Máster Universitario en Administración y Dirección de Empresas
 Full Time MBA

Elements of quantification for decision making with emphasis on operation research

In this set of slides:

17 Decision Analysis

17

Decision Analysis

Knight. Decision making with and without experimentation. Example: drilling or selling? Bayes in full. Decision trees. Multi Criteria Decision Analysis. Linearization. Borda count, Condorcet's outranking matrix and Balinski-Laraki's majority judgment. Hillier (2014) chapter 16 plus various authors.

Saltelli \qquad Where to find this talk

August 25 2023: The politics of modelling is out!

$$
\begin{array}{r|l}
\text { the politics } \\
\text { of modelling } \\
\text { numbers between } \\
\text { science and poliey }
\end{array}
$$

Praise for the volume

"A long awaited examination of the role -and obligation -of modeling."
Nassim Nicholas Taleb, Distinguished Profensor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series incerto
...
*A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling." Orrin H. Pilkey, Professor at Duke Universitys Nicholas School of the Environment, co-author with Linda Pilkey-Jarvis of Useless Arithmetic Why Environmental Sclentists Can't Predict the Future, Columbla University Press 2009.

ase

> oxrano

Mastodon Toots by

$+19$

Thanks to Marua
Kozlova of LUT
University in Finland
for talang and curating this recording. My trujectary from number crunching to thinkeng about numbers' role in humaniaffuirs
 -amping Virw on itrlititus

The talk is also at
https://ecampus.bsm.upf.edu/,
where you find additional reading material

Where to find this book:

https://www.dropbox.com/sh/ddd48a8jguinbcf/AABF0s4eh1lPLVxdx0pesOfa?dl=0\&preview=Introduction+ to + Operations + Research + -

+ Frederick+ S.+ Hillier.pdf

Operations Research

Frederick S. Hillier * Gerald J. Lieberman

Frank Knight (1921) distinguished risk from uncertainty

Risk $=$ know outcomes \& probabilities; roulette game

Uncertainty = unsure about the probabilities; starting a business

Frank H. Knight 1885-1972

Quote:
"We live in a world of contradiction and paradox, a fact of which perhaps the most fundamental illustration is this: that the existence of a problem of knowledge depends on the future being different from the past, while the possibility of the solution of the problem depends on the future being like the past.'

Frank H. Knight 1885-1972

A prototype example of decision under uncertainty; drilling or selling?

Source: https://ecsgeothermal.com/oil-drilling-on-land/

A company own land where there could be oil

Source: https://ecsgeothermal.com/oil-drilling-on-land/
TABLE 16.1 Prospective profits for the Goferbroke Company

Status of Land	Payoff	
	Oil	Dry
Drill for oil	$\$ 700,000$	$-\$ 100,000$
Sell the land	$\$ 90,000$	$\$ 90,000$
Chance of status	1 in 4	3 in 4

The table offers different payoffs associated to different decision (sell, drill) versus two possible states of nature (oil, no-oil)

TABLE 16.1 Prospective profits for the Goferbroke Company

	Status of Land	Payoff

How to act on this table? Different alternatives are available.

The Maximin Payoff Criterion
TABLE 16.1 Prospective profits for the Goferbroke Company

Status of Land	Payoff	
	Oil	Dry
	$\$ 700,000$	$-\$ 100,000$
Sell the land	$\$ 90,000$	$\$ 90,000$
Chance of status	1 in 4	3 in 4

For each decision look at the worst payoff over all possible states of
 nature …
\cdots and choose the one with the best Sell, as 90 is better than -100 outcome

The Maximum likelihood approach

TABLE 16.1 Prospective profits for the Goferbroke Company

Status of Land	Payoff	
	Oil	Dry
Drill for oil	$\$ 700,000$	$-\$ 100,000$
Sell the land	$\$ 90,000$	$\$ 90,000$
Chance of status	1 in 4	3 in 4

Identify the most likely state of nature

Dry, as $\frac{3}{4}$ is more than $\frac{1}{4}$ (prior probabilities)
\cdots and choose the one with the best Sell, as 90 is better than -100 pay-off

The Maximum likelihood approach

TABLE 16.4 Application of the maximum likelihood criterion to the first Goferbroke Co. problem

	State of Nature		
Alternative	Oil	Dry	
1. Drill for oil	700	-100	-100
2. Sell the land	90	90	
Prior probability	0.25	0.75	
Maximum			

Bayes' rule - the expected value approach

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

Calculate the best expected payoff for each decision alternative
Payoff (Drill)=0.25*700-0.75*100=100
Payoff (Sell)=0.25*90-0.75*90=90

Before we proceed with Reverend Bayes, remember the caveat of lesson one: expected value may lead to counter intuitive results

This is the story the St. Peterburg paradox (another game!)

Would you accept one million dollars with certainty or one chance in ten of winning 20 millions?

Daniel Bernoulli
(1700-1782)

Bayes' rule - the expected value approach

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

What do we do if we feel uneasy with these prior probabilities? What if instead of 0.25 the probability of oil is instead 0.15 or 0.35 ?

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

What do we do if we feel uneasy with these prior probabilities? What if instead of 0.25 the probability of oil is instead 0.15 or 0.35 ?

The payoff for a generic value p of this prior is
$p * 700-(1-p) * 100=800 * p-100$

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

Exercise: compute cross over coordinates

Source: https://simpsons.fandom.com/wiki/Bart_Gets_Famous

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

Exercise: compute cross over coordinates

Intersection of

$$
y=800 x-100
$$

and

$$
\begin{gathered}
y=90 \\
x=190 / 800=.2375
\end{gathered}
$$

	State of Nature	
Alternative	Oil	Dry
1. Drill for oil	700	-100
2. Sell the land	90	90
Prior probability	0.25	0.75

Conclusion:
if $\mathrm{p}<.2375$ then sell if $\mathrm{p}>.2375$ then drill

Decision making with experimentation

Source: https://gov.nu.ca/sites/default/files/2017_seismic_eng.pdf

Perhaps before deciding whether to sell or drill some prospection study should be done, such as seismic surveying

This would come to a cost, so even in this case, before the survey, it would be wise to crunch some numbers

The cost of the seismic survey is $\$ 30,000$.
Experience says that:
USS: Unfavorable Seismic Soundings $\boldsymbol{\rightarrow}$ oil is fairly unlikely. FSS: Favorable Seismic Soundings $\boldsymbol{\rightarrow}$ oil is fairly likely.

Again experience translates this into

$$
p(U S S \mid O i l)=0.4 \text { and } p(F S S \mid O i l)=1-0.4=0.6
$$

$$
p(U S S \mid \text { Dry })=0.8 \text { and } p(F S S \mid \text { Dry })=1-0.8=0.2
$$

As it is written, the famous theorem 'looks' symmetric in A and $B \cdots$

In fact the way it is used in practice is rather asymmetric, and aims to update A based on B being true, B being for example an experiment and A a theory

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

When B is the outcome of an experiment and A is a state of nature $p(A \mid B)$ becomes the probability that given the outcome B (for example a favourable outcome FSS) then we indeed have A - the oil in this case;
we do not know $p(A \mid B)$ but we do know $p(B \mid A)$, in this
 case the probability that if there is oil the test will be favourable

$$
p(O i l \mid F S S) P(F S S)=p(F S S \mid O i l) P(\text { Oil })
$$

we do not know $p(A \mid B)$ but we do know $p(B \mid A)$, in this case the probability that if there is oil the test will be favourable

We also know $P($ Oil $)$, as this is the old prior, the probability of oil being there before the survey

$$
p(O i l \mid F S S) P(F S S)=p(F S S \mid O i l) P(\text { Oil })
$$

we do not know $p(A \mid B)$ but we do know $p(B \mid A)$, in this case the probability that if there is oil the test will be favourable

We also know $P($ Oil $)$, as this is the old priot, the probability of oil being there before the survey

$$
p(O i l \mid F S S) P(F S S)=p(F S S \mid O i l) P(O i l)
$$

We only lack $P(F S S)$. This is a delicate point. The unconditional probability of favourable drilling is the total probability of this outcome in all cases, e.g. both oil and no-oil

$$
p(O i l \mid F S S) P(F S S)=p(F S S \mid O i l) P(\text { Oil })
$$

We only lack $P(F S S)$. This is a delicate point. The unconditional probability of favourable drilling is the total probability of this outcome in all cases, e.g. both oil and no-oil

How about:

$$
P(F S S)=p(F S S \mid O i l) P(O i l)+p(F S S \mid N o-o i l) P(N o-o i l)
$$

This is indeed the total, and hence unconditional, probability of FSS - that is to say all possible ways in which FSS can come about

Putting these two together:

$$
\begin{gathered}
p(\text { Oil } \mid F S S) P(F S S)=p(F S S \mid O i l) P(\text { Oil }) \\
P(F S S)=p(F S S \mid O i l) P(\text { Oil })+p(F S S \mid N o-o i l) P(N o-o i l)
\end{gathered}
$$

we get

$$
p(\text { Oil } \mid F S S)=\frac{p(F S S \mid O i l) P(\text { Oil })}{p(F S S \mid O i l) P(O i l)+p(F S S \mid N o-\text { oil }) P(N o-\text { oil })}
$$

You have just done your first Bayesian updating

Plugging the numbers

$$
p(\text { Oil } \mid F S S)=\frac{0.6}{\substack{0.25 \\
p(F S S \mid O i l) P(O i l)+p(F S S \mid N o ~}} \begin{gathered}
\text { oil }) P(\text { No }- \text { oil }) \\
0.6
\end{gathered} 0.25 \quad 0.20 \quad 0.75
$$

And this gives $p(O i l \mid F S S)=\frac{1}{2}$

Hence since

$$
p(O i l \mid F S S)=\frac{1}{2}
$$

then

$$
p(\text { Dry } \mid F S S)=\frac{1}{2}
$$

And following a similar path for the negative survey outcome $U S S$

$$
\begin{aligned}
& p(\text { Oil } \mid U S S)=\frac{1}{7}=1.4 \\
& p(\text { Dry } \mid U S S)=\frac{6}{7}=.86
\end{aligned}
$$

Indeed the survey is a game changer when compared to the prior probabilities $P($ Oil $)=0.25$ and $P($ Dry $)=0.75$
\rightarrow Probably nobody would be a taker for drill if USS is true
\rightarrow One half is much better than one in four if FSS is true

All in a tree

Prior
Probabilities P(state)

Conditional
Probabilities P (finding|state)

Joint
Probabilities P (state and finding)

Posterior Probabilities P (state|finding)

Unconditional probabilities: $\mathrm{P}(\mathrm{FSS})=0.15+0.15=0.3$
P (finding)
$\mathrm{P}(\mathrm{USS})=0.1+0.6=0.7-------------\perp$

We now need to use all these

$$
\begin{aligned}
& p(\text { Oil|FSS })=\frac{1}{2} \\
& p(\text { Dry } \mid F S S)=\frac{1}{2} \\
& p(\text { Oil } \mid U S S)=\frac{1}{7} \\
& p(\text { Dry } \mid U S S)=\frac{6}{7}
\end{aligned}
$$

to take a decision, about drill, sell, and survey

Source: https://ecsgeothermal.com/oil-drilling-on-land/

Source: https://gov.nu.ca/sites/default/files/2017_seismic_eng.pdf

This is now straightforward:
Payoffs if unfavourable survey (USS):

$$
\begin{gathered}
E(\text { Payoff }- \text { Drill } \mid U S S)=\frac{1}{7}(600)+\frac{6}{7}(-100)-30=-15.7 \\
E(\text { Payoff }- \text { Sell } \mid U S S)=\frac{1}{7}(90)+\frac{6}{7}(90)-30=60
\end{gathered}
$$

Payoffs if favourable survey (FSS):

$$
\begin{gathered}
E(\text { Payoff }- \text { Drill } \mid F S S)=\frac{1}{2}(600)+\frac{1}{2}(-100)-30=270 \\
E(\text { Payoff }- \text { Sell } \mid F S S)=\frac{1}{2}(90)+\frac{1}{2}(90)-30=60
\end{gathered}
$$

Source: https://gov.nu.ca/sites/default/files/2017_seismic_eng.pdf

Decision tree for the same problem (you have seen this already):

Square node for decision

Decision tree with costs (no probabilities this time)

Cost are compute mechanically moving from left to right

Decision tree with costs (adding probabilities)

Transforming this into a decision tree. Recipe: from the rightmost column look left, then

If node=event compute payoff
Payoff $(f)=670 * 0.143+(-130) * 0.857=-15.7$
Payoff $(g)=670 * 0.5+(-130) * 0.5=270$
Payoff $(h)=700 * 0.25+(-100) * 0.75=100$
Write these numbers above the node

If node=event compute payoff
Payoff $(f)=670 * 0.143+(-130) * 0.857=-15.7$
Payoff $(g)=670 * 0.5+(-130) * 0.5=270$
Payoff $(h)=700 * 0.25+(-100) * 0.75=100$
-15.7

Write these numbers above the node

If node=event compute payoff
Payoff $(f)=670 * 0.143+(-130) * 0.857=-15.7$
Payoff $(\mathrm{g})=670 * 0.5+(-130) * 0.5=270$
Payoff $(h)=700 * 0.25+(-100) * 0.75=100$
Write these numbers above the node

If node=decision then decide
Decision $(c)=$ Sell
Decision $(d)=$ Drill
Decision $(e)=$ Drill
Report the payoff selected above the node Move left
Payoff $(b)=60 * 0.7+270 * 0.3=123$
Decision $(a)=$ Do survey

How to deal with possible paradoxes when using expected value (our old slide again):

This is the story the St. Peterburg paradox (another game!)

Would you accept one million dollars with certainty or one chance in ten of winning 20 millions?

0

Daniel Bernoulli
\rightarrow Utility theory

- This is the story the St. Peterburg paradox (another game!)

Would you accept one million dollars with certainty or one chance in ten of winning 20 millions?

Daniel Bernoulli
(1700-1782)
\rightarrow When using Utility Theory the rhetorical question above
becomes the tool to elicit users preferences
\rightarrow When using Utility Theory the rhetorical question above becomes the tool to elicit users preferences

A common occurrence if that actors show a decreasing marginal utility for money (risk aversion)

To see if this is the case and to elicit the values for the utilities, the following alternatives are posed to the actor

Receiving \$10,000 with certainty Receiving 100,000 with probability p

To see if this is the case and to elicit the values for the utilities, the following alternatives are posed to the actor

1) Receiving $\$ 10,000$ with certainty
2) Receiving $\$ 100,000$ with probability p ($\$ 100,000$ is the upper limit of the curve we intend to build)

The following question is posed: for what value of p would you consider options 1 and 2 equivalent. Imagine the answer is $\frac{1}{4}(p=0.25) \rightarrow$ the actor consider $\$ 10,000$ with certainty and $\$ 100,000$ with probability $\frac{1}{4}$ as equivalent

$\$ 10,000$ with certainty or $\$ 100,000$ with probability $\frac{1}{4}=$ equivalent

BARCELONA

SCHOOL OF
MANAGEMENT

1) Receiving $\$ 10,000$ with certainty
2) Receiving $\$ 100,000$ with probability p ($\$ 100,000$ is the upper limit of the curve we intend to build)

The following question is posed: for what value of p would
you consider options 1 and 2 equivalent. Imagine the
answer is $t(p=0.25) \rightarrow$ the actor consider $\$ 10,000$ with
certainty of $\$ 100,000$ with probability \ddagger as equivalent

Minimum amount of money=Utility 0

BARCELONA

SCHOOL OF
MANAGEMENT

Using the utility curve the monetary payoff is replaced with utilities

"However, many decision makers are not sufficiently comfortable with the relatively abstract notion of utilities, or with working with probabilities to construct a utility function, to be willing to use this approach.
Consequently, utility theory is not yet used very widely in practice" (p. 715)

Source: https://www.alamy.com/

BARCELONA

SCHOOL OF
MANAGEMENT
upf.

Source: https://www.alamy.com/

This idiosyncrasy to reckon in terms of abstract utilities or probabilities needs to be kept in mind if decision are taken in teams, e.g. in Decision Conferencing

Multiple criteria decision analysis
Using simultaneously more than one criterion
E.g. a company wishing to meet simultaneously goals of

- Profit
- Employment
- Capital investments

A company wishing to meet simultaneously goals of

- Profit ≥ 125 (millions of dollars)
- Employment $=4$ (hundreds of employees)
- Capital investments ≤ 55 investment goal
in the commercialization of three products (decision variables) x_{1}, x_{2}, x_{3} Goals can be one sided upper (capital investment) or lower (profit) or two sided (employment).

The relation between decision variables and goals is defined as:

$$
\begin{gathered}
12 x_{1}+9 x_{2}+15 x_{3} \geq 125 \\
5 x_{1}+3 x_{2}+4 x_{3}=40 \\
5 x_{1}+7 x_{2}+8 x_{3} \leq 55
\end{gathered}
$$

The relation between decision variables and goals is defined as:

$$
\begin{gathered}
12 x_{1}+9 x_{2}+15 x_{3} \geq 125 \\
5 x_{1}+3 x_{2}+4 x_{3}=40 \\
5 x_{1}+7 x_{2}+8 x_{3} \leq 55
\end{gathered}
$$

Note: MCDA section and this example are not available in the online version; this comes for the $11^{\text {th }}$ version

A penalty weight is attached to violating the goal, i.e.
Weight=5 per unit below profit goal
Weight=3 per unit over investment goal
Weight $=4$ per unit over employment goal
Weight=2 per unit below employment goal
So the problem is linearized as
Minimize $Z=5$ (amount under profit goal) +3 (amount over investment goal) + 4 (amount over employment goal) +2 (amount below employment goal)

So the problem is linearized as

Minimize $Z=5$ (amount under profit goal) +3 (amount over investment goal) + 4 (amount over employment goal) +2 (amount below employment goal)

Extreme caution should be used in this kind of linearization, as the use of penalty weights in a linear model may lead to paradoxes - we just 'scratch' the problem here and suggest to use different approaches

Minimize $Z=5$ (amount under profit goal) +3 (amount over investment goal) + 4 (amount over employment goal) +2 (amount below employment goal)

Suggestion: list different viable options and rank them using methods such as Borda, Condorcet, Balinski-Laraki ...

Some of these methods have a long history (including in Catalonia)

Ramon Llull (Catalan, ca. 1232 - ca. 1315) proposed first what would then become known as the method of Condorcet. Nicholas of Kues (1401 - August 11, 1464), also referred to as Nicolaus Cusanus and Nicholas of Cusa developed what would later be known as the method of Borda. Nicolas de Condorcet, (17 September 1743 - 28 March 1794) developed the eponymous method. Jean-Charles, chevalier de Borda (May 4, 1733 February 19, 1799) developed the Borda count

An impact matrix

| \uparrow | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
We can say that
GDP 'votes' for B>A>C (countries / options)
UR 'votes' for C>B>A
SW 'votes' for C>B>A
ID 'votes' for C>A>B
CR 'votes' for A>B>C
```

	Indic.	GDP	Unemp. Rate	Solid wastes	Income dispar.	Crime rate
Country						
A		25,000	0.15	0.4	9.2	40
B		45,000	0.10	0.7	13.2	52
C		20,000	0.08	0.35	5.3	80
weights		.166	.166	0.333	.166	.166

 of indicators 2 1 1				
1st position	c	b	c	a
2nd position	a	a	b	b
3rd position	b	c	a	c

GDP: $\quad B>A>C$
UR: $\quad C>B>A$
SW: $\quad C>A>B$
ID: $\quad C>A>B$
CR: $\quad A>B>C$

BARCELONA
SCHOOL OF
MANAGEMENT

\# of indicators	2	1	1	1
1st position	c	b	c	a
2nd position	a	a	b	b
3rd position	b	c	a	c

Rank	a	b	c
1st	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$
2nd	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$
3rd	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$

Different ways to organize the same information: building a frequency matrix

Three countries [options/candidates] and five indicators [criteria/voters]
$\begin{array}{llllll}\text { \# of indicators } & 2 & 1 & 1 & 1\end{array}$

1st position	c	b	c	a
2nd position	a	a	b	b
3rd position	b	c	a	c

Rank	a	b	c
1st	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$
2nd	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$
3rd	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$

In this case Borda gives 3 minus 1 for each first rank, 2 minus 1 for each second rank and zero to the third

$$
\begin{aligned}
& \text { a gets } 2 * 1+1 * 3=5 \\
& \text { b gets } 2 * 1+1 * 2=4 \\
& \text { c gets } 2 * 3+1 * 0=6
\end{aligned}
$$

But lets try Borda on a more interesting case: (from Moulin, 21 criteria 4 options, cited in Munda 2008)

21 criteria 4 alternatives Note:3+5+7+6=21

\# of indicators	3	5	7	6
1st position	a	a	b	c
2nd position	b	c	d	b
3rd position	c	b	c	d
4th position	d	d	a	a

Rank	a	b	c	d	Points
1st	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{3}$
2nd	$\mathbf{0}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{2}$
3rd	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{1}$
4th	$\mathbf{1 3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{0}$

Borda count - Frequency matrix (Moulin, 21 criteria 4 options)

Columns add up to the number of criteria /
voters=21
3 points if first
2 if second
1 if third
0 if last

Rank	a	b	c	d	Points
1st	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{3}$
2nd	$\mathbf{0}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{2}$
3rd	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{1}$
4th	$\mathbf{1 3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{0}$

BARCELONA
SCHOOL OF
MANAGEMENT

Borda score:
$a=8 \times 3=24$
$b=5+9 \times 2+7 \times 3=44$
$c=10+5 \times 2+6 \times 3=38$
$d=6+7 \times 2=20$
Borda solution: $b \rightarrow c \rightarrow a \rightarrow d$

Frequency matrix (21 criteria 4 alternatives)

Rank	a	b	c	d	Points
1st	8	7	6	0	3
2nd	0	9	5	7	2
3rd	0	5	10	6	1
4th	13	0	0	8	0

The Borda count was developed independently several times, (e.g. by Nicolaus Cusanus beginning XV century) but is named for Jean-Charles de Borda, who devised the system in 1770 .

It is currently used for the election of two ethnic minority members of the National Assembly of Slovenia
(https://www.electoral-reform.org.uk/how-do-elections-work-in-

Jean-Charles, chevalier de Borda
slovenia/)
It is used throughout the world by various organisations and competitions [e.g. in academia]

Borda was a mariner and a scientist. Worked on chronometers. Between 1777 and 1778, he participated in the American Revolutionary War.

The French Academy of Sciences used Borda's method to elect its members for about two decades [till Napoleon Bonaparte became president $\cdot \cdots]$

Condorcet's outscoring matrix (21 criteria 4 alternatives)

How to move from frequency to outscoring ?

\# of indicators	3	5	7	6
1st position	a	a	b	c
2nd position	b	c	d	b
3rd position	c	b	c	d
4th position	d	d	a	a

$\left[\begin{array}{ccccc} & a & b & c & d \\ a & 0 & 8 & 8 & 8 \\ b & 13 & 0 & 10 & 21 \\ c & 13 & 11 & 0 & 14 \\ d & 13 & 0 & 7 & 0\end{array}\right]$

Condorcet's outscoring matrix (21 criteria 4 alternatives)

For each pair of countries a concordance index is computed by counting how many indicators/voters are in favour of each country (e.g. 13 voters prefer b to a).

Note the "constant sum property" in the outranking matrix $(13+8=21$ number of indicators/voters)

Outranking matrix

How to use Condorcet's outscoring matrix
(21 criteria 4 alternatives)

Pairs with concordance index $>50 \%$ of the indicators/voters are considered: majority threshold $=11$ (i.e. a number of voters $>50 \%$ of voters=21)

Thus aP none, $b P a=13, b P d=21(=a l w a y s), c P a=13$, $c P b=11, c P d=14, d P a=13$.
c is better than $\mathrm{a}, \mathrm{b}, \mathrm{d}$ so it is the winner
b is better than the remaining a, d, it is the second best
 d is better than a.
\rightarrow Condorcet solution: $\mathrm{c} \rightarrow \mathrm{b} \boldsymbol{\mathrm { d }} \boldsymbol{\rightarrow} \mathrm{a}$
Count row-wise discarding entries < 11 as there are 21 voters/criteria

Borda solution: $\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{a} \rightarrow \mathrm{d}$ Condorcet solution: $\mathrm{c} \rightarrow \mathrm{b} \rightarrow \mathrm{d} \rightarrow \mathrm{a}$

Can we choose between Borda and Condorcet on some theoretical and/or practical grounds?

Homework

1. Both a dice and a coin are launched simultaneously in an experiment. We count a coin falling head as one and falling tail as a zero. If we call success the outcome seven (dice=six, coin=H), which is the chance of success in one experiment? Which is the chance of two successes in 4 experiments?
2. Read Hiller's chapter 17 Queueing Theory (pages 731-739)and write down ten practical problems that can be framed as queueing problems
3. Knowing that the average sales from a salesman are 0.9 items per day use the Poisson distribution to compute the probability that she sells ($0,1,2,3,4,5,6$) items in a given day.

Thank you

