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Abstract: The paper analyses the difficulties of performing sensitivity analysis on the output of 
complex models. To this purpose a number of selected non-parametric statistics techniques are 
applied to model outputs without assuming knowledge of the model structure, ie as to a black box. 
The techniques employed are mainly concerned with the analysis of the rank transiormation of both 
input and output variables (eg standardised rank regression coefficients, model coefficient of 
determination on ranks.. . ). The test models taken into consideration are three benchmarks of the 

Probabilistic System Assessrnent Code (PSAC) User Group, an international working party 
coordinated by the OECD/NEA. They describe nuclide chain transport through a multi-barrier 
system (near field, geosphere, biosphere) and are employed in the analysis of the safety of a nuclear 
waste disposal in a geological formation. Due to the large uncertainties affecting the system these 
models are normally run within a Monte Carlo driver in order to characterise the distribution of the 
model output. A crucial step in the analysis of the system is the study of the sensitivity of the model 
output to the value of its input parameters. This study may bc complicated by factors such as the 
complexity of the model, its non-linearity and non-monotcnicity and others. The problem is 
discussed with reference to the three test cases and model non-monotonicity is shown to be 
particularly difficult to handle with the employed techniques. Alternative approaches to sensitivity 
analysis are also touched upon. 

he analysis of the sensitivity of the model response to the value of i’is input 
parameters is an essential element in the study of mod4 performance. Such an 

lysis is part of ode1 verification; f to ensure that the 

ed version of t tions and that t 
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model responses to the variation in the input parameters is physically reasonable. 
Especially when the model has to be used for prediction under uncertainty. as, for 
instance, in the analysis of the environmental impact of pollutants. sensitivity 
analysis can rank the importance of the various uncertain parameters thus 
suggesting research priorities. 

Another area of recent interest is the analysis of aggregation problems, where 
the degree of resolution of a computer model is calibrated against the desired 
level of resolution in the prediction. As an example, SA techniques can be use.... to 
optimize model gridding [ 1,2]. 

Sensitivity Analysis (SA) plays an important role in the stochastic computer 
codes used in Probabilistic System Assessment (PSA). These codes are usually 
run in a Monte Carlo fashion; the input sample consists of different sets (vectors) 
of input parameters. For each set the model is executed once, to produce a 
distribution of values for the output variable under consideration. SA attempts to 
determine which input variables are most important in causing the observed 
variation in the dependent variables. 

Different SA techniques are described in the literature [3-51 and their relative 
performances have already constituted the object of intercomparison studies 
[6-81. Non-parametric statistics based on ranks, such as the standardised rank 
regression coefficients and the partial rank regression coefficients appear to be 
among the most robust and reliable. Other non-parametric techniques such as the 
Smirnov test are also commonly used [9]. One of the main advantages of thesk, 
techniques is that they do not require knowledge of the system structure, ie they 
can be applied to the model under consideration as to a black box, simply 
comparing model output with input. It is the purpose of this note to highlight the 
difficulties of the black box approach, with reference to some worked examples. 
The test models taken into consideration are three benchmarks of the Probabilis- 
tic System Assessment Cocie (PSAC) User Group [lo-141, an international 
working party coordinated by the Nuclear Energy Agency of the Organisation fcr 
the Economic Cooperation and Development. These models analyse the perfor- 
mance of nuclear waste disposal in a geological formation. They are non linear, 
involve many uncertain parameters and have time dependent outputs whose 
variation covers orders of magnitr!de. 

In section 2 a description of these models is given, together with the definition 
of the methods employed. Previous work on the use of non-parametric statistics 
in sensitivity analysis is also reviewed. The main results of the analysis are given 

in section 3. Some alternative approaches to SA are also discussed. 

2. sa s 

2. I Test models 

SAC group was esta 
teams involved in performan 

in early 1985 to coordinate the activities of 
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Fig. 1. Simulations highest outputs (left) and mean dose with Tchebycheff confidence bounds 
(right) for Levels 0 (a,b), E (c,d) and 1A (e.f). In all plots the ordinate axis is the logarithm of dose 

rate in Sv/a. 

three full scale intercomparison exercises have been run by the group, on an 
increasing scale of complexity. The test models all involved the computation of 
the dose to man resulting from the migration of radionuclide chains or isotopes 
through a multi-barrier system including a nuclear waste re ository (near field). a 
geosphere (far field) atrd a simplified biosphere. 

In the Monte Carlo 
yield a distribution of t 
point). The objective of the analysis was to quantify the output 
output mean, confidence bounds and percentiles were sought. The 
the output to the model input parameters was gate& Figure 1 (a to ft 
offers a synoptic view of relevant results fro 
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Table 1 
Description of parameters to be treated as random variables in the Level 0 exercise 

Notation Definition Distribution Value Units 

RLEACH 
XBFILL 
XPATH 
C’ 
DIFFG 
ADISPG 
ABSR 
RMW 
BD(Cs) 

BD(I) 
BD( Pd) 
BD(Se) 
BD(Sm) 
BD(Sn) 
BD(Zr) 
KD(Cs) 

KD(I) 
KD( Pd) 
KD( Se) 
KD(Sm) 
KD(Sn) 
KD( Zr) 

leach rate 
buffer thickness 
geosphere path length 
ground water velocity 
geosph. diff. coeff. 
dispersivity in the geosph. 
water extraction rate 
water ingestion rate 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the buffer 
sorpt. const. in the geosph. 
sorpt. const. In the geosph. 
sorpt. const. in the geosph. 
sorpt. const. in the geosph. 
sorpt. const. in the geosph. 
sorpt. const. in the geosph. 
sorpt. const. in the geosph. 

log-uniform 
uniform 
uniform 
log-uniform 
normal 
log-uniform 
uniform 
uniform 
iog-normal 
log-normal 
log-normal 
log-normal 
log-normal 
log-normal 
log-normal 
log-normal 
log-normal 
log-normal 
iog-normal 
log-normal 
log-normal 
log-normal 

/0.00269, 12.9/ 

/O.% 5/ 
/lOOO, 10,000/ 
/O.OOl, O.l/ 
mean = 0.04, std = 0.001 

/2,200/ 
/5.105, 5.106/ 
/0.7,0.9/ 
mean = - 0.46, std = 0.26 
mean = - 5.07, std = 1.34 
mean = - 1.91, std = 0.669 
mean = - 2.38, std = 0.143 
mean = - 2.13, std = 0.605 
mean = - 1.77, std = 0.729 
mean = -0.71, std = 0.5 
mean = - 1.46, std =1.6 
mean = - 6.07, std = 2.6 
mean = - 2.91, std = 1.4 
mean = - 3.38, std = 0.3 
mean = -3.13, std =1.2 
mean = - 2.77, std = 1.4 
mean = - 1.71, std =l.O 

kg/m’/a 
m 
m 

m/a 
m’/a 
m 
m2/a 
m3/a 
m/kg 

m3/kg 
m3/kg 
m-l/kg 
m3/kg 
m3/kg 

m3/kg 
m3/kg 
m3/kg 
m3/kg 
m3/kg 
m3/kg 
m3/kg 
m3/kg 

For the first exzrcise, named Level 0, the barrier submodels were extremely 
simple, the exercise being mainly meant to test the sampling subroutines, the 
executive (or driver) of the code and the code statistical post-processor [12]. Seven 
radionuclides, 135Cs, 1291, 79Se, “‘Sm, 12%n and 93Zr were considered in the 
exercise. All the barriers were described with very simple analytical equations; for 
instance, in the gczosphere sub-model, the Gaussian transfer function correspond- 
ing to transport by adfection and dispersion was simplified to a rectangular 
transfer function, the width of which simulates the effect of dispersion. 

The Level 0 model considered 22 distributed parameters (ie parameters whose 
value is sampled for each run). The parameter characteristics are given m Table 1. 
The large range of variability can be noticed; uniform and normal distributions, 
on both linear and logarithmic scale are considered. Figure la shows the total 
dose (summed over all the nuclides) for the five runs yielding the highest output 
in a simulation composed of 5,000 runs. It can be seen that for many time points 
there is no output at all for any of the runs considered. This results in ties when 
the ranks of the output are computed, and comp!icates the sensitivity analysis 
(see next section). The mean dose originating from the same simulation is shown 
in Figure lb. together with the 95th percent Tchebycheff’s confidence bounds 
1151. In spite of the large number of runs the output does not show a smooth 
profile. 
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Table 2 
Description of parameter.: to be treated as random variables in the Level E exercise 

Notation Definition Distribution Value Units - 

CONTIM 
RELRI 
RELRC 

FL0 WV1 

PATHLI 
RETFII 

RETFIC 

FL0 WV? 

PATHL,’ 
RETF,‘I 

RETFX 

STFLO W 

containment time 
leach rate for Iodine 
leach rate for Np chain nuclides 
water velocity in geosphere”s first 
layer 
length of geosphere’s first layer 
geosphere retardation coeff. for 
Iodine (first layer) 
factor to compute geosphere retarda- 
tion coeff. for Np chain nuclides (first 
layer) 
water velocity in geosphere’s second 
layer 
length of geosphere’s second layer 
geosphere retardation cosff. for 
Iodine (second layer) 
factor to compute geosphere retarda- 
tion coeff. for Np chain nuclides (sec- 
ond layer) 
stream flow rate 

uniform 
log-uniform 
log-uniform 
log-uniform 

/lOO, lOOO/ 
/10-3. lo-2/ 
/lo-“, lo+/ 
/lo-“. lo-‘/ 

a 
a-’ 
a-’ 

m/a 

uniform 
uniform 

uniform 

log-uniform 

uniform 
uniform 

uniform 

log-uniform 

/lOO. 500/ 

/w 

/3,30/ 

/1o-z. lo- ‘/ 

/50,200/ 

/I* v 

/3,30/ 

/lo’. lo’/ 

m 
- 

- 

m/a 

m 
- 

m-‘/a 

The second PSAC exercise was characterised by a more complex geosphere 
sub-model : two layer, mono-dimen Genal: including dispersion, advection, decay 
and chemical retention for nuclide chain. The geosphere sub-model was dealt 
with numerically by most of the participating PSA codes. For this exercise a 
quasi-analytical solution is available for the stochastic output, based on an 
accurate numerical inversion of the exact solution in the Laplace space [16]. For 
this reason the exercise was named Level E (after Exact). Again ‘291 is considered, 
together with the 237Np-233 U- 229Th chain [ 131. Twelve distributed parameters 
were considered (Table 2). It can be seen that the range of parameter variation is 
somewhat less severe than for Level 0. Only uniform type distributions (linear or 
logarithmic) are considered. Typical model output are shown in Figure lc. The 
spread in the results among the various runs is less pronounced than for the 
previous exercise; the two separate peaks identify the Iodine and the Np chain 
doses. The dose mean, relative to a simulation of size 1000, has a more regular 
shape (Figure Pd). 

In the third exercise, Level lA/14/, the complexity of the near field sub-model 
was increased, including a y,olubility limited release from the repository vault. 
while the far field remains substantiGy unchanged. Furthermore, for this ex- 
ercise, the model specification did not include mathematical expressions, letting 
the user decide on how to interpret the description of the 

P 
roblem. Dose 

commutations were souEht for the nuclides 14C. 59Ni, 79Se. 99Tc. ‘“I and for the 
chains 237 Np_ ‘33u_ ‘2’fh and 238U_ 234U_ zJOTh_ 226 b_ The presence of 
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several isotopes of the same element made the computation of the solubihty 
limited transport in the vault more difficult to handle. 

Input data for the exercise are given in Table 3(a and b). Fifteen nuciide 
independent parameters pius 40 eiement-specific paralmetcrs make a total of 55 
random variables for the exercise. Uniform, log-uniform, normal and log-normal 
distributions are considered. The spread in the input data is comparable to that 
of the Level 0 exercise. 

Due to the higher number of isotopes and to the increased complexity of the 
vault submodel, Level 1A was more computer time consuming than the other two 
exercises. Some high dose outputs for a simulation of 490 runs are given in Figure 
le. and the output mean in Figure lf. 

Neglecting the effect of solubility limits, considered only in the last exercise, 
the model output for the three test models is roughly given by 

Dose ( r ) = (C, Releasei ( t )) X Dihtion , 

where The summation is extended 1.0 all the nuclides, Dose is the total dose rate, 
Dilution k a dilution factor related to the biosphere compartment and Release is 
generally a pulse function whose position on the time axis is determined by the 
nuclides transit time in the barrier system. Dilution is roughly equal to l/ABSR 

Table 3a 
Description of non-element specific parameters to be treated as random variables in the Level 1A 
exercise. The format of data input is different from that adopted for Levels 0 and E. Values A and 
B below refer to the extremes of the distributions for uniform and log-uniform data, and to the 
0.001-0.999 quantiles for the normal and log-normal distributions. Mean p and standard deviation 
a can be obtained as p = (A + B)/2, 0 = (B - A)/6.18 

Notation Definition Distribution Value A Value B units 

TDRUM 
TM-4 TR 
PORVLT 

PORLI 
PORLZ 
VDCYLZ 
VDC YL2 
DCYVLT 

LPATHI 
LPATH2 
CDIFI 

CDIF,’ 

LDlSPl 

LDISP2 

FDILUT 

maximum container lifetime 
matrix degradation time 
effective porosity in vault 
effective porosity in first layer 
effective porosity in second layer 
Darcy velocity in first layer 
Darcy velocity in second layer 
ratio of Darcy velocity in vault to 
that of first layer 
pathlength of first layer 
pathlength of second layer 
effective diffusion coefficient for 
firs: layer 
effective diffusion coefficient for 
second layer 
longitudinal dispersion length in 
first layer 
longitudinal dispersion length in 
second layer 
dilution factor 

nor.nal 100 500 
uniform 200 400 
uniform 0.10 0.20 
uniform 0.05 0.10 
uniform 0.20 0.25 
uniform 0.001 0.01 
uniform 0.1 1 
log-uniform 0.01 2 

normal 
normal 
normal 

norma! 

uniform 

uniform 

log-uniform 

90 
17,000 

0.002 

0.005 

1 

50 

1o-5 

a 
a 
- 

- 

m/a 
m/a - 

110 m 
23,000 m 

0.005 m2/a 

0.02 

10 

500 

lo-” 

m2/a 

m 

m 
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Table 3b 
Description of element specific parameters to be treated as random variables in the Level IA 
exercise The range limits A and l3 (see previous table) for the solubility limits are obtained by 
multiplying the values below with l/100 and 100 respectively. Similarly the range limits A and S 
for the exchange constants K,‘s are computed by multiplying the values be!ow with l/10 and 10 

Element K, values (litre/kg) 

Vault First layer Second layer 

Solubility limits 
(mol/litre) 

C 
Ni 
Se 
Tc 
I 

NP 
IJ+ 
Th 
Ra 
Pb 

0.5 
5 
1 
0.1 
0 

50 
10 

1,000 
1 
5 

1 
1 
1 
0.5 
0 

10 
5 

500 
1 

10 

0.5 
5 
1 
0.5 
0 

10 
1 

1,000 
5 

100 

1.0 1o-5 
1.0 1o-5 
1.0 lo-’ 
1.0 1o-5 
1.0 
1.0 lo-’ 
1.0 1o-5 
1.0 lo- R 
1.0 1o-4 
1.0 lo-’ 

in Level 0, l/STFLOW in Level E and FDILUT in Level 1A. Almost all the 
other uncertain parameters considered in the three exercises enter into the 
equations which govern the transit time (path lengths, flow velocities, retention 
coefficients , . . . ); the the dependence of Dose upon these parameters is strongly 
nonlinear. A purely linear relationship exists between Dose and FDZLUT in 
Level 1A; a linear correlation exists between Dose and both ABSR and STFLQW 
(Levels 0 and E). 

2.2. Methods 

Sample generation and computation. Random sampling has been systematically 
used for all the test cases discussed here, although Latin Hypercube Sampling was 
also used for compatison. The computations have been performed using different 
versions of the LISA code [17-N] and of its statistical post-processor SPOP 1191. 

Sensitivity analysis techniques. In a previous paper ([8], see section 5.3) some 
parametric and non-parametric sensitivity analysis techniques were intercom- 
pared using selected outputs from the Level 0 benchmark as a test case. The 
non-parametric techniques which proved there to be the most robust have been 
applied here. These are the standardized regression coefficient (on ranks) and the 
partial rank correlation coefficient [20]. The Spearman coefficient and the Smir- 
nov test are also considered, together with a few parametric tests. A short 
description of these tests is. given here for convenience. 

The Pearson product moment correlation coefficient ( PEAR, in the following) 
is the usual linear correlation coefficient computed on the xi,, y,‘s ( i = 1,2. . . Iv ), 

where x,, is the sampled value for the va able X, in the mn i and .; is the 

corresponding value of the output variable Y. For non-linear models the Spear- 
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man coefficient (SPEA) is preferred as a measure of correl;rGon, wmch is 
essentially the same as PEAR, but using the ranks of both Y and X1 values 
instead of the raw values [9]: 

SPEA(Y, X,) = PEAR(R(Y), R( Xj)). 

The basic assumptions underlying the Spearman test are: 

(a) Both the X;j and the yi are random samples from their respective populations. 
(b) The measurement scale of both variables is at least ordinal. 

SPEA can be used for hypothesis tt2sting [9j. 
Partial Correlation Coefficients (PCC, in the following) and Standardized 

Regression Coefficients (SRC) are correlation estimators which can also be used 
on the ranks of the (Y, Xi) values (Partial Rank Correlation Coefficients PRCC 

The SRC( Y, Xj) are 
an approximation to 

and Standardized Rank Regression Coefficient SRRC) [20]. 
the coefficients of the regression model for Y; they provide 
Y in the form: 

y* = ~ SRC(Y, Xj)Xj*, 
j=l 

where X1* are the normalised variables 

and x, and S( X,) are respectively the sample mean and standard deviation. 
When using the SRC’s it is also important to consider the model coefficient of 

determination R f.. R f. provides a measure of how well the linear regression model 
based on SRC’s can reproduce the actual output vector Y. In particular: 

Rf = i;l 

c (Yd2 
i=l 

where j is the mean of the output values yi and the fi are the model prediction 
based on the SRC’s, so that Rf represents the fraction of the variance of the 
output vector explained by the regression. The closer Rt, is to unity, the better is 
the model performance. 

The coefficients SRC(Y, Xj) can themselves provide a very effective measure 
of the relative importance of the input variables. Of course the validity of the 
SRC' ‘s as a measure of sensitivity is conditional to the degree to which the 
regression models fits the data, i.e. to R;,. 

When the value of the Rf, coefficient computed on the raw values is low, it is 
usually worth trying the rank equivalent of SRC, i.e., the SRRC. These are 
simply obtained by replacing both the output variable values yi and the input 
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vectors Xi’s by the respective ranks. f the new R2 . oefficient (on rank) is higher, 
then the SRRC can be used for SA. It should be clear that a successful regression 
analysis based on the SRC’s must be prefcnred to one based on the SRRC ‘s: in 
the example of the present study a regression model for Dose is more informative 
than a regression model for Rank of Dose Yet when the regression on the raw 
data is poor, a rank transformation might e appropriate. All that is needed for 
the purpose of SA is that the regression de1 which is eventually used to rank 
the data is an effective one. This can be verified by looking at the Rf, value; other 
regression statistics such as the Predicted Error Sum of Squares (PRESS, [21]) 
might be used to ensure that the regression model is not overfitting the data. 
PRESS is especially useful when performing stepwise regression to discriminate 
between competing models. For a discussion of raw and rank regression see also 
Appendix in [I]. A comparison tietween rank regression and other techniques is 
given in [22], 

The PCC can be considered as an extension of the usual correlation coeffi- 
cients and represents ‘hat part of the interdependence between two variables 
which is not due to correlation between these two variables and the remaining 
ones. When PCC’s are used they can provide a ranking of the various variables 
by indicating the strength of the linear relationship between Y and X,. When 
PRCC’s are used, the linear relationship between the ranks of Y and X, is 
measured. This gives sn effective estimation of sensitivity. 

The Smimov test [9] (SMIR in the following) 1~ a “ two-sample” test originally 
designed tc check the hypothesis that two different samples belong to the same 
population. The application of a “ two-sample” test to sensitivity analysis comes 
from the idea of partitioning the sample of the parameter X, under consideration 
into two sub-samples according to the quantiles of the output ( Y) distribution. If 
the distributions of Xj in the two sub-samples can be proved to be different then 
the parameter under consideration is recognized as influential. For instance, the 
values xi/‘s corresponding to output y,‘s above the 90th quantile of the F( Y) 
distribution may constitute one sub-sample, and all the remaining x,,‘s the other 
sub-sample. 

For SMIR to be applicable, the following assumptions must be satisfied by the 
two sub-samples under consideration, viz: 

(a) the two sub-samples are random samples; 
(b) the two sub-samples are mutually independent; 
(c) the measurement scale is at least ordinal; 
(o) the random variables must be continuous. 

When using SMIR the empirical cumulative distributions F( X,) are computed 
on the two samples and the two distributions compared with each other. If the 
two distributions are ,?ifferent, it can be said that the parameter influences the 
output, and that high outputs are preferentially associated with high, or low, 
parameter values. More quantitatively the Smimov statistic is defined as the 
maximum vertical distance between the e 

. . 
ulatlve dlstribut:os fllrw- *c-__ 

tions of the two samples. SMIR can be u esis testing ]91. 
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An important observation has to made here. The use of PRCC and SRRC is 
somewhat redundant for the test cases under consideration. In fact these two 
techniques usually produce identical variable ranking. To take an example., 
referring to the Level 0 test case (Table l), if variable V is ranked one (imost 
important) and variable KD(Sm) is ranked 22 (least important) by the SRRC ‘s, 
an identical ranking is provided by the PRCC’s (see reference [20]). PRCC’s and 
SRRC’s rankings only differ when significant correlations are involved among 
the input variables, which is not the case for any of the three benchmarks. 
Furthermore, SRRC’s predictions are also strongly correlated to those of SPEA 
and SMPR (“score” correlation coefficients for the couples SMZR/ SRRC and 
SPEA/SRRC are in general close to 0.8 or higher [8]). For this reason the Rz 
coefficient plays a crucial role, as it indicates the degree of reliability of the 
SRRC’s as well as of the other techniques. In other words, when R;, flags an 
inadequate regression model, and hence a failure of the SRRC’s, also the ranking 
provided by SPEA and SMIR should be regarded with suspicion. 

2.3. Previous work: Intercomparing sensitivity analysis techniques 

Iman and Helton [6,7] have analysed the performances of 
sensitivity analysis techniques for model output, including 

a number of 

- Response Surface Replacement, used in conjunction with Fractional Factorial 
Design, 

- Differential Analysis, 
- Partial Rank Correlation Coefficient in conjunction with Latin Hypercube 

Sampling (LHS). 

Their conclusions were that the non-parametric techniques used in conjunction 
with LHS are the more robust, being able to cope with model non-linearity 
(better than in the case of fractional design) and to scan all the space of the input 
variables (differential analysis only provides information around a point in the 
space of the variables). For a broader discussion of Monte Carlo based SA see 
also final section of [l]. 

An intercomparison of non-paramztnc statistics can be found in [S], where the 
Level 0 test model was also used. A test of the various SA techniques was made 
by analysing the fluctuations in the prediction of the various tests when repeating 
the sensitivity analysis on different samples. The main finding of this study was 
that the SRRC’s and the PRCC’s were the most stable estimators, followed by 
SPEA and SMIR. The predictions from the linear estimators (e.g., PEA!?) were 
considerably more erratic. 

3. I> Analysis of the model coefficient of determination 

evious section, the value of the model coefficient of 
retation of the results, as it provides a 
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0.6 

a 

1 .O 

0.8 

fraction of 

Log(time, a) 

Log(time, a) 

Log(time, a) 

Fig. 2. Model coefficient of determination (on raw value and ranks) and percentage of non-zero 
runs for Level 0 (a), Level E (b) and Level IA (c). 

measure of the adequacy of the regression model based on the ranks and thus an 
indication of the performances of the non-parametric tests. The Rf coefficient 
can also be computed on the raw values, ie on the SK’s instead of on the 
SRRC ‘s, thus providing an indication on the performances of the linear correla- 
tion/ regression techniques ( . . . )- 

The model coefficients of the output variable “dose at 

time point” has been plotted in Figure 2(a to c) as function of time. 
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close to one indicate a good perfor_mance of the regression model. Three quanti- 
tie; have been plotted: 

- the R f. values based 1 upon the dose rate raw values ( R f, based upon the SR C ‘s) 
- the RX: values based upon the ranks of the input value (R: based upon the 

SRRC 3);’ 
- tfre percentage of non-zero output for each time point. 

All the results have been obtained using the same simulations of Figure 1 
(5,000 runs for Level 0, 1,000 for Level E and 490 for Level 1A). 

For the Led 0 case the percentage of non zero runs never exceeds 27% and is 
as low as a few percent for the lowest time point. The model coefficients of 
determination are also very low, never exceeding 0.26 for the regression based on 
the ranks. Rt, values for the regression based upon the raw values are even lower, 
indicating that a sensitivity analysis based upon a linear regression technique is 
not really worth being pursued. It is quite difficult in this context to establish the 
relative importance of the input parameters; if all the parameters taken together 
account for only 26% of the data variance, it may not be worthwhile to determine 
how much variance each of them can account for individually. Thus, Figure 2a 
suggests that the SRRC’s should not be used to rank the Level 0 input 
paraar,eters for the cutput variable under consideration. Because of the correla- 
tion among non-parametric techniques mentioned above also SMIR and SPEA 
prediction should be considered as nonreliable. Also interesting in Figure 2a is 
the non-monotonic trend of the R$ estimator, which passes through a minimum 
(RS. = 0.08) in correspondence to the t = lo6 time point. 

Figure 2b displays the results for the Level E exercise. (same statistics and 
scales as Figure 2a). The percentage of non-zero runs is much higher in this case 
(OS-o.6 for most of the time span). The Rf, on ranks exhibits a multi-modal 
pattern which appears completely un-correlated with the percentage of non-zero 
runs, and passes thrcugh local minima where RS is close to 0.1. The Rt, on the 
idw values is even in this case, very low. .I 9 

The results for the Level 1A (Figure 2c, same scales) are qualitatively different 
from those of Levels 0 and E. First, the percentage of non-zero runs is always 
close to one. This is due to the solubility limited release from the vault, which 
causes the output fluxes from geosphere to be broad smooth pulses rather than 
sharp peaks. The R;, on ranks is quite high on all the time range explored (larger 
than 0.6). Also the Rt on raw values are higher than from the two other test 
cases. 

3.2. Variable rading as function of time 

For each time point considered in the analysis the SA statistics (PEAR 
through STIR) have been applied, producing a variable ranking. Normally 
different :tatistics produce different rankings. Linear techniques tend to give 
lower rank (most important variables) to parameters having a linear influence on 
the output, such as the biosphere dilution factors (ABSR in Level 0, STFLQW 
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in Level E and FDILUT in Level 1A). These variables roughly represeiit a flow 
by which the output concentration in the geosphere must be divided before it is 
converted to dose. They can change linearly the output by one to two orders of 
magnitude (see section 2). The nonparametric tests instead give the lowest ranks 
to the variables capable of producing a dose at that time point, such as the 
variables which govern the nuclide transit time (water velocity, path length, 
retention). These parameters can change the output by many orders of magni- 
tude, especially for Levels 0 and E, but are not always detected as influential by 
the linear statistics (PEAR) as these latter concentrate on the upper tail of the 
output distribution. 

For each variable the ranking produced by the different estimators can be 
plotted as a function of time. Ini Figure 3 selected results from the Level 0 
exercise have been given. The ordinate axis represents the rank given by the 
technique (eg PRCC) to the variable (rank 1 = most important variable, rank 
9 = least important variable). The ranking produced by SMIR, SPEA, SRRC and 
PRCC for the three most important variables shows that the disagreement among 
techniques is higher for the lowest R;, point (t = 106). It is puzzling at first that 
for this time point the variable “dispersivity in the geosphere” ( ADISPG) 
becomes more important than the “water velocity in the geosphere” ( V) as 
indicated by all the techniques (see next section). It should be kept in mind that 
the rankings of Figure 3 are of little use, at least as far as SPEA, PRCC and 
SRRC are concerned, because of the scarce predictive ability of the regression 
model (Figure 2a). 

A similar trend appears for the Level E results (Figure 4). Here the two spikes 
at t = lo5 and t = lo6 for the variable FLOWV1 (water velocity in the first 
geosphere layer) closely correspond to the two local minima of Rt, (Figure 2b). 
These results are also somewhat suspect, as they show that a variable which 
influences the output linearly (STFLOW) becomes more important than the 
variables linked to the geosphere transit time. 

For the Level 1A exercise the transit time is less important than for the two 
others; nuclides reach the biosphere as broad pulses rather than as sharp peaks 
(compare Figure le with la). This explains why the dilution factor at the 
gee/biosphere interface remains the dominant parameter for all the time span 
explored (FDILUT variable, Figure 5), followed by the Darcy velocities in the 
three sections which constitute the pathway (vault plus two geosphere layers; 
variables DCYVLT, VDCYLI and VDCYL2). Nothing pathological shows up in 
this figure, in agreement with the regular trend of Rf* (Figure 2~). 

3.3. Analysis of the input/output scatterplot 

When performing sensitivity analysis, the variable/variable scatterplots pro- 
vide a valuable information. In Figure 6 the rank of the output dose has been 
plotted against the rank of the variable V (Level 0 exercise) for three different 
time points. It can be recalled that this variable is generally the most influential, 
except for strange discontinuity at t = PO6 a (Figure 3). This corresponded to a 
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Fig. 3. Level 0 exercise. Variable ranking for three influential variables. Diamond = Smirnov test; 
Asterisk = Spearman coefficient; Square = PRCC and SRRC (always superimposed). The ordinate 

axis is the variable rank ( = 1 for the most important variable; = 22 for the least important one). 

minimum of the R$ (Figure 2a). Both these facts can be easily explained by 
looking at t)ie three plots in Figure 6. 

For early time (t = 105) only high I/ values can generate a non-zero output, so 
that a linear positive correlation exists between rank of dose and rank of V 
(upper-left plot in Figure 6). For late times (t = lo7 a) high V values result in zero 
dose, as the nuclide peak has arrived the biosphere earlier, i.e., only low V values 
are associated to non-zero runs; hence the negative slope of the rank regression 
line in the bottom plot of Figure 6. For the intermediate time point t = lo6 the 
situation is in tmost plot in Figure ) and the input/output 

relations is non-monotonic. t if one coul 
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Fig. 4. Level E exercise. Variable ranking for four influential variables Diamond = Smimov test; 
Asterisk = Spearman coefficient; Square = PRCC and SRRC (always superimposed). The ordinate 

axis is the variable rank. 

count the ties in the figure: there are many more zero outputs at the extreme of 
this plot than in its middle. 

t is well known that ran -based non-parametric tee niques are able to handle 
model non-linearity, by line 
quires the relationship to be monotonic 

igure 6. the rank techni 
scatterplots in Figure C: a 
reveal at this model is more complicated than 
that is ing used to approximate it; no a 
model can be achieved using these tee 
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This pattern is even more evident for the Level E results. The plots of Figure 7 
are rank scatterplots (as i 6) for the most influential vatr;_ak,!c { Fi%GVP’i j 
at three time points. The 
minimum of the 

nding to the first local 
curve in e: non-monotonicity of 

Also the second local 
igure 2b can be shown to depend upon model 

example the zero outputs (the ties in 
trol in LISA which set rates 
oring effect is re ssing 



A. Saltelli, T. Homna / SensitMy analysis 89 

5000 

4000 

3003 

2000 

1000 

C 

time= 105a 

1000 2000 3000 4000 500( 
ran4( of dose against rank of variable 

3000 

2020 

1000 

00 
0 1000 2cco 3000 4000 5c 

rank of dose against rank of variable 

5000 

4000 

3coo 

2000 

1000 2000 3000 4000 5ooc 
ran4( of dose against rank of variable 
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represents the contribution of the observations that had no discharge and hence no dose; these 
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these .are given the average (tie) rank 2.200 (upper-left figure). The thin line represents the linear 

regression over all the ranks (non-zero plus ties). 

the cut-off control and hence eliminatirig the ties in Figure 7) still the scatterplot 
at A = IO5 a exhibits a b41 shape and the regression line is horizontal. 

When the variable FLOWT/I fails to be identified as infkential due to the 
model i-Ion--monotonicity, then the STX,OB/r/ variable, which affects 
linearly may show up as influential as can be seen from the last plot o 
Lfs should be considered as an artifact of the data, as 
the transit tiane in the geosphe are surely the most in 
model, as shown by the scatte 
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contribution of the ties and the thin line represents the linear rank regresC,n. 

The situation is quite different for the Level 1A exercise. Here the FDILUT 
variable (dilution factor at the gee/ biosphere interface) is re4ly the most 
infhrential one for the entire time span considered (Figure 5) The most influen- 
tial geosphere parameter (the arty velocity in the second layer VDCYL2) is 
only influential at t times (see scatterplots in Figure 8), when high dos 
only associated to velocity. For longer times (seco 

to the VDCYL2 values 
t the only 
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Fig. 8. Level 1A exercise. Scatterplots of the rank of the outp;rt dose against the rank of the variable 
VDCYL2 at t = 104, 5 IO4 and 5 10’ a. The thin line represents the linear rank regression. There 

appear to be no zero discharges. 

3.4. An alternative approach 

The GE Importance and Hman [23] is based on the 
concept of uncertainty reduction. omna to the 
Level 0 exercise [24]. The idea d is that the variance V, of the 
output variable Y can be reduced by fixing TV ?e value of any generic input variable 
X, to a constant value x,. Since this con i tional variarice VIJ ( x, ) s on the 
selected xi value, V&J should be averaged according to the distribution 
function of Xj, to obtain 
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Table 4 
Ranking of Level 0 three most important parameters as function of time based on the variance 
reduction technique 

Time 
Rank 

104 5 lo5 lo= 10” 106.5 10’ 

1 XPATH V V V ADISPG ADISPG 

2 V ABSR ABSR ABSR V V 

3 ABSR DIFFG XPA TH RLEACH RLEACH DIFFG 

where fJ is the density function for X,. Then the importance measure is defined 

as [23]. 

5 = Vy-- Vj!. 

With some manipulation 1, can be described as 

I/ = u/ - (Y)‘, 

where U, = j(h(xj))ZJfi(xj)d-xj and (h(Xj)) d enotes the mean of Y obtained by 
fixing X, to the specific value x-j. 

In [24] a computationallv efficient method is presented to compute the above 
statistic. The three most important variables from the Level 0 exercise have been 
determined on the basis of t’his importance measure (Table 4). This table shows 
that the variable ranking produced by the uncertainty reduction method exhibits 
the same trend of the estimators shown in Figure 3. This ranking is physically 
reasonable because the variable “geosphere path length ( XPA TH)” is more 
important at early times and the “water velocity in the geosphere ( V)” is 
constantly important at all the time points. As expected, the variable “dispersivity 
in the geosphcre (ADISPG)” becomes important at late time points. This 
importance mr.asure is general alld widely applicable, as no assumption has been 
made in its Derivation but that of independence of input variables. It should not 
be affectecf by model non-monotonicity. 

w Conclw iens an viwk 

The analysis of the three worked examples has demonstrated 
niquec, used in a black box fashion, can lead to misinterpretation 

that SA tech- 
of the results. 

This is particularly true when the output under consideration is a time dependent 
function of the input parameters. 

The main obstacle to a fully automated SA procedure appears to be the 
existence of model non-monotonicities. These can be revealed by a scanning of 
the time axis for the dependent variable. The following estimators are particularly 
useful: 

(1) 1 coefficient of determination on ranks. Low values of this coefficient 
possible inadequacy of a regression model based on ranks and of all the 

associated non-para etric estimators. 



A. SdteIli, T. Hornma / Sensitioity anabsis 93 

(2) Variable ranking plots as function of time. They give the general time 

evolution of the model governing parameters. 
(3) Input-output rank scatterplot. They detect non-monotonicity regions. 

It has been observed that in the regions of non-monotonicity variables with a 
linear relationship with the output can be given higher importance from the 
sensitivity estimators. Strictly speaking this is not a mista.ke of the estimators, 
since for the particular time point at hand a dilution factor might well happen to 
be the most influential parameter. This is the case in Level 1A (Figure 5). On the 
other hand Figure 7 suggests that the low value of the regression coefficient for 
FLOWI in Level E might indeed become a high one if a non-linear model were 
to be regressed on the ranks. 

It has aljo been observed that the linear sensitivity estimators yield responses 
qualitat&y different from those of the non-parametric tests, emphasizing the 
role of T;SZ variables linearly correlated with the output. 

The importance measure proposed by Hora and Iman appears promising, 
especially in view of the efficient computation scheme suggested by Ishigami and 
Homma. This technique does not appear to be affected by model non-monotonic- 
ity. A proper investigation of the performances of the new technique should 
include an analysis of the variance of the technique predictions over different 
simulations. An example of such an analysis is given in [8] for the classical 
estimators PEAR through SMlR. 

eferences 

[l] J.C. Helton, R.L. Iman, J.D. Johnson, and C.D. Leigh. Uncertainty and sensitivity analysis of 
a dry containment test problem for th-: MAEROS aerosol model hrucl. Sci. Eng., 102: 22- 42 
(1989). 

[2] J.C. Helton and J.D. Johnson. An uncertainty/sensitivity study for the station blackout 
sequence at a Mark I boiling water reactor. Rel. Eng. Syst. Sujety, 26: 293-328 (1989). 

f3] R-L. Iman, J.C! Helton and J.E. Campbell, Risk methodology for geological disposal of 
radioactive waste: sensitivity analysis techniques. Sandia Natl. Laboratories report, SAND 
78-0912 (1978). 

[4] R.L. Iman and W.J. Conover, Small sample sensitivity analysis techniques for computer 
models, with an application to risk assessment. Commun. Statist. Theor. Meth ., A9( 17). 

1749-1842 (1980). 
[5] R.L. Iman, J.C. Helton and J.E. Campbell, An approach to sensitivity analysis of computer 

models, Parts I and II. Journal of Quality Technoloa*, 3 (3,4), 174-183 and 232-240 (1981). 

[6] R.L. Iman and J.C. Helton, A comparison of uncertainty and sensitivity analysis techniques 
for computer models. Sandia Natl. Laboratories report NUREG/CR-3904. SAND 84-14bl 
(1985). 

[7] R.L. Iman :.nd J.C. Helton, An inves ation of uncertainty and sensitivity analysis techniques 
for computer models. Risk Ana!wis, 1, 71-90 (1988). 

[8] A. Salt:lli, J. Marivoet: Nonparame c statistics in sensitivity analysis for mod output: a 

comparison of selected techniques, in Relialaifity Engineering and System Sujef_r, . 229-253 

(1990). 
[9] W.J. Conover, Practical non-parametric statistics. 2nd Edition John Wiley & Sons Ed.. Nem 

York (1980). 



94 A. Saltelk, T. Homma / Sensitivity analysis 

UO] .k SiteEli, T.H. A ndres, B.W. Goodwin, E. Sartori, S.G. Carlyle and B. Cronhjort: PSACOlN 

Level 0 intercomparison; an international verification exercise on a hypothetical safety 
assessment case study, in Proceedings of the Twenty-Second annual Hawaii coirference on 

System Sciences, Hawaii, January 3-6 1989. 
11 I] A. Saltelli: The role of the code intercomparison exercise: Activities of the Probabilistic System 

Assessment Codes Group, in Proceeding of the Ispra Course on Risk Analysis in Nuclear 
Waste Management, May 30th~June 3rd, Kluwer Academic Publisher, Dordrecht, EUR 11969 

EN, p. 129-160,1989. 
[12] @ECD-NEA, PSACOIN Level 0 Intercomparison. An international Code Intercomparison 

Exercise on a Hypothetical Safety Assessment Case Study for Radioactive Waste Disposal 
Systems. Prepared by A. Saltelli, E. Sartori, B.W. Goodwin and S.G. Carlyle. OECD-NEA 
publication, Paris (1987). 

[13] OECD-NEA, PSACOIN Level E Intercomparison. An international Code Intercomparison 
Exercise on a Hypothetical Safety Assessment Case Study for Radioactive Waste Disposal 
Systems. Prepared by B.W. Goodwin, J.M. Laurens, J.E. Sinclair, D.A. Galson and E. Sartori. 
OECD-NEA publication, Paris (1989). 

[14] OECD-NEA, PSACOIN Level 1A Intercomparison. An international Code Intercomparison 
Exercise on a Hypothetical Safety Assessment Case Study for Radioactive Waste Disposal 
Systems. Prepared by A. Nies, D.A. Galson, J.M. Laurens and S. Webster. OECD-NEA 
publication. Paris (1990). 

1151 A. Saltelli and J. Marivoet: Safety assessment for nuclear waste disposal. Some observations 
about actual risk calculations, Radioactive Waste Managemc.lt and the Nuclear Fuel Cycle, 3 (4) 
1988. 

[16] PC. Robinson and D.P. Hodgkinson: exact solutions for radionuclide transport in the 
presence of parameter uncertainty. Radioactive Waste Management and the Nuclear Fuel Cycle, 
8. 1987. 

[ 171 T. Homma and A. Saltelli: LISA package user guide. Part I. PREP (Statistical Pre-Processorj 
Preparation of input sample for Monte Carlo Simulation; Program description and user guide. 
CEC/JRC Nuclear Science and Technology Report EURl3922I3, Luxembourg 1991. 

1181 P. Prado, A. Saltelli and T. Homma: USA package user guide. Part II. LISA; Program 
description and user guide. CEC/JRC Nuclear Science and Technology Report EUR13923EN, 
Luxembourg 1991. 

[19] A. Saltelli and T. Homma: LISA package user guide. Part III. SPOP; Uncertainty and 
sensitivity analysis for model output. Program description and user guide. CEC/JRC Nuclear 
Science and Teclmoiogy Report EURl3924EN, Luxembourg 1991. 

[20] R-L. Iman, M.J. Shortencarier and J.D. Johnson, A FORTRAN 77 program and user’s guide 
for the calculation of partial correlation and standardized regression coefficient. Sandia Natl. 
Laboratories report NUREG/CR 4122, SAND85-0044 (1985). 

[21] R.L. Iman, J-M. Davenport, E.L. Frost and M.J. Shortencarier. Stepwise regression with 
PRESS and rank regression. Program U ser’s guide. SANDIA National Laboratory report 
SAND79-1472 (1980). 

1221 R.L. Iman and W.J. Conover. The use of rank transform in regression, Technometrics, 21 (4)i” 
499-509,1979. 

[23] S.C. Hors and R.L. Iman: a comparison of Maximum/Bounding and Bayesian/Monte Carlo 
for fault tree uncertainty analysis. SANDIA Laboratory report SAND 85-2839 (1989). 

]24] T. lshigami and T. Homma: an importance quantification technique in uncertainty analysis. 
Japan Atomic Energy Research Institute report JAERI-M 89-111 (1989). 


