layer 
geosphere retardation coeff, for Iodine (first 

layer) 
factor to compute geosphere retardation coeff, for 

Np chain nuclides (first layer) 
water velocity in geosphere's second layer 
length of geosphere's second layer 
geosphere retardation coeff, for Iodine (second 

layer) 
factor to compute geosphere retardation coeff, for 

Np chain nuclides (second layer) 
stream flow rate 

uniform /100,1000/ a 
log-uniform /10-3,10-2/, a 
log-uniform /10 6,10-5/ a ~ 
log-uniform, /10 3,10 ~/ m/a 
uniform /100,500/ m 
uniform /1,5/ 

uniform /3,30/ 

log-uniform /10 2,10 t/ m/a 
uniform /50,200/ m 
uniform /1,5/ 

uniform /3,30/ 

log-uniform / 105,10 7 / m 3/a 
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Fig. 2. Standardised rank regression coefficients for the 
input parameters of the Level E case study as function of 

time (y). The output considered is the total annual dose. 

pseudo or quasi random numbers  which must be 
generated to compute  all the random variables needed 
for one single trial. For this test case the cd is 2 × 12, 
given that there are 12 variables, and that we need 
two data matrices for the resampling procedure 
described in Section 2. Hence,  in order to compute  the 
S~, a LP~ matrix of row dimension 24 and column 
dimension 2 t° was generated. The test model  was then 
executed (12 + 1 ) ×  1024 times, ie once for the base 
sample plus once for each resampling. Unfor tunate ly  
different resamples are needed for S~ and S~, and the 

M. Sobol' 

entire procedure has to be repeated to compute STy. 
Values of Si, Sri smaller than their probable  errors 
8S~, 8Sr~ computed  as in eqn (14) are discarded. 

The predominance of the higher order terms is 
evident from the Level E test case (Fig. 3). The S/s  
stay below 0.1 for almost the entire time span, with 
local maxima at about 0.2. The Sr / s  are much higher, 
and often close to one. v <1> is more  important  than W 
at times below 10 5 y, then the situation is reversed 
between 10 5 and 10 v y, although the two variables are 
almost equally important.  Variable l ~1) is almost 
always the third most important  variable. 

In Fig. 4 the same quantities have been plotted for 
the ranked model.  The new statistics, ~* and ,~*i, are 
computed  from the same two batches discussed 
previously, i.e. they do not need new model 
evaluations. 

We see that although two important  variables (v <1>, 
l ~ )  are correctly identified, W, which was seen to be 
the most important  variable at t > 1 0  5 y, now 
disappears. The first order term for v <~ is much higher 
for the rank based measures.  This has happened at the 
expense of higher order terms, in such a way that the 
total effect for l ~) is considerably reduced and that of 
W disappears altogether. Further  computat ions ~ 
where all the higher order terms have been computed,  
show that W's influence is mostly due to association 
terms, like v~t>w, v~>WR, v~i>Wl ~) and even 
v<t)WRl (tt. When the relative weight of these is cut by 
the rank transformation,  then W becomes non 
influential. 

The fact that for t > 1 0  5 y the 'actual '  most 
important  variable (in the sense discussed in Section 2 

H :  ,~T(V(1) ) 

0.8 

0.6 

0.4 

time (y) 

Fig. 3. S, (empty symbols) and Sri (full symbols) for the 
input parameters of the Level E case study as a function of 

time (y). The output considered is the total annual dose. 
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Fig. 4. S,* (empty symbols) and S*, (full symbols) for the 
input parameters of the Level E case study as a function of 

time (y). The output considered is the total annual dose. 
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is not  identified by the rank based analysis (ei ther  
using the ~*,- or  the S R R C )  gives a measure  of  the 
severi ty of  the problem.  

W e  may  now re turn  to the difference be tween  the 
Y- ranked  and X Y - r a n k e d  models  ( f *  and f * * )  
discussed in Sect ion 1. A l t h o u g h  a compar i son  of  ~*~ 
(using the fo rmer  model )  with S R R C  (using the latter) 
is h indered  by the difference of  the two est imators  
( they even use different  sample  sizes, N ×  (n + 1) 
against  N),  it seems reasonable  to hypothis ise  that  the 
effect of  the rank t rans format ion  has similar effects, ie 
bo th  using r anked  sensitivity measures  and ranked  
regression coefficents we tend to flatten the higher  
o rder  effects. W h a t  we learn about  S*~ has re levance 
to S R R C  as well. 

3.2 S o m e  ana ly t i c  t e s t  c a s e s  

The  effect of  the rank t ransformat ion  on models  can 
be also invest igated by simpler  test functions.  

We  have selected a funct ion of  three indices i , j , k :  

r = O  r !  s = O  t = o  

where  a ,b , c  are arbi t rary  constants  and x , y  are 
independen t  variables uni formly distr ibuted in [0,1]. 
The  nonl inear i ty  o f  fjk with respect  to x , y  and their 
cross p roduc t  will depend  upon  the value of  the 
indices i , j , k  respectively.  Also:  

lim f ~  = e ('x) + e (~') + e u ~ )  (21) 

We  can write the sensitivity indices of  fy, and f,~ as 

I = S .  + Sy + S~y= S* + S* + S*y (22)  

In Fig. 5 we have plot ted the values of  

(S ,y  - S x y * )  and of  ( S x y  - S*,,) ~,,, vs the ratio 

k / M a x ( i , j )  for all the combina t ions  of  i , j , k  e [1,5]. For  
this figure a = b = 1; c = 2, and a L P r  sample of  base 

1 . 0  

0 . 8  
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0 . 4  and (i, j, k) ~ [0,5]. The special cases 
k = = and i= = are also shown. 
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Fig. 5. Model of eqn (20). Values of L~v--S*,. (empty circle) and of ( S , , - S * , ) / S  .... (filled circle), a = b  = 1, c = 2 ,  
abscissa= k~ ..... u,n 

Fig. 6. Model of eqn (20). Values of ~ . -S .*v  (empty circle) and of (S~,-S*,.)/S~, (filled circle), a = b = 1, c =3,  
abscissa= k~ .. . .  u.J>., 

Fig. 7. Model of eqn (20). Values of Sxv - S*v (empty circle) and of (S~, S*,)/Sx, (filled circle), a = b = 1, c = 3, k = ~, 
abscissa = 1/ .... u.n~ 

Fig. 8. Model of eqn (20). Values of S~, - S*,. (empty circle) and of (S~v - S*,)/Sx,. (filled circle), a - 1, b = 1, c = 3, i = ~, 
abscissa = k / i  
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size N = 2 ~s was used. The new dimension of the LP~ 
matrix is, in this case, 4. The number  model  
evaluations is (21~ × (2 + 1)), as the cross terms (Sxy 
and Sxy*) can be computed  by eqn (22). 

The same quantities have been plotted in Fig. 6 for 
a = b = 1; c = 3. The limiting cases f,~ and f~jk are 
shown in Fig. 7 and Fig. 8 (only for a = b = 1; c = 3). 
Those figures indicate that there is indeed a marked  
difference between fjk and f,~. They show that for this 
test case the second order term, due to the x, y 
interaction, can be completely over looked (90% 
error)  by working on the rank t ransformed data. The 
error  increases with the ratio of the importance of the 
second order  term relative to the first order  ones, i.e. 
with k/Max(i,j) as well as with c/Max(a,b). 

Is this trend general? One might wonder  if the 
decrease of the relative weight of the higher order  
terms is always associated to a rank transformation,  
regardless of the function f at hand. In reality, this is 
not the case, i.e. for some functions there might be an 
opposite effect, the relative weight of the cross order  
term being modera te ly  higher for f*  than for f .  Yet 
this occurrence seems to be very mild compared  to the 
opposite effect. In Fig. 9 we have plotted the cross 
order terms for a set of different symmetric  functions 
of two variables f(x,y), with x,y again independent  
and uniformly distributed in [0,1]. The values plotted 
are the cross order  terms S~y for raw values against S*v 
(on ranks). The first order  terms can be computed  by 
differencing, as 2S~ = 2 S y =  1 -  S~y. A large LP~ 
sample size (2 ~) has been used, so that the variances 
f rom which the S~y, S*y are computed  are practically 
the expectat ion values. 

It can be seen that even choosing 'bad '  functions 
(which would disprove our main hypothesis),  the 
points show a distinct preference for the port ion of the 
plane above the main diagonal, i.e. the rank 
t ransformation ' consumes '  higher order  terms much 
more  easily than it creates them. 

An important  aspect, of the problem is that the 
differences between the f and f*  are likely to increase 
with the dimensionality n of the space of the 
parameters ,  and increasingly so when a consistent 
fraction of the n input variables are influential. In 
order  to illustrate this aspect we have considered the 
following function, defined in the the n-dimensional 
unit cube: 

where 

g,(x) - 

f = [ I  &(xj (23) 
i = 1  

14x - 21 + a~ 
, a~->0 a paramete r  (24) 

1 + a ~  

Plots of g~(x) for various values of a are given in 
Fig. 10. For the case where all the a / s  are zero, eqn 
(23) and (24) reduce to a test case discussed in Ref. 5 
in the context of numerical estimation of multidimen- 
sional integrals. An analysis of the performances of 
the sensitivity indices on this test function was 
conducted in Ref. 45. 
1. For all these functions f~)gi(x)dx = 1 and therefore 

... f dxli..dx n : 1 (25) ) 

2. The variation of the function &(x) is 

1 1 
1 - - < - & ( x ) -  1 + - -  (26) 

1 + a~ 1 + a~ 

Therefore ,  the pa ramete r  a~ can be used for 
specifying the role of the corresponding variable x~. 
For example: 

1. If a~ = 0 the variable x~ is ' important ' :  0-< g, 
(x)_< 2 .  
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Fig. 9. Scatterplot of Sxy (raw values) against S*, (ranks) for 
various symmetric functions of two variables f(x,y). 
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Fig. 10. Function g(x), eqn (24), for different values of a. 
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2. If  a i = 9  the variable x i is ' n o n  impor tan t ' :  
0-90-< gi(x) <- 1-10. 

3. If  ai = 99 the variable xg is ' n o n  significant ' :  
0-99 -< gi(x) -< 1-01. 

For  this funct ion the sensitivity indices can be 
c o m p u t e d  analytically. 45 It can be observed  that  the 
derivat ive of  gg changes  sign within the interval of  
var ia t ion and is undef ined in its midpoint ,  so that  a 
local sensitivity analysis would  be impractical  for  this 
function.  Fu r the rmore ,  g~ is n o n m o n o t o n i c  in all its 
input  variables,  and l inear corre la t ion  or  regression 
based techniques  would  offer little help. If  we were  to 
c o m p u t e  the Ry e for this funct ion,  bo th  for the raw 
values and the ranks,  we would  obta in  zero,  regardless 
of  the value of  n and of  the a /s .  A linear regression 
technique  (even if appl ied on ranks)  would  draw an 
hor izonta l  line on Fig. 10. For  the same reason a two 
level factorial  design would  be useless. 

The  indices for  the r anked  mode l  were  c o m p u t e d  
numerical ly.  For  a s imulat ion with n = 4, N = 213 (LP~ 
sample)  and all the a / s  = 0  the sensitivity indices yield: 

S, = 0.154 S* = 0.253 

S~j = 0.051 $~* = 0.009 

Sri = 0.36 S*i = 0-26 

non  impor tan t  ones.  Here  n = 8, N = 213 (LPO, and 
the global effect terms are 

Srl = $7~ = 0.55 -¢*1 = S*~ = 0-51 

ST3 = 0"05 S*s = 0"02 

$7; = 0"007 S*i = 0"003 for  i ~ 1,2,3 

It can be seen that  the relative er ror  on XI ,  X2 is 
mild, while that  on the o ther  variables, whose  
impor tance  most ly  arises f rom higher  o rder  terms 
including X~, X2, is very large. 

As  a final illustration of  the effect of  dimensional i ty  
on the test case defined by eqns (23, 24) consider  the 
case in which n = 20, and the a / s  display a range of  
values c o m p u t e d  as a~ = (i - 1)/2, so that for  the mos t  
impor tan t  variable a~ = 0 and for  the least impor tan t  
variable a2o = 9.5. In Fig. 11 we have plot ted the ratio 

R - as funct ion of  the index ' i ' .  Also  for  this 

s imulat ion N = 2 ~3 (LP~), and the input  matrix row 
dimension is 40. All the indices have been  c o m p u t e d  
numerical ly  and only those values are p lo t ted  for 
which both  ST~ and S*~ are greater  than ~ 1/28S  
c o m p u t e d  as in (14). It can be seen that  the e r ror  
associated with the rank t ransformat ion  grows with a 
declining weight  of  the parameter .  

As  observed  in the previous  example  the rank  
t rans format ion  tends to subtract  impor tance  f rom the 
higher  o rder  terms and add it to the first o rder  one. 
As  a result  the real global  effect te rm f o r - - s a y - - X 1 ,  
which is 

4 A M E A S U R E  O F  A S S O C I A T I O N  

We men t ioned  in the in t roduct ion that  the present  
exercise suffers f rom the lack of  an established mode l  

ST1 = S 1 -~- 312  -]- 313 -I- 814  -I- 3123 -~- . . . - { -  81234 (27) 

is much  larger than the cor respond ing  S * .  Taking  as a 
measure  of  the e r ror  o f  the r anked  mode l  the rat io 

STi - S*i 
R -  we get R ~0-28 .  For  the eight- 

STi 
dimensional  case (n = 8, N = 2 ~3 (LP'r)) and all the 
ai 's =0 ,  the cor respond ing  results are 

Si = 0-037 S* = 0.120 

Sit = 0-012 S/* = 0.002 

STi = 0"310 S*i = 0"135 

and R ~-0-56. This effect is hardly  surprising, as the 
n u m b e r  of  terms in the series de ve l opm e n t  (8) grows 
as 2", and consequen t ly  also the n u m b e r  of  potent ial ly  
impor tan t  higher  o rde r  terms grows. 

The  previous  results have been  ob ta ined  for the 
ex t reme case where  all the variables are equally 
impor tan t  (all the a / s  =0) .  Similar conclusions apply 
when  the a / s  are different. A n  instructive example  is 
the case (al = a2 = 0; a 3 = 3; a5 ... a8 = 9), with 2 
impor tan t  variables,  a mode ra t e ly  impor tan t  and 5 
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F i g .  11. Model of eqns (23, 24), n = 20 and ai = ( i - 1 ) / 2 .  
Numerical estimate. Value of (STi - S*~)/S~ vs i. The figure 
is truncated at n = 10, as for higher values the probable 

error is too large. 
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taxonomy, capable of ordering models as functions of 
their nonlinearity, nonmonotonicity,  and of their 
potential difficulty for SA. If such a scale existed, we 
could, in principle, estimate the potential error  
associated to a rank transformation, quantified using 
the sensitivity indices, for different class of models. 

We could at this point turn the argument upside 
down, and suggest the use of some function of the 
sensitivity indices themselves as a measure of model 
difficulty. 

A natural choice would be, for instance, a model 
association index Iv defined as: 

i ,  : 1 - s ,  { 2 8 )  
i - - I  

For a model which is perfectly additive in all its n 
variables L = 0; we could call such a model 'perfectly 
additive'. The worst possible model would be the one 
for which !v = 1. For the model described by eqn (20) 
and the (a = b = 1; c = 2) case, the maximum value of 
1,, when i, j, k are varied in the interval [1,5] is 0.13, 
and corresponds--as  expec ted- - to  the (i = j  = 1; 
k = 5 )  point. For the case ( a = b = l ;  c = 3 )  the 
maximum ]y value is 0.23 for the same point (a LP~ 
sample size of 2 ~5 was used for these estimates). 

For the model defined by eqns (23, 24), the 
following indices are computed for cases of different 
dimensionality (Table 2) 

We can call I v an 'Association' index. While R~ 2, 
computed on the raw values and ranks, is a measure 
of model nonlinearity and of nonmonotonicity,  Iv gives 
information on the relevance of the interaction terms 
in the model. Both statistics measure model 's 
complexity. 

The estimated association index iv for the Level E 
model is shown in Fig. 1, together with the model 

Table 2. Values of Iv (analytical value) for the model 
defined by eqns (23, 24) at different dimensions and 

ai's values 

dimension a,'s /,. 

coefficient of determination Ry 2. Also indicated in this 
figure are the region of radionuclide predominance,  
and the points where the nuclide dose has a 
nonmonotonic  dependence from v ~). The open 
symbols refer to the original model, the full ones to 
the rank version. This model seems to confirm the fact 
that real applications are always more complex than 
the analytical functions, even when these latter are 
especially designed to be difficult. The association of 
Level E can be very close to 1, and does not seem to 
be especially correlated to model nonmonotonicity.  In 
computing this statistic we have discarded first order 
sensitivity terms smaller than their respective error 
(eqn (14)). The maximum of the ]v curve corresponds 
to that region of the output where doses from Iodine 
(predominating at shorter times) and doses from the 
Np chain (predominating at later times) are 
comparable. This is consistent with the previous 
findings, ie the model 's complexity (association) grows 
with the number  of influential parameters.  The ranked 
model behaves better, with lower ~v values. 

It may be worth stressing that both R~ and ly are 
global measures, and look at that part of a model 's 
complexity that is due to those parameters that 
contribute appreciably to the output variation. In 
other words, a model could be highly nonmonotonic 
and 'associated' with respect to a subset of variables, 
but if these do not make an appreciable contribution 
to the model variance they will not be reflected in 
either R~ nor Iv. Similar considerations apply when 
contrasting local vs global sensitivity analyses. A given 

parameter  X/ may have a very high Of (and many 

non negligible - -  terms, j @ i) in proximity of the 
axiaxj 

nominal value of these parameters.  
Yet it may happen that Xi is reasonably well 

determined, and that it is given a small range of 
variation in the analysis. As a result Xi may not 
contribute appreciably to the output variance, and 
hence it will not be identified by either SRC(Xi), 
SRRC(Xi),  STi or S*i. 

4 0000 0"383 
4 0009 0'272 
4 0099 0.147 
4 0999 0.00974 

5 00000 0.481 
5 00009 0.384 
5 00099 0.274 
5 00999 0.149 
5 09999 0.0129 

6 000000 0-567 
6 000009 0-483 
6 000099 0-386 
6 000999 0-276 
6 009999 0-152 
6 099999 0.016 

5 CONCLUSIONS 

The problem of Sensitivity Analysis is to investigate 
how Xj influences ~ .  Often robustness problems force 
the investigator to re formulate the problem, and to 
look instead at how Xj influences R ( ~ ) ,  or at how 
R(Xj) influences R(y,) .  The present article describes 
qualitatively the impact of this transformation. 

Rank transformation is a useful tool for uncertainty 
and sensitivity analysis, especially when regression 
techniques are used. The rank transformation can 
cope with nonlinear (albeit monotonic) models and 
mitigate the detrimental effect of long tailed output 
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distributions. Rank transformation may help in 
building a model response surface replacement in 
uncertainty analysis and screening parameters  in 
sensitivity analysis. 

In practical SA applications both linear and rank 
regression coefficients are to be used, as recom- 
mended for instance by Ref. 22. Whenever  the model 
coefficient of determination computed on the raw 
values is low, the analyst can use the rank version in 
search for a bet ter  fit to the data at no extra model 
computation cost. 

It is important  that the limitations linked to this 
simplification of the original model are kept in mind. 
One limitation is that rank transformations cannot 
linearise nonmonotonic  models. This problem is well 
known to SA practitioners, and is flagged by a low 
value of the rank based Ry z. Another  drawback in the 
use of rank transformation was highlighted in the 
present work. The main effect of the rank 
transformation was shown to be a forced linearisation 
of the system, by an artificial increase in the relative 
weight of the first order  terms. This is done at the 
expense of the (possible) higher order  terms, which 
are nonlinear. As a result the influence of those 
parameters  whose 'total effect' mostly arises from 
parameter  interaction may be overlooked in an 
analysis based on the ranks. Depending on the model 
at hand this may or may not result in an unacceptable 
error  in a rank based sensitivity or uncertainty 
analysis. The Level E test case discussed in this article 
is not an extreme case. In a chemical kinetics model 
described in Ref. 19 we have also found significant 
differences between the parameters ranking obtained 
with Sri and S*i. A crucial point is that a deficiency in 
the ranking provided by the S*~ implies afor t ior i  a 
deficiency in the widely used SRRC and PRCC when 
applied to the same problem, as shown in the level E 
analysis. 

The examples discussed in this note provide a clear 
qualitative description of the typology of the error  for 
the transformed models f *  and f** ,  as far as 
sensitivity is defined in terms of contribution to the 
output variance. As mentioned in Section 2 the f*  and 
f**  models are no longer equivalent if sensitivity is 
measured in terms of regression coefficients. On the 
other  hand, as discussed in this article and in previous 
ones (eg Ref. 40), we believe that the f*  - based 
techniques, such as the importance measures and the 
sensitivity indices, should be preferred over the f**  - 
based rank regression/correlation techniques for the 
purpose of automated SA. The reason of this choice is 
that it is difficult to know a priori if a model is 
monotonic in all its variables, and the rank regression 
methods are known to fail with nonmonotonic  cases. 

The association index suggested in this article 
appears capable of capturing that part of model 
complexity which comes from the level of interaction 

among model input parameters.  /~ is a global index, 
being based on the fractional contribution to the 
output variance that arises from (interactions among) 
parameters,  rather than on the local effect of that 
parameter.  This association index, as well as the 
model coefficient of determination R~, reflects the 
model as well as the range of variation assigned to its 
input parameters,  and cannot be easily related to the 
terms in the Taylor expansion of the model around 
some central point of the parameters '  space. 

The estimation of the Iy is more computationally 
expensive than that of Ry 2. On the other hand an 
investigation of Iy for a class of models may provide a 
useful insight on the possibility of severe error  in a 
rank based U A / S A  for a model of that class. The 
Level E test case exemplifies this kind of situation; 
were we to use ranks in SA for a similar applications 
involving mass transfer in a complex medium we 
would expect that parameters which influence the 
output linearly (such as W in Level E) could be 
overlooked. 
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