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Abstract: The paper analyses the difficulties of performing sensitivity analysis on the output of
complex models. To this purpose a number of selected non-parametric statistics techniques are
applied to model outputs withcut assuming knowledge of the model structure, ie as to a black box.
The techniques employed are mainly concerned with the analysis of the rank transiormation of both
input and output variables (eg standardised rank regression coefficients, model coefficient of
determination on ranks...). The test models taken into consideration are three benchmarks of the
Probabilistic System Assessment Code (PSAC) User Group. an international working party
coordinated by the OECD/NEA. They describe nuclide chain transport through a multi-barrier
system (near field, geosphere, biosphere) and are employed in the analysis of the safety of a nuclear
waste disposal in a geological formation. Due to the large uncertainties affecting the system these
models are normally run within a Monte Carlo driver in order to characterise the distribution of the
model output. A crucial step in the analysis of the system is the study of the sensitivity of the model
output to the value of its input parameters. This study may be complicated by factors such as the
complexity of the model, its non-linearity and non-monot:nicity and others. The problem is
discussed with reference to the three test cases and model non-monotonicity is shown to be
particularly difficult to handle with the employed techniques. Alternative approaches to sensitivity
analysis are also touched upon.

1. Introduction

The analysis of the sensitivity of the model response to the value of iis input
parameters is an essential element in the study of model performance. Such an
analysis is part of model verification; for example, it helps to ensure that the

coded version of the model works according to its specifications and that the
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model responses to the variation in the input parameters is physically reasonable.
Especially when the model has to be used for prediction under uncertainty, as, for
instance, in the analysis of the environmental impact of pollutants, sensitivity
analysis can rank the importance of the various uncertain parameters thus
suggesting research priorities.

Another area of recent interest is the analysis of aggregation problems, where
the degree of resolution of a computer model is calibrated against the desired
level of resolution in the prediction. As an example, SA techniques can be use:. io
optimize model gridding [1,2].

Sensitivity Analysis (SA) plays an important role in the stochastic computer
codes used in Probabilistic System Assessment (PSA). These codes are usually
run in a Monte Carlo fashion; the input sample consists of different sets (vectors)
of input parameters. For each set the model is executed once, to produce a
distribution of values for the output variable under consideration. SA attempts to
determine which input variables are most important in causing the observed
variation in the dependent variables.

Different SA techniques are described in the literature [3-5] and their relative
performances have already constituted the object of intercomparison studies
[6-8]. Non-parametric statistics based on ranks, such as the standardised rank
regression coefficients and the partial rank regression coefficients appear to be
among the most robust and reliable. Other non-parametric techniques such as the
Smirnov test are also commonly used [9]. One of the main advantages of thesc
techniques is that they do not require knowledge of the system structure, ie they
can be applied to the model under consideration as to a black box, simply
comparing model output with input. It is the purpose of this note to highlight the
difficulties of the black box approach, with reference to some worked examples.
The test models taken into consideration are three benchmarks of the Probabilis-
tic System Assessment Code (PSAC) User Group [10-14], an international
working party coordinated by the Nuclear Energy Agency of the Organisation for
the Economic Cooperation and Development. These models analyse the perfor-
mance of nuclear waste disposa! in a geological formation. They are non linear,
involve many uncertain parameters and have time dependent outputs whose
variation covers orders of magnitude.

In section 2 a description of these models is given, together with the definition
of the methods employed. Prcvious work on the use of non-parametric statistics
In sensitivity aralysis is also reviewed. The main results of the analysis are given
in section 3. Some alternative approaches to SA are also discussed.

2. Models and methods

2.1 Test models

The PSAC group was established in early 1985 to coordinate the activities of
teams involved in performance assessment using Monte Carlo codes. Up to now
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Fig. 1. Simulations highest outputs (left) and mean dose with Tchebycheff confidence bounds
(right) for Levels 0 (a.b), E (c.d) and 1A (e.f). In all plots the ordinate axis is the logarithm of dose
rate in Sv/a.

three full scale intercomparison exercises have been run by the group. on an
increasing scale of complexity. The test models all involved the computation of
the dose to man resulting from the migration of radionuclide chains or isotopes
through a multi-barrier system including a nuclear waste repository (near field). a
geosphere (far field) and a simplified biosphere.

In the Monte Carlo scheme the computation was repeated many times as to
yield a distribution of the cutput under consideration (in this case dose at a time
point). The objective of the analysis was to quantify the output distribution:
output mean, confidence bounds and percentiles were sought. The sensitivity of
the output to the model input parameters was also investigated. Figure 1 (a to )
offers a synoptic view of relevant results from the three benchmarks.
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Table 1

Description of parameters to be treated as random variables in the Level 0 exercise
Notation  Definition Distribution  Value Units
RLEACH leach rate log-uniform  /0.00269, 12.9/ kg/m’/a
XBFILL  buffer thickness uniform /05,5/ m
XPATH geosphere path length uniform /1000, 10,000/ m

Vv ground water velocity log-uniform  /0.001, 0.1/ m/a
DIFFG geosph. diff. coeff. normal mean = 0.04, std = 0.001 m’/a
ADISPG  dispersivity in the geosph.  log-uniform /2, 200/ m
ABSR water extraction rate uniform /5.105, 5.106/ m’/a
RMW water ingestion rate uniform /0.7,0.9/ m’/a
BD(Cs) sorpt. const. in the buffer  log-normal mean = —0.46, std = 0.26 m’/kg
BD(I) sorpt. const. in the buffer  log-normal mean = —5.07, std =1.34 m’/kg

BD(Pd) sorpt. const. in the buffer  log-normal  mean = —1.91,std =0.669 m’/kg
BD(Se) sorpt. const. in the buffer  log-normal  mean = —2.38,std =0.143 m'/kg
BD(Sm) sorpt. const. in the buffer  log-normal mean = —2.13,std =0.605 m’/kg
BD(Sn) sorpt. const. in the buffer  log-normal mean = —1.77,std =0.729 m’/kg
BD(Zr) sorpt. const. in the buffer  log-normal  mean = —0.71, std = 0.5 m’/kg
KD(Cs) sorpt. const. in the geosph. log-normal mean = —1.46, std =1.6 m’/kg
KD(D) sorpt. const. In the geosph. log-normal mean = —6.07, std = 2.6 m’/kg
KD(Pd) sorpt. const. in the geosph. log-normal mean = —291,std =14 m’/kg
KD(Se) sorpt. const. in the geosph. log-normal mean = —3.38, std = 0.3 m’/kg
KD(Sm) sorpt. const. in the geosph. log-normal mean = —3.13, std =1.2 m’/kg
KD(Sn) sorpt. const. in the geosph. log-normal mean = —2.77,std =1.4 m’/kg
KD(Zr) sorpt. const. in the geosph. log-normal mean = —1.71,std =1.0 m’/kg

For the first exercise, named Level 0, the barrier submodels were extremely
simple, the exercise being mainly meant to test the sampling subroutines, the
executive (or driver) of the code and the code statistical post-processor [12]. Seven
radionuclides, 135Cs, 129I, 79Se, PlSin, 'Sn and *Zr were considered in the
exercise. All the barriers were described with very simple analytical equations; for
instance, in the gzosphere sub-model, the Gaussian transfer function correspond-
ing to transport by advection and dispersion was simplified to a rectangular
transfer function, the width of which simulates the effect of dispersion.

The Level 0 model considered 22 distributed parameiers (ie parameters whose
value is sampled for each run). The parameter characteristics are given 1n Table 1.
The large range of variability can be noticed; uniform and normal distributions,
on both linear and logarithmic scale are considered. Figure 1a shows the total
dose (summed over all the nuclides) for the five runs yielding the highest output
in a simulation composed of 5,000 runs. It can be seen that for many time points
there is no ouiput at all for any of the runs considered. This results in ties when
the rarks of the output are computed, and complicates the sensitivity analysis
(see next section). The mean dose originating from the same simulation is shown
in Figure 1b, together with the 95th percent Tchebycheff’s confiderce bounds

[15]. In spite of the large number of runs the output does not show a smooth
profile.
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Table 2

Description of parameter~ to be treated as random variables in the Level E exercise

Notation Definition Distribution  Value Units

CONTIM  containment time uniform /100, 1000/ a

RELRI leach rate for lodine log-uniform  /107%,107%/ a7}

RELRC leach rate for Np chain nuclides log-uniform  /107°107°/ a™!

FLOWVI  water velocity in geosphere’s first log-uniform /1073107, mya
layer

PATHLI length of geosphere’s first layer uniform /100, 500/ m

RETFI11 geosphere retardation coeff. for uniform /15/ -
lodine (first layer)

RETFIC factor to compute geosphere retarda- uniform /3.30/ -
tion coeff. for Np chain nuclides (first
layer)

FLOWYV2  water velocity in geosphere’s second log-uniform /1072107 mya
layer

PATHL2? length of geosphere’s second layer uniform /50, 200/ m

RETF21 geosphere retardation coeff. for uniform /1.5/ -
lodine (second layer)

RETF2C factor to compute geosphere retarda- uniform /3.30/ -
tion coeff. for Np chain nuclides (sec-
ond layer)

STFLOW  stream flow rate log-uniform /10°,.107/ m'/a

The second PSAC exercise was characterised by a more complex geosphere
sub-model: two layer, mono-dimensicnal, including dispersion, advection, decay
and chemical retention for nuclide chain. The geosphere sub-model was dealt
with numerically by most of the participating PSA codes. For this exercise a
quasi-analytical solution is available for the stochastic output, based on an
accurate numerical inversion of the exact solution in the Laplace space [16]. For
this reason the exercise was named Level E (after Exact). Agam *1 is considered,
together with the *’Np-?*U-?Th chain [13]. Twelve distributed parameters
were considered (Table 2). It can be seen that the range of parameter variation is
somewhat less severe than for Level 0. Only uniform type distributions (linear or
logarithmic) are considered. Typical model output are shown in Figure 1c. The
spread in the results among the various runs is less pronounced than for the
previous exercise; the two separate peaks identify the lodine and the Np chain
doses. The dose mean, relative to a simulation of size 1000, has a more regular
shape (Figure 1d).

In the third exercise, Level 1A /14 /, the complexity of the near field sub-model
was increased, including a solubility limited release from the repository vault,
while the far field remains substanti.iiy unchanged. Furthermore, for this ex-
ercise, the model specification did not include mathematical expressions, letting
the user decide on how to interpret the descnptlon of the Problem Dose
computations were sought for the nuclides "*C, *Ni. "Se. °1 and for the
chains *'Np-?»U- 2Th and 28U-24U-20Th.? 6Ra-"OPb. The presence of
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several isotopes of the same element made the computation of the solubility
limited transport in the vault more difficult to handle.

Input data for the exercise are given in Table 3(a and b). Fifteen nuchde
independent parameters pius 40 clement-specific parameters make a total of 55
random variables for the exercise. Uniform, log-uniform, normal and log-normal
distributions are considered. The spread in the input data is comparable to that
of the Level O exercise.

Due to the higher number of isotopes and to the increased complexity of the
vault submodel, Level 1A was more computer time consuming than the other two
exercises. Some high dose outputs for a simulation of 490 runs are given in Figure
le, and the output mean in Figure 1f.

Neglecting the effect of solubility limits, considered only in the last exercise,
the model output for the three test models is roughly given by

where the summation is extended to all the nuclides, Dose is the total dose rate,
Dilution ‘s a dilution factor related to the biosphere compartment and Release is
generally a pulse function whose position on the time axis is determined by the
nuclides transit time in the barrier system. Dilution is roughly equal to 1/ABSR

Table 3a

Description of non-element specific parameters to be treated as random variables in the Level 1A
exercise. The format of data input is different from that adopted for Levels 0 and E. Values A and
B below refer to the extremes of the distributions for uniform and log-uniform data, and to the
0.001-0.999 quantiles for the normal and log-normal distributions. Mean p and standard deviation
a can be obtained as p=(A+B)/2, 6 =(B—A)/6.18

Notation  Definition Distribution Value A Value B units

TDRUM  maximum container lifetime normal 100 500 a

TMATR  matrix degradation time uniform 200 400 a

PORVLT effective porosity in vault uniform 0.10 020 -

PORL! effective porosity in first layer uniform 0.05 0.10

PORL2 effective porosity in second layer  uniform 0.20 0.25 -

VDCYLI  Darcy velocity in first layer uniform 0.001 0.01 m/a

VDCYL2 Darcy velocity in second layer uniform 0.1 1 m/a

DCYVLT ratio of Darcy velocity in vault to  log-uniform 0.01 2 -
that of first layer

LPATHI  pathlength of first layer normal 90 110 m

LPATH?  pathlength of second layer normal 17,000 23,000 m

CDIFI effective dIffusion coefficient for normal 0.002 0.005 m’/a
first layer

CDIF2 effective diffusion coefficient for  norma! 0.005 002 m%a
seccnd layer

LDISPI longitudinal dispersion length in  uniform 1 10 m
first layer

LDISP?  longitudinal dispersion length in  uniform 50 500 m

second layer
FDILUT  dilution factor log-uniform 10°° 10°°
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Table 3b :

Description of element specific parameters to be treated as randoni variables in the Level 1A
exercise. The range limits A and B (see previous table) for the solubility limits are obtained by
multiplying the values below with 1,/100 and 100 respectively. Similarly the range limits A and B
for the exchange consiants Kj’s are computed by multiplying the values below with 1/10 and 10

Element K, values (litre /kg) Solubility limits
Vault First layer Second layer (mol/litre)

C 0.5 1 0.5 1010°°
Ni 5 1 5 101073
Se 1 1 1 1.01072
Tc 0.1 0.5 0.5 1010773

I 0 0 0 1.0

Np 50 10 10 101077
U+ 10 5 1 101073
Th 1,000 500 1,000 1.010°*°
Ra 1 1 5 101074
Pb 5 10 100 101077

in Level 0, 1/STFLOW in Level E and FDILUT in Level 1A. Almost all the
other uncertain parameters considered in the three exercises enter into the
equations which govern the transit time (path lengths, flow velocities, retention
coefficients, ...); the the dependence of Dose upon these parameters is strongly
nonlinear. A purely linear relationship exists between Dose and FDILUT in
Level 1A; a linear correlation exists between Dose and both ABSR and STFLOW
(Levels 0 and E).

2.2. Methods

Sample generation and computation. Random sarapling has beea systematically
used for all the test cases discussed here, although Latin Hypercube Sampling was
also used for comparison. The computations have been performed using different
versions of the LISA code [17-18] and of its statistical post-processor SPOP [19].

Sensitivity analysis techniques. In a previous paper ([8], see section 2.3) some
parametric and non-parametric sensitivity analysis techniques were intercom-
pared using selected outputs from the Level 0 benchmark as a test case. The
non-parametric techniques which proved there to be the most robust have been
applied here. These are the standardized regression coefficient (on ranks) and the
partial rank correlation coefficient [20]. The Spearman coefficient and the Smir-
nov test are also considered, together with a few parametric tesis. A short
description of these tests is given here for convenience.

The Fearson product moment correlation coefficient (PEAR, in the following)
is the usual linear correlation coefficient computed on the x,;, y’s (i =12... N),
where x,, is the sampled value for the variable X, in the run / and y, is the
corresponding value of the output variable Y. For non-linear models ihe Spear-
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man coefficient (SPEA) is preferred as a measure of correlation, which is
essentially the same as PEAR, but using the ranks of both Y und X, values
instead of the raw values [9]:

SPEA(Y, X,) = PEAR(R(Y), R(X,)).
The basic assumptions underlying the Spearman test are:

(a) Both the x;; and the y, are random samples from their respective populations.
(b) The measurement scale of both variables is at least ordinal.

SPEA can be used for hypothesis tasting [9'.

Partial Correlation Coefficients (PCC, in the following) and Standardized
Regression Coefficients (SRC) are correlation estimators which can also be used
on the ranks of the (Y, X;) values (Partial Rank Correlation Coefficients PRCC
and Standardized Rank Regressnon Coefficient SRRC) [20]. The SRC(Y, X;) are
the coefficients of the regression model for Y; they provide an approx1mat10n to
Y in the form:

K
v*= Y SRC(Y. X)X},
j=1

where Xj* are the normalised variables

g BoX),
(X))
and X and S(X,) are respectively the sample mean and standard deviation.
When using the SRC’s it is also important to consider the model coefficient of
determination R. R? provides a measure of how well the linear regression model
based on SRC’s can reproduce the actual output vector Y. In particular:

X (5-5)

where ¥ is the mean of the output values y, and the p, are the model prediction
based on the SRC’s, so that R’ represents the fraction of the variance of the
output vector explained by the regression. The closer R? is to unity, the better is
the model performance.

The coefficients SRC(Y, X;) can themselves provide a very effective measure
of the relative importance of the input variables. Of course the validity of the
SR(C’s as a measure of sensitivity is conditional to the degree to which the
regression models fits the data, i.e. to R2.

When the value of the R? coefficient computed on the raw values is low, it is
usually worth trying the rank equivalent of SRC, i.e., the SRRC. These are
simply obtained by replacing both the output variable values y; and the input
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vectors X;’s by the respective ranks. If the new R? - ocefficient (on rank) is higher,
then the SRRC can be used for SA. It should be clear that a successful regression
analysis based on the SRC’s must be prefeired to one based on the SRRC’s: in
the example of the present study a regression model for Dose is more informative
than a regression model for Rank of Dose. Yet when the regression on the raw
data is poor, a rank transformation might be appropriate. All that is needed for
the purpose of SA is that the regression mode! which is eventually used to rank
the data is an effective one. This can be ve:ified by looking at the R? value; other
regression statistics such as the Predicied Error Sum of Squares (PRESS, [21])
might be used to ensure that the regression model is not overfitting the data.
PRESS is especially useful when nerforming stepwise regression to discriminate
between competing models. For a discussion of raw and rank regression see also
Appendix in [1]. A comparison vetween rank regression and other techniques is
given in [22]. '

The PCC can be considered as an extension of the usual correlaticn coeffi-
cients and represents ‘hat part of the interdependence between two variables
which is not due to correlation between these two variables and the remaining
ones. When PCC'’s are used they can provide a ranking of the various variables
by indicating the strength of the linear relationship between Y and X,. When
PRCC’s are used, the linear relationship between the ranks of Y and X, is
measured. This gives zn effective estimation ot sensitivity.

The Smirnov test [9] (SMIR in the following) 15 a “two-sample” test originally
designed tc check the hypothesis that two differeni samples belong to the same
population. The application of a “two-sample” test to sensitivity analysis comes
from the idea of partitioning the sample of the parameter X, under consideration
into two sub-samples according to the quantiles of the output (Y') distribution. If
the distributions of X; in the two sub-samples can be proved to be different then
the parameter under consideration is recognized as influential. For instance, the
values x;;’s corresponding to output y,’s above the 90th quantile of the F(Y)
distribution may constitute one sub-sample, and all the remaining x;’s the other
sub-sample.

For SMIR to be applicable, the following assumptions must be satisfied by the
two sub-samples under consideration, viz:

(a) the two sub-samples are random samples;
(b) the two sub-samples are mutually independent;
(c) the measurement scale is at least ordinal;
(d) the random variables must be continuous.

When using SMIR the empirical cumulative distributions F( X)) are computed
on the two samples and the two distributions compared with each other. If the
two distributions are Jifferent, it can be said that the parameter influences the
output, and that high outputs are preferentially associated with high, or low,
parameter values. More quantitatively the Smirnov statistic is defined as the
maximum vertical distance between the empirical cumulative distribution func-
tions of the two samples. SMIR can be used for hypothesis testing [9].
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An important observation has to made here. The use of PRCC and SRRC is
somewhat redundant for the test cases under consideraiion. In fact these two
techniques usually produce identical variable ranking. To take an example,
referring to the Level O test case (Table 1), if variable V' is ranked one (most
important) and variable KD(Sm) is ranked 22 (least important) by the SRRC’s,
an identical ranking is provided by the PRCC’s (see reference [20]). PRCC’s and
SRRC’s rankings only differ when significant correlations are involved among
the input variables, which is not the case for any of the three benchmarks.
Furthermore, SRRC’s predictions are also strongly correlated tc those of SPEA
and SMIR (“score” correlation coefficients for the couples SMIR /SRRC and
SPEA /SRRC are in general close to 0.8 or higher [8]). For this reason the R_’;
coefficient plays a crucial role, as it indicates the degree of reliability of the
SRRC’s as well as of the other techniques. In other words, when Rf. flags an
inadequate regression model, and hence a failure of the SRRC’s, also the ranking
provided by SPEA and SMIR should be regarded with suspicion.

2.3. Previous work: Intercomparing sensitivity analysis technigues

Iman and Helton [6,7] have analysed the performances of a number of
sensitivity analysis techniques for model output, including
— Response Surface Replacement, used in conjunction with Fractional Factorial

Design,

- Differential Analysis,
— Partial Rank Correlation Coefficient in conjunction with Latin Hypercube

Sampling (LHS).

Their conclusions were that the non-parametric techniques used in conjunction
with LHS are the more robust, being able to cope with model non-linearity
(better than in the case of fractional design) and to scan all the space of the input
variables {differential analysis only provides information around a point in the
space of the variables). For a broader discussion of Monte Carlo based SA see
also finai section of [1].

An intercomparison of non-parametric statistics can be found in [8], where the
Level 0 test model was also used. A test of the various SA techniques was made
by analysing the fluctuations in the prediction of the various tests when repeating
the sensitivity analysis on different samples. The main finding of this study was
that the SRRC’s and the PRCC’s were the most stable estimators, followed by
SPEA and SMIR. The predicticns from the linear estimators (e.g., PEAR) were
considerably more erratic.

3. Results of SA for the test models

3.1. Analysis of the model coefficient of determination

As mentioned in the previous section, the value of the model coefficient of
determination is crucial to the interpretation of the results, as it provides a
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Fig. 2. Model coefficient of determination (on raw value and ranks) and percentage of non-zero
runs for Level 0 (a), Level E (b) and Level 1A (c).

measure of the adequacy of the regression model based on the ranks and thus an
indication of the performances of the non-parametric tests. The R? coefficient
can also be computed on the raw values, ie on the SRC’s instead of on the
SRRC’s, thus providing an indication on the performances of the linear correla-
tion/ regression techniques (PCC, SRC, PEAR...).

The model coefficients of determination for the output variable “dose at the
time point™ has been plotted in Figure 2(a to c) as function of time. Values of Rf.
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close to one indicate a good performance of the regression model. Three quanti-
ties have been plotted:

— the R2 values based upon the dose rate raw values (R based upon the SRC’s)

- the R2 values based upon the ranks of the input value (R2 based upon the
SRRC ’s);

— the percentage of non-zero output for each time point.

All the results have been obtained using the same simulations of Figure 1
(5,000 runs for Level 0, 1,000 for Level E and 490 for Level 1A).

For the Level O case the percentage of non zero runs never exceeds 27% and is
as low as a few percent for the lowest time point. The model ceefficients of
determination are also very low, never exceeding 0.26 for the regression based on
the ranks. R? values for the regression based upon the raw values are even lower,
indicating that a sensitivity analysis based upon a linear regression technique is
not really worth being pursued. It is quite difficult in this context to establish the
relative importance of the input parameters; if all the parameters taken together
account for only 26% of the data variance, it may not be worthwhile to determine
how much variance each of them can account for individually. Thus, Figure 2a
suggests that the SRRC’s should not be used to rank the Level 0 input
parameiers for the cutput variable under consideration. Because of the correla-
tion among non-parametric techniques mentioned above also SMIR and SPEA
prediction should be considered as nonreliabie. Also interesting in Figure 2a is
the non-monotonic trend of the Ri estimator, which passes through a minimum
(R2 =0.08) in correspondence to the ¢ =10° time point.

Figure 2b displays the results for the Level E exercise (same statistics and
scales as Figure 2a). The percentage of non-zero runs is much higher in this case
(0.5-0.6 for most of the time span). The Rf, on ranks exhibits a multi-modal
pattern which appears completely un-correlated with the percentage of non-zero
runs, and passes thrcugh local minima where R2 is close to 0.1. The R2 on the
raw values is, even in this case, very low. ‘

The results for the Level 1A (Figure 2c, same scales) are qualitatively different
from those of Levels 0 and E. First, the percentage of non-zero runs is always
close to one. This is due to the solubility limited release from the vault, which
causes the output fluxes from geosphere to be broad smooth pulses rather than
sharp peaks. The R2 on ranks is quite high on all the time range explored (larger

than 0.6). Also the R2 on raw values are higher than from the two other test
cases.

3.2. Variable ranking as function of time

For each time point considered ir. the analysis the SA statistics (PEAR
through SMIR) have been applied, producing a variable ranking. Normally
different statistics produce different rankings. Linear techniques tend to give
lower rank (most important variables) to parameters having a linear influence on
the output, such as the biosphere dilution factors (4ABSR in Level 0, STFLOW
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in Level E and FDILUT in Level 1A). These variables roughly represent a flow
by which the output concentration in the geosphere must be divided before it is
converted to dose. They can change linearly the output by one to two orders of
magnitude (see section 2). The nonparametric tests instead give the lowest ranks
to the variables capable of producing a dose at that time point, such as the
variables which govern the nuclide transit time (water velocity, path length,
retention). These parameters can change the output by many orders of magni-
tude, especially for Levels 0 and E, but are not always detected as influential by
the linear statistics (PEAR) as these latter concentrate on the upper tail of the
output distribution.

For each variable the ranking produced by the different estimators can be
plotted as a function of time. In Figure 3 selected results from the Level 0
exercise have been given. The ordinate axis represents the rank given by the
technique (eg PRCC) to the variable (rank 1= most important variable, rank
9 = least important variable). The ranking produced by SMIR, SPEA, SRRC and
PRCC for the three most important variables shows that the disagreement among
techniques is higher for the lowest Rf. point (¢ =10°). It is puzzling at first that
for this time point the variable “dispersivity in the geosphere” (ADISPG)
becomes more important than the “water velocity in the geosphere” (V') as
indicated by all the techniques (see next section). It should be kept in mind that
the rankings of Figure 3 are of little use, at least as far as SPE4, PRCC and
SRRC are concerned, because of the scarce predictive ability of the regression
model (Figure 2a).

A similar trend appears for the Level E results (Figure 4). Here the two spikes
at 1=10° and r=10° for the variable FLOWVI (water velocity in the first
geosphere layer) closely correspond to the two local minima of R? (Figure 2b).
These results are also somewhat suspect, as they show that a variable which
influences the output linearly (STFLOW) becomes more important than the
variables linked to the geosphere transit time.

For the Level 1A exercise the transit time is less important than for the two
others; nuclides reach the biosphere as broad pulses rather than as sharp peaks
(compare Figure le with 1la). This explains why the dilution factor at the
geo/biosphere interface remains the dominant parameter for all the time span
explored (FDILUT variable, Figure 5), followed by the Darcy velocities in the
three sections which constitute the pathway (vault plus two geosphere layers;
variables DCYVLT, VDCYLI and VDCYL2). Nothing pathological shows up in
this figure, in agreement with the regular trend of R_% (Figure 2c).

3.3. Analysis of the input / output scatterplot

When performing sensifivity analysis, the variable/ variable scatterplots pro-
vide a valuable information. In Figure 6 the rank of the output dose has been
plotted against the rank of the variable ¥ (Level 0 exercise) for three different
time points. It can be recalled that this variable is generally the most influential,
except for strange discontinuity at ¢ = 10° a (Figure 3). This corresponded to a
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Fig. 3. Level 0 exercise. Variable ranking for three influential variables. Diamond = Smirnov test;
Asterisk = Spearman coefficient; Square = PRCC and SRRC (always superimposed). The ordinate
axis is the variable rank ( =1 for the most important variable; = 22 for the least important one).

minimum of the Rf. (Figure 2a). Both these facts can be easily explained by
looking at the three plots in Figure 6.

For early time (¢ = 10°) only high ¥ values can generate a non-zero output, so
that a linear positive corrclation exists between rank of dose and rank of V
(upper-left plot in Figure 6). For late times (¢ = 107 a) high V' values result in zero
dose, as the nuclide peak has arrived the biosphere earlier, i.e., only low V values
are associated to non-zero runs; hence the negative slope of the rank regression
line in the bottom plot of Figure 6. For the intermediate time point 7 = 10° the
situation is in between (rightmost plot in Figure 6) and the input/output
relationship is non-monotcnic. This would be even more evident if one could
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Fig. 4. Level E exercise. Variable ranking for four influential variables Diamond = Smirnov test;
Asterisk = Spearman coefficient; Square = PRCC and SRRC (always superimposed). The ordinate
axis is the variable rank.

count the ties in the figure: there are many more zero outputs at the extreme of
this plot than in its middle.

It is well known that rank-based non-parametric techniques are able to handle
model non-linearity, by linearising the input/output relationship [5]. This re-
quires the relationship to be monotonic. When this is not the case, as shown in
Figure 6. the rank techniques are doomed to fail. In other words both the
scatterplots in Figure ¢ and the low values of the R? coefficient in Figure 2a
reveal that this model is more complicated than the linear rank regression model
that is being used to approximate it; no automated *black box” SA of the Level 0
model can be achieved using these techniques.
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Fig. 5. Level 1A exercise. Variable ranking for three influential variables. Diamond = Smirnov test;
Asterisk = Spearman coefficient; Square = PRCC and SRRC (always superimposed). The ordinate
axis is the variable rank.

This pattern is even more evident for the Level E results. The plots of Figure 7
are rank scatterplots (as in Figure 6) for the most influential variable { FLOW '} )
at three ime points. The three plots span the 2rea corresponding to the first local
minimum of the R2 curve in Figur2 2b, and show clearly the non-monotonicity of
the input/output relationship at the ¢ = 10° time points. Also the second local
minimum of R} at #=10° in Figure 2b can be shown to depend upon model
non-monotonicity.

It can be mentioned that in the Level E example the zero outputs (the ties in
Figure 7) are generated by a dose cut off control in LISA which sets dose rates
below 107"* Sv/a to zero. Even when this censoring effect is removed ( bypassing
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Fig. 6. Level 0 exercise. Input output scatterplots for the variable V; The rank of the output dose at

three different time points is plotted against the rans of ihe variabie 3. The ihick horizontal iine

represents the contribution of the observations that had no discharge and hence no dose; these

result in ties when the ranks are taken; for instance, if out of 5,000 runs 4.400 yield zero dose. all

these are given the average (tie) rank 2.200 (upper-left figure). The thin line represenis the linear
regression over all the ranks (non-zero plus ties).

the cut-off control and hence eliminating the ties in Figure 7) still the scatterplot
at « = 10° a exhibits a bell shape and the regression line is horizontal.

When the variable FLOWVI fails to be identified as infiuential duc to the
model non-monotonicity, then the ST/LOW variable, which aifects the output
linearly may show up as influential as can be seen from the last plot of Figure 4.
T..:s should be considered as an artifact of the data, as the variables which govern
the transit time in the geosphere are surely the most influential in the Level E test
model, as shown by the scatterplots.
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Fig. 7. Level E exercise. Scatterplots of the rank of the output dose against the rank of the variable
FLOWYVI at three different time points. As in Figure 6 the thick horizontal line represents the
contribution of the ties and the thin line represents the linear rank regression.

The situation is quite different for the Level 1A exercise. Here the FDILUT
variable (dilution factor at the geo/biosphere interface) is really the most
influential one for the entire time span considered (Figure 5). The most influen-
tial geosphere parameter (the Darcy velccity in the second layer VDCYL2) is
only influential at short times (see scatterplots in Figure 8), when high doses are
only associated to high values of the Darcy velocity. For longer times (second and
third plot in Figure 8) doses are insensitive to the VDCYL2 values due to the
extremely slow release from the vault, so that the only parameters which matter
are FLILUT and DCYVLT which also control the release rate from the vault.
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Fig. 8. Level 1A exercise. Scatterplots of the rank of the output dose against the rank of the variable
VDCYL2 at t=10% 5 10* and 5 10° a. The thin line represents the linear rank regression. There
appear to be no zero discharges.

3.4. An alternative approach

The “Importance Measure” proposed by Hora and Iman [23] is based on the
concept of uncertainty reduction. It was applied by Ishigami and Homma to the
Level 0 exercise [24]. The idea behind <his method is that the variance V of the
output variable Y can be reduced by fixing the value of any generic input variable
X, to a constant value x,. Since this conditional variance V', (x,) depends on the
selected x; value, Vy(x;) should be averaged according to the distribution
function of XJ to obtain

V)= fVY(xj)fj(xj)dxj,
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Table 4
Ranking of Level O three most important parameters as function of time based on the variance
reduction technique

Time 1043 10° 103 10° 1083 107
Rank

1 XPATH 4 1% 14 ADISPG ADISPG
2 14 ABSR ABSR ABSR 14 14

3 ABSR DIFFG XPATH RLEACH RLEACH DIFFG

where f; is the density function for X;. Then the importance measure is defined
as [23].

L=Vy,-Vi.
With some manipulation /; can be described as
I;=U-(Y),

where U, = [(h(x,))*f;(x;)dx, and (h(x;)) denotes the mean of Y obtained by
fixing X; to the specific value x;.

In [24] a computationally efficient method is presented to compute the above
statistic. The three most important variables from the Level 0 exercise have been
determined on the basis of this importance measure (Table 4). This table shows
that the variable ranking produced by the uncertainty reduction method exhibits
the same trend of the estimators shown in Figure 3. This ranking is physically
reasonable because the variable “geosphere path length (XPATH)” is more
important at early times and the “water velocity in the geosphere (V)" is
constantly important at all the time points. As expected, the variable “dispersivity
in the geosplicre (ADISPG)” becomes important at late time points. This
importance m:.asure is general and widely applicable, as no assumption has been
made in it5 Cerivation but that of independence of input variables. It should not
be affected by model non-monotanicity.

4. Conclusions and future work

The analysis of the three worked examples has demonstrated that SA tech-
niquec, used in a black box fashion, can lead tc misinterpretation of the results.
This 1s particularly true when the output under consideration is a time dependent
function of the input parameters.

The main obstacle to a fully automated SA procedure appears to be the
existence of model non-monotonicities. These can be revealed by a scanning of

the time axis for the dependent variable. The following estimators are particularly
useful:

(1) Model coefficient of determination on ranks. Low values of this coefficient

flag a possible inadequacy of a regression model based on ranks and of all the
associated non-parametric estimators.



A. Saltelli, T. Homma / Sensitivity analysis 93

(2) Variable ranking plots as function of time. They give the general time
evolution of the model governing parameters.
(3) Input—output rank scatterplot. They detect non-monotonicity regions.

It has been observed that in the regions of non-monotonicity variables with a
linear relationship with the output can be given higher importance from the
sensitivity estimators. Strictly speaking this is not a mistake of the estimators,
since for the particular time point at hand a dilution factor might well happen to
be the most influential parameter. This is the case in Level 1A (Figure 5). On the
other hand Figure 7 suggests that the low value of the regression coefficient for
FLOWYVI in Level E might indeed become a high one if a non-linear model were
to be regressed on the ranks.

It has also been observed that the linear sensitivity estimators yield responses
qualita’.vzly different from those of the non-parametric tests, smphasizing the
role of :iie variables linearly correlated with the output.

The importance measure proposed by Hora and Iman appears promising,
especially in view of the efficient computation scheme suggested by Ishigami and
Homma. This technique does not appear to be affected by model non-monotonic-
ity. A proper investigation of the performances of the new technique should
include an analysis of the variance of the technique predictions over different
simulations. An example of such 2n analysis is given in [8] for the classical
estimators PEAR through SMIR.
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