Máster Universitario en Administración y Dirección de Empresas
 Full Time MBA

Elements of quantification for decision making with emphasis on operation research

Saltelli \qquad Where to find this talk

August 25 2023: The politics of modelling is out!

$$
\begin{array}{r|l}
\text { the politics } \\
\text { of modelling } \\
\text { numbers between } \\
\text { science and poliey }
\end{array}
$$

Praise for the volume

"A long awaited examination of the role -and obligation -of modeling."
Nassim Nicholas Taleb, Distinguished Profensor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series incerto
...
*A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling." Orrin H. Pilkey, Professor at Duke Universitys Nicholas School of the Environment, co-author with Linda Pilkey-Jarvis of Useless Arithmetic Why Environmental Sclentists Can't Predict the Future, Columbla University Press 2009.

ase

> oxrano

Mastodon Toots by

$+19$

Thanks to Marua
Kozlova of LUT
University in Finland
for talang and curating this recording. My trujectary from number crunching to thinkeng about numbers' role in humaniaffuirs
 -amping Virw on itrlititus

The talk is also at
https://ecampus.bsm.upf.edu/,
where you find additional reading material

In this set of slides:

12 The Transportation Problem
13 The Assignment Problems (sketched)
14 Network Optimization Models
15 Integer Programming

The Transportation problem

Framing of the problem, assumptions and properties of the solution. Hillier 2014, chapter 9.

Where to find this book:

https://www.dropbox.com/sh/ddd48a8jguinbcf/AABF0s4eh1lPLVxdx0pesOfa?dl=0\&preview=Introduction+ to + Operations + Research + -

+ Frederick+ S.+ Hillier.pdf

Operations Research

Frederick S. Hillier * Gerald J. Lieberman

A prototype example of a Transportation Problem: shipping canned peas from canneries to warehouses

Three canneries and four warehouses

FIGURE 9.1

Location of canneries and warehouses for the P \& T Co. problem.

A prototype example: shipping truckloads of canned peas from canneries to warehouses

Source: Wikipedia Commons

An old type of problem, recall the Torricelli and Fermat point

1.Construct an equilateral triangle on each of the sides
2. From each of the farmost vertex draw a line the opposite vertex of the original triangle.
3. Where the three lines intersect is the Torricelli-Fermat point.

A prototype example: shipping canned peas from canneries to warehouses; this table contains all the information; where are the geographical distances?

TABLE 9.2 Shipping data for P \& T Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

In modern linear programming the geography can be made to disappear

Here it is replaced by costs per truckload per season

TABLE 9.2 Shipping data for P \& T Co.

A prototype example: shipping canned peas from canneries to warehouses

... and how much each warehouse \qquad should be provided with		Shipping Cost (\$) per Truckload				Output
		Warehouse				
		1	2	3	4	
		464	513	654	867	75
	Cannery 2	352	416	690	791	125
		995	682	388	685	100
	Allocation	80	65	70	85	\uparrow
\square barcelona SCHOOLOF MANAGEMENT					Subject to cannery constraints	

TABLE 9.2 Shipping data for P \& T Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Minimize or maximize? \longrightarrow Minimize

What?

$$
\longrightarrow \begin{gathered}
\text { Total shipping cost; decision } \\
\text { variable } x_{i, j}, i=1,2,3 ; j=1,2,3,4 \\
\text { member of truckloads from } \\
\text { cannery } i \text { to warehouse } j
\end{gathered}
$$

TABLE 9.2 Shipping data for P \& Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Minimize total shipping cost $Z=464 x_{1,1}+513 x_{1,2}+654 x_{1,3}+867 x_{1,4}$

$$
\begin{aligned}
& +352 x_{2,1}+416 x_{2,2}+690 x_{2,3}+791 x_{2,4} \\
& +995 x_{3,1}+682 x_{3,2}+388 x_{3,3}+685 x_{3,4}
\end{aligned}
$$

TABLE 9.2 Shipping data for P \& Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Subject to
cannery constraints

$$
\begin{gathered}
x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}=75 \\
x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}=125 \\
x_{3,1}+x_{3,2}+x_{3,3}+x_{3,4}=100
\end{gathered}
$$

and
warehouse
constrains

$$
\begin{gathered}
x_{1,1}+x_{2,1}+x_{3,1}=80 \\
x_{1,2}+x_{2,2}+x_{3,2}=65 \\
x_{1,3}+x_{2,3}+x_{3,3}=70 \\
x_{1,4}+x_{2,4}+x_{3,4}=100
\end{gathered}
$$

$$
x_{i, j} \geq 0(i=1,2,3 ; j=1,2,3,4)
$$

TABLE 9.2 Shipping data for P \& T Co.

Anything noticeable about these two sets of numbers?

Supply and demand balance out at 300

TABLE 9.2 Shipping data for P \& T Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Or as a graph/network representation

BARCELONA
SCHOOL OF
MANAGEMENT

Terminology of the Transportation and Assignment Problem

$$
\begin{gathered}
x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}=75 \\
x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}=125 \\
x_{3,1}+x_{3,2}+x_{3,3}+x_{3,4}=100
\end{gathered}
$$

$$
\begin{aligned}
x_{1,1}+x_{2,1}+x_{3,1} & =80 \\
x_{1,2}+x_{2,2}+x_{3,2} & =65 \\
x_{1,3}+x_{2,3}+x_{3,3} & =70 \\
x_{1,4}+x_{2,4}+x_{3,4} & =100
\end{aligned}
$$

The $=\operatorname{sign}$ (instead of $\leq \geq$) in the supply and demand represents the requirement assumption of the Transportation and Assignment Problem: supply and demand are fixed

TABLE 9.2 Shipping data for P \& T Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Minimize total shipping cost $Z=$

$$
\begin{aligned}
& =464 x_{1,1}+513 x_{1,2}+654 x_{1,3}+867 x_{1,4} \\
& +352 x_{2,1}+416 x_{2,2}+690 x_{2,3}+791 x_{2,4} \\
& +995 x_{3,1}+682 x_{3,2}+388 x_{3,3}+685 x_{3,4}
\end{aligned}
$$

The cost assumption: distributing units from any source to any destination is proportional to the number of units distributed; if $c_{i j}$ is the unit cost and $x_{i j}$ the number of units, the cost is simply $c_{i j} x_{i j}$

The requirements assumption is typic of transportation problem, while the cost assumption we should know already

What are the assumptions we studied already?

Assumptions of linear programming

Proportionality: The contribution of each activity to the value of the objective function Z is proportional to the level of the activity x_{j} increase in the objective function Z, as represented by the $c_{p} x_{j}$, terms

Additivity: Every function in a linear programming model (whether the objective function or the function on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective activities

Divisibility: Decision variables in a linear programming model are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values, Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels

When a decision variable must be an integer, it becomes a case of integer programming

Certainty: The value assigned to the parameters (the $a_{j}^{i \prime} \mathrm{~s}$,
b_{i} 's, and c_{j} 's) of a linear programming model are assumed
to be known constants

BARCELONA

upf.
SCHOOL OF
MANAGEMENT

Whether or not actual transportation is involved, any problem in the format of this table that obeys the requirement and cost assumption is a transportation problem

TABLE 9.5 Parameter table for the transportation problem

Compact formulation for a problem with m sources s and n destinations d :

$$
\text { Minimize } Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Subject to source and demand constraints

$$
\sum_{j=1}^{n} x_{i j}=s_{i} \quad \text { for } \quad i=1,2, \ldots m
$$

$$
\begin{gathered}
\sum_{i=1}^{m} x_{i j}=d_{j} \text { for } j=1,2, \ldots n \\
x_{i j} \geq 0 \text { for }(i=1,2, \ldots m ; j=1,2, \ldots n)
\end{gathered}
$$

TABLE 9.5 Parameter table for the transportation problem

	Cost per Unit Distributed				Supply
	Destination				
	1	2	\ldots	n	
1	C_{11}	C_{12}	\ldots	$C_{1 n}$	s_{1}
Source 2	C_{21}	C_{22}	...	$c_{2 n}$	S_{2}
Source :				$\ldots .$.	!
m	$c_{m 1}$	$c_{m 2}$	\cdots	$c_{m n}$	s_{m}
Demand	d_{1}	d_{2}	\cdots	d_{n}	

The property to be kept in mind here is that a transportation problem will have feasible solution if and only if

$$
\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} d_{j}
$$

(supply and demand balance out as in the example)

Compact formulation for a problem with m sources s and n destinations d :

$$
\text { Minimize } Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Subject to

$$
\begin{gathered}
\sum_{i=1}^{m} x_{i j}=d_{j} \text { for } j=1,2, \ldots n \\
\sum_{j=1}^{n} x_{i j}=s_{i} \quad \text { for } \quad i=1,2, \ldots m
\end{gathered}
$$

$$
x_{i j} \geq 0 \text { for }(i=1,2, \ldots m ; j=1,2, \ldots n)
$$

$$
\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} d_{j}
$$

(supply and demand balance out)

The integer solutions property: For transportation problems where every s_{i} and d_{i} have an integer value, all basic feasible (BF) solutions (including an optimal one) also have integer values

TABLE 9.2 Shipping data for P \& T Co.

	Shipping Cost (\$) per Truckload				Output
	Warehouse				
	1	2	3	4	
1	464	513	654	867	75
Cannery 2	352	416	690	791	125
3	995	682	388	685	100
Allocation	80	65	70	85	

Optimal solution with Excel Solver

\longrightarrow| 0 | 20 | 0 | 55 |
| :---: | :---: | :---: | :---: |
| 80 | 45 | 0 | 0 |
| 0 | 0 | 70 | 30 |

Omer would like 2 pints of home brew today and an additional 7 pints of home brew tomorrow. Dick is willing to sell a maximum of 5 pints total at a price of $\$ 3.00$ per pint today and $\$ 2.70$ per pint tomorrow. Harry is willing to sell a maximum of 4 pints total at a price of $\$ 2.90$ per pint today and $\$ 2.80$ per pint tomorrow. Omer wishes to know what his purchases should be to minimize his cost while satisfying his thirst requirements.

Formulate this problem as a transportation problem by constructing the appropriate parameter table

	Título	Título	Título
Dick	3.	2.70	5
Harry	2.90	2.80	4
Tom/day	2	7	

> What would you do being Omer?

The Assignment problem

A brief sketch. Hillier 2014, chapter 9.

The assignment problem is a special type of linear programming problem where assignees are being assigned to perform tasks

Charles Chaplin's Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-moderntimes.html

1. The number of assignees and the number of tasks are the same.
2. Each assignee is to be assigned to exactly one task.
3. Each task is to be performed by exactly one assignee.
4. There is a cost $c_{i j}$ associated with assignee $i,(i=1,2, \ldots n)$ performing task $j,(j=1,2, \ldots n)$.
5. The objective is to determine how all n assignments should be made to minimize the total cost \cdots but

Charles Chaplin's Modern Times, source
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html

In fact, the assignment problem is just a special type of transportation problem where the sources now are assignees and the destinations now are tasks and where:

Number of sources $m=$ number of destinations n, Every supply $s_{i}=1$, Every demand $d_{j}=1$

Number of sources $m=$ number of destinations n, Every supply $s_{i}=1$,

$$
\text { Minimize } Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Subject to

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i j}=1 \text { for } j=1,2, \ldots n \\
\sum_{j=1}^{n} x_{i j}=1 \quad \text { for } \quad i=1,2, \ldots n
\end{gathered}
$$

Plus

$$
x_{i j}=\text { binary }(0 \text { or } 1) \text { for }
$$

$$
(i=1,2, \ldots n ; j=1,2, \ldots n)
$$

$$
x_{i j} \geq 0 \text { for }(i=1,2, \ldots n ; j=1,2, \ldots n)
$$

$$
\text { Minimize } Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Subject to

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i j}=1 \text { for } j=1,2, \ldots n \longleftarrow \text { Each task must be served } \\
\sum_{j=1}^{n} x_{i j}=1 \text { for } i=1,2, \ldots n \longleftarrow \text { Each assignee must have work } \\
x_{i j} \geq 0 \text { for }(i=1,2, \ldots n ; j=1,2, \ldots n)
\end{gathered}
$$

Plus

$$
x_{i j}=\text { binary (0 or } 1 \text {) for }
$$

$$
(i=1,2, \ldots n ; j=1,2, \ldots n)
$$

Thus assignment and transportation share the same useful properties in terms of existence of integer solutions

MANAGEMENT

Source: Wikipedia Commons

Assignment and transportation have same network representation

FIGURE 9.3
Network representation of the transportation problem.
upf.
BARCELONA
SCHOOL OF
MANAGEMENT

FIGURE 9.5
Network representation of the assignment problem.

A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

- TABLE 9.24 Materials-handling cost data (\$) for Job Shop Co.

		Location			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Machine	1	13	16	12	11
	2	15	-	13	20
	3	5	7	10	6

		Task (Location)			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	1	13	16	12	11
Assignee	2	15	M	13	20
(Machine)	3	5	7	10	6

Machine 2 cannot go to location 2, so a very large cost M in entered in the empty cell

A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

TABLE 9.24 Materials-handling cost data (\$) for Job Shop Co.

		Location			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
Machine	2	13	16	12	11
	3	15	-	13	20
		5	7	10	6

TABLE 9.25 Cost table for the Job Shop Co. assignment problem

	Task (Location)				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
	1	13	16	12	11
Assignee	2	15	M	13	20
(Machine)	3	5	7	10	6
\longrightarrow	$4(D)$	0	0	0	0

Since assignees and tasks must be equal a dummy machine is introduced

A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

- TABLE 9.25 Cost table for the Job Shop Co. assignment problem

		Task (Location)			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	1	13	16	12	11
Assignee	2	15	M	13	20
(Machine)	3	5	7	10	6
	$4(D)$	0	0	0	0

Can you guess the solution "by inspection?"

Machine 1 to location 4
Machine 2 to location 3
Machine 3 to location 1
The algorithms (not described here) would assign the dummy machine 4 to location 2

Network Dptimization Madels

More network problems: shortest-path problem, the minimum spanning tree problem, maximum flow problem. Hiller 2014, chapter 10.

Many network optimization models are special types of linear programming problems - e.g. the transportation problem and the assignment problem

Assignment and transportation have same network representation
See their network representations

- FICURE 9.3

Network representation of the transportation problem.

- FICURE 9.5

Netivork representation of
the assignment problem.

BARCELONA SCHOOL OF
MANAGEMENT

BARCELONA
SCHOOL OF
MANAGEMENT

Our new prototype problem - the "Seervada Park" road system

MANAGEMENT

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-sanfrancisco/?

Three practical problems

- Shortest path from entrance O to scenic point T
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance O to scenic point T

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

MANAGEMENT

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-sanfrancisco/?

Some terminology: nodes (or vertices), arcs (or links or edges or branches)

The road system for Seervada Park.
A node

The trains trough the park represent a type of 'flow' through the arcs

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

TABLE 10.1 Components of typical networks

Nodes	Arcs	Flow
Intersections	Roads	Vehicles
Airports	Air lanes	Aircraft
Switching points	Wires, channels	Messages
Pumping stations	Pipes	Fluids
Work centers	Materials-handling routes	Jobs

More terminology:
Directed arcs (flow only in one directions) and undirected arcs or link, (flow in both directions)
Networks can also be directed (only directed arcs) or undirected
A path trough nodes can be directed when every step from node i to node j is in the direction of j.
$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E}=$ directed path
$\mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{D}=$ undirected path

Note that our park has no arrows, in is hence made of undirected arcs

FIGURE 10.1
The road system for Seervada Park.

More terminology: a cycle is a path starting and ending in the same node

A directed cycle contains only directed arcs
$\mathrm{D} \rightarrow \mathrm{E} \rightarrow \mathrm{D}$ is a directed cycle
$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$ is not a directed cycle

More terminology: starting from bare nodes, trees can be grown

A network;
stripping the
... bare nodes

Starting from bare nodes, trees can be grown

(a)
(a) bare nodes

(b)
(b) Tree with one arc

(c)
(d) Tree with three arcs

(c) Tree with two arcs

(e) Spanning tree: all nodes connected by directed arcs

(e)

A spanning tree connects n nodes with $n-1$ directed arcs
A spanning tree is a connected network without unconnected arcs
(e) Spanning tree: all nodes connected by directed arcs

(e)

A spanning tree connects n nodes with $n-1$ directed arcs
A spanning tree is a connected network without unconnected arcs
$n-1$ is both the minimum number of arcs needed and the maximum one, as adding one arc would generate an undirected cycle

Adding e.g. arc $\mathrm{A} \rightarrow \mathrm{C}$ closes the loop but generates undirected cycles

(e)

We are now ready to tackle the shortest path problem

Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia Commons
"Consider an undirected and connected network with two special nodes called the origin and the destination. Associated with each of the links (undirected arcs) is a nonnegative distance. The objective is to find the shortest path (the path with the minimum total distance) from the origin to the destination"

Let's learn by doing, on our test case: the mission is to go from the entrance O to the scenic point T

Algorithm for the Shortest-Path Problem

Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for $n=1,2, \ldots$ until the nth nearest node is the destination.
Practice: the nearest note to O is A

Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for $n=1,2, \ldots$ until the nth nearest node is the destination.
Practice: the nearest note to O is A
TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

\boldsymbol{n}	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	n nh Nearest Node	Minimum Distance	Last Connection
1	O	A	2	A	2	$O A$

Theory: Input needed for nth iteration: $n-1$ nearest nodes to the origin (solved for at the previous iterations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the others are unsolved nodes)
Theory: Candidates for nth nearest node: Each solved node that is directly connected by a link to one or more unsolved nodes provides one candidate - the unsolved node with the shortest connecting link to its solved node is taken

Theory: Candidates for nth nearest node: Each solved node (O, A now) that is directly connected by a link to one or more (nearest) unsolved nodes (C, B respectively) provides one candidate - the unsolved node with the shortest connecting link to this solved node. (Ties
 provide additional candidates)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	O	A	2	A	2	$O A$
2,3	O	C	4	C	4	$O C$
A	B	$2+2=4$	B	4	$A B$	

Theory: Calculation of nth nearest node: For each such solved node and its candidate, add the distance between them and the distance of the shortest path from the origin to this solved node. The candidate with the smallest such total distance is the nth nearest node (ties provide additional solved nodes - as in this case C and B with 4 miles), and its shortest path is the one
 generating this distance

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	O	A	2	A	2	$O A$
2,3	O	C	4	C	4	$O C$
	A	$2+2=4$	B	4	$A B$	

The solved nodes are now A, B, C, and the closest nodes are D, E
(E is closest for both B and C)
E wins as $4^{\text {th }}$ closest node (7 miles)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

\boldsymbol{n}	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	$\boldsymbol{n t h}$ Nearest Node	Minimum Distance	Last Connection
1	O	A	2	A	2	$O A$
2,3	O	C	4	C	4	$O C$
	A	B	$2+2=4$	B	4	$A B$
4	A	D	$2+7=9$			
	B	E	$4+3=7$	E	7	$B E$

The solved nodes closest to an unsolved note are now A, B, E, and for all the closest node is D D wins as $5^{\text {th }}$ closest node (8 miles)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

\boldsymbol{n}	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	O	A	2	A	2	$O A$
2,3	O	C	4	C	4	$O C$
	A	B	$2+2=4$	B	4	$A B$
4	A	D	$2+7=9$			
	B	E	$4+3=7$	E	7	$B E$
	C	E	$4+4=8$			
	A	D	$2+7=9$			
	B	D	$4+4=8$	D	8	$B D$
	E	D	$7+1=8$	D	8	$E D$

[^0]The solved nodes closest to an unsolved note are now D, E, and for both the closest node is the target destination $T ; T$ wins as $6^{\text {th }}$ closest node (13 miles)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	\bigcirc	A	2	A	2	OA
2,3	$\begin{aligned} & O \\ & A \end{aligned}$	$\begin{aligned} & C \\ & B \end{aligned}$	$\stackrel{4}{2}+4$	$\begin{aligned} & C \\ & B \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & O C \\ & A B \end{aligned}$
4	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & D \\ & E \\ & E \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+3=7 \\ & 4+4=8 \end{aligned}$	E	7	$B E$
5	$\begin{aligned} & A \\ & B \\ & E \end{aligned}$	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+4=8 \\ & 7+1=8 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & B D \\ & E D \end{aligned}$
6	$\begin{aligned} & D \\ & E \end{aligned}$	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 8+5=13 \\ & 7+7=14 \end{aligned}$	T	13	$D T$

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	0	A	2	A	2	$O A$
2, 3	$\begin{aligned} & O \\ & A \end{aligned}$	$\begin{aligned} & C \\ & B \end{aligned}$	$2+2^{4}=4$	$\begin{aligned} & C \\ & B \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & O C \\ & A B \end{aligned}$
4	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & D \\ & E \\ & E \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+3=7 \\ & 4+4=8 \end{aligned}$	E	7	$B E$
5	$\begin{aligned} & A \\ & B \\ & E \end{aligned}$	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+4=8 \\ & 7+1=8 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & B D \\ & E D \end{aligned}$
6	$\begin{aligned} & D \\ & E \end{aligned}$	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 8+5=13 \\ & 7+7=14 \end{aligned}$	T	13	DT

Note how at each step the distance for the various

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	0	A	2	A	2	OA
2, 3	$\begin{aligned} & O \\ & A \end{aligned}$	$\begin{aligned} & C \\ & B \end{aligned}$	$\stackrel{4}{2}=4$	$\begin{aligned} & C \\ & B \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & O C \\ & A B \end{aligned}$
4	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & D \\ & E \\ & E \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+3=7 \\ & 4+4=8 \end{aligned}$	E	7	$B E$
5	$\begin{aligned} & A \\ & B \\ & E \end{aligned}$	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+4=8 \\ & 7+1=8 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & B D \\ & E D \end{aligned}$
6	$\begin{aligned} & D \\ & E \end{aligned}$	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 8+5=13 \\ & 7+7=14 \end{aligned}$	T	13	DT

We now move backword, from the destination to the origin
$\mathrm{T} \rightarrow \mathrm{D} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{O}$
or
$\mathrm{T} \rightarrow \mathrm{D} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{O}$
Both with 13 miles

Hence the solution:

$$
\begin{aligned}
& \mathrm{O} \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{D} \rightarrow \mathrm{~T} \text { or } \\
& \mathrm{O} \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{~T}
\end{aligned}
$$

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	0	A	2	A	2	OA
2, 3	$\begin{aligned} & O \\ & A \end{aligned}$	$\begin{aligned} & C \\ & B \end{aligned}$	$\begin{gathered} 4 \\ 2+2^{2}= \end{gathered}$	$\begin{aligned} & C \\ & B \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & O C \\ & A B \end{aligned}$
4	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & D \\ & E \\ & E \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+3=7 \\ & 4+4=8 \end{aligned}$	E	7	$B E$
5	$\begin{aligned} & A \\ & B \\ & E \end{aligned}$	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 2+7=9 \\ & 4+4=8 \\ & 7+1=8 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & B D \\ & E D \end{aligned}$
6	$\begin{aligned} & D \\ & E \end{aligned}$	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 8+5=13 \\ & 7+7=14 \end{aligned}$	T	13	DT

Perhaps clearer in this tree formulation?

Hence the solution:
$\mathrm{O} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{T}$
or
$\mathrm{O} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{T}$

Three practical problems

- Shortest path from entrance O to scenic point T
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance O to scenic point T

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-sanfrancisco/?

The Minimum Spanning Tree problem

Source: https://eu.palmbeachdailynews.com/story/entertainment/house-home/2019/12/15/palm-beach-gardening-help-save-planet-by-planting-these-nativetrees/2079095007/

The Minimum Spanning Tree problem
For the shortest-path problem, we were looking for links that provide a path between the origin and the destination. We now just look for a minimum set of links that connect all nodes

Could this be a spanning tree?

No as a spanning tree provides a path between each pair of nodes. n nodes will take $n-1$ links
\rightarrow Design the network by inserting enough links to satisfy the requirement that there be a path between every pair of nodes; The objective is to satisfy this requirement in a way that minimizes the total length of the links

Could this be a spanning tree?

\rightarrow Design the network by inserting enough links to satisfy the requirement that there be a path between every pair of nodes; The objective is to satisfy this requirement in a way that minimizes the total length of the links

Could this be a spanning tree?

Perhaps this?

BARCELONA
SCHOOL OF
MANAGEMENT

All 7 nodes connected with 6 link

The strategy
Select arbitrarily a node
Identify closest unconnected
node
Branch on ties (try both)

Select arbitrarily a node e.g. A
Identify closest unconnected node O or B Branch on ties (try both)

Identify closest unconnected node C

Identify closest unconnected node E

Identify closest unconnected node D

Here our spanning tree

Three practical problems

- Shortest path from entrance O to scenic point T
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance O to scenic point T

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-sanfrancisco/?

We are now left with the last problem to solve: Maximum flow of minitrains carrying non trekkers from entrance O to scenic point T

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

Maximum flow problem

"Typical kinds of applications of the maximum flow problem:

1. Maximize the flow through a company's distribution network from its factories to its customers.
2. Maximize the flow through a company's supply network from its vendors to its factories. 3. Maximize the flow of oil through a system of pipelines.
3. Maximize the flow of water through a system of aqueducts.
4. Maximize the flow of vehicles through a transportation network." (Hillier pp.387-388)

Maximum flow problem

Also here we proceed by a stepwise algorithm by 'pumping' items along preselected paths and recording changes. In the beginning the numbers close to the nodes represent maximum capacities

Warning: figures 10.6 and 10.7 in the online version are wrong, the others are right
https://www.dropbox.com/s h/ddd48a8jguinbcf/AABF0s 4eh11PLVxdx0pesOfa?dl=0\&preview=Introdu ction+ to + Operations + Rese arch+ -

+ Frederick+ S.+ Hillier.pdf

This is right

Nothing has moved yet, and we note this by putting zeros before the node

An augmenting path is a directed path from the source to the sink in the residual network such that every arc on this path has strictly positive residual capacity; for example

$$
O \rightarrow B \rightarrow E \rightarrow T
$$

is an augmenting path, still at full capacity.

Chose now the smallest residual capacity on this path - among 7,5,6 \rightarrow 5 is the smallest. Move five through this path, noting what happens

The capacity of link $B E$ is now exhausted

We now go to the augmenting path

$$
O \rightarrow A \rightarrow D \rightarrow T
$$

where the smallest capacity is 3 , and move it

The capacity of link $A D$ is now exhausted

Assign a flow of 1 to the augmenting path

$$
O \rightarrow A \rightarrow B \rightarrow D \rightarrow T
$$

Assign a flow of 2 to the augmenting path

$$
O \rightarrow B \rightarrow D \rightarrow T
$$

The capacity of links $A B$ and $O B$ are now exhausted

Assign a flow of 1 to the augmenting path

$$
O \rightarrow C \rightarrow E \rightarrow D \rightarrow T
$$

Assign a flow of 1 to the augmenting path

$$
O \rightarrow C \rightarrow E \rightarrow T
$$

Assign a flow of 1 to the augmenting path

$$
O \rightarrow C \rightarrow E \rightarrow B \rightarrow D \rightarrow T
$$

The capacity of link $B D$ is now exhausted

Anything weird here?

We have moved 'countercurrent' - this is the same as reversing part of a previous flow

This was also the final move

Check for yourself that

- No capacity has been violated
- No accumulation takes place at any node

Three practical problems

- Shortest path from entrance O to scenic point T
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance O to scenic point T

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-sanfrancisco/?

Integer Programming

Intuitions and fallacies. Why is it more difficult than LP. Integer and binary problems. Examples. Solution via branch and bound. Take home points. Hillier 2014, chapter 12.

Integer programming; intuition and fallacies

If the solutions need to be integer, there will be less of them, so Integer Programming (IP) will be easier than Linear Programming (LP)

- Yes, there will be less solutions, but still a very large numbers if they have to be found 'by inspection'
- The simplex solution of an IP treated as if it were an LP (what is called LP relaxation) generally generate unfeasible solutions

A phrenological mapping of the brain. Source: Wikipedia Commons

Moving from LP to IP which of the four assumptions of LP will need to fall?

Proportionality: The contribution of each activity to the value of the objective function Z is proportional to the level of the activity x_{j} increase in Z that, as represented by the $c_{j} x_{j}$ term in the objective function Additivity: Every function in a linear programming model (whether the objective function or the function on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective activities
Divisibility: Decision variables in a linear programming model are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels
Certainty: The value assigned to the parameters (the a_{j}^{i} 's, b_{i} 's, and c_{j} 's) of a linear programming model are assumed to be known constants

BARCELONA

upf.
SCHOOL OF
MANAGEMENT

YES, NO decision variables

An important class of IP involves binary decision variables that can be represented as $(0,1)$
$x_{j}=\left\{\begin{array}{c}1 \text { if decision }=\text { yes } \\ 0 \text { if decision }=\text { no }\end{array}\right.$

When this is the case the IP problem is said to be a Binary Integer Programming (BIP) problem

A prototype example: building or not building?

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

$x_{1}=\left\{\begin{array}{c}1 \text { if decision }=\text { yes build a factory in Los Angeles } \\ 0 \text { if decision }=\text { no, don't build a factory in Los Angeles }\end{array}\right.$
The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building at most one new warehouse, but the choice of location is restricted to a city where a new factory is being built.

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

$$
x_{1}=\left\{\begin{array}{c}
1 \text { if decision }=\text { yes build a factory in Los Angeles } \\
0 \text { if decision }=\text { no, don't build a factory in Los Angeles }
\end{array}\right.
$$

The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building at most one new warehouse, but the choice of location is restricted to a city where a new factory is being built.
$\rightarrow x_{1}$ and x_{2} can both be 1 , but x_{2} and x_{3} will depend upon the choice made for x_{1}, x_{2}

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million

$x_{1}=\left\{\begin{array}{c}1 \text { if decision }=\text { yes build a factory in Los Angeles } \\ 0 \text { if decision }=\text { no, don't build a factory in Los Angeles }\end{array}\right.$

It is easy to see that the function to be maximized is $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required	
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million	
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million	
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million	
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million	
Capital available: $\$ 10$ million					

$$
x_{1}=\left\{\begin{array}{c}
1 \text { if decision }=\text { yes build a factory in Los Angeles } \\
0 \text { if decision }=\text { no, don't build a factory in Los Angeles }
\end{array}\right.
$$

And an evident constraint is

$$
6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10
$$

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

$x_{1}=\left\{\begin{array}{c}1 \text { if decision }=\text { yes build a factory in Los Angeles } \\ 0 \text { if decision }=\text { no, don't build a factory in Los Angeles }\end{array}\right.$

Note: $x_{3}=$ yes only if $x_{1}=$ yes
Likewise: $x_{4}=$ yes only if $x_{2}=$ yes

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

$$
\begin{aligned}
& x_{3}=1 \text { only if } x_{1}=1 \\
& x_{4}=1 \text { only if } x_{2}=1
\end{aligned}
$$

So, knowing that al variables need to be either 0 or 1 a possible way to include this contingency is the constraint

$$
\begin{aligned}
& x_{3} \leq x_{1} \\
& x_{4} \leq x_{2}
\end{aligned}
$$

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

So, knowing that al variables need to be either 0 or 1 a possible way to include this contingency is the constraint

$$
\begin{aligned}
& x_{3} \leq x_{1} \\
& x_{4} \leq x_{2}
\end{aligned}
$$

Since we only want at most one warehouse, it should also be $x_{3}+x_{4} \leq 1$

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

Wrapping up, here the BIP problem:

How many problems can be framed as BIP?
Investment decisions
Each yes-or-no decision:
Should we make a certain fixed investment?
Decision variable $x_{j}= \begin{cases}1 & \text { if yes } \\ 0 & \text { if no }\end{cases}$
Siting decision
Each yes-or-no decision:
Should a certain site be selected to build a facility?
Decision variable $x_{j}= \begin{cases}1 & \text { if yes } \\ 0 & \text { if no }\end{cases}$

How many problems can be framed as BIP?

Relocating/restructuring, etc.?
Each yes-or-no decision:
Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?

How many problems can be framed as BIP?

Dispatching decisions
Each yes-or-no decision:
Should a certain route be selected for one of the trucks?
Decision variable $x_{j}= \begin{cases}1 & \text { if yes } \\ 0 & \text { if no }\end{cases}$

Source: Wikipedia Commons

Or in more complicated arrangements: Should all the following be selected simultaneously for a delivery run:

1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Decision variable $x_{j}= \begin{cases}1 & \text { if yes } \\ 0 & \text { if no }\end{cases}$

How many problems can be framed as BIP?

An airline application: Assigning crews to sequences of flights (crew scheduling problem). In a previous step of the analysis 12 crew flight sequences (ordered from one to a max of five), and the problem is to choose three of them so that all flights would be covered

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

	Feasible Sequence of Flights											
Flight	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

Z is easy: If $x_{j}=(0,1)$ decides if assigning the sequence to one of the three crews, then we must minimize:

$$
Z=2 x_{1}+3 x_{2}+4 x_{3}+6 x_{4}+7 x_{5}+5 x_{6}+7 x_{7}+8 x_{8}+9 x_{9}+9 x_{10}+8 x_{11}+9 x_{12}
$$

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Flight	Feasible Sequence of Flights											
	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

Since the crews are three it must be

$$
\sum_{j=1}^{12} x_{j}=3
$$

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Flight	Feasible Sequence of Flights											
	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

Then for each of the 11 flights (1. San Francisco to Los Angeles all the way to 11. Seattle to Los Angeles) it must be that the sum of the coefficients covering that flight add up to one or more (more crews can fly on a flight - there can be a non working crew that still needs to be paid)

1. $x_{1}+x_{4}+x_{7}+x_{10} \geq 1$
2. $x_{2}+x_{5}+x_{8}+x_{11} \geq 1$
3. $x_{6}+x_{9}+x_{10}+x_{11}+x_{12} \geq 1$

- TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Flight	Feasible Sequence of Flights											
	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

So wrapping up the problem is:

Minimize $Z=2 x_{1}+3 x_{2}+4 x_{3}+6 x_{4}+7 x_{5}+5 x_{6}+7 x_{7}+8 x_{8}+9 x_{9}+9 x_{10}+8 x_{11}+9 x_{12}$

Subject to
$\sum_{j=1}^{12} x_{j}=3$ and the 11 constraints
$x_{1}+x_{4}+x_{7}+x_{10} \geq 1$
$x_{2}+x_{5}+x_{8}+x_{11} \geq 1$
$x_{6}+x_{9}+x_{10}+x_{11}+x_{12} \geq 1$
Are we done?
x_{j} binary for $j=1,2, \ldots 12$

- TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Flight	Feasible Sequence of Flights											
	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

Minimize

$$
\begin{aligned}
& Z=2 x_{1}+3 x_{2}+4 x_{3}+6 x_{4}+7 x_{5}+5 x_{6} \\
& +7 x_{7}+8 x_{8}+9 x_{9}+9 x_{10}+8 x_{11}+9 x_{12}
\end{aligned}
$$

Verify that one optimal solution for this BIP model is
$x_{3}=1$ (assign sequence 3 to a crew)
$x_{4}=1$ (assign sequence 4 to a crew)
$x_{11}=1$ (assign sequence 11 to a crew) and all other $x_{j}=0$
and that another optimal solution is
$x_{1}=1$
$x_{5}=1$
$x_{12}=1$
and all other $x_{j}=0$

And compute Z for the two options

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

	Feasible Sequence of Flights											
Flight	1	2	3	4	5	6	7	8	9	10	11	12
1. San Francisco to Los Angeles	1			1			1			1		
2. San Francisco to Denver		1			1			1			1	
3. San Francisco to Seattle			1			1			1			1
4. Los Angeles to Chicago				2			2		3	2		3
5. Los Angeles to San Francisco	2					3				5	5	
6. Chicago to Denver				3	3				4			
7. Chicago to Seattle							3	3		3	3	4
8. Denver to San Francisco		2		4	4				5			
9. Denver to Chicago					2			2			2	
10. Seattle to San Francisco			2				4	4				5
11. Seattle to Los Angeles						2			2	4	4	2
Cost, \$1,000's	2	3	4	6	7	5	7	8	9	9	8	9

bARCELONA
SCHOOL OF
MANAGEMENT

We just solved a set covering problem, (all flights need to be covered)

A related BIP is the set partitioning problem, where instead of e.g.
$x_{1}+x_{4}+x_{7}+x_{10} \geq 1$
(previous problem) one would ask:
$x_{1}+x_{4}+x_{7}+x_{10}=1$
This would prevent more than one crew flying on the same flight

Source: https://airportwingspvtltd.wordpress.com/2016/01/04/role-and-responsibilities-of-cabin-crew/

As mentioned, IP are in general more difficult than LP; though there are less solutions, there are many of them; e.g. for a BIP with ten decision variables the number of possible solutions is $2^{10}=1,024$

Why?
Permutations with repetition of ten elements in groups of 10
It is not forbidden to try a LP approach for a IP problem (LP relaxation), though in general there is no guarantee that the solution will be feasible for the IP
upf.

It is not forbidden to try a LP approach for a IP problem (LP relaxation), though in general there is no guarantee that the solution will be feasible for the IP
... but when the LP relaxation solution satisfies the integer restriction of the IP problem, this solution must be optimal for the IP problem as well (=the best among all LP solutions is also the best for the subset of the IP solutions)

The LP relaxation value for the optimization function Z is in any case an upper bound for the Z of the integer problem

It is not forbidden to try a LP approach for a IP problem (LP relaxation), though in general there is no guarantee that the solution will be feasible for the IP
"Therefore, it is common for an IP algorithm to begin by applying the simplex method to the LP relaxation to check whether this fortuitous outcome has occurred"

Operations Research
"Therefore, it is common for an IP algorithm to begin by applying the simplex method to the LP relaxation to check whether this fortuitous outcome has occurred"

This may or may not work see e.g. the simple example
Maximize $Z=x_{2}$ subject to

$$
\begin{array}{ll}
-x_{1}+x_{2} \leq \frac{1}{2} \\
x_{1}+x_{2} \leq \frac{7}{2}
\end{array} \quad \begin{aligned}
& \text { Find graphically the } \\
& \underline{\text { linear solution of this }} \\
& \text { problem }
\end{aligned}
$$

and
$x_{1} \geq 0, x_{2} \geq 0$ x_{1}, x_{2} integers
I.e. removing this constraint

But there are IP problems whose structure guarantees an integer solution; remember the Transportation Problem (Section 12);

The integer solutions

property: For transportation problems where every supply s_{i} and demand d_{i} have an integer value, all basic feasible (BF) solutions (including an optimal one) also have integer values

TABLE 9.3 Constraint coefficients for P \& T Co.
Coefficient of:

But there are IP problems whose structure guarantees an integer solution; remember from the section on Transportation Problem (Section 12);

Other special cases are the assignment problem, the shortest-path problem, and the maximum flow problem

Source: Wikipedia Commons

Charles Chaplin's Modern Times, source
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/

Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia Commons

Level of difficulty of LP versus IP

	Difficulty of LP problem	Difficulty of IP problem
Source	Number of constraints	Number of integer variables
		Binary or general integer?

Source: https://www.dreamstime.com /illustration/accountant.html

Back to out prototype example: building or not building?

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building at most one new warehouse, but the choice of location is restricted to a city where a new factory is being built.

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Number	Yes-or-No Question	Decision Variable	Net Present Value	Capital Required
1	Build factory in Los Angeles?	x_{1}	$\$ 9$ million	$\$ 6$ million
2	Build factory in San Francisco?	x_{2}	$\$ 5$ million	$\$ 3$ million
3	Build warehouse in Los Angeles?	x_{3}	$\$ 6$ million	$\$ 5$ million
4	Build warehouse in San Francisco?	x_{4}	$\$ 4$ million	$\$ 2$ million
Capital available: $\$ 10$ million				

```
Maximize \(Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}\)
Subject to:
\(6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10\)
\(-x_{1}+x_{3} \leq 0\)
\(-x_{2}+x_{4} \leq 0\)
\(x_{3}+x_{4} \leq 1\)
and
\(x_{j}\) binary for \(j=1,2,3,4\)
```

If we apply LP relaxation replacing
x_{j} binary for $j=1,2,3,4$
with
$x_{j} \geq 0$ for $j=1,2,3,4$
We obtain $x_{1}, x_{2}, x_{3}, x_{4}=\left(\frac{5}{6}, 1,0,1\right)$
with $Z=16.5$

We round this to 16 and keep it as an upper bound for the IP problem

One method to solve IP problems: the branch-and-bound technique

- Branching (split the problem in two branches)
- Bounding (seek for a local optima for Z)
- Fathoming (Resolving the branching at fathomed the node)

Source: https://thesaurus.plus/synonyms/fathomed

- Branching (split the problem in two branches) $\quad \rightarrow$

Maximize $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$ Subject to:
$6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-x_{1}+x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
and

x_{j} binary for $j=1,2,3,4$

Maximize $5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
and
$x_{j} \geq 0$ for $j=2,3,4$

Maximize $Z=9+5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$6+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-1+x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
and
$x_{j} \geq 0$ for $j=2,3,4$

- Branching (split the problem in two branches) \rightarrow

We are splitting following the order of the variables, i.e. here starting by x_{1}. Better strategies are available

- Branching (split the problem in two branches) $\xrightarrow{\longrightarrow}$
Maximize $5 x_{2}+6 x_{3}+4 x_{4}$
Subject to:
$3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
Subject to
$6 x_{1}+3 x_{2}+5 x_{2}+2 x_{4} \leq 10$
$-x_{1}+x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
$x_{3}+$
and
x_{j} binary for $j=1,2,3,4$

The two subproblems are treated as linear instead of integer

- Bounding (seek for a local optima for Z)
- Branching (split the problem in two branches) $-\vec{\square}$

Maximise $Z=9 x_{1}+5 x_{2}+6 x_{2}+4 x_{6}$ Subject to-
$6 x_{2}+3 x_{2}+5 x_{2}+2 x_{4} \leq 10$
$-x_{1}+x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{1}+x_{4} \leq 1$
and
x_{j} binary for $/=1,2,3,4$

$3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{2}+x_{4} \leq 1$
and

$x_{1}=1$
Subject to
$6+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$-1+x_{3} \leq 0$
$-x_{2}+x_{4} \leq 0$
$x_{3}+x^{2}$
and
$x_{j} \geq 0$ for $j=2.3 .4$

Linear programming applied to these solutions yields
$x_{1}, x_{2}, x_{3}, x_{4}=(0,1,0,1)$ with $Z=9$
$x_{1}, x_{2}, x_{3}, x_{4}=\left(1, \frac{4}{5}, 0, \frac{4}{5}\right)$ with $Z=16.5$

- Fathoming (Resolving the branching at fathomed the node)

This is where we are at the end of the first bounding step

- Fathoming (Resolving the branching at fathomed the node)

- Fathoming (Resolving the branching at fathomed the node)

In fact, there are 3 ways of fathoming:

Test 1: Its bound $\leq Z^{*}$

Test 2: Its LP relaxation has no feasible solutions

Test 3: The optimal solution for its LP relaxation is integer.

- Fathoming (Resolving the branching at fathomed the node)

In fact, there are 3 ways of fathoming:

Test 1: Its bound $\leq Z^{*}$

Test 2: Its LP relaxation has no feasible solutions

Test 3: The optimal solution for its LP relaxation is integer

If this solution is better than the incumbent, it becomes the new incumbent Z^{*}, and test 1 is reapplied to all previous unfathomed subproblems with the new larger Z^{*}

- Continuing the example)

We now branch the $x_{1}=1$ problem by branching x_{2} between 0 and 1

- Continuing the example)

- Continuing the example)

$x_{2}=0, x_{1}=1$
Maximize $Z=9+6 x_{3}+4 x_{4}$
Subject to
Subject to:
$5 x_{3}+2 x_{4} \leq 4$
$x_{3} \leq 1$
$x_{4} \leq 0$
$x_{3}+x_{4} \leq 1$
$x_{j} \geq 0$ for $j=3,4$
$x_{2}=1, x_{1}=1$
Maximize $Z=9+5+6 x_{3}+4 x_{4}$
Subject to:
$5 x_{3}+2 x_{4} \leq 1$
$x_{3} \leq 1$
$x_{4} \leq 1$
$x_{3}+x_{4} \leq 1$
$x_{j} \geq 0$ for $j=3,4$

Linear programming applied to these solutions yields
$x_{1}, x_{2}, x_{3}, x_{4}=\left(1,0, \frac{4}{5}, 0\right)$ with $Z=13.8$
$x_{1}, x_{2}, x_{3}, x_{4}=\left(1,1,0, \frac{1}{2}\right)$ with $Z=16$

- Continuing the example)

This is where we are now; no problem has been fathomed

Test 1: Its bound $\leq Z^{*}$ NO
Test 2: Its LP relaxation has no feasible solutions NO

Test 3: The optimal solution for its LP relaxation is integer NO

- Continuing the example)

Since the problem $x_{2}=1$ has the larger Z we branch this solution

$$
\left(1,1,0, \frac{1}{2}\right)
$$

- Continuing the example)

- Continuing the example)

$x_{3}=0, x_{1}=1, x_{2}=1$
Maximize $Z=14+4 x_{4}$
Subject to:
$2 x_{4} \leq 1$
$x_{4} \leq 1$
$x_{4} \leq 1$
$x_{j} \geq 0$ for $j=4$
$x_{3}=1, x_{1}=1, x_{2}=1$
Maximize $Z=20+4 x_{4}$
Subject to:
$2 x_{4} \leq-4$
$x_{4} \leq 1$
$x_{4} \leq 0$
$x_{j} \geq 0$ for $j=4$

Linear programming applied to these solutions yields no feasible solution

$$
x_{1}, x_{2}, x_{3}, x_{4}=\left(1,1,0, \frac{1}{2}\right) \text { with } Z=16
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}=\text { no feasible solution }
$$

- Continuing the example)

This is where we are now, with one solution fathomed and one open

- Continuing the example)

We now branch the problem with $x_{3}=0$, but since only variable x_{4} is left fixing it generates directly a solution!

For $x_{4}=0$
$x_{1}, x_{2}, x_{3}, x_{4}=(1,1,0,0)$ with $Z=14$
For $x_{4}=1$
$x_{1}, x_{2}, x_{3}, x_{4}=(1,1,0,1)$ unfeasible

- Continuing the example)

Panettone with raisins inside

BARCELONA

upf.
SCHOOL OF
MANAGEMENT

Some take home points

Integer programming and linear programming: $\mathrm{LP}=$ convex polyhedron touched by the hyperplane of the objective function; the IP solutions are isolated point inside the polyhedron

Find these points may not be easy but the LP solution is an upper bound for the Z of IP

Homework

1) Consider the following directed network (Hillier 10.2-1)

(a) Find a directed path from node A to node F, and then identify three other undirected paths from node A to node F.
(b) Find three directed cycles. Then identify an undirected cycle that includes every node.
(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 10.3 to grow a tree one arc at a time until a spanning tree has been formed. Then repeat this process to obtain another spanning tree. [Do not duplicate the spanning tree identified in part (c).]

Homework 2) You need to take a trip by car to another town that you have never visited before. Therefore, you are studying a map to determine the shortest route to your destination. Depending on which route you choose, there are five other towns (call them A, B, C, D, E) that you might pass through on the way. The map shows the mileage along each road that directly connects two towns without any intervening towns. These numbers are summarized in the following table, where a dash indicates that there is no road directly connecting these two towns without going through any other towns. Formulate this problem as a shortest-path problem by drawing a network where nodes represent towns, links represent roads, and numbers indicate the length of each link in miles.

Town	Miles between Adjacent Towns					
	A	B	C	D	E	Destination
	40	60	50	-	-	-
A		10	-	70	-	-
B			20	55	40	-
C				-	50	-
D					10	60
E						80

Homework 3) Find shortest path from O to T, first visually then using then using the table method and backward recursion studied in Lesson 4 (Hillier 10.3-4); first row of the table below.

n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	$n t h$ Nearest Node	Minimum Distance	Last Connection
1	O	A	4	A	4	$O A$

Homework
4) Go back to eCampus Lesson three slides 55 and 56 about type one and type two error - or read about them online. Make an example of a test setting and describe for that test what would be type 1 and type two errors and the respective implications.

Thank you

[^0]: upf.
 BARCELONA
 SCHOOL OF
 MANAGEMENT

