Máster Universitario en Administración y Dirección de Empresas
 Full Time MBA

Elements of quantification for decision making with emphasis on operation research

In this set of slides:

16 Nonlinear programming

Nonlinear Programming

Problem framing and examples. Graphical illustration. Bisection and Newton methods of solution. Metaheuristics. Genetic algorithms. Examples of nonlinear models. Python coding. Exploration versus optimization. Hillier 2014, chapters 13 and 14.

Saltelli \qquad Where to find this talk

August 25 2023: The politics of modelling is out!

$$
\begin{array}{r|l}
\text { the politics } \\
\text { of modelling } \\
\text { numbers between } \\
\text { science and poliey }
\end{array}
$$

Praise for the volume

"A long awaited examination of the role -and obligation -of modeling."
Nassim Nicholas Taleb, Distinguished Profensor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series incerto
...
*A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling." Orrin H. Pilkey, Professor at Duke Universitys Nicholas School of the Environment, co-author with Linda Pilkey-Jarvis of Useless Arithmetic Why Environmental Sclentists Can't Predict the Future, Columbla University Press 2009.

ase

> oxrano

Mastodon Toots by

$+19$

Thanks to Marua
Kozlova of LUT
University in Finland
for talang and curating this recording. My trujectary from number crunching to thinkeng about numbers' role in humaniaffuirs
 -amping Virw on itrlititus

The talk is also at
https://ecampus.bsm.upf.edu/,
where you find additional reading material

Where to find this book:

https://www.dropbox.com/sh/ddd48a8jguinbcf/AABF0s4eh1lPLVxdx0pesOfa?dl=0\&preview=Introduction+ to + Operations + Research + -

+ Frederick+ S.+ Hillier.pdf

Operations Research

Frederick S. Hillier * Gerald J. Lieberman

Problem setting

Finding values of $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ as to maximize or minimize a generic function $f(\boldsymbol{x})$ subject to

$$
g_{i}(\boldsymbol{x}) \leq b_{i} \quad i=1,2, \ldots m
$$

and
$x \geq 0$

A Standard Form of the Model:

Maximize $\quad Z=c_{1} r_{1}+c_{2} r_{2}+\cdots+c_{n} r_{n}$.
Subject to:

$a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$
\vdots
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}$,
And to:
$x_{1} \geq 0, \quad x_{2} \geq 0, \quad \cdots, x_{n} \geq 0$.

$Z=$ value of overall measure of performance
$x_{f}=$ decision variables. level of
activity $/$ for $/=1,2, \ldots n$
$a_{j}^{\prime}=$ ambunt of resource f consumed
by each unit of activity /
b_{1} amount of resource ithat is available for allocation to activities $i=1.2, \ldots m$
c_{9} increase in Z that would result from each unit increase in level of activity

What is the difference from the linear problem?

Problem setting

Finding values of $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ as to maximize or minimize a generic Is this specification necessary? function $f(\boldsymbol{x})$ subject to

$$
g_{i}(\boldsymbol{x}) \leq b_{i} \quad i=1,2, \ldots m
$$

and

$$
x \geq 0
$$

Many ways in which a linear problem can become nonlinear

Linear: there is a fixed unit profit associated with each product, so the resulting objective function will be linear

Nonlinear: prices $p(\boldsymbol{x})$ are subject to elasticity

The firm's profit P from producing and selling x units is given by the nonlinear function

$$
P(x)=x p(x)-c x
$$

But the higher the price, the less is sold \longrightarrow

The production cost remain constant \longrightarrow

The firm's profit P from producing and selling x units is given by the nonlinear function

$$
P(x)=x p(x)-c x
$$

But the production cost may as well be a non linear function, e.g. in the case of increasing or diminishing returns

$$
P(x)=x p(x)-c x
$$

个

Source:https://www.mercedes benz.es/passengercars/models/coupe/new/cle.html

Source:https://www.bbcgoodfood.com/howto/guide /health-benefits-bananas

In transportation problems the shipping costs may decrease with the volume shipped

BARCELONA
SCHOOL OF
MANAGEMENT

In portfolio modelling the decision variable could be the number of shares of a given stock $x_{j}, i=1,2, \ldots n$ to be included

Assume known the mean return of stock μ_{j} and its variance $\sigma_{j j}$. Also assume that $\sigma_{j j}$ is a proxy of the risk for that stock.

But the fluctuations of the stock are not independent, se we also need to know the covariances $\sigma_{i j}, i \neq j$, $i, j=1,2 \ldots n$

Return from the entire portfolio $R(\boldsymbol{x})=\sum_{\boldsymbol{j}}^{n} \mu_{j} \mathrm{x}_{j}$
Variance $V(\boldsymbol{x})$ of the total return $V(\boldsymbol{x})=$ $\sum_{j=1}^{n} \sum_{i=1}^{n} \sigma_{i j} \mathrm{x}_{i} \mathrm{x}_{j}$

Source: https://www.britannica.com/money/topic/stock-exchange-finance

So the nonlinear problem is
Minimize

$$
V(\boldsymbol{x})=\sum_{j=1}^{n} \sum_{i=1}^{n} \sigma_{i j} \mathrm{x}_{i} \mathrm{x}_{j}
$$

Subject to
$\sum_{j}^{n} \mu_{j} x_{j} \geq \boldsymbol{L}$ where \boldsymbol{L} is the minimum profit desired
$\sum_{j}^{n} \mathrm{P}_{j} \mathrm{x}_{j} \leq \boldsymbol{B}$ where P_{j} is the cost of stock \boldsymbol{j} and \boldsymbol{B} is the

Source: https://www.britannica.com/money/topic/stock-exchange-finance budget available for the portfolio
$\mathrm{x}_{j} \geq 0, i=1,2, \ldots n$

So the nonlinear problem is
Minimize

$$
V(\boldsymbol{x})=\sum_{j=1}^{n} \sum_{i=1}^{n} \sigma_{i j} \mathrm{x}_{i} \mathrm{x}_{j}
$$

Subject to
$\sum_{j}^{n} \mu_{j} \mathrm{x}_{j} \geq \boldsymbol{L}$ where \boldsymbol{L} is the minimum profit desired
$\sum_{j}^{n} \mathrm{P}_{j} \mathrm{x}_{j} \leq \boldsymbol{B}$ where P_{j} is the cost of stock j and \boldsymbol{B} is the budget available for the portfolio
"Therefore, rather than stopping with one choice of L, it is common to use $\mathrm{x}_{j} \geq 0, i=1,2, \ldots n$

There is a trade off between \boldsymbol{L} and $V(\boldsymbol{x})$

(higher profit associated to higher risk)

So that this problem is solved for a range of values of \boldsymbol{L} and comparing for each \boldsymbol{L} the associated $R(\boldsymbol{x})=\sum_{j}^{n} \mu_{j} \mathrm{x}_{j}$ and $V(\boldsymbol{x})$ a parametric (nonlinear) programming approach to generate the optimal solution as a function of L over a wide range of values of L. The next step is to examine the values of $R(\mathbf{x})$ and $V(\mathbf{x})$ for these solutions that are optimal for some value of L and then to choose the solution that seems to give the best trade-off between these two quantities." (Hillier, p. 552)

The estimation of the $\sigma_{i j}$ is a delicate matter; the case of the subprime mortgage crisis

Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."
eBrck to Articis
Wi Buck toArricis MAGAZINE: 17.03

Recipe for Disaster: The Formula That Killed Wall Street

 By Petix Salnuon 02.23 .09

$\operatorname{Pr}\left[\mathrm{T}_{\star}<\mathbf{1}, \mathrm{T}_{\mathrm{n}}<\mathbf{1}\right]=\phi_{2}\left(\phi^{-1}\left(\mathrm{~F}_{A}(\mathbf{1})\right), \boldsymbol{\phi}^{\mathbf{1}}\left(\mathrm{F}_{\mathrm{n}}(\mathbf{1})\right), \gamma\right)$

 exploited it os a quich-mad fantly flaned-woy to assess rish. A shareer werion appoars on this monoh's cove of Wired.

Here is what killed your 401(k)...
Li's Gaussian copula function ...
Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."

Felix Salmon, Wired, February 2009
Source: https://www.wired.com/2009/02/wp-quant/

Maximize $\quad Z=3 x_{1}+5 x_{2}$.

Linear

Nonlinear

The solution still happens to be on the boundary of the feasible region, but there are no longer the corner points feasible (CPF) to help us

If we now maintain the old constraints of the linear problem i.e.

$$
\begin{gathered}
x_{1} \leq 4 \\
2 x_{2} \leq 12 \\
3 x_{1}+2 x_{2} \leq 18 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{gathered}
$$

But change the objective function to a nonlinear form

$$
Z=126 x_{1}-9 x_{1}^{2}+182 x_{2}-13 x_{2}^{2}
$$

If we now maintain the old constraints of the linear problem i.e.

$$
\begin{gathered}
x_{1} \leq 4 \\
2 x_{2} \leq 12 \\
3 x_{1}+2 x_{2} \leq 18 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{gathered}
$$

\cdots or to another nonlinear form
$Z=54 x_{1}-9 x_{1}^{2}+78 x_{2}-13 x_{2}^{2}$

The solution can be anywhere in the feasible region, no longer just on its frontier

Other complications of the nonlinear problem: there can be more maxima

FIGURE 13.8

A function with several local maxima ($x=0,2,4$), but only $x=4$ is a global maximum.

In order to have just one maximum the objective function must be concave over the dominion of the search. Similarly for a convex function there is guarantee of just one minimum

FIGURE 13.9

Examples of (a) a concave function and (b) a convex function.

(a)

(b)

$$
\frac{\partial^{2} f(x)}{\partial x^{2}} \leq 0
$$

$$
\frac{\partial^{2} f(x)}{\partial x^{2}} \geq 0
$$

No constraints here!

In the case of constraints the existence of a global maximum is conditioned by the shape of the feasible region. If the feasible region is a convex set, then the global maximum is ensured.
"A convex set is simply a set of points such that, for each pair of points in the collection, the entire line segment joining these two points is also in the collection"

Note: in linear programming the feasible region is always a convex set
$=$ you can reach each point in the set from each other point in the set by walking in a straight line

Source:
https://mwpetersonlaw.com/

The feasible region is a convex set in both these cases

This is not the case here

BARCELONA
SCHOOL OF
MANAGEMENT

A nonlinear programming problem with constraints $g_{i}(\boldsymbol{x}) \leq b_{i} \quad i=1,2, \ldots m$ has a global maximum when the objective $f(x)$ is a concave function and all the $g_{i}(\boldsymbol{x})$ are convex
\rightarrow This is known as convex programming problem

The minimum can be anywhere;
Exercise:

- unconstrained problem, write a function $f(x)$ whose maximum is in $(x=0)$
- unconstrained problem, write a function $f\left(x_{1}, x_{2}\right)$ whose maximum is in $(3,3)$
- Find the maximum of $f(x)=6 x-x^{2}$
- Draw $f(x)=6 x-x^{2}$

The minimum/maximum can be anywhere;
Exercise:

- unconstrained problem, write a function $f(x)$ whose maximum is in $(x=0)$
- $f(x)=-x^{2}$
- unconstrained problem, write a function $f\left(x_{1}, x_{2}\right)$ whose minimum is in $(3,3)$
- $f\left(x_{1}, x_{2}\right)=\left(x_{1}-3\right)^{2}+\left(x_{2}-3\right)^{2}$
- Find the maximum of $f(x)=6 x-x^{2}$

Last
lesson: we were here

- Draw $f(x)=6 x-x^{2}$
- There will be a maximum in $x=3$ (why?)

To plot the function ` \(\mathbf{6 x}-\mathbf{x}\) **2` in Python, you can use the `matplotlib` library. If you

 haven't already installed `matplotlib", you can do so using `pip`:

Once you have `matplotlib` installed, you can create a simple Python script to generate the plot. Here's an example program:

```
python
import numpy as np
import matplotlib.pyplot as plt
# Define the range of x values
x = np.linspace(0, 6, 100) # Generate 100 evenly spaced points between 0 a
```

Is using ChatGPT cheating?

Source: The Simpsons, Twentieth Century Fox Film Corporation

```
python
```

import matplotlib.pyplot as plt

```
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
# Define the x values
x = np.linspace(0, 6, 100) # Generate 100 evenly spaced points between 0 ar
# Calculate the corresponding y values using the function 6x - x^2
y = 6 * x - x**2
# Create a plot
plt.plot(x, y, label='6x - x^2')
# Add labels and a legend
plt.xlabel('x')
plt.ylabel('y')
plt.title('Plot of 6x - x^2')
plt.legend()
# Show the plot
plt.grid(True)
plt.show()
```


Execute

$\square=8 \mathrm{~B} \geqslant \mathrm{~B} \mathrm{~F}$

20.8 antoriatri:

feriner: chuarta:

(1)

frowether piot

24 (intinms)

Bisection method (Bolzano search plan) - for concave functions.
If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem)

Not rocket science!

Bernardus Placidus Johann Nepomuk Bolzano, 1781-1848 Source: Wikipedia Commons

Bisection method (Bolzano search plan) - for concave functions.
If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem)
Applying this theorem to the derivative $\frac{\partial f(x)}{\partial x}$, knowing that for concave functions the maximum corresponds to the point where $\frac{\partial f(x)}{\partial x}=0$ one can first identify an interval where $\frac{\partial f(x)}{\partial x}$ changes sign, then reduce the dimension interval iteratively to get the solution

Bernardus Placidus Johann Nepomuk Bolzano, 1781-1848 Source: Wikipedia Commons

Notation
x^{*} solution being sought
ε tolerance in the search of x^{*}
x^{\prime} current trial solution
x_{l} current lower bound
x_{u} current upper bound

We want the maximum of

$$
f(x)=6 x-x^{2}-\frac{x^{3}}{3}
$$

Setting the tolerance ε at 0.1 (10\%)

Procedure: Find extreme x_{u} and x_{l} so that $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{l}}<0$, while $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{u}}>0$ and initialize $x^{\prime}=\frac{x_{l}+x_{u}}{2}$

1) Evaluate $\frac{\partial f(x)}{\partial x}$ at $\mathrm{x}=x^{\prime}$
2) if $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x^{\prime}}<0$ redefine $x_{l}=x^{\prime}$
3) if $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x^{\prime}}>0$ redefine $x_{u}=x^{\prime}$
4) Update $x^{\prime}=\frac{x_{l}+x_{u}}{2}$

Iterate 1-4 till $x_{u}-x_{l} \leq 2 \varepsilon$ so that new x^{\prime} must be within ε of x^{*}

Use the procedure to find a local maximum of

$$
f(x)=6 x-x^{2}-\frac{x^{3}}{3}
$$

Source: https://simpsons.fandom.com/wiki/Bart_Gets_Famous
Between 1. and 2. Set the tolerance ε at 0.1 (10\%)

Help: $\frac{\partial f(x)}{\partial x}=6-2 x-x^{2}$

MANAGEMENT

Use the procedure to find in interval $(1.2$.) the maximum of

$$
\begin{aligned}
& f(x)=6 x-x^{2}-\frac{x^{3}}{3} \\
& \frac{\partial f(x)}{\partial x}=6-2 x-x^{2}
\end{aligned}
$$

Set the tolerance ε at 0.1 (10\%)
By hand, I get $\mathrm{x}=1.72, \frac{\partial f(x)}{\partial x} \sim 0.4$ after 3 iterations and some number crunching; search interval $x \in(1,2)$

The procedure is laborious (slow convergence)

Procedure

Find extreme x_{u} and x_{l} so that $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{l}}<0$, while $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{u}}>0$ and initialize $x^{\prime}=\frac{x_{l}+x_{u}}{2}$

1) Evaluate $\frac{\partial f(x)}{\partial x}$ at $\mathrm{x}=x^{\prime}$
2) if $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{l}}<0$ redefine $x_{l}=x^{\prime}$
3) if $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x^{\prime}}>0$ redefine $x_{u}=x^{\prime}$
4) Update $x^{\prime}=\frac{x_{l}+x_{u}}{2}$

Iterate $1-4$ till $x_{u}-x_{l} \leq 2 \varepsilon$ so that new x^{\prime} must be within ε of x^{*}

Newton's method - for concave functions
Newton is credited to have discovered calculus (in parallel with Leibniz) and his method is that of a quadratic approximation based on a truncated Taylor series
$f\left(x_{i+1}\right)=f\left(x_{i}\right)+\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}\left(x_{i+1}-x_{i}\right)+\left.\frac{1}{2} \frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}\left(\left(x_{i+1}-x_{i}\right)\right)^{2}+$ $\left.\frac{1}{6} \frac{\partial^{3} f(x)}{\partial x^{3}}\right|_{x=x_{i}}\left(\left(x_{i+1}-x_{i}\right)\right)^{3} \cdots+\left.\frac{1}{n!} \frac{\partial^{n} f(x)}{\partial x^{n}}\right|_{x=x_{i}}\left(\left(x_{i+1}-x_{i}\right)\right)^{n}$

We stop (truncate) now at the second order term

Looking at this as a function of only x_{i+1}, with x_{i} and its derivative as fixed

We can differentiate with respect to x_{i+1} to get
$\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i+1}}=\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}+\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}\left(x_{i+1}-x_{i}\right)$
Setting this to zero (as to find the maximum) and reordering we get
$x_{i+1}=x_{i}-\frac{\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}}{\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}}$

BARCELONA

SCHOOL OF
MANAGEMENT

Source: The Simpson, 20th

Using this beauty $x_{i+1}=x_{i}-\frac{\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}}{\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}}$
The procedure is simple: find a trial value x_{i} by inspection

1) Evaluate $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}$
2) Evaluate $\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}$

3) Compute x_{i+1} as from the formula above

Iterate $1-3$ till $\left|x_{i+1}-x_{i}\right| \leq \varepsilon$
Exercise: Compute at least up to the first iteration, starting from $x_{i}=1$ (at home, facultative)
$f(x)=6 x-x^{2}-\frac{x^{3}}{3} ; \quad \frac{\partial f(x)}{\partial x}=6-2 x-x^{2} ; \quad \frac{\partial^{2} f(x)}{\partial x^{2}}=-2-2 x$

Source: https://simpsons.fandom.com/wiki/Bart_Gets_Famous

Using this beauty $x_{i+1}=x_{i}-\frac{\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}}{\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}}$
The procedure is simple: find a trial value x_{i} by inspection

1) Evaluate $\left.\frac{\partial f(x)}{\partial x}\right|_{x=x_{i}}$
2) Evaluate $\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x_{i}}$
3) Compute x_{i+1} as from the formula above

Iterate 1-3 till $\left|x_{i+1}-x_{i}\right| \leq \varepsilon$, starting from $x_{i}=1$
Phyton code can be used again

Quetinat asuantio
det func (x):

Let \sec ontiderivative $(\mathrm{x})=$
heteri-2 -2 2*
fief neuton max search(startina woint, tolerance-ie-6, mux iterations-109):
$\mathrm{x}=$ starting_point
to 1 in fange(wax iterations)

$x=x(-f$ irst derivative (n) / second derivative(x$)$

if abr $(x-\operatorname{srcy}-\mathrm{x})<$ tolerance
print('ine-xinerged!')
mexin x
 retime nowe:
startiogepoint * 1
sax_value = newton_max_eearch(starting_goint)
If nax_value it wit mose:

1

BARCELONA
SCHOOL OF
MANAGEMENT

Question: Please find the maximum of the function $y=6 x-x^{* *} 2-\left(x^{* *} 3\right) / 3$, using the method of Newton pure, using the first and the second derivative, with starting point $\mathrm{x}=1$, and printing out all steps of the search.

To find the maximum of the function $y=6 x-x^{2}-\frac{x^{3}}{3}$ using the Newton-Raphson method with the first and second derivatives, you can follow these steps:

1. Define the function $y=6 x-x^{2}-\frac{x^{3}}{3}$.
2. Calculate the first and second derivatives of the function.
3. Implement the Newton-Raphson method using the formula: $x_{\text {new }}=x_{\text {old }}-\frac{f^{\prime}\left(x_{\text {old }}\right)}{f^{\prime \prime}\left(x_{\text {old }}\right)}$.
4. Iterate until the change in x is smaller than a certain tolerance or a maximum number of iterations is reached.
5. Print out each iteration's x value and the corresponding function value.

Here's how you can implement this in Python:

Iteration 1: $x=1.750000, y=5.651042$
Iteration 2: $x=1.647727, y=5.680162$
Iteration 3: $\mathrm{x}=1.645752, \mathrm{y}=5.680173$
Iteration 4: $\mathrm{x}=1.645751, \mathrm{y}=5.680173$

A different model, where we explore rather than optimize
The Bateman equations, initially written for a radioactive decay chain, can be used to describe any process where transfer occur among compartments without backward term
$\partial N_{1} / \partial t=-\lambda_{1} N_{1} \quad N_{1}$ concentration of species 1, disappear proportionally to itself ...

Source: Wikipedia common
$\partial N_{2} / \partial t=\lambda_{1} N_{1}-\lambda_{2} N_{2} \quad \cdots$ to become N_{2} that in turn disappear proportionally to itself \cdots

```
... \cdots..and so on\cdots
```

$\partial N_{n} / \partial t=\lambda_{n-1} N_{n-1}-\lambda_{n} N_{n} \cdots$ till and end-product is reached

We choose this as it is nonlinear and the differential equation has a neat analytic solution
$\partial N_{1} / \partial t=-\lambda_{1} N_{1}$
$\partial N_{2} / \partial t=\lambda_{1} N_{1}-\lambda_{2} N_{2}$
$\partial N_{n} / \partial t=\lambda_{n-1} N_{n-1}-\lambda_{n} N_{n}$

For $N_{1}(0) \neq 0, N_{i}(0)=0 \forall i \neq \mathrm{j}$ the solution is

$$
N_{k}(t)=\frac{N_{1}(0)}{\lambda_{k}} \sum_{i=1}^{k} \lambda_{i} \alpha_{i} e^{-\lambda_{i} t}
$$

With

$$
\alpha_{i} \prod_{j=1, j \neq i}^{k} \frac{\lambda_{i}}{\lambda_{j}-\lambda_{i}}
$$

Interested in playing with this function in Python? Script in eCampus

A last model, where we revisit our simple linear form (from Lesson 3): $y=\sum_{i=1}^{k} \Omega_{i} Z_{i}$

Where y (a scalar) is the output of interest, the Ω_{i} 's were fixed coefficients and Z_{i} 's are uncertain input factors following a Normal distribution
$Z_{i} \sim N\left(\bar{Z}_{i}, \sigma_{Z_{i}}\right)$
Where $\overline{z_{i}}=0, i=1,2, \ldots k$ are the means of the factors Z_{i} 's and σ_{i} their standard deviations
We now allow the Ω_{i} to be uncertain as well
$\Omega_{i} \sim N\left(\overline{\Omega_{i}}, \sigma_{\Omega_{i}}\right)$ where $\overline{\Omega_{i}}=0, i=1,2, \ldots k$ are the means of the factors Ω_{i} 's an standard deviations

Interested in playing with this function in Python? Script in eCampus

In this book we took $\overline{z_{i}}$ to be zero, and called $y=$ $\sum_{i=1}^{k} \Omega_{i} Z_{i}$ a balanced portfolio, where the Z_{i} are the assets and the Ω_{i} the amount held of each security

There are as well stochastic search method (called meta-heuristics in the Hillier's book) where the search is done iteratively with trial points and rules to point the search in the right direction, without being greedy

- Tabu Search (don't go there if you have been there already)
- Simulated Annealing (you can walk in the wrong direction but with lower probability)
- Genetic Algorithms (let the fitter reproduce themselves)

We study this

Genetic algorithms (let the fitter reproduce themselves)
Note: Darwin used 'fittest', borrowing the term from Spencer, but 'fitter' is more apt to his theory as well as to what genetic algorithms do.
"Darwin did not consider the process of evolution as the survival of the fittest; he regarded it as survival of the fitter, because the "struggle for existence" is relative and thus not absolute. Instead, the winners with respect to species within ecosystems could become losers with a change of circumstances"
(https://www.britannica.com)

Herbert Spencer (1820-1903)

Charles Darwin (1809-1882)

Unlike Tabu search and Simulated Annealing, genetic algorithms do not work with a wandering point, but with an evolving population - a collection of candidate points is generated right at the start, then these generate offspring

Genetic Algorithms

Source: https://towardsdatascience.com/

At each generation the parents with the higher fitness have higher probability of reproducing, with each parent passing part of his genes to the offspring \rightarrow fitness in terms of objective function Z

Genetic Algorithms

```
|**)
```

Additional random mutations can occur ('errors' in the transcription of DNA or epigenetic factors in the genetic metaphor)

Genetic Algorithms

Source: https://towardsdatascience.com/

Genetic algorithms have lots of movable parts! In order to use them you must decide

- Size and composition of the initial population
- How to select the parents based on Z
- How to exchange the genes of the parent to generate the children
- Mutation rate
- Stopping rule

Source: Charlie Chaplin's Modern Times

Try with GA with the monster (Hillier, Chapter \#14) $y=12 x^{5}-975 x^{4}+28,000 x^{3}-345,000 x^{2}+1,800,000 x^{5}$

Q Spiseripyobon 3.til

if He*ecradien otrac.
Spuber fatiter
This fs = semparary acript file
foct may
def func(x)!

4fentrate x valiet

- finzect
"(ryitr to prot)

2m: Bit-shana

Try with GA with the monster (Hillier, Chapter \#14) $y=12 x^{5}-975 x^{4}+28,000 x^{3}-345,000 x^{2}+1,800,000 x^{5}$

Since the x axis spans from zero to 32 , we can represent the possible solutions in a nice binary notation

$$
\begin{aligned}
& 00=000000 \\
& 01=000001=2^{0} \\
& 02=000010=2^{1} \\
& 03=000011=2^{1}+2^{0} \\
& 04=000100=2^{2}
\end{aligned}
$$

$$
\cdots
$$

$$
07=000111=2^{2}+2^{1}+2^{0}
$$

$$
08=001000=2^{3}
$$

We trick the monster by adding the constraint the x must be integer - but we refresh binary

$$
15=001111=2^{3}+2^{2}+2^{1}+2^{0}
$$ numbers first

$$
16=010000=2^{4}
$$

$$
31=011111=2^{4}+2^{3}+2^{2}+2^{1}+2^{0}
$$

$$
32=100000=2^{5}
$$

Take a way to write a number

Never met binary?

$$
\begin{aligned}
& 00=000000 \\
& 01=000001=2^{0} \\
& 02=000010=2^{1} \\
& 03=000011=2^{1}+2^{0} \\
& 04=000100=2^{2}
\end{aligned}
$$

$$
07=000111=2^{2}+2^{1}+2^{0}
$$

$$
08=001000=2^{3}
$$

$$
15=001111=2^{3}+2^{2}+2^{1}+2^{0}
$$

$$
16=010000=2^{4}
$$

$$
31=011111=2^{4}+2^{3}+2^{2}+2^{1}+2^{0}
$$

$$
32=100000=2^{5}
$$

$$
64=1000000=2^{6}
$$

$$
128=10000000=2^{7}
$$

CCXXVI

This is conceptually far from
226

hundreds

While this is conceptually close to

```
1 1 1 0 0 0 1 0
4 4^
    32=25
    64=26
128=2
```

Take a way to write a number

Never met binary?
$0.1=1 / 2$
$0.01=1 / 4$
$0.001=1 / 8$
$0.111=0.875$
$11.001=3.125$

CCXXVI

This is conceptually far from
226

hundreds

While this is conceptually close to
11100010

$32=2^{5}$
$64=2^{6}$
$128=2^{7}$

Then we have to cook some rules, e.g.
Starting population: 10 individuals (for this problem)

Choose the five fittest and the two lest fit for matching (coupling randomly)

Switching the genes: keep repeated genes and switch the different ones

Mutation rate $1 / 10$

Stopping rule after five iterations without improvements

Lots of moving parts; these are the choices suggested in Hillier but other choices are possible

Source: Charlie Chaplin's Modern Times

One possible way of matching

Parents

011000
110101
Repeated genes are passed to the next generation
Children
x1xx0x
x1xx0x

How to choose the missing x's? Russian roulette

$$
\mathrm{x} 1 \mathrm{xx} 0 \mathrm{x}
$$

Where the name comes from - from revolver to spinning wheel9

Source: From movie The Deer Hunter, Source: Wikipedia

Source: https://wordwall.net/

How to choose the x's? Russian roulette
$\frac{\mathrm{x} 1 \mathrm{xx} 0 \mathrm{x}}{\mathrm{x} 1 \mathrm{xx} 0 \mathrm{x}}$
Generate a random number between 0 and 1 ; if between 0 and .4999 replace the first \mathbf{x} with a zero, if between .5 and 1 replace it with a one

This was done and we have children

$$
\begin{aligned}
& 011000 \\
& 010101
\end{aligned}
$$

Source: https://www.gettyimages.es

Source: https://wordwall.net/

Plot of $12 x^{\wedge} 5-975 x^{\wedge} 4+28000 x^{\wedge} 3-345000 x^{\wedge} 2+1800000 x$
TABLE 14.7 Application of the genetic algorithm to the integer nonlinear programming example through (a) the initialization step and (b) iteration 1

	Member	Initial Population		Value of x	Fitness
	1			15	3,628,125
	2			4	3,234,688
	3			8	3,055,616
	4			23	3,962,091
(a)	5			10	2,950,000
	6			9	2,978,613
	7			5	3,303,125
	8			18	4,239,216
	9			30	1,350,000
	10			21	4,353,187
	Member	Parents	Children	Value of \boldsymbol{x}	Fitness
	10	10101	00101	5	3,303,125
	2	00100	10001	17	4,064,259
(b)	8	10010	10011	19	4,357,164
	4	10111	10100	20	4,400,000
	1	01111	01011	11	2,980,637
	6	01001	01111	15	3,628,125

All this is very nice to code; here the starting and first iteration from the Hillier book

And the convergence if rapid for this simple case, good results already at the fist iteration

The procedure can of course be applied to non-integer numbers, as these can as well be written in binary notation

Exercise: write 412 in binary
$412=110011100$
256y 128y 64n 32n $16 y 8 y 4 y 2 n 1 n$
I start by 256 because the next power of 2 (512) is too big; get 1

Source: https://simpsons.fandom.com/wiki/Bart_Gets_Famous 412-256=156; so I can fit in 128; get 11

The difference is 28 , so I cannot fit a 64: get 110
Cannot fit a 32 , get 1100
Can fit 16,8,4 add to 28 get 1100111
No need of 2 and 1 the last two powers, get 110011100

Genetic algorithms can also be applied to problems such as the traveling salesman; in this case the population is constituted by candidate trajectories, such as 12345671 and 12435671

A child of this couple can inherit the link 2-3 or the link

Homework

1) Read pages 208-225 of the Mann book (saved in Campus as file Fact-Binom.pdf) and solve exercises 5.41, 5.48. It is not forbidden to use Excel.
2) Solve Hillier online book problem 12.1.3 page 534, only question (a) Formulate a BIP model for this problem.
3) Solve Hillier online book problem 12.1-4. page 534, only question (a) Formulate a BIP model for this problem.
4) Solve Hillier online book problem 12.3-1. page 535, only question (a) Formulate a BIP model for this problem..

Thank you

