# Máster Universitario en Administración y Dirección de Empresas Full Time MBA

Quantitative methods for decision making

Professor Andrea Saltelli



Elements of quantification for decision making with emphasis on operation research





#### August 25 2023: The politics of modelling is out!



the politics of modelling numbers between science and policy

Andree Sullelli & Islamics Di Fierre

OXFORD



#### Praise for the volume

'A long awaited examination of the role --- and obligation --of modeling."

Nassim Nicholas Taleb , Distinguished Professor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series Incerto.

....

'A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling." Orrin H. Pilkey, Professor at Duke University's Nicholas School of the Environment, co-author with Linda Pilkey-Jarvis of Useless Arithmetic: Why Environmental Scientists Can't Predict the Future, Columbia University Press 2009.

\*\*\*

#### Mastodon Toots by



Thanks to Marija Kozlova of LUT University in Finland for taking and curating this recording. My trajectory from number crunching to thinking about numbers' role in human affairs

View on

#### The talk is also at

https://ecampus.bsm.upf.edu/,

#### where you find additional reading material

# In this set of slides:

- 12 The Transportation Problem
- 13 The Assignment Problems (sketched)
- 14 Network Optimization Models
- 15 Integer Programming





# The Transportation problem

Framing of the problem, assumptions and properties of the solution. Hillier 2014, chapter 9.



# Where to find this book:

https://www.dropbox.com/sh/ddd48a8jguinbcf/AABF0s4eh1lPLVxdx0pes-Ofa?dl=0&preview=Introduction+to+Operations+Research+-+Frederick+S.+Hillier.pdf Operations Research





A prototype example of a Transportation Problem: shipping canned peas from canneries to warehouses

Three canneries and four warehouses





<sup>■</sup> FIGURE 9.1 Location of canneries and warehouses for the P & T Co. problem.



A prototype example: shipping truckloads of canned peas from canneries to warehouses



CANNERY 1 Belfingham CANNERY 2 Fugene WAREHOUSE 2 Soft Lake City WAREHOUSE 1 Sagramento WAREHOUSE 4 Albaquerque WAREHOUSE 4 Albaquerque WAREHOUSE 4 Albaquerque

■ FIGURE 9.1 Location of canneries and warehouses for the P & T Co. problem.

Source: Wikipedia Commons



# An old type of problem, recall the Torricelli and Fermat point



Source: Wikipedia Commons

1.Construct an <u>equilateral triangle</u> on each of the sides

2. From each of the farmost <u>vertex</u> draw a line the opposite vertex of the original triangle.

3. Where the three lines intersect is the Torricelli-Fermat point.



A prototype example: shipping canned peas from canneries to warehouses; this table contains all the information; where are the geographical distances?



**TABLE 9.2** Shipping data for P & T Co.

|            | SI  | 1000      |     |     |        |  |  |
|------------|-----|-----------|-----|-----|--------|--|--|
|            |     | Warehouse |     |     |        |  |  |
|            | 1   | 2         | 3   | 4   | Output |  |  |
| 1          | 464 | 513       | 654 | 867 | 75     |  |  |
| Cannery 2  | 352 | 416       | 690 | 791 | 125    |  |  |
| 3          | 995 | 682       | 388 | 685 | 100    |  |  |
| Allocation | 80  | 65        | 70  | 85  |        |  |  |



# In modern linear programming the geography can be made to disappear

Here it is replaced by costs per truckload per season **TABLE 9.2** Shipping data for P & T Co.

|            |   | SI  |           |     |     |        |  |
|------------|---|-----|-----------|-----|-----|--------|--|
|            |   |     | Warehouse |     |     |        |  |
|            |   | 1   | 2         | 3   | 4   | Output |  |
|            | 1 | 464 | 513       | 654 | 867 | 75     |  |
| Cannery    | 2 | 352 | 416       | 690 | 791 | 125    |  |
| ,          | 3 | 995 | 682       | 388 | 685 | 100    |  |
| Allocatior | ı | 80  | 65        | 70  | 85  |        |  |



# A prototype example: shipping canned peas from canneries to warehouses



#### **TABLE 9.2** Shipping data for P & T Co.

|            | Shipping Cost (\$) per Truckload |     |     |     |        |  |
|------------|----------------------------------|-----|-----|-----|--------|--|
| -          | Warehouse                        |     |     |     |        |  |
| -          | 1                                | 2   | 3   | 4   | Output |  |
| 1          | 464                              | 513 | 654 | 867 | 75     |  |
| Cannery 2  | 352                              | 416 | 690 | 791 | 125    |  |
| 3          | 995                              | 682 | 388 | 685 | 100    |  |
| Allocation | 80                               | 65  | 70  | 85  |        |  |

Minimize or maximize? ----- Minimize

What?

Total shipping cost; decision variable  $x_{i,j}$ , i = 1,2,3; j = 1,2,3,4member of truckloads from cannery i to warehouse j



**TABLE 9.2** Shipping data for P & T Co.

|            | S         |     |     |     |        |
|------------|-----------|-----|-----|-----|--------|
| -          | Warehouse |     |     |     |        |
| -          | 1         | 2   | 3   | 4   | Output |
| 1          | 464       | 513 | 654 | 867 | 75     |
| Cannery 2  | 352       | 416 | 690 | 791 | 125    |
| 3          | 995       | 682 | 388 | 685 | 100    |
| Allocation | 80        | 65  | 70  | 85  |        |

Minimize total shipping cost  $Z = 464 x_{1,1} + 513 x_{1,2} + 654 x_{1,3} + 867 x_{1,4}$ +  $352 x_{2,1} + 416 x_{2,2} + 690 x_{2,3} + 791 x_{2,4}$ +  $995 x_{3,1} + 682 x_{3,2} + 388 x_{3,3} + 685 x_{3,4}$ 



#### **TABLE 9.2** Shipping data for P & T Co.

|           |   | s   |           |     |     |        |  |
|-----------|---|-----|-----------|-----|-----|--------|--|
|           |   |     | Warehouse |     |     |        |  |
|           |   | 1   | 2         | 3   | 4   | Output |  |
|           | 1 | 464 | 513       | 654 | 867 | 75     |  |
| Cannery   | 2 | 352 | 416       | 690 | 791 | 125    |  |
| ,         | 3 | 995 | 682       | 388 | 685 | 100    |  |
| Allocatio | า | 80  | 65        | 70  | 85  |        |  |

Subject to cannery constraints  $x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 75$   $x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 125$  $x_{3,1} + x_{3,2} + x_{3,3} + x_{3,4} = 100$  and warehouse constrains

$$x_{1,1} + x_{2,1} + x_{3,1} = 80$$
  

$$x_{1,2} + x_{2,2} + x_{3,2} = 65$$
  

$$x_{1,3} + x_{2,3} + x_{3,3} = 70$$
  

$$x_{1,4} + x_{2,4} + x_{3,4} = 100$$

$$x_{i,j} \ge 0 \ (i = 1, 2, 3; j = 1, 2, 3, 4)$$



#### **TABLE 9.2** Shipping data for P & T Co.

|            | SI  | hipping Cost (\$ | ) per Truckload | I   |        |
|------------|-----|------------------|-----------------|-----|--------|
|            |     | Wareh            | nouse           |     |        |
|            | 1   | 2                | 3               | 4   | Output |
| 1          | 464 | 513              | 654             | 867 | 75     |
| Cannery 2  | 352 | 416              | 690             | 791 | 125    |
| 3          | 995 | 682              | 388             | 685 | 100    |
| Allocation | 80  | 65               | 70              | 85  |        |
|            |     |                  |                 |     |        |

Anything noticeable about these two sets of numbers?

Supply and demand balance out at 300



These constraints can be written as a distinct pattern that is characteristic of the Transportation and Assignment Problem





|            | Shipping Cost (\$) per Truckload |     |     |     |        |  |
|------------|----------------------------------|-----|-----|-----|--------|--|
| -          | Warehouse                        |     |     |     |        |  |
| -          | 1                                | 2   | 3   | 4   | Output |  |
| 1          | 464                              | 513 | 654 | 867 | 75     |  |
| Cannery 2  | 352                              | 416 | 690 | 791 | 125    |  |
| 3          | 995                              | 682 | 388 | 685 | 100    |  |
| Allocation | 80                               | 65  | 70  | 85  |        |  |

**TABLE 9.2** Shipping data for P & T Co.



## Or as a graph/network representation



## Terminology of the Transportation and Assignment Problem

BARCELONA SCHOOL OF MANAGEMENT





The = sign (instead of ≤≥) in the supply and demand represents the **requirement assumption** of the Transportation and Assignment Problem: supply and demand are fixed



#### **TABLE 9.2** Shipping data for P & T Co.

|            | Shipping Cost (\$) per Truckload |     |     |     |        |  |
|------------|----------------------------------|-----|-----|-----|--------|--|
| -          | Warehouse                        |     |     |     |        |  |
|            | 1                                | 2   | 3   | 4   | Output |  |
| 1          | 464                              | 513 | 654 | 867 | 75     |  |
| Cannery 2  | 352                              | 416 | 690 | 791 | 125    |  |
| 3          | 995                              | 682 | 388 | 685 | 100    |  |
| Allocation | 80                               | 65  | 70  | 85  |        |  |

Minimize total shipping cost Z =

 $= 464 x_{1,1} + 513 x_{1,2} + 654 x_{1,3} + 867 x_{1,4}$  $+ 352 x_{2,1} + 416 x_{2,2} + 690 x_{2,3} + 791 x_{2,4}$  $+ 995 x_{3,1} + 682 x_{3,2} + 388 x_{3,3} + 685 x_{3,4}$  The **cost assumption**: distributing units from any source to any destination is proportional to the number of units distributed; if  $c_{ij}$  is the unit cost and  $x_{ij}$  the number of units, the cost is simply  $c_{ij}x_{ij}$ 



The requirements assumption is typic of transportation problem, while the **cost assumption** we should know already

What are the assumptions we studied already?





Assumptions of linear programming

**Proportionality:** The contribution of each activity to the value of the objective function Z is proportional to the level of the activity  $x_j$  increase in the objective function Z, as represented by the  $c_j x_j$  terms



Additivity: Every function in a linear programming model (whether the objective function or the function on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective activities

Divisibility: Decision variables in a linear programming model are allowed to have any values, including <u>noninteger</u> values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels

When a decision variable **must** be an integer, it becomes a case of integer programming

Certainty: The value assigned to the parameters (the  $a_j'$ 's,  $b_l$ 's, and  $c_j$ 's) of a linear programming model are assumed to be known constants

Whether or not actual transportation is involved, any problem in the format of this table that obeys the requirement and cost assumption is a transportation problem

|          | Cost per Unit Distributed |                        |  |                 |                |  |
|----------|---------------------------|------------------------|--|-----------------|----------------|--|
|          |                           |                        |  |                 |                |  |
|          | 1                         | 2                      |  | п               | Supply         |  |
| 1        | c <sub>11</sub>           | C <sub>12</sub>        |  | C <sub>1n</sub> | S <sub>1</sub> |  |
| Source 2 | C <sub>21</sub>           | C <sub>22</sub>        |  | C <sub>2n</sub> | \$2<br>:       |  |
| m        | <i>Cm</i> 1               | <i>C</i> <sub>m2</sub> |  | C <sub>mn</sub> | Sm             |  |
| Demand   | d1                        | d2                     |  | d <sub>n</sub>  |                |  |

#### **TABLE 9.5** Parameter table for the transportation problem



Compact formulation for a problem with *m* sources *s* and *n* destinations *d*:

Minimize  $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ 

Subject to source and demand constraints

 $\sum_{j=1}^{n} x_{ij} = s_i$  for i = 1, 2, ..., m

$$\sum_{i=1}^{m} x_{ij} = d_j$$
 for  $j = 1, 2, ..., n$ 

 $x_{ij} \ge 0$  for (i = 1, 2, ..., m; j = 1, 2, ..., n)

**Cost per Unit Distributed** Destination 1 2 n Supply C11  $C_{12}$  $C_{1n}$ **S**<sub>1</sub> C21 C22 C2n 52 Source m Sm  $C_{m1}$  $C_{m2}$ Cmn Demand d<sub>1</sub>  $d_2$ ... d<sub>n</sub>

The property to be kept in mind here is that a transportation problem will have feasible solution if and only if  $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$ (supply and demand balance out as in the example)



**TABLE 9.5** Parameter table for the transportation problem

Compact formulation for a problem with m sources s and n destinations d:

Minimize  $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ 

$$\sum_{i=1}^{m} x_{ij} = d_j$$
 for  $j = 1, 2, ..., n$ 

$$\sum_{j=1}^{n} x_{ij} = s_i$$
 for  $i = 1, 2, ... m$ 

$$x_{ij} \ge 0$$
 for  $(i = 1, 2, ..., m; j = 1, 2, ..., n)$ 

$$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$$

(supply and demand balance out)

The integer solutions property: For transportation problems where every  $s_i$ and  $d_i$  have an integer value, all basic feasible (BF) solutions (including an optimal one) also have integer values



#### **TABLE 9.2** Shipping data for P & T Co.

|            | Shipping Cost (\$) per Truckload |     |     |     |        |  |
|------------|----------------------------------|-----|-----|-----|--------|--|
| -          | Warehouse                        |     |     |     |        |  |
| -          | 1                                | 2   | 3   | 4   | Output |  |
| 1          | 464                              | 513 | 654 | 867 | 75     |  |
| Cannery 2  | 352                              | 416 | 690 | 791 | 125    |  |
| 3          | 995                              | 682 | 388 | 685 | 100    |  |
| Allocation | 80                               | 65  | 70  | 85  |        |  |

## Optimal solution with Excel Solver

| 0  | 20 | 0  | 55 |
|----|----|----|----|
| 80 | 45 | 0  | 0  |
| 0  | 0  | 70 | 30 |



Omer would like 2 pints of home brew today and an additional 7 pints of home brew tomorrow. Dick is willing to sell a maximum of 5 pints total at a price of \$3.00 per pint today and \$2.70 per pint tomorrow. Harry is willing to sell a maximum of 4 pints total at a price of \$2.90 per pint today and \$2.80 per pint tomorrow. Omer wishes to know what his purchases should be to minimize his cost while satisfying his thirst requirements.

Formulate this problem as a *transportation problem* by constructing the appropriate parameter table

|         | Título | Título | Título |
|---------|--------|--------|--------|
| Dick    | 3.     | 2.70   | 5      |
| Harry   | 2.90   | 2.80   | 4      |
| Tom/day | 2      | 7      |        |



#### What would you do being Omer?





# The Assignment problem

A brief sketch. Hillier 2014, chapter 9.



The assignment problem is a special type of linear programming problem where **assignees** are being assigned to perform **tasks** 



Charles Chaplin's Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html



- 1. The number of assignees and the number of tasks are the same.
- 2. Each assignee is to be assigned to exactly one task.
- 3. Each task is to be performed by exactly one assignee.
- 4. There is a cost  $c_{ij}$  associated with assignee *i*, (i = 1, 2, ..., n) performing task *j*, (j = 1, 2, ..., n).

5. The objective is to determine how all n assignments should be made to minimize the total cost  $\cdots$  but





Source: Wikipedia Commons



Charles Chaplin's Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html

In fact, the assignment problem is just a special type of transportation problem where the **sources now are assignees** and the **destinations now are tasks** and where:

```
Number of sources m = number of destinations n,
Every supply s_i = 1,
Every demand d_j = 1
```



Number of sources m = number of destinations n, Every supply  $s_i = 1$ , Every demand  $d_i = 1$ 

Minimize  $Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$ 

### Subject to

$$\begin{split} \sum_{i=1}^{n} x_{ij} &= \mathbf{1} \text{ for } j = 1, 2, \dots n \\ \sum_{j=1}^{n} x_{ij} &= \mathbf{1} \text{ for } i = 1, 2, \dots n \\ x_{ij} &\geq 0 \text{ for } (i = 1, 2, \dots n; j = 1, 2, \dots n) \end{split} \qquad \begin{array}{l} \text{Plus} \\ x_{ij} &= \text{binary } (0 \text{ or } 1) \text{ for} \\ (i = 1, 2, \dots n; j = 1, 2, \dots n) \\ \end{array}$$



Minimize  $Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$ 

### Subject to

 $\sum_{i=1}^{n} x_{ij} = \mathbf{1} \text{ for } j = 1, 2, \dots n \quad \longleftarrow \quad \text{Each task must be served}$   $\sum_{j=1}^{n} x_{ij} = \mathbf{1} \quad \text{for} \quad i = 1, 2, \dots n \quad \longleftarrow \quad \text{Each assignee must have work}$   $x_{ij} \ge 0 \text{ for } (i = 1, 2, \dots n; j = 1, 2, \dots n)$   $\underset{x_{ij} = \text{ binary } (0 \text{ or } 1) \text{ for}}{\text{Plus}}$ 

$$(i = 1, 2, ..., n; j = 1, 2, ..., n)$$



Thus assignment and transportation share the same useful properties in terms of existence of integer solutions





Source: Wikipedia Commons



Charles Chaplin's Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html

### Assignment and transportation have same network representation



BARCELONA SCHOOL OF MANAGEMENT





■ FIGURE 9.3 Network representation of the transportation problem. FIGURE 9.5 Network representation of the assignment problem. A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

|         |   | Location |    |    |    |  |  |
|---------|---|----------|----|----|----|--|--|
|         |   | 1        | 2  | 3  | 4  |  |  |
|         | 1 | 13       | 16 | 12 | 11 |  |  |
| Machine | 2 | 15       |    | 13 | 20 |  |  |
|         | 3 | 5        | 7  | 10 | 6  |  |  |

# **TABLE 9.24** Materials-handling cost data (\$) for Job Shop Co.

|           |   | Task<br>(Location) |    |    |    |  |
|-----------|---|--------------------|----|----|----|--|
|           |   | 1                  | 2  | 3  | 4  |  |
|           | 1 | 13                 | 16 | 12 | 11 |  |
| Assignee  | 2 | 15                 | М  | 13 | 20 |  |
| (Machine) | 3 | 5                  | 7  | 10 | 6  |  |

11

Machine 2 cannot go to location 2, so a very large cost *M* in entered in the empty cell



A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

|                |   | Location |    |    |    |  |  |
|----------------|---|----------|----|----|----|--|--|
|                |   | 1        | 2  | 3  | 4  |  |  |
|                | 1 | 13       | 16 | 12 | 11 |  |  |
| <b>Machine</b> | 2 | 15       |    | 13 | 20 |  |  |
|                | 3 | 5        | 7  | 10 | 6  |  |  |

| l | <b>TABLE 9.2</b> 4 | Materials-handling cost data |  |
|---|--------------------|------------------------------|--|
|   |                    | (\$) for Job Shop Co.        |  |

|                     |      | Task<br>(Location) |    |    |    |  |
|---------------------|------|--------------------|----|----|----|--|
|                     | 2    | 1                  | 2  | 3  | 4  |  |
|                     | 1    | 13                 | 16 | 12 | 11 |  |
| Assignee            | 2    | 15                 | М  | 13 | 20 |  |
| (Machine)           | 3    | 5                  | 7  | 10 | 6  |  |
| 400.400.000.000.000 | 4(D) | 0                  | 0  | 0  | 0  |  |

#### TABLE 9.25 Cost table for the Job Shop Co. assignment problem

Since assignees and tasks must be equal a dummy machine is introduced



A typical problem offered in the book locating three machine among four facilities, with different cost per machine / facility

| I | <b>TABLE 9.25</b> | Cost table for the Job Shop Co. |  |
|---|-------------------|---------------------------------|--|
|   |                   | assignment problem              |  |

|                              |      | Task<br>(Location) |    |    |    |  |  |
|------------------------------|------|--------------------|----|----|----|--|--|
|                              |      | 1                  | 2  | 3  | 4  |  |  |
|                              | 1    | 13                 | 16 | 12 | 11 |  |  |
| Assignee                     | 2    | 15                 | М  | 13 | 20 |  |  |
| (Machine)                    | 3    | 5                  | 7  | 10 | 6  |  |  |
| 400.9604099890093 <b>4</b> 0 | 4(D) | 0                  | 0  | 0  | 0  |  |  |



Can you guess the solution "by inspection?"

Machine 1 to location 4 Machine 2 to location 3 Machine 3 to location 1 The algorithms (not described here) would assign the dummy machine 4 to location 2





## **Network Optimization Models**

More network problems: shortest-path problem, the minimum spanning tree problem, maximum flow problem. Hiller 2014, chapter 10.



Many network optimization models are special types of linear programming problems – e.g. the transportation problem and the assignment problem





## Operations Research Our new prototype problem - the "Seervada Park" road system A 2 5 5 4 B 0 DC F 4 **FIGURE 10.1** The road system for Seervada Park.

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

BARCELONA SCHOOL OF

**JANAGEMENT** 

Three practical problems

- Shortest path from entrance *0* to scenic point *T*
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance *0* to scenic point *T*



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/







Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

Some terminology: nodes (or vertices), arcs (or links or edges or branches)









# The trains trough the park represent a type of 'flow' through the arcs



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/

### **TABLE 10.1** Components of typical networks

| Nodes            | Arcs                      | Flow     |
|------------------|---------------------------|----------|
| Intersections    | Roads                     | Vehicles |
| Airports         | Air lanes                 | Aircraft |
| Switching points | Wires, channels           | Messages |
| Pumping stations | Pipes                     | Fluids   |
| Work centers     | Materials-handling routes | Jobs     |



## More terminology:

Directed arcs (flow only in one directions) and undirected arcs or link, (flow in both directions)

Networks can also be directed (only directed arcs) or undirected

A **path** trough nodes can be directed when every step from node i to node j is in the direction of j.

 $A \rightarrow B \rightarrow C \rightarrow E = directed path$ 

 $B \rightarrow C \rightarrow A \rightarrow D$  = undirected path





Note that our park has no arrows, in is hence made of undirected arcs



FIGURE 10.1 The road system for Seervada Park.



## More terminology: a **cycle** is a path starting and ending in the same node



A **directed cycle** contains only directed arcs

 $D \rightarrow E \rightarrow D$  is a directed cycle

 $A \rightarrow B \rightarrow C \rightarrow A$  is not a directed cycle



More terminology: starting from bare nodes, trees can be grown



A network; stripping the arc one gets …

… bare nodes

Starting from bare nodes, trees can be grown



(e) Spanning tree: all nodes connected by directed arcs



A spanning tree connects n nodes with n-1 directed arcs

A spanning tree is a **connected network** without unconnected arcs



(e) Spanning tree: all nodes connected by directed arcs



A spanning tree connects n nodes with n-1 directed arcs

A spanning tree is a **connected network** without unconnected arcs

*n-1* is both the **minimum** number of arcs needed and the **maximum** one, as adding one arc would generate an undirected **cycle** 

Adding e.g. arc A→C closes the loop but generates undirected cycles





## We are now ready to tackle the shortest path problem



Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia Commons



"Consider an undirected and connected network with two special nodes called the origin and the destination. Associated with each of the links (undirected arcs) is a nonnegative distance. The objective is to find the shortest path (the path with the minimum total distance) from the origin to the destination"



Let's learn by doing, on our test case: the mission is to go from the entrance O to the scenic point T



Algorithm for the Shortest-Path Problem



**Theory:** Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for n = 1, 2, ... until the nth nearest node is the destination. **Practice:** the nearest note to *O* is *A* 





**Theory:** Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for n = 1, 2, ... until the nth nearest node is the destination. **Practice:** the nearest note to O is A

| n | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes |   | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|---|---------------------------------------------------------|---|-------------------------------|--------------------------------|---------------------|--------------------|
| 1 | 0                                                       | А | 2                             | А                              | 2                   | OA                 |



Algorithm for the Shortest-Path Problem



**Theory:** <u>Input needed</u> for nth iteration: n - 1 nearest nodes to the origin (solved for at the previous iterations), including their shortest path and distance from the origin. (These nodes, plus the origin, will be called solved nodes; the others are unsolved nodes)

**Theory:** <u>Candidates for nth nearest node</u>: Each solved node that is directly connected by a link to one or more unsolved nodes provides one candidate — the unsolved node with the shortest connecting link to its solved node is taken



**Theory:** <u>Candidates for nth nearest node</u>: Each solved node (O, A now) that is directly connected by a link to one or more (nearest) unsolved nodes (C, B respectively) provides one candidate — the unsolved node with the shortest connecting link to this solved node. (Ties provide additional candidates)



| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | А                                     | 2                             | А                              | 2                   | OA                 |
| 2, 3 | O<br>A                                                  | C<br>B                                | $4 \\ 2 + 2 = 4$              | C<br>B                         | 4<br>4              | OC<br>AB           |



**Theory:** <u>Calculation of nth nearest node</u>: For each such solved node and its candidate, add the distance between them and the distance of the shortest path from the origin to this solved node. The candidate with the smallest such total distance is the nth nearest node (ties provide additional solved nodes – as in this case *C* and *B* with 4 miles), and its shortest path is the one generating this distance



| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | А                                     | 2                             | А                              | 2                   | OA                 |
| 2, 3 | O<br>A                                                  | C<br>B                                | $4 \\ 2 + 2 = 4$              | C<br>B                         | 4<br>4              | OC<br>AB           |



The solved nodes are now A, B, C, and the closest nodes are D, E(*E* is closest for both *B* and *C*) *E* wins as 4<sup>th</sup> closest node (7 miles)



| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved       | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 2                                   | Α                              | 2                   | OA                 |
| 2, 3 | O<br>A                                                  | C<br>B                                | $4 \\ 2 + 2 = 4$                    | C<br>B                         | 4<br>4              | OC<br>AB           |
| 4    | A<br>B<br>C                                             | D<br>E<br>E                           | 2 + 7 = 9<br>4 + 3 = 7<br>4 + 4 = 8 | E                              | 7                   | BE                 |



The solved nodes closest to an unsolved note are now A, B, E, and for all the closest node is D D wins as 5<sup>th</sup> closest node (8 miles)



| TABLE 10.2 Applying the shortest | path algorithm to the Seervada Park problem |
|----------------------------------|---------------------------------------------|
|----------------------------------|---------------------------------------------|

| п    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | А                                     | 2                             | A                              | 2                   | OA                 |
|      | 0                                                       | с                                     | 4                             | с                              | 4                   | oc                 |
| 2, 3 | A                                                       | В                                     | 2 + 2 = 4                     | В                              | 4                   | AB                 |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 4    | В                                                       | E                                     | 4 + 3 = 7                     | E                              | 7                   | BE                 |
|      | c                                                       | E                                     | 4 + 3 = 7<br>4 + 4 = 8        |                                |                     | 11585.0            |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 5    | В                                                       | D                                     | 4 + 4 = 8                     | D                              | 8                   | BD                 |
|      | E                                                       | D                                     | 4 + 4 = 8<br>7 + 1 = 8        | D<br>D                         | 8                   | ED                 |



The solved nodes closest to an unsolved note are now D, E, and for both the closest not destination T; T wins as  $6^{th}$  close

| ses              | t node                 | target<br>e (13 mi<br>Seervada Pa |                    |       |
|------------------|------------------------|-----------------------------------|--------------------|-------|
| al<br>nce<br>ved | nth<br>Nearest<br>Node | Minimum<br>Distance               | Last<br>Connection | (C) 4 |
|                  | A                      | 2                                 | OA                 |       |
| = 4              | C<br>B                 | 4<br>4                            | OC<br>AB           |       |
|                  |                        |                                   |                    |       |

TABLE 10.2 Applying the shortest-path algor

| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connectior |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 2                             | A                              | 2                   | OA                 |
| 2, 3 | 0                                                       | с                                     | 4                             | C<br>B                         | 4                   | oc                 |
| 2, 3 | A                                                       | В                                     | $4 \\ 2 + 2 = 4$              | В                              | 4                   | AB                 |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 4    | B                                                       | D<br>E<br>E                           | 4 + 3 = 7                     | E                              | 7                   | BE                 |
|      | С                                                       | E                                     | 4 + 4 = 8                     |                                |                     |                    |
| _    | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 5    | B<br>E                                                  | D                                     | 4 + 4 = 8                     | D                              | 8                   | BD                 |
|      | E                                                       | D                                     | 7 + 1 = 8                     | D                              | 8                   | ED                 |
| 6    | D                                                       | Т                                     | 8 + 5 = 13                    | T                              | 13                  | DT                 |
|      | E                                                       | Т                                     | 7 + 7 = 14                    |                                | 10000               | 54.0               |



| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | nth<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 2                             | A                      | 2                   | OA                 |
| 2, 3 | 0                                                       | с                                     | 4                             | С                      | 4                   | ос                 |
| 2, 5 | A                                                       | В                                     | 2 + 2 = 4                     | C<br>B                 | 4                   | AB                 |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                        |                     |                    |
| 4    | В                                                       | E<br>E                                | 4 + 3 = 7                     | E                      | 7                   | BE                 |
|      | C                                                       | E                                     | 4 + 4 = 8                     |                        |                     |                    |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                        |                     |                    |
| 5    | В                                                       | D                                     | 4 + 4 = 8                     | D                      | 8                   | BD                 |
|      | E                                                       | D                                     | 7 + 1 = 8                     | D                      | 8                   | ED                 |
| 6    | D                                                       | Т                                     | 8 + 5 = 13                    | T                      | 13                  | DT                 |
|      | E                                                       | Т                                     | 7 + 7 = 14                    |                        |                     | 19412              |

#### TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem



Note how at each step the distance for the various candidate is computed...

BARCELONA

CHOOL OF

··· and the minimum distance is recorded

| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | nth<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 2                             | A                      | 2                   | OA                 |
| 2, 3 | 0                                                       | с                                     | 4                             | C<br>B                 | 4                   | ос                 |
| 2, 5 | A                                                       | В                                     | 2 + 2 = 4                     | В                      | 4                   | AB                 |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                        |                     |                    |
| 4    | В                                                       | D<br>E<br>E                           | 4 + 3 = 7                     | E                      | 7                   | BE                 |
|      | C                                                       | E                                     | 4 + 4 = 8                     |                        |                     |                    |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                        |                     |                    |
| 5    | A<br>B                                                  | D                                     | 4 + 4 = 8                     | D                      | 8                   | BD                 |
|      | E                                                       | D                                     | 7 + 1 = 8                     | D                      | 8                   | ED                 |
| 6    | D                                                       | Т                                     | 8 + 5 = 13                    | T                      | 13                  | DT                 |
|      | E                                                       | Т                                     | 7 + 7 = 14                    |                        | 10000               | 124012             |

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem



We now move backword, from the destination to the origin  $T \rightarrow D \rightarrow B \rightarrow A \rightarrow O$ or  $T \rightarrow D \rightarrow E \rightarrow B \rightarrow A \rightarrow O$ Both with 13 miles

Hence the solution:  $O \rightarrow A \rightarrow B \rightarrow D \rightarrow T$  or  $O \rightarrow A \rightarrow B \rightarrow E \rightarrow D \rightarrow T$ 



| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 2                             | A                              | 2                   | OA                 |
| 2, 3 | 0                                                       | с                                     | 4                             | C<br>B                         | 4                   | oc                 |
| 2, 3 | A                                                       | В                                     | 2 + 2 = 4                     | В                              | 4                   | AB                 |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 4    | В                                                       | D<br>E<br>E                           | 4 + 3 = 7                     | E                              | 7                   | BE                 |
|      | С                                                       | E                                     | 4 + 4 = 8                     |                                |                     |                    |
|      | A                                                       | D                                     | 2 + 7 = 9                     |                                |                     |                    |
| 5    | A<br>B                                                  | D                                     | 4 + 4 = 8                     | D                              | 8<br>8              | BD                 |
|      | E                                                       | D                                     | 7 + 1 = 8                     | D                              | 8                   | ED                 |
| 6    | D                                                       | Т                                     | 8 + 5 = 13                    | Т                              | 13                  | DT                 |
|      | E                                                       | Т                                     | 7 + 7 = 14                    |                                |                     |                    |







#### Perhaps clearer in this tree formulation?

Hence the solution:  $O \rightarrow A \rightarrow B \rightarrow E \rightarrow D \rightarrow T$ or  $O \rightarrow A \rightarrow B \rightarrow D \rightarrow T$  Three practical problems

- Shortest path from entrance *0* to scenic point *T* 
  - Solved
- Minimum length of telephone lines covering all tracks (minimum spanning tree)
- Maximum flow of mini-trains carrying non trekkers from entrance 0 to scenic point T



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/







Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

## The Minimum Spanning Tree problem



Source: https://eu.palmbeachdailynews.com/story/entertainment/house-home/2019/12/15/palm-beach-gardening-help-save-planet-by-planting-these-native-trees/2079095007/



The Minimum Spanning Tree problem

For the shortest-path problem, we were looking for links that provide a path between the origin and the destination. We now just look for a minimum set of links that connect all nodes



Could this be a spanning tree?





No as a spanning tree provides a path between each pair of nodes. n nodes will take n-1 links

→ Design the network by inserting enough links to satisfy the requirement that there be a path between every pair of nodes; The objective is to satisfy this requirement in a way that minimizes the total length of the links

Could this be a spanning tree?





→ Design the network by inserting enough links to satisfy the requirement that there be a path between every pair of nodes; The objective is to satisfy this requirement in a way that minimizes the total length of the links





All 7 nodes connected with  $6 \ {\rm link}$ 

## The strategy Select arbitrarily a node

- Identify closest unconnected
- node
- Branch on ties (try both)





Select arbitrarily a node e.g. A Identify closest unconnected node O or B Branch on ties (try both)





# Identify closest unconnected node $\ensuremath{\mathsf{C}}$





# Identify closest unconnected node E





# Identify closest unconnected node D





Here our spanning tree



Three practical problems

- Shortest path from entrance *O* to scenic point *T*
- Minimum length of telephone lines covering all tracks (minimum spanning tree)





 Maximum flow of mini-trains carrying non trekkers from entrance *0* to scenic point *T*



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/





Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

We are now left with the last problem to solve: Maximum flow of minitrains carrying non trekkers from entrance O to scenic point T



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/





# Maximum flow problem

- "Typical kinds of applications of the maximum flow problem:
- 1. Maximize the flow through a company's distribution network from its factories to its customers.
- 2. Maximize the flow through a company's supply network from its vendors to its factories.
- 3. Maximize the flow of oil through a system of pipelines.
- 4. Maximize the flow of water through a system of aqueducts.
- 5. Maximize the flow of vehicles through a transportation network." (Hillier pp.387-388)



upf. BARCELONA SCHOOL OF MANAGEMENT

Source: https://www.livescience.com/61862-why-phantom-traffic-jams-happen.html

# Maximum flow problem

Also here we proceed by a stepwise algorithm by 'pumping' items along preselected paths and recording changes. In the beginning the numbers close to the nodes represent maximum capacities







Nothing has moved yet, and we note this by putting zeros **before** the node





An augmenting path is a directed path from the source to the sink in the residual network such that every arc on this path has strictly positive residual capacity; for example

 $0 \rightarrow B \rightarrow E \rightarrow T$ 

is an augmenting path, still at full capacity.



Chose now the smallest **residual capacity** on this path – among **7,5,6** → **5** is the smallest. Move five through this path, noting what happens

The capacity of link *BE* is now exhausted





We now go to the augmenting path  $0 \rightarrow A \rightarrow D \rightarrow T$ where the smallest capacity is 3, and move it

The capacity of link *AD* is now exhausted





Assign a flow of 1 to the augmenting path  $0 \rightarrow A \rightarrow B \rightarrow D \rightarrow T$ 

Assign a flow of 2 to the augmenting path

 $0 \rightarrow B \rightarrow D \rightarrow T$ 

The capacity of links *AB* and *OB* are now exhausted







Assign a flow of 1 to the augmenting path

 $0 \rightarrow C \rightarrow E \rightarrow D \rightarrow T$ 

Assign a flow of 1 to the augmenting path

 $0 \rightarrow C \rightarrow E \rightarrow T$ 





Assign a flow of 1 to the augmenting path

 $O \rightarrow C \rightarrow E \rightarrow B \rightarrow D \rightarrow T$ 

The capacity of link *BD* is now exhausted

Anything weird here?







We have moved 'countercurrent' – this is the same as reversing part of a previous flow

This was also the final move







# Check for yourself that

- No capacity has been violated
- No accumulation takes place at any node







# Three practical problems

- Shortest path from entrance *O* to scenic point *T*
- Minimum length of telephone lines covering all tracks (minimum spanning tree)

Solved



Maximum flow of mini-trains
 carrying non trekkers from entrance
 0 to scenic point T



Source: https://www.yosemite.com/things-todo/leisure-activities/valley-floor-tour/





Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

# 15.

# **Integer Programming**

Intuitions and fallacies. Why is it more difficult than LP. Integer and binary problems. Examples. Solution via branch and bound. Take home points. Hillier 2014, chapter 12.



# Integer programming; intuition and fallacies

If the solutions need to be integer, there will be less of them, so Integer Programming (IP) will be easier than Linear Programming (LP)

- Yes, there will be less solutions, but still a very large numbers if they have to be found 'by inspection'
- The simplex solution of an IP treated as if it were an LP (what is called LP relaxation) generally generate unfeasible solutions



A phrenological mapping of the brain. Source: Wikipedia Commons



#### WWW.FANIKATUN.COM

# Moving from LP to IP which of the four assumptions of LP will need to fall?

**Proportionality:** The contribution of each activity to the value of the objective function Z is proportional to the level of the activity  $x_j$  increase in Z that , as represented by the  $c_j x_j$  term in the objective function **Additivity:** Every function in a linear programming model (whether the objective function or the function on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective activities

**Divisibility:** Decision variables in a linear programming model are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels

**Certainty:** The value assigned to the parameters (the  $a_j^i$ 's,  $b_i$ 's, and  $c_j$ 's) of a linear programming model are assumed to be known constants





# YES, NO decision variables

An important class of IP involves binary decision variables that can be represented as (0,1)

 $x_j = \begin{cases} 1 \text{ if decision} = \text{yes} \\ 0 \text{ if decision} = \text{no} \end{cases}$ 

When this is the case the IP problem is said to be a Binary Integer Programming (**BIP**) problem



# A prototype example: building or not building?

| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable  | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

 TABLE 12.1 Data for the California Manufacturing Co. example

Capital available: \$10 million

 $x_1 = \begin{cases} 1 \text{ if decision} = \text{yes build a factory in Los Angeles} \\ 0 \text{ if decision} = \text{no, don't build a factory in Los Angeles} \end{cases}$ 

The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building **at most one** new warehouse, but the choice of location is restricted to a city where a new factory is being built.



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable  | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

## **TABLE 12.1** Data for the California Manufacturing Co. example

Capital available: \$10 million

 $x_1 = \begin{cases} 1 \text{ if decision} = \text{yes build a factory in Los Angeles} \\ 0 \text{ if decision} = \text{no, don't build a factory in Los Angeles} \end{cases}$ 

The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building at most one new warehouse, but the choice of location is restricted to a city where a new factory is being built.

 $\rightarrow$   $x_1$  and  $x_2$  can both be 1, but  $x_2$  and  $x_3$  will depend upon the choice made for  $x_1, x_2$ 



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable  | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

# **TABLE 12.1** Data for the California Manufacturing Co. example

Capital available: \$10 million

 $x_1 = \begin{cases} 1 \text{ if decision} = \text{yes build a factory in Los Angeles} \\ 0 \text{ if decision} = \text{no, don't build a factory in Los Angeles} \end{cases}$ 

It is easy to see that the function to be maximized is  $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ 



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable  | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

# **TABLE 12.1** Data for the California Manufacturing Co. example

Capital available: \$10 million

 $x_1 = \begin{cases} 1 \text{ if decision} = \text{yes build a factory in Los Angeles} \\ 0 \text{ if decision} = \text{no, don't build a factory in Los Angeles} \end{cases}$ 

And an evident constraint is  $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ 



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> 1           | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                   | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                   | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                   | \$4 million          | \$2 million         |

 TABLE 12.1 Data for the California Manufacturing Co. example

 $x_1 = \begin{cases} 1 \text{ if decision} = \text{yes build a factory in Los Angeles} \\ 0 \text{ if decision} = \text{no, don't build a factory in Los Angeles} \end{cases}$ 

Note:  $x_3 = yes$  only if  $x_1 = yes$ Likewise:  $x_4 = yes$  only if  $x_2 = yes$ 



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> 1           | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                   | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                   | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                   | \$4 million          | \$2 million         |

**TABLE 12.1** Data for the California Manufacturing Co. example

 $x_3 = 1$  only if  $x_1 = 1$  $x_4 = 1$  only if  $x_2 = 1$ 

So, knowing that al variables need to be either 0 or 1 a possible way to include this contingency is the constraint

 $\begin{array}{l} x_3 \le x_1 \\ x_4 \le x_2 \end{array}$ 



| Decision<br>Number |                                   |                       | Net Present<br>Value | Capital<br>Required |
|--------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                  | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                  | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                  | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                  | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

**TABLE 12.1** Data for the California Manufacturing Co. example

So, knowing that al variables need to be either 0 or 1 a possible way to include this contingency is the constraint

 $\begin{array}{l} x_3 \le x_1 \\ x_4 \le x_2 \end{array}$ 

Since we only want at most one warehouse, it should also be  $x_3 + x_4 \leq \! 1$ 



| Decision Yes-or-No<br>Number Question |                                   | Decision<br>Variable | Net Present<br>Value | Capital<br>Required |
|---------------------------------------|-----------------------------------|----------------------|----------------------|---------------------|
| 1                                     | Build factory in Los Angeles?     | <i>x</i> 1           | \$9 million          | \$6 million         |
| 2                                     | Build factory in San Francisco?   | X2                   | \$5 million          | \$3 million         |
| 3                                     | Build warehouse in Los Angeles?   | X3                   | \$6 million          | \$5 million         |
| 4                                     | Build warehouse in San Francisco? | X4                   | \$4 million          | \$2 million         |

**TABLE 12.1** Data for the California Manufacturing Co. example

Wrapping up, here the BIP problem:

Maximize  $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:  $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$  $x_3 \leq x_1$  $-x_1 + x_3 \le 0$  $x_4 \leq x_2$  $-x_2 + x_4 \le 0$  $x_i$  binary for j = 1,2,3,4Rewritten in  $x_3 + x_4 \leq 1$ standard form and or  $x_i \leq 1$  $x_i \geq 0$  $x_i$  integer for j = 1,2,3,4BARCELONA

Investment decisions

Each yes-or-no decision: Should we make a certain fixed investment? Decision variable  $x_j = \begin{cases} 1 & \text{if yes} \\ 0 & \text{if no} \end{cases}$ 

Siting decision

Each yes-or-no decision: Should a certain site be selected to build a facility? Decision variable  $x_j = \begin{cases} 1 & \text{if yes} \\ 0 & \text{if no} \end{cases}$ 



Relocating/restructuring, etc.?

Each yes-or-no decision:

Should a certain plant remain open?

Should a certain site be selected for a new plant?

Should a certain distribution center remain open?

Should a certain site be selected for a new distribution center?





Source https://nortex.es/que-es-outsourcing/

# Dispatching decisions

Each yes-or-no decision: Should a certain route be selected for one of the trucks? Decision variable  $x_j = \begin{cases} 1 & \text{if yes} \\ 0 & \text{if no} \end{cases}$ 



```
Source: Wikipedia Commons
```

Or in more complicated arrangements: Should all the following be selected simultaneously for a delivery run:

1. A certain route.

2. A certain size of truck, and

3. A certain time period for the departure?

Decision variable  $x_j = \begin{cases} 1 & \text{if yes} \\ 0 & \text{if no} \end{cases}$ 



An airline application: Assigning crews to sequences of flights (crew scheduling problem). In a previous step of the analysis 12 crew flight sequences (ordered from one to a max of five), and the problem is to choose three of them so that all flights would be covered

|                                 |         |   |   | Fea | sible | e Seq | uenc | e of | Fligh | ts |    |    |
|---------------------------------|---------|---|---|-----|-------|-------|------|------|-------|----|----|----|
| Flight                          | 1       | 2 | 3 | 4   | 5     | 6     | 7    | 8    | 9     | 10 | 11 | 12 |
| 1. San Francisco to Los Angeles | 1       |   |   | 1   |       |       | 1    |      |       | 1  |    |    |
| 2. San Francisco to Denver      | 1 ° ° 1 | 1 |   |     | 1     |       |      | 1    |       |    | 1  |    |
| 3. San Francisco to Seattle     |         |   | 1 |     |       | 1     |      |      | 3     |    |    | 1  |
| 4. Los Angeles to Chicago       |         |   |   | 2   |       |       | 2    |      | 3     | 2  |    | 3  |
| 5. Los Angeles to San Francisco | 2       |   |   |     |       | 3     |      |      |       | 5  | 5  |    |
| 6. Chicago to Denver            |         |   |   | 3   | 3     |       |      |      | 4     |    |    |    |
| 7. Chicago to Seattle           |         |   |   |     |       |       | 3    | 3    |       | 3  | 3  | 4  |
| 8. Denver to San Francisco      |         | 2 |   | 4   | 4     |       |      |      | 5     |    |    |    |
| 9. Denver to Chicago            |         |   |   |     | 2     |       |      | 2    |       |    | 2  |    |
| 10. Seattle to San Francisco    |         |   | 2 |     |       |       | 4    | 4    |       |    |    | 5  |
| 11. Seattle to Los Angeles      |         |   |   |     |       | 2     |      |      | 2     | 4  | 4  | 2  |
| Cost, \$1,000's                 | 2       | 3 | 4 | 6   | 7     | 5     | 7    | 8    | 9     | 9  | 8  | 9  |

**TABLE 12.4** Data for Example 3 (the Southwestern Airways problem)



Z is easy: If  $x_j = (0,1)$  decides if assigning the sequence to one of the three crews, then we must minimize:

 $Z = 2x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5 + 5x_6 + 7x_7 + 8x_8 + 9x_9 + 9x_{10} + 8x_{11} + 9x_{12}$ 

|                                 |     |   |   | Fea | sible | seq | uenc | e of | Fligh | ts |    |    |
|---------------------------------|-----|---|---|-----|-------|-----|------|------|-------|----|----|----|
| Flight                          | 1   | 2 | 3 | 4   | 5     | 6   | 7    | 8    | 9     | 10 | 11 | 12 |
| 1. San Francisco to Los Angeles | 1   |   |   | 1   |       |     | 1    |      |       | 1  |    |    |
| 2. San Francisco to Denver      | - × | 1 |   |     | 1     |     |      | 1    |       |    | 1  |    |
| 3. San Francisco to Seattle     |     |   | 1 |     |       | 1   |      |      | 1     |    |    | 1  |
| 4. Los Angeles to Chicago       |     |   |   | 2   |       |     | 2    |      | 3     | 2  |    | 3  |
| 5. Los Angeles to San Francisco | 2   |   |   |     |       | 3   |      |      |       | 5  | 5  |    |
| 6. Chicago to Denver            |     |   |   | 3   | 3     |     |      |      | 4     |    |    |    |
| 7. Chicago to Seattle           |     |   |   |     |       |     | 3    | 3    |       | 3  | 3  | 4  |
| 8. Denver to San Francisco      |     | 2 |   | 4   | 4     |     |      |      | 5     |    |    |    |
| 9. Denver to Chicago            |     |   |   |     | 2     |     |      | 2    |       |    | 2  |    |
| 10. Seattle to San Francisco    |     |   | 2 |     |       |     | 4    | 4    |       |    |    | 5  |
| 11. Seattle to Los Angeles      |     |   |   |     |       | 2   |      |      | 2     | 4  | 4  | 2  |
| Cost, \$1,000's                 | 2   | 3 | 4 | 6   | 7     | 5   | 7    | 8    | 9     | 9  | 8  | 9  |

**TABLE 12.4** Data for Example 3 (the Southwestern Airways problem)



Since the crews are three it must be

$$\sum_{j=1}^{12} x_j = 3$$

**TABLE 12.4** Data for Example 3 (the Southwestern Airways problem)

|                                 |     |   |   | Fea | sible | e Seq | uenc | e of | Fligh | ts |    |    |
|---------------------------------|-----|---|---|-----|-------|-------|------|------|-------|----|----|----|
| Flight                          | 1   | 2 | 3 | 4   | 5     | 6     | 7    | 8    | 9     | 10 | 11 | 12 |
| 1. San Francisco to Los Angeles | 1   |   |   | 1   |       |       | 1    |      |       | 1  |    |    |
| 2. San Francisco to Denver      | - N | 1 |   |     | 1     |       |      | 1    |       |    | 1  |    |
| 3. San Francisco to Seattle     |     |   | 1 |     |       | 1     |      |      | 1     |    |    | 1  |
| 4. Los Angeles to Chicago       |     |   |   | 2   |       |       | 2    |      | 3     | 2  |    | 3  |
| 5. Los Angeles to San Francisco | 2   |   |   |     |       | 3     |      |      |       | 5  | 5  |    |
| 6. Chicago to Denver            |     |   |   | 3   | 3     |       |      |      | 4     |    |    |    |
| 7. Chicago to Seattle           |     |   |   |     |       |       | 3    | 3    |       | 3  | 3  | 4  |
| 8. Denver to San Francisco      |     | 2 |   | 4   | 4     |       |      |      | 5     |    |    |    |
| 9. Denver to Chicago            |     |   |   |     | 2     |       |      | 2    |       |    | 2  |    |
| 10. Seattle to San Francisco    |     |   | 2 |     |       |       | 4    | 4    |       |    |    | 5  |
| 11. Seattle to Los Angeles      |     |   |   |     |       | 2     |      |      | 2     | 4  | 4  | 2  |
| Cost, \$1,000's                 | 2   | 3 | 4 | 6   | 7     | 5     | 7    | 8    | 9     | 9  | 8  | 9  |



Then for each of the 11 flights (1. San Francisco to Los Angeles all the way to 11. Seattle to Los Angeles) it must be that the sum of the coefficients covering that flight add up to one or more (more crews can fly on a flight – there can be a non working crew that still needs to be paid)

1.  $x_1 + x_4 + x_7 + x_{10} \ge 1$ 2.  $x_2 + x_5 + x_8 + x_{11} \ge 1$ 

*11.*  $x_6 + x_9 + x_{10} + x_{11} + x_{12} \ge 1$ 

| Flight                          | Feasible Sequence of Flights |   |   |   |   |   |   |   |   |    |    |    |
|---------------------------------|------------------------------|---|---|---|---|---|---|---|---|----|----|----|
|                                 | 1                            | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1. San Francisco to Los Angeles | 1                            |   |   | 1 |   |   | 1 |   |   | 1  |    |    |
| 2. San Francisco to Denver      |                              | 1 |   |   | 1 |   |   | 1 |   |    | 1  |    |
| 3. San Francisco to Seattle     |                              |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 4. Los Angeles to Chicago       |                              |   |   | 2 |   |   | 2 |   | 3 | 2  |    | 3  |
| 5. Los Angeles to San Francisco | 2                            |   |   |   |   | 3 |   |   |   | 5  | 5  |    |
| 6. Chicago to Denver            |                              |   |   | 3 | 3 |   |   |   | 4 |    |    |    |
| 7. Chicago to Seattle           |                              |   |   |   |   |   | 3 | 3 |   | 3  | 3  | 4  |
| 8. Denver to San Francisco      |                              | 2 |   | 4 | 4 |   |   |   | 5 |    |    |    |
| 9. Denver to Chicago            |                              |   |   |   | 2 |   |   | 2 |   |    | 2  |    |
| 10. Seattle to San Francisco    |                              |   | 2 |   |   |   | 4 | 4 |   |    |    | 5  |
| 11. Seattle to Los Angeles      |                              |   |   |   |   | 2 |   |   | 2 | 4  | 4  | 2  |
| Cost, \$1,000's                 | 2                            | 3 | 4 | 6 | 7 | 5 | 7 | 8 | 9 | 9  | 8  | 9  |





. . .

#### So wrapping up the problem is:

Minimize  $Z = 2x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5 + 5x_6 + 7x_7 + 8x_8 + 9x_9 + 9x_{10} + 8x_{11} + 9x_{12}$ 

Subject to

 $\sum_{j=1}^{12} x_j = 3 \text{ and the 11 constraints}$   $x_1 + x_4 + x_7 + x_{10} \ge 1$   $x_2 + x_5 + x_8 + x_{11} \ge 1$ ...  $x_6 + x_9 + x_{10} + x_{11} + x_{12} \ge 1$ Are we done?  $x_i \text{ binary for } j = 1, 2, \dots 12$ 

|                                 | Feasible Sequence of Flights |   |   |   |   |   |   |   |   |    |    |    |  |
|---------------------------------|------------------------------|---|---|---|---|---|---|---|---|----|----|----|--|
| Flight                          | 1                            | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| 1. San Francisco to Los Angeles | 1                            |   |   | 1 |   |   | 1 |   |   | 1  |    |    |  |
| 2. San Francisco to Denver      | - ×                          | 1 |   |   | 1 |   |   | 1 |   |    | 1  |    |  |
| 3. San Francisco to Seattle     |                              |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |  |
| 4. Los Angeles to Chicago       |                              |   |   | 2 |   |   | 2 |   | 3 | 2  |    | 3  |  |
| 5. Los Angeles to San Francisco | 2                            |   |   |   |   | 3 |   |   |   | 5  | 5  |    |  |
| 6. Chicago to Denver            |                              |   |   | 3 | 3 |   |   |   | 4 |    |    |    |  |
| 7. Chicago to Seattle           |                              |   |   |   |   |   | 3 | 3 |   | 3  | 3  | 4  |  |
| 8. Denver to San Francisco      |                              | 2 |   | 4 | 4 |   |   |   | 5 |    |    |    |  |
| 9. Denver to Chicago            |                              |   |   |   | 2 |   |   | 2 |   |    | 2  |    |  |
| 10. Seattle to San Francisco    |                              |   | 2 |   |   |   | 4 | 4 |   |    |    | 5  |  |
| 11. Seattle to Los Angeles      |                              |   |   |   |   | 2 |   |   | 2 | 4  | 4  | 2  |  |
| Cost, \$1,000's                 | 2                            | 3 | 4 | 6 | 7 | 5 | 7 | 8 | 9 | 9  | 8  | 9  |  |
|                                 | -                            |   |   |   |   |   |   |   |   |    |    |    |  |

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)



Minimize

$$Z = 2x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5 + 5x_6$$
  
+ 7x<sub>7</sub> + 8x<sub>8</sub> + 9x<sub>9</sub> + 9x<sub>10</sub> + 8x<sub>11</sub> + 9x<sub>12</sub>

Verify that one optimal solution for this BIP model is

 $x_3 = 1$  (assign sequence 3 to a crew)  $x_4 = 1$  (assign sequence 4 to a crew)  $x_{11} = 1$  (assign sequence 11 to a crew) and all other  $x_i = 0$ 

and that another optimal solution is

 $x_1 = 1$   $x_5 = 1$   $x_{12} = 1$ and all other  $x_i = 0$ 

And compute Z for the two options



| TABLE 12.4 Data for Example 3 (the | Southwestern Airways problem) |
|------------------------------------|-------------------------------|
|------------------------------------|-------------------------------|

|                                 |       | its |   |   |   |   |   |   |   |    |    |    |
|---------------------------------|-------|-----|---|---|---|---|---|---|---|----|----|----|
| Flight                          | 1     | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1. San Francisco to Los Angeles | 1     |     |   | 1 |   |   | 1 |   |   | 1  |    |    |
| 2. San Francisco to Denver      | - × - | 1   |   |   | 1 |   |   | 1 |   |    | 1  |    |
| 3. San Francisco to Seattle     |       |     | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 4. Los Angeles to Chicago       |       |     |   | 2 |   |   | 2 |   | 3 | 2  |    | 3  |
| 5. Los Angeles to San Francisco | 2     |     |   |   |   | 3 |   |   |   | 5  | 5  |    |
| 6. Chicago to Denver            |       |     |   | 3 | 3 |   |   |   | 4 |    |    |    |
| 7. Chicago to Seattle           |       |     |   |   |   |   | 3 | 3 |   | 3  | 3  | 4  |
| 8. Denver to San Francisco      |       | 2   |   | 4 | 4 |   |   |   | 5 |    |    |    |
| 9. Denver to Chicago            |       |     |   |   | 2 |   |   | 2 |   |    | 2  |    |
| 10. Seattle to San Francisco    |       |     | 2 |   |   |   | 4 | 4 |   |    |    | 5  |
| 11. Seattle to Los Angeles      |       |     |   |   |   | 2 |   |   | 2 | 4  | 4  | 2  |
| Cost, \$1,000's                 | 2     | 3   | 4 | 6 | 7 | 5 | 7 | 8 | 9 | 9  | 8  | 9  |

We just solved a **set covering problem**, (all flights need to be covered)

A related BIP is the **set partitioning problem**, where instead of e.g.

 $x_1 + x_4 + x_7 + x_{10} \ge 1$ 

(previous problem ) one would ask:

 $x_1 + x_4 + x_7 + x_{10} = 1$ 

This would prevent more than one crew flying on the same flight



Source: https://airportwingspvtltd.wordpress.com/2016/01/04/role-and-responsibilities-of-cabin-crew/



As mentioned, IP are in general more difficult than LP; though there are less solutions, there are many of them; e.g. for a BIP with ten decision variables the number of possible solutions is  $2^{10} = 1,024$ 

Why?

Permutations with repetition of ten elements in groups of 10

It is not forbidden to try a LP approach for a IP problem (**LP relaxation**), though in general there is no guarantee that the solution will be feasible for the IP



It is not forbidden to try a LP approach for a IP problem (LP relaxation), though in general there is no guarantee that the solution will be feasible for the IP

... but when the LP relaxation solution satisfies the integer restriction of the IP problem, this solution must be optimal for the IP problem as well (=the best among all LP solutions is also the best for the subset of the IP solutions)

The LP relaxation value for the optimization function Z is in any case an upper bound for the Z of the integer problem



It is not forbidden to try a LP approach for a IP problem (LP relaxation), though in general there is no guarantee that the solution will be feasible for the IP

"Therefore, it is common for an IP algorithm to begin by applying the simplex method to the LP relaxation to check whether this fortuitous outcome has occurred"





"Therefore, it is common for an IP algorithm to begin by applying the simplex method to the LP relaxation to check whether this fortuitous outcome has occurred"

This may or may not work see e.g. the simple example

Maximize  $Z = x_2$  subject to  $-x_1 + x_2 \le \frac{1}{2} \\ x_1 + x_2 \le \frac{7}{2}$ Find graphically the linear solution of this problem and  $x_1 \ge 0, x_2 \ge 0$ I.e. removing this constraint  $x_1, x_2$  integers



But there are IP problems whose structure guarantees an integer solution; remember the Transportation Problem (Section 12);

The integer solutions property: For transportation problems where every supply  $s_i$  and demand  $d_i$  have an integer value, all basic feasible (BF) solutions (including an optimal one) also have integer values





But there are IP problems whose structure guarantees an integer solution; remember from the section on Transportation Problem (Section 12);

Other special cases are the assignment problem, the shortest-path problem, and the maximum flow problem



Source: Wikipedia Commons



Charles Chaplin's Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charleschaplin-modern-times.html



Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/



Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia Commons



# Level of difficulty of LP versus IP

|        | Difficulty of LP problem | Difficulty of IP problem    |  |  |
|--------|--------------------------|-----------------------------|--|--|
| Source |                          | Number of integer variables |  |  |
|        | Number of constraints    | Binary or general integer?  |  |  |
|        |                          | Special form?               |  |  |



Source: https://www.dreamstime.com /illustration/accountant.html



## Back to out prototype example: building or not building?

| Decision<br>Number | Yes-or-No<br>Question             | Decision<br>Variable  | Net Present<br>Value | Capital<br>Required |
|--------------------|-----------------------------------|-----------------------|----------------------|---------------------|
| 1                  | Build factory in Los Angeles?     | <i>x</i> <sub>1</sub> | \$9 million          | \$6 million         |
| 2                  | Build factory in San Francisco?   | X2                    | \$5 million          | \$3 million         |
| 3                  | Build warehouse in Los Angeles?   | X3                    | \$6 million          | \$5 million         |
| 4                  | Build warehouse in San Francisco? | X4                    | \$4 million          | \$2 million         |

**TABLE 12.1** Data for the California Manufacturing Co. example

Capital available: \$10 million

The choice is if building a new factory in either Los Angeles or San Francisco, or perhaps even in both cities. It also is considering building **at most one** new warehouse, but the choice of location is restricted to a city where a new factory is being built.



| Decision<br>Number | Yes-or-No<br>Question             | Decision<br>Variable | Net Present<br>Value | Capital<br>Required |
|--------------------|-----------------------------------|----------------------|----------------------|---------------------|
| 1                  | Build factory in Los Angeles?     | <i>x</i> 1           | \$9 million          | \$6 million         |
| 2                  | Build factory in San Francisco?   | X2                   | \$5 million          | \$3 million         |
| 3                  | Build warehouse in Los Angeles?   | X3                   | \$6 million          | \$5 million         |
| 4                  | Build warehouse in San Francisco? | X4                   | \$4 million          | \$2 million         |

**TABLE 12.1** Data for the California Manufacturing Co. example

Capital available: \$10 million

Maximize  $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:  $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$  $-x_1 + x_3 \le 0$  $-x_2 + x_4 \le 0$  $x_3 + x_4 \le 1$ and  $x_i$  binary for i = 1,2,3,4

 $x_j$  binary for j = 1,2,3,4

If we apply LP relaxation replacing  $x_j$  binary for j = 1,2,3,4with  $x_j \ge 0$  for j = 1,2,3,4

We obtain  $x_1, x_2, x_3, x_4 = \left(\frac{5}{6}, 1, 0, 1\right)$ with Z = 16.5

We round this to 16 and keep it as an upper bound for the IP problem One method to solve IP problems: the branch-and-bound technique

- Branching (split the problem in two branches)
- Bounding (seek for a local optima for Z)
- Fathoming (Resolving the branching at fathomed the node)



Source: https://thesaurus.plus/synonyms/fathomed



• Branching (split the problem in two branches)

Maximize 
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$
  
Subject to:  
 $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$   
 $-x_1 + x_3 \le 0$   
 $-x_2 + x_4 \le 0$   
 $x_3 + x_4 \le 1$   
and  
 $x_1 = 0$   
 $x_1 = 1$   
 $x_1 = 1$ 

upf. BARCELONA SCHOOL OF MANAGEMENT Maximize  $5x_2 + 6x_3 + 4x_4$ Subject to:  $3x_2 + 5x_3 + 2x_4 \le 10$   $x_3 \le 0$   $-x_2 + x_4 \le 0$   $x_3 + x_4 \le 1$ and  $x_j \ge 0$  for j = 2,3,4

Maximize  $Z = 9 + 5x_2 + 6x_3 + 4x_4$ Subject to:  $6 + 3x_2 + 5x_3 + 2x_4 \le 10$  $-1 + x_3 \le 0$  $-x_2 + x_4 \le 0$  $x_3 + x_4 \le 1$ and  $x_j \ge 0$  for j = 2,3,4







Bounding (seek for a local optima for Z)





#### • Fathoming (Resolving the branching at fathomed the node)





This solution is made of integers! It is hence optimal for the subproblem with  $x_1 = 0$ . We call the now the incumbent optimum  $Z^* = 9$  and say that the branch  $x_1 = 0$  is fathomed; in the following we can get rid of all branches whose  $Z \le Z^* = 9$ 

This cannot be fathomed



#### • Fathoming (Resolving the branching at fathomed the node)





In fact, there are 3 ways of fathoming:

**Test 1:** Its bound  $\leq Z^*$ 

**Test 2:** Its LP relaxation has no feasible solutions

**Test 3:** The optimal solution for its LP relaxation is integer.



### • Fathoming (Resolving the branching at fathomed the node)





If this solution is better than the incumbent, it becomes the new incumbent  $Z^*$ , and test 1 is reapplied to all previous unfathomed subproblems with the new larger  $Z^*$ 





We now branch the  $x_1 = 1$  problem by branching  $x_2$  between 0 and 1







Linear programming applied to these solutions yields

$$x_1, x_2, x_3, x_4 = (1, 0, \frac{4}{5}, 0)$$
 with  $Z = 13.8$ 

$$x_1, x_2, x_3, x_4 = (1, 1, 0, \frac{1}{2})$$
 with  $Z = 16$ 



This is where we are now; no problem has been fathomed

Test 1: Its bound  $\leq Z^*$  NO

**Test 2:** Its LP relaxation has no feasible solutions NO

**Test 3:** The optimal solution for its LP relaxation is integer NO





Since the problem  $x_2 = 1$  has the larger Z we branch this solution





upf. BARCELONA SCHOOL OF MANAGEMENT  $x_3 = 0, x_1 = 1, x_2 = 1$ Maximize  $Z = 14 + 4x_4$ Subject to:  $2x_4 \le 1$  $x_4 \le 1$  $x_4 \le 1$  $x_j \ge 0$  for j = 4

 $x_{3} = 1, x_{1} = 1, x_{2} = 1$ Maximize  $Z = 20 + 4x_{4}$ Subject to:  $2x_{4} \leq -4$  $x_{4} \leq 1$  $x_{4} \leq 0$  $x_{j} \geq 0 \text{ for } j = 4$ 



 $x_3 = 0, x_1 = 1, x_2 = 1$ Maximize  $Z = 14 + 4x_4$ Subject to:  $2x_4 \leq 1$  $x_4 \leq 1$  $x_{4} \leq 1$  $x_i \ge 0$  for j = 4 $x_3 = 1, x_1 = 1, x_2 = 1$ Maximize  $Z = 20 + 4x_4$ Subject to:  $2x_4 \leq -4$  $x_4 \leq 1$  $x_4 \leq 0$  $x_i \ge 0$  for j = 4

Linear programming applied to these solutions yields no feasible solution

$$x_1, x_2, x_3, x_4 = (1, 1, 0, \frac{1}{2})$$
 with  $Z = 16$ 

$$x_1, x_2, x_3, x_4 =$$
 no feasible solution









We now branch the problem with  $x_3 = 0$ , but since only variable  $x_4$  is left fixing it generates directly a solution!

For  $x_4 = 0$  $x_1, x_2, x_3, x_4 = (1,1,0,0)$  with Z = 14

For  $x_4 = 1$  $x_1, x_2, x_3, x_4 = (1,1,0,1)$  unfeasible







Source (both images): Wikipedia Commons



#### Some take home points

Integer programming and linear programming: LP=convex polyhedron touched by the hyperplane of the objective function; the IP solutions are isolated point inside the polyhedron

Find these points may not be easy but the LP solution is an upper bound for the Z of IP



Source: https://leitesculinaria.com/478/recipescranberry-pistachio-panettone.html Homework 1) Consider the following directed network (Hillier 10.2-1)



(a) Find a directed path from node A to node F, and then identify three other undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle that includes every node.

(c) Identify a set of arcs that forms a spanning tree.

(d) Use the process illustrated in Fig. 10.3 to grow a tree one arc at a time until a spanning tree has been formed. Then repeat this process to obtain another spanning tree. [Do not duplicate the spanning tree identified in part (c).]



Homework 2) You need to take a trip by car to another town that you have never visited before. Therefore, you are studying a map to determine the shortest route to your destination. Depending on which route you choose, there are five other towns (call them A, B, C, D, E) that you might pass through on the way. The map shows the mileage along each road that directly connects two towns without any intervening towns. These numbers are summarized in the following table, where a dash indicates that there is no road directly connecting these two towns without going through any other towns. Formulate this problem as a shortest-path problem by drawing a network where nodes represent towns, links represent roads, and numbers indicate the length of each link in miles.

|        | Miles between Adjacent Towns |    |    |    |    |             |  |  |  |  |  |  |
|--------|------------------------------|----|----|----|----|-------------|--|--|--|--|--|--|
| Town   | Α                            | В  | c  | D  | E  | Destination |  |  |  |  |  |  |
| Origin | 40                           | 60 | 50 | _  | _  |             |  |  |  |  |  |  |
| Ă      |                              | 10 | _  | 70 |    |             |  |  |  |  |  |  |
| В      |                              |    | 20 | 55 | 40 |             |  |  |  |  |  |  |
| С      |                              |    |    |    | 50 |             |  |  |  |  |  |  |
| D      |                              |    |    |    | 10 | 60          |  |  |  |  |  |  |
| E      |                              |    |    |    |    | 80          |  |  |  |  |  |  |



Homework 3) Find shortest path from O to T, first visually then using then using the table method and backward recursion studied in Lesson 4 (Hillier 10.3-4); first row of the table below.



| ARCELONA               | n | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes |   | Total<br>Distance<br>Involved | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |  |
|------------------------|---|---------------------------------------------------------|---|-------------------------------|--------------------------------|---------------------|--------------------|--|
| Chool of<br>Ianagement | 1 | 0                                                       | А | 4                             | А                              | 4                   | OA                 |  |

# Homework

4) Go back to eCampus Lesson three slides 55 and 56 about type one and type two error – or read about them online. Make an example of a test setting and describe for that test what would be type 1 and type two errors and the respective implications.



# Thank you

www.andreasaltelli.eu https://orcid.org/0000-0003-4222-6975 @AndreaSaltelli@mstdn.social https://www.youtube.com/channel/UCz26ZK04xchekUy4Gev A3DA

