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https://ecampus.bsm.upf.edu/,

where you find additional
reading material
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The Transportation Problem

The Assignment Problems (sketched)
Network Optimization Models

Integer Programming
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The Transportation problem

Framing of the problem, assumptions and
properties of the solution. Hillier 2014, chapter 9.



Introductionto

Operations

Where to find this book:
Research

https://www.dropbox.com/sh/ddd48a8;guinbcf/AABFOs4eh11PLVxdxOpes-
Ofa?dl=0&preview=Introduction+ to+ Operations+ Research+ -
+ Frederick+ S.+ Hillier.pdf
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A prototype example of a Transportation Problem: shipping O""’Ié"‘r"if;i"’ciorvmvsﬁ
canned peas from canneries to warehouses e
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A prototype example: shipping truckloads of
canned peas from canneries to warehouses

Source: Wikipedia Commons
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An old type of problem, recall the

Torricelli and Fermat point
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Source: Wikipedia Commons

1.Construct an equilateral triangle on each

of the sides
2. From each of the farmost vertex draw a

line the opposite vertex of the original

triangle.
3. Where the three lines intersect is the

Torricelli-Fermat point.



https://en.wikipedia.org/wiki/Equilateral_triangle
https://en.wikipedia.org/wiki/Vertex_(geometry)

A prototype example: shipping canned peas from
canneries to warehouses; this table contains all the
information; where are the geographical distances?

TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload
Warehouse
1 2 3 < Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

10



In modern linear
programming the
geography can be
made to disappear

Here it is replaced
by costs per
truckload per

season

BARCELONA
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost (3) per Truckload

Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

11



A prototype example: shipping canned peas from
canneries to warehouses

We know how
much moving
truckloads costs

TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse
1 2 3 = Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
- and how much
Allocation 80 65 70 85

each warehouse =——

should be
provided with

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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Subject to cannery

constraints



TABLE 9.2 Shipping data for P & T Co.

Shipping Cost (3) per Truckload
Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

Minimize or maximize? —— Minimize

What? - To.tal shippipg cost; .decision
variable x; j,i = 1,2,3;j = 1,2,3,4

member of truckloads from
cannery i to warehouse j

BARCELONA

.| SCHOOL OF

MANAGEMENT
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload
Warehouse
1 2 3 = Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

Minimize total shipping cost Z = 464 x1; + 513 x1, + 654 X3 + 867 X1 4
+ 352 xz’l + 416 xz’z + 690 X2’3 + 791 x2,4-
+ 995x3,1 + 682 X3’2 + 388 X3’3 + 685 X3,4

BARCELONA
SCHOOL OF
MANAGEMENT
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload
Warehouse
1 2 3 4 Output

1 464 513 654 867 75

Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85

Subject to X171+ X12 +X13 +X14 =75 and X1+ Xz + X3, = 80
cannery X1+ X2z + %23 + X34 = 125 warehouse X12F X2 + %32 = 65
constraints X31+ X3 + X33 +x34 =100 constrains X13 + Xz3+x33 =70

x,; 20 =123;j = 1,234)

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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x1’4 + x2’4_ + x3’4_ = 100
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload
Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85
Anything noticeable about these
two sets of numbers?
Supply and demand balance out at 300
BARCELONA
SCHOOL OF

MANAGEMENT
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xl’l + xllz + x1'3 + x1’4 =75
x2’1 + lez + x2,3 + x2’4 =125
x3'1 + x3'2 + X3‘3 + X3,4 = 100

TABLE A3 Constraint coefficlents for P & T Co. \

Coefficient of: \
X4 Xq2 Xq3 Xqa4 X | X2z Xz X34 131\ X3z X3z X34
These constraints can e v x -
. Cannery
be ertten aS a 1 1 1 1 1 'I ] 1 constraints
distinct pattern that is A_ ] ] :
characteristic of the 1 1 1 Warehouse
. 1 1 1 constraints
Transportation and I f 1 f 1 f T
Assignment Problem / / /

X1’1 -+ x2}1 -+ X3,1 - 80
x1,2+x2,2 + X3}2 = 65
x1,3 -+ x2,3 + X3,3 =70

BARCELONA X14+ X34+ X34 =100
upf.| SCHOOL OF
MANAGEMENT
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost (8) per Truckload

Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85
Or as a
graph/network
representation
BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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Terminology of the Transportation and Assignment Problem

Destination
Sources l

-0 4= Note the
negative sign

BARCELONA Demand

SCHOOL OF
MANAGEMENT
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X171+ Xp1 + X3, =80
X12FX2, + X3, = 65
X13+ X3+ x33 =70
X14 + Xp4 + X34 = 100

| |

The = sign (instead of £=) in the supply and demand
represents the requirement assumption of the Transportation
and Assignment Problem: supply and demand are fixed

xlll + xl’z + x1’3 + x1’4 =75
x2’1 + xz’z + x2’3 + x214 = 125
x3’1 + x3’2 + x3,3 + x3,4 == 100

-1 BARCELONA
upf.

SCHOOL OF
MANAGEMENT
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TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload
Warehouse
1 2 3 L Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

Minimize total shipping cost Z =

=464 x,1 +513x1, + 654 x,3+867 x14
+352x31 +416 x5, + 690 x,3 + 791 x4
+995x31 + 682 x3, + 388 x33 + 685 x34

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

The cost assumption: distributing units
from any source to any destination 1s
proportional to the number of units
distributed; if ¢;; is the unit cost and

x;j the number of units, the cost is
simply c¢;jx;j

21



The requirements assumption 1s
typic of transportation problem,
while the cost assumption we

should know already

What are the assumptions we

upf.

studied already?

BARCELONA
SCHOOL OF
MANAGEMENT

Assumptions of linear programming

Proportionality: The comribution of each activity to the value of the objective
function Z is proportional to the level of the activity x; increase in the objective
function Z, as represented by the ox; terms

Maximize Z= ¢ + cny + 77 + 0,1,

Additivity: Every function it a linear programming model (whether the objective
function or the function on the left-hand side of a functional constraint) is the sum
of the individual contributions of the respective activities

Divisibility: Deciston variables in a linear progranuning mode] are

allowed to hove any values, including noninteger values, that satisfy the functional
and nonnegativity constraints, Thus, these varables are not restricted to

just integor values, Since each decision variable represents the level of some
getivity, it is belng assumed that the activities can be run at {ractional levels

When a decision variable must be an integer, it becomes a case of integer
programming

Certainty: The value assigned to the parameters (the a,"s.
b,’s, and c,'s) of a linear programming model are assumed
ta be known constants

22



Whether or not actual transportation is involved, any problem in the
format of this table that obeys the requirement and cost assumption is a
transportation problem

TABLE 2.5 Parameter table for the transportation problem

Cost per Unit Distributed
Destination
1 2 n Supply
1 Cia Gz Cin 5
Source ?' 2 C22 Can 5.2
n:] le - - ;
Demand d, d; d,

BARCELONA
.| SCHOOL OF
MANAGEMENT
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Compact formulation for a problem with
m sources s and n destinations d:

Subject to source and demand constraints

x;j=0 for(i=12,..m;j=12,..n)

upf.

Minimize Z = 1%, Z?:l CijXij

n — .
j=1 Xij = Sj for i =1,2,..

iz1x;;=djforj=12,..n

BARCELONA
SCHOOL OF
MANAGEMENT

m

TABLE 9.5

Parameter table for the transportation problem

Cost per Unit Distributed

Supply

Source 7

m

(S}
n

Cm

G2
C22

Cmz

Cin
Can

Cnn

51
52

Demand

d

d;

The property to be kept in mind here is
that a transportation problem will have

feasible solution if and only if
Diz1Si = ?:1 d;

(supply and demand balance out as in

24

the example)



Compact formulation for a problem

with m sources s and n destinations d:

Minimize Z = Y%, X714 ¢ijxij
Subject to
Yhixj=d;forj=12,..n
Yiix;=s; for i=12..m

xij=0 for(i=12,..m;j=12,..n)

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

D si=> g

i= j=
(supply and demand balance out)

m n
1

=

The integer solutions property: For
transportation problems where every s;
and d; have an integer value, all basic
feasible (BF) solutions (including an
optimal one) also have integer values

25



TABLE 9.2 Shipping data for P & T Co.

upf.

Shipping Cost (3) per Truckload
Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85
Optimal solution with Excel Solver
BARCELONA
SCHOOL OF

MANAGEMENT
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Omer would like 2 pints of home brew today and an additional 7 pints of
home brew tomorrow. Dick is willing to sell a maximum of 5 pints total at a
price of $3.00 per pint today and $2.70 per pint tomorrow. Harry is willing
to sell a maximum of 4 pints total at a price of $2.90 per pint today and
$2.80 per pint tomorrow. Omer wishes to know what his purchases should
be to minimize his cost while satisfying his thirst requirements.

Formulate this problem as a transportation problem by constructing
the appropriate parameter table

_
3. 2.70 3

Dick

What would you do being Omer?

Harry 2.90 2.80 .

Tom/day 2 7

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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The Assignment problem

A brief sketch. Hillier 2014, chapter 9.
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The assignment problem is a special type of linear programming problem
where assignees are being assigned to perform tasks

HIHI"‘\IIIm -
U RN
n ‘«‘z“ '%f ;

Charles Chaplin’s Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-

BARCELONA times.html
SCHOOL OF
MANAGEMENT
29



1. The number of assignees and the number of tasks are the same.

2. Each assignee 1s to be assigned to exactly one task.

3. Each task is to be performed by exactly one assignee.

4. There 1s a cost ¢;; associated with assignee i, (i =1,2,..n) performing
task j, (j =1,2,..n).

5. The objective i1s to determine how all n assignments should be made to
minimize the total cost - but

upf.

BARCELONA Source: Wikipedia Commons Charles Chaplin’s Modern Times, source
SCHOOL OF http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html

MANAGEMENT
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In fact, the assignment problem is just a special type of transportation
problem where the sources now are assignees and the destinations now are
tasks and where:

Number of sources m = number of destinations n,
Every supply s; =1,
Every demand di=1

-] BARCELONA

upf.| SCHOOL OF

MANAGEMENT
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Number of sources m = number of destinations n,
Every supply s; =1,
Every demand d; = 1

Minimize Z = Yi_q Xiq CijXij
Subject to
iz1x;j=1forj=12,..n
"noxj=1 for i=12..n

x;j=0 for (i = 1,2,..1j = 1,2,..1n)

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

32

Plus
x;j= binary (0 or 1) for
(i=12..nj =12, ..n)
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Minimize Z =}, 2?:1 CijXij

Subject to

Yicixij=1lforj=12,.n < Each task must be served
Yj=1xiyj =1 for i=12,..n «— Each assignee must have work

XUZO for (l =1,2, Tl,] =1,2, Tl)

Plus
x;j= binary (0 or 1) for
(i=12..1nj=12 ..n)

BARCELONA
SCHOOL OF
MANAGEMENT
33
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Thus assignment and transportation share the same useful
properties in terms of existence of integer solutions

BARCELONA
SCHOOL OF
MANAGEMENT

Source: Wikipedia Commons

34

Charles Chaplin’s Modern Times, source
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html



Assignment and transportation have same network representation
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¥ FIGURE 9.3
Network representation of
the transportation problem.
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M FIGURE 9.5
Network representation of
the assignment problem.



A typical problem offered in the book locating three machine among
four facilities, with different cost per machine / facility

TABLE 9.24 Materials-handling cost data

($) for Job Shop Co.

Location
1 2 3 4
1 13 16 12 K1
Machine 2 15 S 13 20
3 5 7 10 6
BARCELONA

upf.| SCHOOL OF
MANAGEMENT

36

Task
(Location)
1 2 3 4
1 13 16 12 11
Assignee 2 15 M 13 20

(Machine) 3 5 7 \ 10 6

Machine 2 cannot go to location 2, so
a very large cost M in entered in the
empty cell



A typical problem offered in the book locating three machine among
four facilities, with different cost per machine / facility

TABLE 9.24 Materials-handling cost data

TABLE 9.25 Cost table for the Job Shop Co.
($) for Job Shop Co.

assignment problem

Location Task
(Location)
1 2 3 4
1 2 3 4
1 13 16 12 11
; 1 13 16 12 11
Machine 2 15 — 13 20 Assignee 2 15 M 13 20
3 5 7 10 6 (Machine) 3 5 7 10 6
—_— & 4(D) 0 0 0 0

Since assignees and tasks must be
equal a dummy machine 1s introduced

BARCELONA

upf.| SCHOOL OF

MANAGEMENT
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A typical problem offered in the book
locating three machine among four
facilities, with different cost per
machine / facility

TABLE 9.25 Cost table for the Job Shop Co.

assignment problem

Task
(Location)
1 2 3 4
1 13 16 12 11
Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6
4(D) 0 0 0 0

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

Can you guess the
solution “by inspection?”

Machine 1 to location 4

Machine 2 to location 3

Machine 3 to location 1
The algorithms (not described here) would
assign the dummy machine 4 to location 2

38



upf.

BARCELONA
SCHOOL OF
MANAGEMENT

Network Optimization Models

More network problems: shortest-path problem, the
minimum spanning tree problem, maximum flow
problem. Hiller 2014, chapter 10.



Many network optimization models are special types of linear programming
problems — e.g. the transportation problem and the assignment problem

Assignment and transportation have same network representation ";-;‘"'--"

See their network

o

ot
<
£
14

representations
. . 6
->
¥ FIGURE 9.3 ¥ FICURE 9.5
Network representation of Network representation of
the transportation problem the assignment problem
"] BARCELONA
SCHOOL OF
MANAGEMENT
BARCELONA
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Operations

Our new prototype problem — the “Seervada Park” road system e

¥ FIGURE 10.1
The road system for Seervada

Park.
BARCELONA
upf. SCHOOL OF Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-
MANAGEMENT francisco/?
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Three practical problems

— Shortest path from entrance O to
scenic point T

—  Minimum length of telephone lines
covering all tracks (minimum
spanning tree)

-  Maximum flow of mini—trains
carrying non trekkers from entrance
O to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/

BARCELONA
upf. SCHOOL OF Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-
MANAGEMENT francisco/?
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Some terminology: nodes (or vertices), arcs (or links or edges or branches)

upf.

BARCELONA
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An arc

43

¥ FIGURE 10.1
The road system for Seervada
Park.



Entrance,
origin

upf.

BARCELONA
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Sightseeing,
destination



The trains trough the park represent a type
of ‘flow’ through the arcs

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/

TABLE 10.1 Components of typical networks

Nodes Arcs Flow

Intersections Roads Vehicles

Airports Air lanes Aircraft

Switching points Wires, channels Messages

Pumping stations Pipes Fluids

Work centers Materials-handling routes Jobs
BARCELONA

upf.| SCHOOL OF
MANAGEMENT
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More terminology:

Directed arcs (flow only in one directions) and undirected arcs or link, (flow in

both directions)

Networks can also be directed (only directed arcs) or undirected
A path trough nodes can be directed when every step from node i to node j is in

the direction of j.

A—B -C—E = directed path

B—->C—>A—D = undirected path

BARCELONA
upf.| SCHOOL OF
MANAGEMENT

0 0

\
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Note that our park has no arrows, in 1s hence made of undirected arcs

upf.

BARCELONA
SCHOOL OF
MANAGEMENT

a7

¥ FIGURE 10.1

The road system for Seervada
Park.



More terminology: a cycle is a path starting and ending in the same node

upf.
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A directed cycle
contains only
directed arcs

D—oE—-sDis a
directed cycle

A—->B—->C—A 1s not a
directed cycle



More terminology: starting from bare nodes, trees can be grown

A network;
stripping the
arc one gets ---

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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Starting from bare nodes, trees can be grown
olNC &
@ @ (h)

(@) (b) Tree with

B
one arc (d
(a) bare nodes () '
(c) Tree with (d) Tree with
two arcs three arcs

®

(e) Spanning tree: all nodes
connected by directed arcs

BARCELONA

upf.| SCHOOL OF (e)

MANAGEMENT
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(e) Spanning tree: all nodes
connected by directed arcs

A spanning tree connects n nodes with n-7 directed arcs

A spanning tree is a connected network without unconnected arcs

BARCELONA

upf.| SCHOOL OF

MANAGEMENT
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(e) Spanning tree: all nodes
connected by directed arcs

A spanning tree connects n nodes with n-7directed arcs

A spanning tree 1s a connected network without unconnected arcs

n-1is both the minimum number of arcs needed and the maximum
one, as adding one arc would generate an undirected cycle

Adding e.g. arc A—C
closes the loop but
generates undirected
cycles

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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are now ready to tackle the

shortest path problem

Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia
Commons

53



“Consider an undirected and connected network with two special
nodes called the origin and the destination. Associated with each
of the links (undirected arcs) is a nonnegative distance. The
objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination”

Let’s learn by doing,
on our test case: the
mission 1s to go from
the entrance O to the
scenic point T

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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Algorithm for the Shortest—Path Problem

Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be
repeated for n =1, 2, ... until the nth nearest node i1s the destination.
Practice: the nearest note to QOis 4

BARCELONA
upf.| SCHOOL OF
MANAGEMENT
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Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be

repeated for n =1, 2 ...until the nth nearest node is the destination.
Practice: the nearest note to Ois 4

upf.

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n to Unsolved Nodes | Unsolved Node | Involved Node Distance | Connection

1 O A 2 A 2 OA

BARCELONA
SCHOOL OF

MANAGEMENT
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Algorithm for the Shortest—Path Problem

Theory: Input needed for nth iteration: n — 1 nearest nodes to the origin (solved for at
the previous iterations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the others

are unsolved nodes)

Theory: Candidates for nth nearest node: Each solved node that is directly connected
by a link to one or more unsolved nodes provides one candidate — the unsolved node
with the shortest connecting link to its solved node is taken

"] BARCELONA
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Theory: Candidates for nth nearest node: Each solved

node (0,4 now) that is directly connected by a link to one
or more (nearest) unsolved nodes (C, B respectively)
provides one candidate — the unsolved node with the

shortest connecting link to this solved node. (Ties
provide additional candidates)

2

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n to Unsolved Nodes | Unsolved Node | Involved Node Distance | Connection
1 (@] A 2 A 2 OA
> 3 (@] C 4 C 4 OoC
' A B 2+2= 4 B 4 AB
BARCELONA
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Theory: Calculation of nth nearest node: For each such solved

node and its candidate, add the distance between them and the

2

distance of the shortest path from the origin to this solved node. 0

The candidate with the smallest such total distance is the nth

nearest node (ties provide additional solved nodes — as in this
case C and B with 4 miles), and its shortest path is the one

generating this distance

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n to Unsolved Nodes | Unsolved Node | Involved Node Distance | Connection
1 (@] A 2 A 2 OA
> 3 (@] C 4 C 4 OoC
' A B 2+2= 4 B 4 AB
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The solved nodes are now A4, B, C, and the closest nodes
are D FE

(E is closest for both Band C)
F wins as 4t closest node (7 miles)

©)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n to Unsolved Nodes | Unsolved Node | Involved Node Distance | Connection
1 (@] A 2 A 2 OA
23 (0] & 4 C 4 ocC
% A B 2+2= 4 B 4 AB
A D 2+7= 9
4 B £ 4+3= 7 E 7 BE <
C E 4+4= 8
BARCELONA
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The solved nodes closest to an unsolved note are now
A,B,E, and for all the closest node 1s D
D wins as 5% closest node (8 miles)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n | to Unsolved Nodes  Unsolved Node | Involved Node Distance Connection
1 (0] A 2 A 2 OA
2 3 (0] C 4 C 4 0C
! A B 2+2= 4 B 4 AB
A D 2+7= 9
4 B E 44+3= 7 E 7 BE
C E 4+4= 8
A D 2+7= 9
5 B D 4+4= 8 D 8 BD <
E D 7+1= 8 D 8 ED
BARCELONA
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The solved nodes closest to an unsolved note are now
D,E, and for both the closest node is the target
destination 7 ;7 wins as 6% closest node (13 miles)

TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n | to Unsolved Nodes | Unsolved Node | Involved Node Distance Connection
1 (o] A 2 A 2 OA
23 O C 4 C 4 ocC
: A B 2+2= 4 B 4 | AB
A D 2+7=9
4 B 3 4+3= 7 13 7 BE
C E 4+4= 8
A D 2+7= 9
5 B D 4+4= 8 D 8 BD
E D 7+1= 8 D 8 ED
P D T 8+5=13 T 13 | DT _
F T 7+7=14 D
BARCELONA
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© TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n | to Unsolved Nodes | Unsolved Node | Involved Node Distance Connection
1 (o] A 2 A 2 OA
23 (0] C 4 C 4 ocC
A D 2+7= 9
4 B E 4+3= 7 13 7 BE
C E 4+4= 8
A D 2+7 9
5 B D 4+4= 8 D 8 BD
E D 7+1 8 D 8 ED
6 D T 8+5=13 T 13 DT
E T 7+7=14
1 1 -+ and the minimum

distance 1s recorded
Note how at each step the

distance for the various
BARCELONA

SCHOOL OF candidate 1s computed:---
MANAGEMENT
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" TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n | to Unsolved Nodes | Unsolved Node | Involved Node Distance Connection
1 o) A 2 A 2 OA
5. 3 fo) C 4 C 4 oc
’ A B 2+2= 4 B 4 | AB
4 D 2+7=9 We now move backword,
* g i :ij: ; £ 7 % from the destination to the
origin
A D 2+7=9
5 B D Ardw B D 8 8D T->D->B->A-0
E D 7+1=8 D 8 D or
& D T 8+5=13| T 13 | or T->D>E-B->A-0
E T 74+7=14 Both with 13 miles
Hence the solution:
O—->A—-B—->D->T or
O—->A—-B->E->D->T
BARCELONA

upf.| SCHOOL OF
MANAGEMENT

64



" TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
n | to Unsolved Nodes | Unsolved Node | Involved Node Distance Connection
1 o A 2 A 2 OA
3 o C 4 C B oc
! A B 2+2= 4 B 4 _ AB
A D 2+7=9
B B E 4+3=7 E 7 BE
C E 4+4= 8
A D 2+7=9 D->B—>A—-0
5 B D 4+4= 8 D 8 BD /
E D 7+1= 8 D 8 ED
_ T—-D
6 D T B+5=13 T 13 DT
E 7+7=14
D—->E—-B—-A—-0O

Perhaps clearer 1n this tree formulation?

Hence the solution:
O—->A—->B—>E—-D->T
or

O—->A—->B—>D->T




Three practical problems

— Shortest path from entrance O to
scenic point T

—  Minimum length of telephone lines
covering all tracks (minimum
spanning tree)

<+ Solved

-  Maximum flow of mini—trains
carrying non trekkers from entrance
O to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/

BARCELONA
upf. SCHOOL OF Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-
MANAGEMENT francisco/?
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The Minimum Spanning Tree problem

)
1 . ) ¥ - § % :,.-",\ by e dirad o

[ (8 : 5 J
Source: https://eu.palmbeachdailynews.com/story/entertainment/house-home/2019/12/15/palm-beach-gardening-help-save-planet-by-planting-these-native-
trees/2079095007/
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...................

The Minimum Spanning Tree problem g

Research

For the shortest—path problem, we were looking for links
that provide a path between the origin and the destination.
We now just look for a minimum set of links that connect all
nodes

Could this be a spanning tree?

BARCELONA
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No as a spanning tree provides a path between each pair of nodes. n nodes will
take n-1links

=» Design the network by inserting enough links to satisfy the requirement that
there be a path between every pair of nodes; The objective 1s to satisfy this
requirement in a way that minimizes the total length of the links

Could this be a spanning tree?

BARCELONA
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=» Design the network by inserting enough links to satisfy the requirement that
there be a path between every pair of nodes; The objective is to satisfy this
requirement in a way that minimizes the total length of the links

BARCELONA
upf.| SCHOOL OF
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The strategy

upf.

Select arbitrarily a node
Identify closest unconnected
node

Branch on ties (try both)

BARCELONA
SCHOOL OF
MANAGEMENT

All 7 nodes connected with 6 link
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Select arbitrarily a node e.g. A
Identify closest unconnected node O or B
Branch on ties (try both)
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Identify closest unconnected node C
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Identify closest unconnected node E
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Identify closest unconnected node D
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Here our spanning tree
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Three practical problems

— Shortest path from entrance 0 to
scenic point T

—  Minimum length of telephone lines
covering all tracks (minimum
spanning tree)

<+ Solved

-  Maximum flow of mini—trains
carrying non trekkers from entrance
O to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/

BARCELONA
upf. SCHOOL OF Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-
MANAGEMENT francisco/?
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We are now left with the last problem to solve: Maximum flow of mini—
trains carrying non trekkers from entrance O to scenic point 7

upf.

Source: https://www.yosemite.com/things-to-

dol/leisure-activities/valley-floor-tour/
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Maximum flow problem

“Typical kinds of applications of the maximum flow problem:

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
3. Maximize the flow of oil through a system of pipelines.

4. Maximize the flow of water through a system of aqueducts.

5. Maximize the flow of vehicles through a transportation network.” (Hillier pp.387-388)

BARCELONA Source: https://www.livescience.com/61862-why-phantom-traffic-jams-happen.html
upf.| SCHOOL OF
MANAGEMENT
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Maximum flow problem

Also here we proceed by a stepwise algorithm by ‘pumping’ items along preselected paths and
recording changes. In the beginning the numbers close to the nodes represent maximum
capacities

Warning: figures 10.6 and

10.7 in the online version are ,

wrong, the others are right LA .,»' :
https://www.dropbox.com/s . o
h/ddd48a8jguinbcf/AABFOs "/ _
4eh11PLVxdxOpes— _ |

Ofa?dl=0&preview=Introdu ' \ : =
ction+ to+ Operations+ Rese \ v/ e | D ) -
arch+ - ) { ' o -

+Frederick+ S.+ Hillier.pdf ‘ > '.' -
/ ; - )
S [ R g
/ | © ) (| E

'y
-

o

This is right
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Nothing has moved yet,
and we note this by
putting zeros before the
node

BARCELONA
upf.| SCHOOL OF
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An augmenting path is a directed path from the source to the sink in
the residual network such that every arc on this path has strictly
positive residual capacity; for example

O—B—>E->T

1s an augmenting path, still at full capacity.

BARCELONA
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Chose now the smallest
residual capacity on this
path — among 7,5,6 2>

5 is the smallest. Move
five through this path,
noting what happens

The capacity of link BE
1s now exhausted

BARCELONA
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We now go to the

augmenting path
O0—>A—>D—>T

where the smallest capacity

1s 3, and move it

The capacity of link AD 1is
now exhausted

BARCELONA
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Assign a flow of 1 to the
augmenting path
O0—-A—>B—>D—>T

Assign a flow of 2 to the
augmenting path

O—->B—>D—>T

The capacity of links AB
and OB are now exhausted

BARCELONA
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Assign a flow of 1 to the
augmenting path

O—->C—>E—>D—>T

Assign a flow of 1 to the
augmenting path

O—->C—>E—->T

BARCELONA
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Assign a flow of 1 to the
augmenting path

O0—>C—>E—>B—->D->T
The capacity of link BD is

now exhausted

Anything weird here?

BARCELONA
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We have moved ‘counter—
current’ — this is the same
as reversing part of a
previous flow

This was also the final
move

BARCELONA
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Check for yourself that

upf.

No capacity has been
violated

No accumulation takes
place at any node

BARCELONA
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Three practical problems

— Shortest path from entrance 0 to
scenic point T

—  Minimum length of telephone lines Solved
covering all tracks (minimum
spanning tree)

-  Maximum flow of mini—trains
carrying non trekkers from entrance
O to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/

BARCELONA
upf. SCHOOL OF Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-
MANAGEMENT francisco/?
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Integer Programming

Intuitions and fallacies. Why is it more difficult than
LP. Integer and binary problems. Examples.
Solution via branch and bound. Take home points.
Hillier 2014, chapter 12.



Integer programming; intuition and fallacies

If the solutions need to be integer, there will be less of
them, so Integer Programming (IP) will be easier than Linear
Programming (LP)

- Yes, there will be less solutions, but still a very large
numbers if they have to be found ‘by inspection’

— The simplex solution of an IP treated as if it were an LP
(what is called LP relaxation) generally generate
unfeasible solutions

BARCELONA
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Moving from LP to [P which of the four
assumptions of LP will need to fall?

Proportionality: The contribution of each activity to the value of the objective function Z is proportional to
the level of the activity x; increase in Z that , as represented by the ¢;x; term in the objective function
Additivity: Every function in a linear programming model (whether the objective function or the function
on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective
activities

Divisibility: Decision variables in a linear programming model are allowed to have any values, including
noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not
restricted to just integer values. Since each decision variable represents the level of some activity, it is
being assumed that the activities can be run at fractional levels

Certainty: The value assigned to the parameters (the a}"s, b;’s, and ¢;’s) of a linear programming model
are assumed to be known constants

BARCELONA
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YES, NO decision variables

An important class of IP involves binary decision variables
that can be represented as (0,1)

. = 1 if decision = yes
J 0 if decision = no

When this is the case the IP problem is said to be a Binary
Integer Programming (BIP) problem

"] BARCELONA
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A prototype example: building or not building?

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required
1 Build factory in Los Angeles? X $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
4 Build warehouse in San Francisco? Xa $4 million $2 million

Capital available: $10 million

1 if decision = yes build a factory in Los Angeles

0 if decision = no, don’t build a factory in Los Angeles

The choice 1s if building a new factory in either Los Angeles or San Francisco, or
perhaps even in both cities. It also 1s considering building at most one new warehouse,
but the choice of location is restricted to a city where a new factory i1s being built.

x1=

BARCELONA
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© TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million
2 Build factory in San Francisco? Xz $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
4 Build warehouse in San Francisco? X4 $4 million $2 million

Capital available: $10 million

1 if decision = yes build a factory in Los Angeles
0 if decision = no, don’t build a factory in Los Angeles

The choice 1s if building a new factory in either Los Angeles or San Francisco, or
perhaps even in both cities. It also is considering building at most one new warehouse,
but the choice of location is restricted to a city where a new factory i1s being built.

x1=

= x; and x, can both be 1, but x, and x3 will depend upon the choice made for x4, x,
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- TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million
2 Build factory in San Francisco? Xz $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
- Build warehouse in San Francisco? X4 $4 million $2 million

Capital available: $10 million

- 1 if decision = yes build a factory in Los Angeles
*1 710 if decision = no,don’t build a factory in Los Angeles

[t is easy to see that the function to be maximized is
Z =9xq + 5x, + 6x3 + 4x,
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© TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million
2 Build factory in San Francisco? Xz $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
- Build warehouse in San Francisco? X4 $4 million $2 million
Capital available: $10 million
1 if decision = yes build a factory in Los Angeles
X1 =

0 if decision = no, don’t build a factory in Los Angeles

And an evident constraint 1s

6X1 + 3x2 + SX3 + ZX4 <10
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" TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? X $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
4 Build warehouse in San Francisco? Xa $4 million $2 million

Capital available: $10 million

1 if decision = yes build a factory in Los Angeles

*1 =10 if decision = no,don’t build a factory in Los Angeles

Note: x3 = yes only if x; = yes
Likewise: x, = yes only if x, = yes

BARCELONA
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TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? X1 $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
- Build warehouse in San Francisco? X4 $4 million $2 million

Capital available: $10 million

x3 =1 only if x; =1
x4 =1 only if x, =1

So, knowing that al variables need to be either O or 1 a possible way
to include this contingency is the constraint

X3 < Xq

X4 < Xy

BARCELONA
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© TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
- Build warehouse in San Francisco? Xaq $4 million $2 million

Capital available: $10 million

So, knowing that al variables need to be either O or 1 a possible way
to include this contingency is the constraint

X3 < Xq

X4 < X5

Since we only want at most one warehouse, it should also be
X3 + X4 Sl
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TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million

2 Build factory in San Francisco? X3 $5 million $3 million

3 Build warehouse in Los Angeles? X3 $6 million $5 million

4 Build warehouse in San Francisco? X4 $4 million $2 million
Capital available: $10 million

Wrapping up, here the BIP problem:

Maximize Z = 9x; + 5x, + 6x3 + 4x,
Subject to:
6x1 + 3x, + 5x3 + 2x, < 10

X3 =X —x1 +x3<0
Xy S X —x; +x,< 0
Rewritten in X3 + X4 <1
standard form
and

BARCELONA
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How many problems can be framed as BIP?

Investment decisions

Each yes—-or—no decision:
Should we make a certain fixed investment?
1 ifyes

Decision variable x; = .
0 ifno

Siting decision

Each yes—or—no decision:
Should a certain site be selected to build a facility?
1 ifyes

Decision variable x; = .
0 ifno

-1 BARCELONA
upf.
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How many problems can be framed as BIP?

Relocating/restructuring, etc.?

upf.

Each yes—or—no decision:

Should a certain plant remain open?

Should a certain site be selected for a new plant?

Should a certain distribution center remain open?

Should a certain site be selected for a new distribution center?

oo § "

i i » &
QUTSQURCING

BARCELONA Source https://nortex.es/que-es-outsourcing/
SCHOOL OF
MANAGEMENT
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How many problems can be framed as BIP?

Dispatching decisions

Each yes—or—no decision:

Should a certain route be selected for one of the trucks?
1 ifyes
0 ifno

Decision variable Xj = {

Source: Wikipedia Commons

Or in more complicated arrangements: Should all the following be
selected simultaneously for a delivery run:

1. A certain route,

2. A certain size of truck, and

3. A certain time period for the departure?

1 ifyes

Decision variable x; = .
0 ifno

"] BARCELONA
upf.| SCHOOL OF
MANAGEMENT

105



How many problems can be framed as BIP?

An airline application: Assigning crews to sequences of flights (crew scheduling
problem). In a previous step of the analysis 12 crew flight sequences (ordered
from one to a max of five), and the problem is to choose three of them so that all
flights would be covered

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights
Flight 1 2 3 4 5 6 7 8 92 10 11 12
1. San Francisco to Los Angeles | 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco | 2 3 5 5
6. Chicago to Denver 3: 3B 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2
10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000's 2 3 4 6 7 5 7 8 9 9 8 9
BARCELONA
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Z is easy: If x; =(0,1) decides if assigning the sequence to one of the three
crews, then we must minimize:

Z =2x1 +3xy +4x3 + 6x4 + 7x5 + 5x6 + 7x7 + 8xg + 9xg + 9x19 + 8x11 + 9x1>

" TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights
Flight 1 2 3 4 § 6 7 8 9 30 11 12
1. San Francisco to Los Angeles | 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco | 2 3 5 5
6. Chicago to Denver 3 3 B
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2
10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000's 2 3 4 6 7 S5 7 8 9 9 8 9
BARCELONA
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Since the crews are three it must be

upf.
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ij:B

j=1

" TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 1 3 4 § 6 7 8 9 30 11 12
1. San Francisco to Los Angeles | 1 1 1 1
2. San Francisco to Denver 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco | 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 4 4 5
9. Denver to Chicago 2 2 2
10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000's 2 4 6 7 5 7 8 9 9 8 9

108



Then for each of the 11 flights (1. San Francisco to Los Angeles all the way to
11. Seattle to Los Angeles) it must be that the sum of the coefficients covering

that flight add up to one or more (more crews can fly on a flight — there can be a non working
crew that still needs to be paid)

1, x1 -I— x4 -I— x7 + xlO 2 1 TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)
2 Xy + X5 + Xg + X11 > 1 Feasible Sequence of Flights
Flight 1 2 3 4 5 6 7 8 9 10 11 12
1. San Francisco to Los Angeles | 1 1 1 1
11. X6 + X9 + X10 + X11 + X12 21 2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco | 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2
10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000s 2 3 4 6 7 S5 7 8 9 9 8 9
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So wrapping up the problem is:

Minimize /Z = 2x1 + 3x2 + 4x3 + 6x4 + 7x5 + 5x6 + 7x7 + 8x8 + 9X9 + 9x10 + 8x11 + 9X12

Subject to

" TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Zjl.ilxj =3 and the 11 constraints pignt

X1+ x4 +x7+x9 =1
x2+X5+x8+X11 21

Xg + Xg + X109 + X191 + x4 =1

Are we done?
xj binary for j =1,2,..12

1 2 3 @4 § 6 7 8 9 30 121 12

1. San Francisco to Los Angeles | 1 1 1 1

2. San Francisco to Denver 1 1 1 1

3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3

5. Los Angeles to San Francisco | 2 3 5 5

6. Chicago to Denver 3 3 B

7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5

9. Denver to Chicago 2 2 2

10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000's 2 3 4 6 7 S5 7 8 9 9 8 9
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Minimize
Z = 2x1 + 3xy + 4x3 + 6x4 + 7x5 + 5x4
+ 7x7 + 8xg + 9x9 + 9x19 + 8x11 + 9%

Verify that one optimal solution for this
BIP model 1s

x3 = 1 (assign sequence 3 to a crew)

x, = 1 (assign sequence 4 to a crew)
x,1; = 1 (assign sequence 11 to a crew)
and all other x; =0

and that another optimal solution is

x1=1
x5=1
x12=1

and all other X; =0

And compute Z for the two options

BARCELONA
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© TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 3 4 § 6 T 8 9 30 ) 12
1. San Francisco to Los Angeles 1 1 1
2. San Francisco to Denver 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco 3 5 5
6. Chicago to Denver 3 3 B
7. Chicago to Seattle 3 D 3 3 4
8. Denver to San Francisco 4 4 5
9. Denver to Chicago 2 2 2
10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2
Cost, $1,000's Bl 6 7 5 7 8 9 9 8 9
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We just solved a set covering problem,
(all flights need to be covered)

A related BIP 1s the set partitioning
problem, where instead of e.g.

X1+ X4 +x7 + %19 21

Source: https://airportwingspvtltd.wordpress.com/2016/01/04/role-and-
responsibilities-of-cabin-crew/

(previous problem ) one would ask:
X1 +x4+x7 +X10 =1

This would prevent more than one crew
flying on the same flight
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As mentioned, IP are in general more difficult than LP; though there are less
solutions, there are many of them; e.g. for a BIP with ten decision variables the
number of possible solutions is 219 = 1,024

Why?

Permutations with repetition of ten elements in groups of 10

It is not forbidden to try a LP approach for a IP problem (LP relaxation), though
in general there 1s no guarantee that the solution will be feasible for the IP

-1 BARCELONA
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[t 1s not forbidden to try a LP approach for a IP problem
(LP relaxation), though in general there is no guarantee
that the solution will be feasible for the [P

but when the LP relaxation solution satisfies the integer

restriction of the IP problem, this solution must be optimal
for the IP problem as well (=the best among all LP
solutions is also the best for the subset of the IP solutions)

The LP relaxation value for the optimization function Z is in any
case an upper bound for the Z of the integer problem

upf.
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[t 1s not forbidden to try a LP approach for a IP problem
(LP relaxation), though in general there is no guarantee
that the solution will be feasible for the [P

“Therefore, it is common for an IP algorithm to begin by
applying the simplex method to the LP relaxation to check
whether this fortuitous outcome has occurred”

upf.
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“Therefore, it is common for an IP algorithm to begin by applying the
simplex method to the LP relaxation to check whether this fortuitous
outcome has occurred”

This may or may not work see e.g. the simple example

Maximize Z = x, subject to

< 1
BRI B 2 < Find graphically the
X1+ X2 =7 linear solution of this
problem
and
x1=20,x,=20
X1, Xy Integers [.e. removing this constraint
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But there are IP problems whose structure guarantees an integer
solution; remember the Transportation Problem (Section 12);

The integer solutions
property: For transportation
problems where every supply
s; and demand d; have an
integer value, all basic
feasible (BF) solutions
(including an optimal one)
also have integer values

BARCELONA
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TABLE 9.3 Constraint coefficients for P & T Co.

Coefficient of:

K11 X922 Xq3z Xqg X3y KXap  Xa3z XKzg4 X3y X3z X3z Xag

Cannery

r 1 1 1 1 1
L L L L } constraints

constraints

A= 1 1 1 .
1 1 1 } Warehouse
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But there are IP problems whose structure guarantees an
integer solution; remember from the section on
Transportation Problem (Section 12);

Other special cases are the assignment problem, the
shortest—path problem, and the maximum flow problem Souree Wiipedia Commons

Charles Chaplin’s Modern Times, source

http://internationalcinemareview.blogspot.com/2013/04/charles- Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/ Ramon Casas and Pere Romeu on a
chaplin-modern-times.html Tandem, Barcelona. Source: Wikipedia
Commons
BARCELONA
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Level of difficulty of LP versus IP

- Difficulty of LP problem Difficulty of IP problem

Number of integer variables

Source Number of constraints Binary or general integer?

Special form?

Source:
https://www.dreamstime.com
fillustration/accountant.html
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Back to out prototype example: building or not building?

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? X $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
4 Build warehouse in San Francisco? X $4 million $2 million

Capital available: $10 million

The choice 1s if building a new factory in either Los Angeles or San Francisco, or
perhaps even in both cities. It also 1s considering building at most one new warehouse,
but the choice of location 1s restricted to a city where a new factory is being built.
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TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital

Number Question Variable Value Required
1 Build factory in Los Angeles? Xy $9 million $6 million
2 Build factory in San Francisco? X3 $5 million $3 million
3 Build warehouse in Los Angeles? X3 $6 million $5 million
4 Build warehouse in San Francisco? X4 $4 million $2 million

Capital available: $10 million

Maximize Z = 9x; + 5x, + 6x3 + 4x, If we apply LP relaxation replacing
Subject to: x; binary for j = 1,2,3,4

6x1 + 3x, + 5x3 + 2x, < 10 with

—X; +x3=0 x; =0 for j = 1,2,3,4

—X; + x40

X3+ x4 <1

We obtain  xq,x5,X3,X4 = (g, 1,0,1)
with Z = 16.5

and

x; binary for j = 1,2,3,4 . )
We round this to 16 and keep it as an upper
bound for the IP problem
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One method to solve IP problems: the branch—and-bound technique

« Branching (split the problem in two branches)
 Bounding (seek for a local optima for Z)
« Fathoming (Resolving the branching at fathomed the node)

pilnpoint, appreciate, plunb,

what are other conprehend, unravel, graspg,
words for penetrate, divine, figure out,
fathomed? realized
. 2 |
-
& b
y
Source: https://www.123rf.com/ -
P = ——h
Source: https://thesaurus.plus/synonyms/fathomed
BARCELONA
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« Branching (split the problem in two branches) _[:

Maximize Z = 9x; + 5x, + 6x3 + 4x,
Subject to:

6x1 + 3x, + 5x3 + 2x, < 10

—x1 +x3<0

—X; +x3,<0

X3 + x4 <1

and

X; binary for j = 1,2,3,4

"] BARCELONA
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Maximize 5x, + 6x3 + 4x,
Subject to:

3x, + 5x3 +2x4 < 10

x3 <0

—X; +x,<0

X3 + x4 <1

and

Xj >0 for j =234

Maximize Z =9 + 5x, + 6x3 + 4x,
Subject to:

6 + 3x, + 5x3 + 2x, < 10

-1+ x3<0

—Xy + x40

X3+ x4 <1

and

x; =0 for j =234

123



« Branching (split the problem in two branches) _[:

We are splitting following the order of the
variables, 1.e. here starting by x;. Better
strategies are available

 Branching (split the problem in two branches) _C:

1 111 ¢ bry i
xy 4 5x 2xy 10

M nize 2 = 9x; + S5x, + 6xy + 4x, ':, ‘," .

Ox A>\ . 10 x 0 .

x X 0 { Y N 14 4
X 0
2 N Maximuze £ 9 4 S5x; 4 Gxy dx,
= ject to: The two subproblems
{ 1.234 o i .

Sy are treated as linear

instead of integer

x 20 for j = 234
BARCELONA ! ' <=
n t‘:,‘D": 0’
MANAGEMENT

124



« Bounding (seek for a local optima for Z) N EF7 |

* Branching (split the problem in two branches) —ﬁ

Maximize Sx, 4 6y ¢ 42,

Sabject o Linear programming applied to these
£ 50 solutions yields

Xy +xg 0
Maximize 2 = 9x; + Sxy + 6xy + 4x, Xy +x, <1
noedd
ana

‘-.."'.v;‘u. x:,‘ r‘” . :,‘ . " R .
i . > Xq,X5,%3,%, =(0,1,0,1) with Z =9

-xy 4 x5 0 X 0 for } 234
-x; 4+ x,5 0
Xy * Xy 54 Maximuze Z = 9 4 Sx; 4 Gxg 4+ 4x,

and
=1 ubject to
64 30y 4S5+ 2xy < 10
x; binary for | = 1.234 14 2.0
Xy 4 Xy" 0
x; + xy

and

% 20 forj =234 > x]_) xZ; x31x4 = (1J§l O;g) Wlth Z = 165
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Variable:

upf.
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X1

9

0, 1,9,.1)

« Fathoming (Resolving the branching at fathomed the node) ’ ‘

—

words for
|

)

enairin plon

This 1s where we are at the end of the
' first bounding step
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pingo. ab,
conpr 1, grasp,
penetr, Figure out,

e

This solution 1s made of integers! It is
hence optimal for the subproblem with
x; = 0. We call the now the incumbent
optimum Z* =9 and say that the
branch x; = 0 is fathomed; in the
following we can get rid of all branches
whose Z<Z*=9

This cannot be fathomed

127



« Fathoming (Resolving the branching at fathomed the node) j ‘

upf.

Variable: X1

(0, 1,0, 1) = incumbent

16

BARCELONA
SCHOOL OF

MANAGEMENT
128

F

In fact, there are 3 ways of
fathoming:

Test 1: Its bound = Z*

Test 2: Its LP relaxation has no
feasible solutions

Test 3: The optimal solution for its
LP relaxation is integer.



ab,
L, grasp,
Figure out,

=0

« Fathoming (Resolving the branching at fathomed the node)
ﬁj o

Variable: X1 F(3)=fath d
ariable W(itl’)l teast %me In fact, there are 3 ways of

F(3) +— fathoming:

Test 1: Its bound < Z*

Test 2: Its LP relaxation has no
feasible solutions

Test 3: The optimal solution for its

16 / LP relaxation is integer

If this solution is better than the incumbent, it becomes the new incumbent Z*, and
test 1 1s reapplied to all previous unfathomed subproblems with the new larger Z*
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Continuing the example )

Variable: X1

upf.

F(3)

Q= /%
(0, 1,0, 1) = incumbent

BARCELONA
SCHOOL OF
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We now branch the x; = 1 problem by
branching x, between O and 1
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Variable:

upf.

Continuing the example )

X1

9=2Z*

BARCELONA
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(0. 1, 0. I) = incumbent

x, =0,x; =1

Maximize Z = 9 + 6x3 + 4x,
Subject to

Subject to:

S5x3+2x, < 4

x3 <1

X, <0

X3+ x4 <1

x; =0 for j = 3,4

x, =1,x; =1

Maximize Z = 9+ 5+ 6x3 + 4x,
Subject to:

S5x3+2x, <1

x3 <1

x4 <1

X3+ x, <1

X; >0 for j =34
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« Continuing the example )

X =0, =1 Linear programming applied to these
Maximize Z = 9 + 6x3 + 4x, solutions yields

Variable: X1 Subject to
Subject to: 4 .
5x3 + 2x, < 4 X1,X9,X3, X4 = (1,0,3, O) with Z = 13.8
(0.91._0.21) = incumbent X3 <1
X, <0
X3+ x4 <1
m—p  x; =0 for j = 3,4

F(3)

x, =1,x; =1

Maximize Z =9+ 5+ 6x3 + 4x4‘
Subject to:

S5x3+2x, <1

x3 <1

x, <1

X3+ x4 <1

X; >0 for j =34

X1, Xg, X3, Xg = (1,1,0, %) with Z = 16
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Continuing the example )

Variable: 28 %)

upf.

= Z:;:
(0, 1.0, 1) = incumbent

16
(1. 1.0.1;)
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This is where we are now,; no problem
has been fathomed

Test 1: Its bound = Z* NO

Test 2: Its LP relaxation has no
feasible solutions NO

Test 3: The optimal solution for its LLP
relaxation 1s integer NO



Continuing the example )

Variable: Xy 13

upf.

F(3)

0= Z:E:
(0, 1.0, 1) = incumbent
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Since the problem x, = 1 has the
' larger Z we branch this solution



Continuing the example )

Variable:

upf.
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Q=7%
(0, 1.0, 1) = incumbent

13

135

x3 =0, x1=1,x,=1
Maximize Z = 14 + 4x,
Subject to:

2x4 <1

X4 <1

x4 <1

xj =0 for j =4

X3 =1,X1=1,x2 =1
Maximize Z = 20 + 4x,

Subject to:
2x4 < —4
Xy <1

X3 <0

Xj 2OfOl"j=4‘



~+ Continuing the example )

Variable: Y X2

F(3)

Q=7
(0, 1, 0, 1) = incumbent

13
4
(1.0 3'”)
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x3=0,x;=1,x, =1
Maximize Z = 14 + 4x,
Subject to:

2x4 <1

X, <1

x4 <1

xj =0 for j =4

X3 =1, X1= 1, Xy = 1
Maximize Z = 20 + 4x,

Subject to:
2x4 < —4
x4 <1

X4 <0

x; =0 for j =4

136

Linear programming applied to
these solutions yields no feasible
solution

X1,Xp, X3, X4 = (1,1,0,%) with Z = 16

X1,X9,X3,Xs = no feasible solution



-+ Continuing the example ) |

This 1s where we are now, with
one solution fathomed and one
Variable: Xy R} 3 ‘ open

O = Z'«E:
{0, 1.0, 1) = incumbent

' No test failed

F2 Test 2 failed
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« Continuing the example )

Variable: Yy X2 3

F(3)

Q) =7%
{0, 1.0, 1) = incumbent
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We now branch the problem with
x3 = 0, but since only variable x, is
left fixing it generates directly a
solution!

For x, =0
Xq1,X9,%3,%4 = (1,1,0,0) with Z = 14

For x, =1
‘ X1,X9,%3,%X4 = (1,1,0,1) unfeasible
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Continuing the example )

Variable:
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14

Xa

This solution has been

revised in light of the
new incumbent
.\00\)“‘
e
'\0&@%6(’
F(3) 66)"% )

Z.»:: \
mcumbent
optimal solution



Source (both images): Wikipedia Commons
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Some take home points

Integer programming and linear programming:
LP=convex polyhedron touched by the hyperplane
of the objective function; the IP solutions are
1solated point inside the polyhedron

Find these points may not be easy but the LP
solution is an upper bound for the Z of IP

Panettone with
raisins inside

Source: https://leitesculinaria.com/478/recipes-
cranberry-pistachio-panettone.html
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Homework
1) Consider the following

directed network (Hillier
10.2-1)

(a) Find a directed path from node A to node F, and then identify three other
undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle that includes every
node.

(c) Identify a set of arcs that forms a spanning tree.

(d) Use the process illustrated in Fig. 10.3 to grow a tree one arc at a time until a
spanning tree has been formed. Then repeat this process to obtain another spanning
tree. [Do not duplicate the spanning tree identified in part (c).]
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Homework 2) You need to take a trip by car to another town that you have never visited
before. Therefore, you are studying a map to determine the shortest route to your destination.
Depending on which route you choose, there are five other towns (call them A, B, C, D, E) that you
might pass through on the way. The map shows the mileage along each road that directly connects
two towns without any intervening towns. These numbers are summarized in the following table,
where a dash indicates that there 1s no road directly connecting these two towns without going
through any other towns. Formulate this problem as a shortest—path problem by drawing a network
where nodes represent towns, links represent roads, and numbers indicate the length of each link in
miles.

Miles between Adjacent Towns

Town A B C D E Destination
Origin 40 60 50 — — —

A 10 — 70 — —

B 20 55 40 —

C — 50 —

D 10 60

E
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Homework 3) Find shortest path from 0 to 7, first visually then using

then using the table method and backward recursion studied in Lesson
4 (Hillier 10.3-4); first row of the table below.

upf.
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Solved Nodes Closest Total nth
Directly Connected Connected Distance | Nearest | Minimum Last
to Unsolved Nodes | Unsolved Node | Involved Node Distance | Connection
o A 4 A 4 OA




Homework

4) Go back to eCampus Lesson three slides 55 and 56 about type one
and type two error — or read about them online. Make an example of a
test setting and describe for that test what would be type 1 and type
two errors and the respective implications.
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