

Sensitivity Analysis

@andreasaltelli, Centre for the
Study of the Sciences and the Humanities, University of Bergen \&

Institut de Ciència i Tecnologia Ambientals - Universitat Autonoma de Barcelona

Presentation at Technical University of Denmark DTU, Lyngby Campus, Chemical Engineering, June 1st 2017

Where to find this talk: www.andreasaltelli.eu

Saltelli

$=$ more material on my web site

$=$ discussion time

Sensitivity analysis books available on LibGen

What is sensitivity analysis?

Definitions

Uncertainty analysis: Focuses on just quantifying the uncertainty in model output

Sensitivity analysis: The study of the relative importance of different input factors on the model output

[Global*] sensitivity analysis: "The study of how the uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model input"

Saltelli A., 2002, Sensitivity Analysis for Importance Assessment, Risk Analysis, 22 (3), 1-12.

An engineer's vision of UA, SA

One can sample more than just factors
One can sample modelling assumptions
Example: The output is a composite indicator

Assumption Alternatives

Number of indicators	- all six indicators included or
	one-at-time excluded (6 options)
Weighting method	• original set of weights,
	- factor analysis,
	- equal weighting,
	- data envelopment analysis
Aggregation rule	• additive,
	- multiplicative,
	- Borda multi-criterion

Space of alternatives

Space of alternatives

Is this an uncertainty analysis or a sensitivity analysis?

Space of alternatives

If I did a sensitivity analysis what information would I obtain?

$$
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\ldots & \ldots & \ldots & \ldots \\
x_{N 1} & x_{N 2} & \ldots & x_{N k}
\end{array}
$$

Sample matrix for uncertainty and sensitivity analysis

Each row is a sample trial for one model run. Each column is a sample of size N from the distribution of the factor.

Each column is a sample	x_{21}	x_{22}	\ldots	$x_{2 k}$
of size N from the	\ldots	\ldots	\ldots	\ldots
distribution of factor.	$x_{N 1}$	$x_{N 2}$	\ldots	$x_{N k}$

Model results:
Each entry is the error-free result of the model run.

y_{1}

y_{2}
\ldots
y_{2}
y_{N}

x_{11}	x_{12}	\ldots	$x_{1 k}$	y_{1}
x_{21}	x_{22}	\ldots	$x_{2 k}$	y_{2}
\ldots	\ldots	\ldots	\ldots	\ldots
$x_{N 1}$	$x_{N 2}$	\ldots	$x_{N k}$	y_{N}

Input matrix
Output vector:

In the simplest case y could be a function of - a simple mathematical expression of - the $x_{1}, x_{2}, \cdots x_{k}$
e.g. $y=x_{1} \sin \left(x_{2}\right) / x_{3}$

Or it could be a more complicate mathematical model in a computer code to generate y given $X_{1}, X_{2}, \cdots x_{k}$

Why Sensitivity analysis?

European Commission, 2015

Office for the Management and Budget, 2006

Environmental Protection Agency, 2009

EPA, 2009, March. Guidance on the Development, Evaluation, and Application of Environmental Models. Technical Report EPA/100/K-09/003. Office of the Science Advisor, Council for Regulatory Environmental Modeling, http:/ / nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF, Last accessed December 2015.

EUROPEAN COMMISSION, Better regulation toolbox, appendix to the Better Regulation Guidelines, Strasbourg, 19.5.2015, SWD(2015) 111 final, $\operatorname{COM}(2015) 215$ final, http://ec.europa.eu/smart-regulation/guidelines/docs/swd_br_guidelines_en.pdf.

OMB, Proposed risk assessment bulletin, Technical report, The Office of Management and Budget's - Office of Information and Regulatory Affairs (OIRA), January 2006,
https://www.whitehouse.gov/sites/default/files/omb/assets/omb/inforeg/proposed_risk_assessment_bulletin_010906.pdf, pp. 16-17, accessed December 2015.

http://ec.europa.eu/smart-regulation/

Source: IA Toolbox, p. 391

4. SENSITIVITY AND UNCERTAINTY ANALYSES

$$
\text { Page } 391
$$

Six steps for a global SA:

1. Select one output of interest;
2. Participatory step: discuss which input may matter;
3. Participatory step (extended peer review): define distributions;
4. Sample from the distributions;
5. Run (=evaluate) the model for the sampled values;
6. Obtain in this way bot the uncertainty of the prediction and the relative importance of variables.

$$
\begin{gathered}
\text { Limits of } \\
\text { sensitivity } \\
\text { analysis }
\end{gathered}
$$

Useless Arithmetic: Why Environmental Scientists Can't Predict the Future by Orrin H. Pilkey and Linda Pilkey-Jarvis

<<It is important, however, to recognize that the sensitivity of the parameter in the equation is what is being determined, not the sensitivity of the parameter in nature.
[\cdots] If the model is wrong or if it is a poor representation of reality, determining the sensitivity of an individual parameter in the model is a meaningless pursuit.>>

One of the examples discussed concerns the Yucca Mountain repository for radioactive waste. TSPA model (for total system performance assessment) for safety analysis.

TSPA is Composed of 286 sub-models.

TSPA (like any other model) relies on assumptions \rightarrow one is the low permeability of the geological formation \rightarrow long time for the water to percolate from surface to disposal.

The confidence of the stakeholders in TSPA was not helped when evidence was produced which could lead to an upward revision of 4 orders of magnitude of this parameter (the ${ }^{36} \mathrm{Cl}$ story)

Type III error in sensitivity: Examples:

In the case of TSPA (Yucca mountain) a range of 0.02 to 1 millimetre per year was used for percolation of flux rate.
$\rightarrow \cdots$ SA useless if it is instead $\sim 3,000$ millimetres per year.

Robert K. Merton

"Scientific mathematical modelling should involve constant efforts to falsify the model"

Ref. \rightarrow Robert K. Merton’s 'Organized skepticism '

Communalism - the common ownership of scientific discoveries, according to which scientists give up intellectual property rights in exchange for recognition and esteem (Merton actually used the term Communism, but had this notion of communalism in mind, not Marxism);

Universalism - according to which claims to truth are evaluated in terms of universal or impersonal criteria, and not on the basis of race, class, gender, religion, or nationality;
Disinterestedness - according to which scientists are rewarded for acting in ways that outwardly appear to be selfless;

Organized Skepticism - all ideas must be tested and are subject to rigorous, structured community scrutiny.

Can I lie with sensitivity analysis?

Will any sensitivity analysis do the job?

Can I lie with sensitivity analysis as I can lie with statistics?

Saltelli, A., Annoni P., 2010, How to avoid a perfunctory sensitivity analysis, Environmental Modeling and Software, 25, 1508-1517.

Why not just changing one factor at a time (OAT)?
<<"one-at-a-time" (OAT) approach is most commonly used in Commission IAs>>

Source: IA Toolbox, p. 391

Why not just changing one factor at a time (OAT)?
"Sensitivity analysis usually proceeds by changing one variable or assumption at a time, but it can also be done by varying a combination of variables simultaneously to learn more about the robustness of your results to widespread changes".

Source: Office for the management and
Budget of the White House (OMB),
Circular A4, 2003
https://www.whitehouse.gov/omb/circulars_a004_a-4/

Why not just changing one factor at a time (OAT)?

Because it is a bad idea!

OAT in 2 dimensions

Area circle / area square =?

$$
\sim 3 / 4
$$

OAT in 3 dimensions

Volume sphere / volume cube =?
$$
\sim 1 / 2
$$

OAT in 10 dimensions

Volume hypersphere / volume ten dimensional hypercube $=$? ~ 0.0025

OAT in k dimensions

Bottom-line: once a sensitivity

 analysis is done via OAT there is no guarantee that either uncertainty analysis (UA) or sensitivity analysis (SA) is any good:\rightarrow UA will be non conservative
\rightarrow SA may miss important factors

OAT is still the most largely used technique in SA. Out of every 100 papers with modelling \& SA only 4 are 'global' in the sense discussed here.

Ferretti, F., Saltelli A., Tarantola, S., 2016, Trends in Sensitivity Analysis practice in the last decade, Science of the Total Environment, http://dx.doi.org/10.1016/j.scitotenv.2016.02.133

20042005200620072008200920102011201220132014
__ TOT_SATOT_MOD (\%)

- TOT_GSA/TOT_MOD (\%)

Fig. 4. GSA in the different scientific domains.

Discussion points (1)

- Is the geometric argument necessary? Anyone experience in design of experiment (DOE)?
- Can OAT be justified in some cases?

Discussion points (2)

The influence of the key variables should be investigated by a sensitivity analysis.

- Is something wrong about the statement above (p. 384 of EC guidelines)

Discussion points (3)

- If I keep a parameter fixed I am in error, if

I give it a distribution then I struggle to justify it ...

How is sensitivity analysis done?

x_{11}	x_{12}	\ldots	$x_{1 k}$	y_{1}
x_{21}	x_{22}	\ldots	$x_{2 k}$	y_{2}
\ldots	\ldots	\ldots	\ldots	\ldots
$x_{N 1}$	$x_{N 2}$	\ldots	$x_{N k}$	y_{N}

Input matrix
Output vector:

$$
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\ldots & \ldots & \ldots & \ldots \\
x_{N 1} & x_{N 2} & \ldots & x_{N k}
\end{array}
$$

Input matrix:

- Each column is a sample from the distribution of a factor

- Each row is a sample trial to generate a value of y

Examples of distributions of input factors

Output vector:

- Just one output of interest; but y could also be a vector (function of time) or a map, etc. ${ }^{-.}$
- Y can be plotted against any of the x_{i}
Y plotted against two different factors x_{i} and x_{j}

The values of the output on the ordinate are the same

Can I do a

 sensitivity analysis just looking at the plots?

Output variable \rightarrow

Scatterplots of y versus sorted factors

Input variable x_{j}

Which factor is more important?
Why?

$\sim 1,000$ blue points

Divide them in 20 bins of ~ 50 points

Compute the bin's average (pink dots)

Each pink point is $\sim \quad E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)$

Take the variance of
the pink points and $V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)$ you have a
sensitivity measure

Which factor has the highest $V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)$?

$S_{i} \equiv \frac{V\left(E\left(Y \mid X_{i}\right)\right)}{V_{Y}}$

Pearson's correlation ratio

First order sensitivity index
Unconditional variance

$$
V_{X_{i}}\left(E_{\mathbf{x}_{-i}}\left(Y \mid X_{i}\right)\right)
$$

First order effect, or top marginal variance=
$=$ the expected reduction in variance that would be achieved if factor Xi could be fixed.

Why?

Because:

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{x}_{\mathbf{-}}}\left(Y \mid X_{i}\right)\right)+ \\
& +E_{X_{i}}\left(V_{\mathbf{x}_{\mathbf{X}} i}\left(Y \mid X_{i}\right)\right)=V(Y)
\end{aligned}
$$

Easy to prove using $V(Y)=E\left(Y^{2}\right)-E^{2}(Y)$

Because:

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{X}_{i}}\left(Y \mid X_{i}\right)\right)+ \\
& \left.+\frac{E_{X_{i}}\left(V_{\mathbf{X}_{-i}}\left(Y \mid X_{i}\right)\right.}{}\right)=V(Y)
\end{aligned}
$$

This is what variance would be left (on average) if Xi could be fixed...
... then this ...

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{x}_{-i}}\left(Y \mid X_{i}\right)\right)+ \\
& +E_{X_{i}}\left(V_{\mathbf{x}_{-i}}\left(Y \mid X_{i}\right)\right)=V(Y)
\end{aligned}
$$

... must be the expected reduction in variance that would be achieved if factor Xi could be fixed

For additive models one can decompose the total variance as a sum of first order effects
$\sum_{i} V_{X_{i}}\left(E_{\mathbf{X i}_{i}}\left(Y \mid X_{i}\right)\right) \approx V(Y)$
... which is also how additive models are defined

Non additive models

$$
\text { Is } S_{i}=0 ?
$$

Is this factor non-important?

There are terms which capture two-way, three way, \cdots interactions among variables.

All these terms are linked by a formula

Variance decomposition (ANOVA)

$V(Y)=$
$\sum_{i} V_{i}+\sum_{i, j>i} V_{i j}+\ldots+V_{123 \ldots k}$

Variance decomposition (ANOVA)

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{x}_{\sim i}}\left(Y \mid X_{i}\right)\right)=V_{i} \\
& V_{X_{i} X_{j}}\left(E_{\mathbf{x}_{\sim i j}}\left(Y \mid X_{i} X_{j}\right)\right)= \\
& =V_{i}+V_{j}+V_{i j}
\end{aligned}
$$

Variance decomposition (ANOVA)

When the factors are independent the total variance can be decomposed into main effects and interaction effects up to the order k, the dimensionality of the problem.

Variance decomposition (ANOVA)

When the factors are not
independent the
decomposition loses its
unicity (and hence its appeal)

If fact interactions terms are awkward to handle: second order terms are as many as $\mathrm{k}(\mathrm{k}-1) / 2 \cdots$

Wouldn't it be handy to have just a single 'importance' terms for all effects, inclusive of first order and interactions?

In fact such terms exist and can be

 computed easily, without knowledge of the individual interaction terms
Thus given a model $\mathrm{Y}=\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$

Instead of
$V=V_{1}+V_{2}+V_{3}+$
$+V_{12}+V_{13}+V_{23}+$
$+V_{123}$

Or - divided by V
$1=S_{1}+S_{2}+S_{3}+$
$+\mathrm{S}_{12}+\mathrm{S}_{13}+\mathrm{S}_{23}+$
$+\mathrm{S}_{123}$

We have:
$\mathrm{S}_{\mathrm{T1}}=\mathrm{S}_{1}+\mathrm{S}_{12}+\mathrm{S}_{13}+\mathrm{S}_{123}$
(and analogue formulae for $\mathrm{S}_{\mathrm{T} 2}, \mathrm{~S}_{\mathrm{T} 3}$) which can be computed without knowing $S_{1}, S_{12}, S_{13}, S_{123}$
$\mathrm{S}_{\mathrm{T} 1}$ is called a total effect sensitivity index

$$
E_{\mathbf{X}_{-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)
$$

Total effect, or bottom marginal variance=
= the expected variance that would be left if all factors but Xi could be fixed.

$$
S_{T i} \equiv \frac{E\left(V\left(Y \mid \mathbf{X}_{\sim i}\right)\right)}{V_{Y}}
$$

What is the shortcoming of S_{Ti} ?

$$
\begin{aligned}
& \frac{V_{X_{i}}\left(E_{\mathbf{X}_{i}}\left(Y \mid X_{i}\right)\right)}{V(Y)}=S_{i} \\
& \frac{E_{\mathbf{X}_{i-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)}{V(Y)}=S_{T i}
\end{aligned}
$$

Scaled to [0,1]; first order and total order sensitivity coefficient

Why these measures?

$$
\begin{aligned}
& \left.V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)\right)_{\substack{\text { Factors } \\
\text { prioritization }}}^{\left.E_{\mathbf{X}_{\sim i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)\right)_{\substack{\text { Fixing (dropping) } \\
\text { non important } \\
\text { factors }}}} .
\end{aligned}
$$

Saltelli A. Tarantola S., 2002, On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal, Journal of American Statistical Association, 97 (459), 02-709.

More about the settings:
$\cdot \underline{\text { Factor prioritisation }} \rightarrow \quad S_{i} \equiv \frac{V\left(E\left(Y \mid X_{i}\right)\right)}{V_{Y}}$

If the cost of 'discovering' factors were the same for all factors which factor should I try to discover first?

- Factor fixing: Can I fix a factor [or a subset of input factors] at any given value over their range of uncertainty without reducing significantly the output?

$$
S_{T i} \equiv \frac{E\left(V\left(Y \mid \mathbf{X}_{\sim i}\right)\right)}{V_{Y}}
$$

Factor fixing is useful to achieve model simplification and 'relevance'.

Can we use S_{i} to fix a factor?

If $S_{i}=0$ is X_{i} a noninfluential factor?

We cannot use S_{i} to fix a factor; $\mathrm{S}_{\mathrm{i}}=0$ is a necessary condition for X_{i} to be non-influential but not a sufficient one
X_{i} could be influent at the second order

Can we use S_{Ti} to fix a factor?

If $\mathrm{S}_{\mathrm{Ti}}=0$ is X_{i} a noninfluential factor?

For a mean of non-negative entries to be zero all entries must be zero

If $\mathrm{S}_{\mathrm{Ti}}=0 \quad \rightarrow \quad \mathrm{X}_{\mathrm{i}}$ is non influent as there is no point in the hyperspace of the input where x_{i} has an effect; $\mathrm{S}_{\mathrm{Ti}}=0$ necessary and sufficient condition for non-influence

Monte Carlo estimation

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
a_{11} & \ldots & a_{1 i} & \ldots & a_{1 k} \\
a_{21} & \ldots & a_{2 i} & \ldots & a_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{N 1} & \ldots & a_{N i} & \ldots & a_{N k}
\end{array}\right] \\
& B=\left[\begin{array}{ccccc}
b_{11} & \ldots & b_{1 i} & \ldots & b_{1 k} \\
b_{21} & \ldots & b_{2 i} & \ldots & b_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{N 1} & \ldots & b_{N i} & \ldots & b_{N k}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
a_{11} & \ldots & a_{1 i} & \ldots & a_{1 k} \\
a_{21} & \ldots & a_{2 i} & \ldots & a_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{N 1} & \ldots & a_{N i} & \ldots & a_{N k}
\end{array}\right] \quad B_{i}=\left[\begin{array}{ccccccc}
b_{11} & \ldots & a_{1 i} & \ldots & b_{1 k} \\
b_{21} & \ldots & a_{2 i} & \ldots & b_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{11} & \ldots & b_{1 i} & \ldots & b_{1 k} \\
b_{21} & \ldots & b_{2 i} & \ldots & b_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{N 1} & \ldots & b_{N i} & \ldots & b_{N k}
\end{array}\right]
\end{aligned}
$$

$A=\left[\begin{array}{ccccc}a_{11} & \ldots & a_{1 i} & \ldots & a_{1 k} \\ a_{21} & \ldots & a_{2 i} & \cdots & a_{2 k} \\ \ldots & \ldots & \ldots & \cdots & \ldots \\ a_{N 1} & \cdots & a_{N i} & \cdots & a_{N k}\end{array}\right]$

$$
B_{i}=\left[\begin{array}{ccccc}
b_{11} & \ldots & a_{1 i} & \ldots & b_{1 k} \\
b_{21} & \ldots & a_{2 i} & \ldots & b_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{N 1} & \ldots & a_{N i} & \ldots & b_{N k}
\end{array}\right]
$$

$$
B=\left[\begin{array}{ccccc}
b_{11} & \ldots & b_{1 i} & \ldots & b_{1 k} \\
b_{21} & \ldots & b_{2 i} & \ldots & b_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{N 1} & \ldots & b_{N i} & \ldots & b_{N k}
\end{array}\right] \quad S_{T i}
$$

In plain English:

To estimate S_{i} you keep one factor fixed To estimate S_{Ti} you move only factor

The estimate of S_{Ti} resembles OAT, only it is an iterated OAT

Summary for variance based measures:

Easy-to-code, Monte Carlo - better on quasi-random points.

Estimate of the error available (Monte Carlo probable error or boot strap)

Summary for variance based measures:

The main effect can be made cheap; its computational cost does not depend upon k .

Can treat variables in sets (total effect of a set + main effect of complementary set $=1$)

Easy to smooth and interpolate!

Summary for variance based measures:

The total effect is more expensive; its computational cost is $(k+1) N$ where N is one of the order of one thousand (unless e.g. using emulators $\cdot \cdots$).

How about other methods?

The method of Morris

Morris, M. (1991), Factorial sampling plans for preliminary computational experiments, Technometrics, 33(2), 161174.

Campolongo F, Saltelli A, Cariboni, J, 2010, From screening to quantitative sensitivity analysis. A unified approach, Submitted to Computer Physics Communication.

Example: Two dimensional grid for Elementary effects test

In 3 dimensions, OAT, 7 points

This is what is done

In 3 dimension, 8 screening points in a trajectory arrangement

This is what could be done

This is a screening method (Morris, or method of the elementary effects)

See: Morris, M. (1991), Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174.

Campolongo, F., Cariboni, J., and Saltelli, A., 2007, An effective screening design for sensitivity analysis of large models, Environmental Modelling and Software, 22,1509-1518.

Increasing the number of OAT's the test becomes quantitative...
...because this design is the same used for the total sensitivity index ST (see next!)

Thus one can start EE-wise (few points) and continue variance-based, without discarding points, by just changing the estimator (from that for EE to that for ST)

Other methods: Monte Carlo filtering

When to use Monte Carlo Filtering?

When we are interested not in the precise value of the output y but on whether or not this value is 'permitted' or forbidden

x_{11}	x_{12}	\ldots	$x_{1 k}$	NOT OK	y_{1}	NOT OK
x_{21}	x_{22}	\ldots	$x_{2 k}$	OK	y_{2}	OK
\ldots	\ldots	\ldots	\ldots		\ldots	
$x_{N 1}$	$x_{N 2}$	\ldots	$x_{N k}$	NOT OK	y_{N}	NOT OK

Partitioning y impose a partitioning on each of the x_{i} 's

$$
\begin{array}{lcclc}
\text { NOT OK } & x_{11} & x_{12} & \ldots & x_{1 k} \\
\text { OK } & x_{21} & x_{22} & \ldots & x_{2 k} \\
& \ldots & \ldots & \ldots & \ldots \\
\text { NOT OK } & x_{N 1} & x_{N 2} & \ldots & x_{N k}
\end{array}
$$

Taking one column at a time I can split the sample of each factor into two subsets

Monte Carlo filtering

Monte Carlo filtering

Step by step:

- Classifying simulations as either B or \bar{B}. This allows distinguishing two sub-sets for each Xi: $\left(X_{i} \mid B\right)$ and $\left(X_{i} \mid \bar{B}\right)$
- The Smirnov two-sample test (two-sided version) is performed for each factor independently, analyzing the maximum distance between the cumulative distributions of the B and \bar{B} sets.

Monte Carlo filtering

Other methods: moment independent methods

$$
s\left(X_{i}\right)=\int_{-\infty}^{+\infty}\left|f_{Y}(y)-f_{Y \mid X_{i}}(y)\right| \mathrm{d} y
$$

$$
E_{X_{i}}\left[s\left(X_{i}\right)\right]=\int_{-\infty}^{+\infty} f_{X_{i}}\left(X_{i}\right) s\left(X_{i}\right) \mathrm{d} x_{i}
$$

From: Leigang Zhang, Zhenzhou Lu , Lei Cheng, Chongqing Fan, A new method for evaluating Borgonovo moment-independent importance measure ..., Reliability Engineering and System Safety 132 (2014) 163-175.

$$
\delta_{i}=\frac{1}{2} E_{X_{i}}\left[s\left(X_{i}\right)\right]
$$

How to generate the random sample?

We use quasi random sequences developed by I.M. Sobol'

An $L P_{\tau}$ sequence

X1,X2 plane, 100 Sobol' points
X1,X2 plane, 1000 Sobol' points

Sobol' sequences of quasirandom points

X1,X2 plane, 1000 Sobol' points

X1,X2 plane, 10000 Sobol' points

Sobol' sequences of quasirandom points

Why quasi-random

Root mean square error over $\mathrm{K}=50$ different trials. The error refers to the numeric-versus-analytic value the integral of the function (for $n=360$) over its dominion.

Source: Kucherenko S., Feil B., Shah N., Mauntz W. The identification of model effective dimensions using global sensitivity analysis Reliability Engineering and System Safety 96 (2011) 440-449.

Variance based measures are:
-well scaled,

- concise,
-easy to communicate.

Further

- S_{i} reduces to squared standard regression coefficients for linear model.
- S_{Ti} detect and describe interactions and
- Becomes a screening test at low sample size

Secrets of sensitivity analysis

First secret: The most important question is the question.

Corollary 1: Sensitivity analysis is not "run" on a model but on a model once applied to a question.

First secret: The most important question is the question.

Corollary 2: The best setting for a sensitivity analysis is one when one wants to prove that a question cannot be answered given the model

It is better to be in a setting of falsification than in one of confirmation (Oreskes et al., 1994).
[Normally the opposite is the case]

Second secret: Sensitivity analysis should not be used to hide assumptions [it often is]

Third secret: If sensitivity analysis shows that a question cannot be answered by the model one should find another question/model which can be treated meaningfully.
[Often the love for the model prevails]

Badly kept secret:

There is always one more bug!
(Lubarsky's Law of Cybernetic Entomology)

And of course please don't ...

... run a sensitivity analysis where each
factors has a 5% uncertainty

Discussion point

- Why should I not run a sensitivity analysis where each factors has a 5% uncertainty

Twitter:
@andreasaltelli

Practicum

Centre for the Study of the Sciences and the Humanities (SVT) - University of Bergen (UIB) Institut de Ciència i Tecnologia Ambientals (ICTA) Universitat Autonoma de Barcelona (UAB)

Where to find more exercises:

policy) prioritization (experiments) verify the model (RA) $[x][y]$ prior to optimization

- model simplification, encoding
- debunk spurious quantification (UA) check effect of mining data
 ", "modelling esumptions

Problem 1

$$
\begin{gathered}
\text { Is it true that } \\
\mathrm{V}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}^{2}\right)-\mathrm{E}^{2}(\mathrm{Y}) ?
\end{gathered}
$$

Problem 2

Is it true that if $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is additive then fixing anywhere x_{1} or x_{2} decreases the variance of

$$
f\left(x_{1}, x_{2}\right)
$$

Exercise

Let's frame together a sensitivity analysis

Twitter:
@andreasaltelli

