Máster Universitario en Administración y Dirección de Empresas Full Time MBA

Elements of quantification for decision making with emphasis on operation research

Saltelli
\qquad Where to find this talk

August 25 2023: The politics of modelling is out!

> the politics of modelling numben betreven tciemce and policy

Praise for the volume

*A long awaited examination of the role -and obligation -of modeling**
Nassim Nicholas Taleb, Distinguished Prolessor of Risk Engineering. NYU Tandon School of Engineering Author, of the 5 -volurme series incerto

**

*A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling. Orrin H. Pilkey. Professor at Duke Universitys Nicholas School of the Environment, co-author with Linds Piliny-Jarvis of Useless Arithmetic Why Environmental Sclentists Can't Predict the Future, Columbia University Press 2009

*

Mastodon Toots by

Tharkes to Meria
Koylena of tuT
Universty in Finlond
for taling and cirating
thes recerding. My
tralectory from
number crunching to
thinkeng about
numbers' role in
humen attais
sewhichanimitats - caxthet

Vow on: Latery

The talk is also at
https://ecampus.bsm.upf.edu/,
where you find additional reading material

In this set of slides:

04 What is Operation Research?
05 A prototype example
06 Assumption of linear programming
07 More examples
08 Method of simplex

4

What is Operation Research?

OR versus business analytics; some definitions; steps of an analysis; objectives, context and purpose; linear programming with examples and some theory. Hillier (10 th edition, 2014) chapters 1 and 2.

Where to find this book:

https://www.dropbox.com/sh/ddd48a8jguinbcf/AABF0s4eh1lPLVxdx0pesOfa?dl=0\&preview=Introduction+ to + Operations + Research +-

+ Frederick+ S.+ Hillier.pdf

Operations Research

[^0]Operation Research (OR), Management Science, Analytics, business analytics:

What is the difference?
OR: "how to conduct and coordinate the operations (i.e. the activities) within an organization" (Hillier, p. 2)

OR is research on operations applying the scientific method - foremost modelling and optimization.

Operations Research

FrederickS. Hillier * Gerald J. Lieberman

OR is research on operations applying the scientific method - foremost modelling and optimization

Modelling in OR is to be understood in very general terms, e.g. both mathematical and statistical

Operations Research

Frederick S. Hillier : Gerald J. Lieberman

Operation Research, Management Science, Analytics, business analytics;

What is the difference?

"The term management science sometimes is used as a synonym for operations research"

How about "Analytics" (or Business Analytics)? Operation Research by another name as well?

Competing on Analytics
Some companies have built their very businesses on their ability to collect, analyze, and act on data Every company can leam from what these firms do. by Thomas H. Davenport

```
r=thurpmen(burryom
```


COMPETING ONANALYTICS

THOMASH. DAVENPORT
JEANNEG.HARRIS
https://ecampus.bsm.upf.edu/

Business Analytics = Operation Research + big data

Analytics = scientific process of transforming data into insight for making better decisions

- Descriptive analytics, discover patterns e.g. via data mining
- Predictive analytics, use data to predict the future
- Prescriptive analytics, use data to guide present and future actions

Analytics 3.0: three analytics maturity levels

Analytics 1.0 organizations rely on internal data for decision making, rather than mere intuition

Analytics 2.0 companies combine internal data with externally sourced data, offering predictive capabilities

Analytics 3.0 firms actively generate data trails that can be collected and subsequently analysed

Harvard Business Review
Analytics And Data Science

Analytics 3.0

by Thomas H. Davenport

From the Magazine (December 2013)

Source: https://hbr.org/2013/12/analytics-30

Analytics 3.0: three analytics maturity levels

"Today it's not just information firms and online companies that can create products and services from analyses of data. It's every firm in every industry."
"The Bosch Group, based in Germany, is 127 years old, \cdots has embarked on \cdots intelligent fleet management, intelligent vehicle-charging infrastructures, intelligent energy management, intelligent security video analysis, and many more."

Harvard Business Review
Analytics And Data Science

Analytics 3.0

by Thomas H. Davenport

From the Magazine (December 2013)

Analytics 3.0: three analytics maturity levels
"Google, LinkedIn, Facebook, Amazon, and others have prospered not by giving customers information but by giving them shortcuts to decisions and actions."

Harvard Business Review
Analytics And Data Science

Analytics 3.0

by Thomas H. Davenport

From the Magazine (December 2013)

Source: https://hbr.org/2013/12/analytics-30

Davenport's word of caution

"The use of prescriptive analytics often requires changes in the way frontline workers are managed \cdots employees wearing or carrying sensors … Just as analytics that are intensely revealing of customer behavior have a certain "creepiness" factor, overly detailed reports of employee activity can cause discomfort. In the world of Analytics 3.0, there are times we need to look away."

Harvard Business Review

Analytics And Data Science

Analytics 3.0

by Thomas H. Davenport

From the Magazine (December 2013)

Analytics 3.0 firms actively generate data trails that can be collected and subsequently analysed
\rightarrow Platform capitalism

BARCELONA
upf.
SCHOOL OF
MANAGEMENT

1. Define the problem of interest and gather relevant data
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the model.

4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement (Hillier, p. 10)
upf.

- Asymmetry of

1. Define the problem of interest and gather relevant data. knowledge between owners of the problem
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement (Hillier, p. 10)
upf. SCHOOL OF
MANAGEMENT

7. Define the problem of interest and gather relevant data.
8. Formulate a mathematical model to represent the problem.
9. Develop a computer-based procedure for deriving solutions to the problem from the model.
10. Test the model and refine it as needed.
11. Prepare for the ongoing application of the model as prescribed by management.
12. Implement (Hillier, p. 10)

- Asymmetry of knowledge between owners of the problem and analysts
- "Better to be roughly right than precisely wrong"
- The definition of objectives

Responsibilities beyond maximization of objectives

Carroll AB. The Pyramid of Corporate Social Responsibility: Toward the moral management of organizational stakeholders. 1991; Business Horizons, 34(4), July-August:39-48. Source: https://www.financialeducatorscouncil.org/corporate-social-responsibility-definition-and-history/

Obligations toward

1. the owners (stockholders, etc.), who desire profits (dividends, stock appreciation, and so on);
2. the employees, who desire steady employment at reasonable wages;
3. the customers, who desire a reliable product at a reasonable price;
4. the suppliers, who desire integrity and a reasonable selling price for their goods; and
5. the government and hence the nation (Hillier, p. 12)

Responsibilities beyond
maximization of objectives

Pitfalls in Formulation and Modelling

INTERNATIONAL SERIES ON APPIED SYSTEMS ANAIYSIS

Box 3.1 Pitfalls in formulation and modelling
Pitfalls in formulation
Insufficient attention to formulation
Unquestioning acceptance of stated goals and constraints
Measuring achievement by proxy
Misjudging the difficulties
Bias
Pitfalls in modelling
Equating modelling with analysis
Improper treatment of uncertainties
Attempting to really simulate reality
Belief that a model can be proved correct
Neglecting the by-products of modelling
Overambition
Seeking academic rather than policy goals
Internalizing the policy maker
Not keeping the model relevant
Not keeping the model simple
Capture of the user by the modeller

```
```

Source: (Quade 1980)

```
```

```
```

Source: (Quade 1980)

```
```


PITFALLS OF ANAIYSIS

```
Edited by
GIANDOMENICO MAJONE
EDWARDS QUADE
```

International institute for
Appled Systerns Anclysis

Pitfalls in Formulation and Modelling

Box 3.1 Pitfalls in formulation and modelling

Pitfalls in formulation
Insufficient attention to formulation
Unquestioning acceptance of stated goals and constraints
Measuring achievement by proxy
Misjudging the difficulties
Bias

PITFALLS
 OF ANAIYSIS

Edited by
GIANDOME NICO MAJONE EDWARD S QUADE

International institute for Appled Systerns Anclysis

[^1]
Pitfalls in Formulation and Modelling

Pitfalls in modelling

Equating modelling with analysis Improper treatment of uncertainties Attempting to really simulate reality Belief that a model can be proved correct Neglecting the by-products of modelling Overambition
Seeking academic rather than policy goals Internalizing the policy maker Not keeping the model relevant Not keeping the model simple Capture of the user by the modeller

Comments here?

INTER NATIONAL SERIES ON APPIID SISTEMS ANAIYSIS

PITFALLS OF ANAIYSIS

Edited by

 GIANDOMENICO MAJONE EDWARD S QUADEInternational institute for Appled Systerns Anclysis

[^2]comenar I Lu whin ith
Five ways to ensure that models serve society: a manifesto

As a user, beware model seduction
...

As modeller, beware your own bias

[^3]https://www.nature.com/articles/d41586-020-01812-9

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement (Hillier, p. 10)
upf.
SCHOOL OF
MANAGEMENT

- Need for ingenuity
- Trade off between precision and tractability ("Better be roughly right than precisely wrong")
- Relevance to context and purpose

Why Mr. Spock would NEVER make a good planner!

7 May 2021
(in)
(v) (9) (3)

Geert Vanhove
Cofonder A EVP, linoss
"Better be roughly right than precisely wrong"
(John Maynard Keynes)
"Lack of mathematical culture is revealed nowhere so
conspicuously, as in meaningless precision in numerical computations" (Carl Friedrich Gauss)

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.

- Seek 'satisficing' solutions (satisfy + suffice)
- Post-optimality analysis
- What-if analysis
- Uncertainty and
sensitivity analysis

1. Define the problem of interest and gather relevant data.
2. Prepare for the ongoing application of the model as prescribed by management.
3. Formulate a mathematical model to represent the problem.
4. Develop a computer-based procedure for deriving solutions to the problem from the model.
5. Test the model and refine it as needed.
6. Implement (Hillier, p. 10)

- Interactive tools to make allowance for revisions;
- More sensitivity \& uncertainty analysis

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the
3. Develop a computer-based procedure for deriving solutions to the problem from the model.

4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement (Hillier, p. 10)

- Documentation
- Replicability, reproducibility

A prototype example

An example with most of the features of a linear programming setting. Hillier 2014, chapter 3.

A typical linear programming setting: allocating limited resources among competing activities in a best possible (i.e., optimal) way: the WYNDOR GLASS CO. producing doors and windows

Tree plants. Aluminium frames and hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Source: PIXAIR's Monsters and Co.

Two new products to be put into production:
Product 1: An 8-foot glass door with aluminium framing
Product 2: A 46 foot double-hung woodframed window

Source: PIXAIR's Monsters and Co.

- Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
- Product 2 needs only Plants 2 and 3.

Plant	Production Time per Batch, Hours	
	Product	
	$\mathbf{1}$	$\mathbf{2}$
1	1	0
2	0	2
	3	2

But time in the three plants is limited because of competing productions

	Production Time per Batch, Hours	
Plant	Product	

- TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

\uparrow
And the profits per batch of product are different

TABLE 3.1 Data for the Wyndor Glass Co. problem

	Production Time per Batch, Hours		
	Product		Production Time Plant
	$\mathbf{1}$	$\mathbf{2}$	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	$\$ 3,000$	$\$ 5,000$	

The key steps in formulating this as a linear programming problem are

- What are the decision variables
- What objective needs maximizing/minimizing

TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

$x_{1}=$ number of batches per week of product 1 to be produced
$x_{2}=$ number of batches per week of product 2 to be produced $Z=$ total profit per week in thousands of dollars from producing these batches

The decision variables are thus x_{1} and x_{2} and the objective to be maximized is Z

From the bottom row of the table $Z=3 x_{1}+5 x_{2}$
Z is in thousands of dollars

TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

But production time per plant is limited:

From the rightmost column of the table

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

Done?

The model does not know yet that the numbers must be positive; thus:

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

A 'magic' conversion from a table of data to a set of equation...
"Any sufficiently advanced technology is indistinguishable from magic" (Arthur C. Clark)

Maximize $Z=3 x_{1}+5 x_{2}$

Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

$$
\text { Maximize } Z=3 x_{1}+5 x_{2}
$$

	Production Time per Batch, Hours	
Plant	Product	

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

It is not difficult to imagine how one could get this magic wrong; e.g. define the decision variables as:
$x_{1 \mathrm{j}}=$ number of batches per week of product 1 to be produced in plant j
$x_{2 \mathrm{j}}=$ number of batches per week of product 2 to be produced in plant j
Making the problem still soluble but clumsier

- TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

Try this out!

Source: The Simpson, 20th Television Animation (The Walt Disney Company)
$x_{1 \mathrm{j}}=$ number of batches per week of product 1 to be produced in plant j $x_{2 \mathrm{j}}=$ number of batches per week of product 2 to be produced in plant j

$$
\begin{gathered}
Z=3\left(x_{11}+x_{13}\right)+5\left(x_{22}+x_{23}\right) \\
x_{11}<4 \\
2 x_{22}<12 \\
3 x_{13}+2 x_{23}<18 \\
x_{11} \geq 0, \quad x_{22} \geq 0 \\
x_{13} \geq 0, \quad x_{23} \geq 0
\end{gathered}
$$

One way: Maximize $Z=$
$3 x_{1}+5 x_{2}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12
\end{aligned}
$$

$3 x_{1}+2 x_{2} \leq 18$
$x_{1} \geq 0, \quad x_{2} \geq 0$

The other way: Maximize $Z=$ $3\left(x_{11}+x_{13}\right)+5\left(x_{22}+x_{23}\right)$
Subject to:

$$
\begin{gathered}
x_{11}<4 \\
2 x_{22}<12 \\
3 x_{13}+2 x_{23}<18 \\
x_{11} \geq 0, \quad x_{22} \geq 0 \\
x_{13} \geq 0, \quad x_{23} \geq 0
\end{gathered}
$$

Plant	Production Time per Batch, Hours		Production Time Available per Week, Hours
	Product		
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

NA

Since this problem is in two dimensions we can solve it graphically; back to Descartes, with his diagram

					6						
					5						
					4						
					3						
					2						
					1						
-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
					-2						
					-3						
					-4						
					-5						
					-6						

Source: https://study.com/learn/lesson/cartesian-coordinate-system.html

Maximize $Z=3 x_{1}+5 x_{2}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Maximize $Z=3 x_{1}+5 x_{2}$ | x_{2} | Subject to: |
| :--- | :--- |

FIGURE 3.1

Shaded area shows values of $\left(x_{1}, x_{2}\right)$ allowed by $x_{1} \geq 0$, $x_{2} \geq 0, x_{1} \leq 4$.

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Straight line following the equation $x_{1}=4$

FIGURE 3.2

Shaded area shows the set of permissible values of (x_{1}, x_{2}), called the feasible region.

Maximize $Z=3 x_{1}+5 x_{2}$

Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Tip to draw this line:
Fix $x_{1}=0$
Plug it into $3 x_{1}+2 x_{2}=18$ to get $x_{2}=9$
Fix $x_{2}=0$
Plug it into $3 x_{1}+2 x_{2}=18$ to get $x_{1}=6$
\rightarrow The line passes through points:

$$
\left(x_{1}, x_{2}\right)=(0,9) \text { and }\left(x_{1}, x_{2}\right)=(6,0)
$$

Straight line following the equation $3 x_{1}+2 x_{2}=18$

Paper, pencil ad ruler:
please draw on a Cartesian diagram the straight lines

$$
\begin{gathered}
x_{1}=4 \\
x_{2}=6 \\
x_{1}+x_{2}=1 \\
x_{1}-x_{2}=1 \\
3 x_{1}-x_{2}=-2
\end{gathered}
$$

How to handle the objective function to be maximized $Z=3 x_{1}+5 x_{2}$?
Giving arbitrary values to Z results in several straight lines, all parallel to one another

Giving arbitrary values to Z results in several straight lines, all parallel to one another This is because the slope of the line is constant, e.g. if

$$
3 x_{1}+5 x_{2}=10
$$

How did we guess that $Z=36$ knowing that one of the parallel lines must touch the point $\left(x_{1}, x_{2}\right)=(2,6)$?

The value of $\left(x_{1}, x_{2}\right)$ that maximizes $3 x_{1}+5 x_{2}$ is $(2,6)$.

MANAGEMENT

It is instructive to see what happens if
Maximize $Z=3 x_{1}+5 x_{2}$
is replaced by
Maximize $Z=3 x_{1}+2 x_{2}$

Source: The Simpson, 20th Television Animation (The Walt Disney Company)

Still subject to:

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Paper, pencil ad ruler: please try this out on a Cartesian diagram
$Z=18=3 x_{1}+2 x_{2}$

It is instructive to see what happens if

Maximize $Z=3 x_{1}+5 x_{2}$
is replaced by
Maximize $Z=3 x_{1}+2 x_{2}$

Still subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

It is also instructive to see what happens if we add another constraint

Maximize $Z=3 x_{1}+5 x_{2}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
3 x_{1}+5 x_{2} & \geq 50 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

A Standard Form of the Model:
Maximize $\quad Z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$,
Subject to:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

And to:

$$
x_{1} \geq 0, \quad x_{2} \geq 0, \quad \ldots, \quad x_{n} \geq 0
$$

$Z=$ value of overall measure of performance
$x_{j}=$ decision variables, level of activity j for $j=1,2, . . n$
$a_{j}^{i}=$ amount of resource i consumed by each unit of activity j
b_{i} amount of resource i that is available for allocation to activities $i=1,2, \ldots m$
c_{j} increase in Z that would result from each unit increase in level of activity

A Standard Form of the Model:
Maximize $\quad Z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}, \quad$ Objective function
Subject to:
$a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \quad$ Functional constraints
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}$,
And to:
$x_{1} \geq 0, \quad x_{2} \geq 0, \quad \ldots, x_{n} \geq 0 . \quad$ Nonegativity constraints

The fact that our solution in on a corner point of the feasible region is key to the theory of linear programming

Definition: A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region

There are five CPF's in the figure

upf.
SCHOOL OF
MANAGEMENT

Definition: A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region

There are five CPF's in the figure
Any linear programming problem with feasible solutions and a bounded feasible region must possess CPF solutions and at least one optimal solution

Furthermore, the best CPF solution must be an optimal solution

Thus, if a problem has exactly one optimal solution, it must be a CPF solution. If the problem has multiple optimal solutions, at least two must be CPF solutions

A "hand waiving" explanation:

In n dimensions the feasible region is a hyper polyhedron while the objective function is a plane; when it touches the polyhedron it will be in on a CPF (a corner) - or if there are more solutions, it will touch at least two CPF's (an edge or a plane)

Source (both images): Wikipedia Commons

Using Excel Solver

How to instal and open EXCEL SOLVER?

In MAC
https://www.youtube.com/watch?v=ge4FMyZEUF0

In Windows
https://www.youtube.com/watch?v=W6tIS4JZ5J0

1) Open a white excel sheet
2) Create a table as

\checkmark	A	B	C	D	E	F	G	H
1		Wyndor Glass Ca. Product-Mix Problem						
2								
3			Deors	Windows				
4		Proft Per Batch	3000	5000				
5								
6			Hours Used Per	Batch Produced	Hours Used	Hint	Hours Avaliable	
7		Plant 1	1	0		<	4	
8		Plant 2	0	2		<*	12	
9		Plant 3	3	2		<	18	
10								
11			Deors	Windows			Total Profit	
12		Batches Produced						
13								

3) Insert the following excel formula

In the cell E7 write: $=C 7 *$ C12 + D7*D12
In the cell E8 write: $=\mathrm{C} 8^{*} \mathrm{C} 12+\mathrm{D} 8^{*} \mathrm{D} 12$
In the cell E9 write: $=\mathrm{C} 9 * \mathrm{C} 12+\mathrm{D} 9 * \mathrm{D} 12$
In the cell G12 write: = C4*C12 + D4*D12

7	A	B	C	D	E	F	G	H
1		Wyydor Glass Co. Product-Mix Problem						
2								
3			Doors	Windows				
4		Proft Per Batch	3000	5000				
5								
6			Hours Used Per	Batch Produced	Hours Used	Hint	Hours Available	
7		Plant 1	1	0	0	<	4	
8		Plant 2	0	2	0	<	12	
9		Plant 3	3	2	0	<	18	
10								
11			Doors	Windows			Total Profit	
12		Batches Produced					0	
13								

4) Open the solver

In MAC

In Windows

5) In Set objective insert the cell G12

Next, select the Option Max that maximize the Profit

6) How? Changing Variable Cells insert the cells C12:D12

7) In Subject to the Constraints click Add and Insert that cells E7:E9 <= G7:G9

9) Click on

Ok
...and see the results in the cells
C12:D12 and G12

The vector $\mathrm{X}=(\mathrm{x} 1, \mathrm{x} 2)$ that maximize the profit are 2 for Doors and 6 for Windows and the Total Profit is 36000

	A.	B	C	D	E	F	6
1		Wyndor Glass Co. Product-Mix Problem					
2							
3			Doors	Windows			
4		Proft Per Batch	3000	5000			
5							
6			Hours Used Per Batch Produced		Hours Used	Hint	Hours Available
7		Plant 1	1	0	2	<	4
8		Plant 2	0	2	12	<	12
9		Plant 3	3	2	18	<	18
10							
11			Doors	Windows			Total Profit
12		Batches Produced	2	6			36000
13							
14							

Assumptions

Assumption made in linear programming. Hillier 2014, chapter 3.

Assumptions of linear programming

Proportionality: The contribution of each activity to the value of the objective function Z is proportional to the level of the activity x_{j} increase in Z that, as represented by the $c_{j} x_{j}$ term in the objective function

Assumptions of linear programming

Proportionality: The contribution of each activity to the value of the objective function Z is proportional to the level of the activity x_{j} increase in the objective funtion Z, as represented by the $c_{j} x_{j}$ terms

Maximize

Violation of

 Proportionality: Increasing marginal returns (Mercedes, iPhones)The solid curve violates the proportionality assumption because its slope (the marginal return from product 1) keeps increasing as x_{1} is increased

Violation of
 Proportionality:

Diminishing marginal returns (bananas, copper)

The solid curve violates the proportionality assumption because its slope (the marginal return from product 1) keeps decreasing as x_{1} is increased

Diminishing (bananas, copper) versus increasing (Mercedes, iPhones) marginal returns can make the difference between rich and poor countries

Erik S. Reinert

and Why Poor

Countries Stay Poor
Erik S. Reinert

Assumptions of linear programming

Additivity: Every function in a linear programming model (whether the objective function or the function on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective activities

$$
\text { Additive? } \longrightarrow \begin{array}{r}
\text { Maximize } Z=3 x_{1}+5 x_{2}+x_{1} x_{2} \\
\text { Subject to: } \\
x_{1} \leq 4 \\
2 x_{2} \leq 12
\end{array}
$$

Assumptions of linear programming

Divisibility: Decision variables in a linear programming model are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels

When a decision variable must be an integer, it becomes a case of integer programming

Knapsack problem algorithm

Source: https://victoria.dev/blog/knapsack-problem-algorithms-for-my-real-life-carry-on-knapsack/

Can this be formulated as a linear
programming problem?

Yes, items with different utility to be packed without exceeding a given total weight

Does divisibility apply?

Not with these items
With other items?

Assumptions of linear programming

Certainty: The value assigned to the parameters (the a_{j}^{i}, , b_{i} 's, and c_{j} 's) of a linear programming model are assumed to be known constants
"it is usually important to conduct sensitivity analysis after a solution is found that is optimal under the assumed parameter values" (Hillier, p. 43)
"For a mathematical model with specified values for all its parameters, the model's sensitive parameters are the parameters whose value cannot be changed without changing the optimal solution" (Hillier, p. 17)

In practice what is checked in linear programming's sensitivity analysis is which parameter - when moved - can change the optimal solutions, and this is done moving each parameter at a time

This approach is consistent with the optimization logic but becomes fragile when some of the assumptions break down, either because the system has non linearities / non additivities or because the model is incomplete

More examples

More examples of linear programming. Hillier 2014, chapter 3.

More cases: (1) Design of Radiation Therapy for patient Mary

FIGURE 3.11

Cross section of Mary's tumor (viewed from above), nearby critical tissues, and the radiation beams being used.

Beam 2

1. Bladder and tumor
2. Rectum, coccyx, etc.
3. Femur, part of pelvis, etc.

TABLE 3.7 Data for the design of Mary's radiation therapy
$\begin{array}{l|c|c}\hline & \begin{array}{c}\text { Fraction of Entry Dose } \\
\text { Absorbed by } \\
\text { Area (Average) }\end{array} & \\$\cline { 2 - 2 } Area \& Beam 1 \& Beam 2\end{array} \(\left.\begin{array}{c}Restriction on Total Average

Dosage, Kilorads\end{array}\right]\)| | |
| :--- | :--- |
| | |
| Healthy anatomy | 0.4 |
| Critical tissues | 0.3 |

Beam 2

1. Bladder and tumor
2. Rectum, coccyx, etc.
3. Femur, part of pelvis, etc.

The data consist of how much radiation will be received by each of the four areas (tumour and non-tumour) from each of the two beams

TABLE 3.7 Data for the design of Mary's radiation therapy

Area	$\begin{array}{c}\text { Fraction of Entry Dose } \\ \text { Absorbed by } \\ \text { Area (Average) }\end{array}$	
	Beam 1	Beam 2

Dosage, Kilorads\end{array}\right]\)| | |
| :--- | :--- |
| Healthy anatomy | 0.4 |
| Critical tissues | 0.3 |

Beam 2

1. Bladder and tumor
2. Rectum, coccyx, etc.
3. Femur, part of pelvis, etc.
"For example, if the dose level at the entry point for beam 1 is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of the tumour, and 0.6 kilorad will be absorbed by the centre of the tumour."

TABLE 3.7 Data for the design of Mary's radiation therapy

Area	$\begin{array}{c}\text { Fraction of Entry Dose } \\ \text { Absorbed by } \\ \text { Area (Average) }\end{array}$	
	Beam 1	Beam 2

Dosage, Kilorads\end{array}\right]\)| | |
| :--- | :--- |
| Healthy anatomy | 0.4 |
| Critical tissues | 0.3 |

Decision variables?
a) Dose (Kilorads) to organ j from beam i ?
b) Time of exposure beams 1 and 2?
c) Fraction of entry dose from beams 1 and 2

TABLE 3.7 Data for the design of Mary's radiation therapy

Area	$\begin{array}{c}\text { Fraction of Entry Dose } \\ \text { Absorbed by } \\ \text { Area (Average) }\end{array}$	
	Beam 1	Beam 2

Dosage, Kilorads\end{array}\right]\)| | | |
| :--- | :---: | :---: |
| Healthy anatomy | 0.4 | 0.5 |
| Critical tissues | 0.3 | 0.1 |
| Tumor region | 0.5 | 0.5 |
| Center of tumor | 0.6 | 0.4 |

c) Fraction of entry dose from beams 1 and 2

Beam 2

1. Bladder and tumor
2. Rectum, coccyx, etc.
3. Femur, part of pelvis, etc.

Beam 2
TABLE 3.7 Data for the design of Mary's radiation therapy

Area	Fraction of Entry Dose Absorbed by Area (Average)		Restriction on Total Average Dosage, Kilorads
	Beam 1	Beam 2	
Healthy anatomy	0.4	0.5	Minimize
Critical tissues	0.3	0.1	≤ 2.7
Tumor region	0.5	0.5	$=6$
Center of tumor	0.6	0.4	≥ 6

Minize $\mathrm{Z}=0.4 x_{1}+0.5 x_{2}$
Subject to

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2} \geq 6
\end{gathered}
$$

And

$$
\begin{array}{ll}
x_{1} \geq 0 \\
x_{2} \geq 0 & \text { These are the ... } \\
\text { Nonegativity constraints }
\end{array}
$$

Beam 2

TABLE 3.7 Data for the design of Mary's radiation therapy
$\begin{array}{l|c|c}\hline \hline & \begin{array}{c}\text { Fraction of Entry Dose } \\ \text { Absorbed by } \\ \text { Area (Average) }\end{array} & \\$\cline { 2 - 2 } Area \& Beam 1 \& Beam 2\end{array} $\left.\begin{array}{c}\text { Restriction on Total Average } \\ \text { Dosage, Kilorads }\end{array}\right]$

Minize Z $=0.4 x_{1}+0.5 x_{2}$ Subject to

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2} \geq 6
\end{gathered}
$$

And

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Minize $\mathrm{Z}=0.4 x_{1}+0.5 x_{2}$ Subject to

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2} \geq 6
\end{gathered}
$$

And

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{1} \geq 0
\end{aligned}
$$

Time for work on the Cartesian plane

shutterstock.com - 1455758819

Hint:

1) start by drawing the straight lines

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2}=2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2}=6
\end{gathered}
$$

2) identify the critical region
3) Compute Z at the extremes of the critical region - for this you must find the intersections of the various lines

Minize $\mathrm{Z}=0.4 x_{1}+0.5 x_{2}$
Subject to

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2} \geq 6
\end{gathered}
$$

And

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{1} \geq 0
\end{aligned}
$$

Solve simultaneously

$$
\begin{gathered}
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4=6
\end{gathered}
$$

How do you find this point?

To solve simultaneously
$0.5 x_{1}+0.5 x_{2}=6$ $0.6 x_{1}+0.4 x_{2}=6$

Derive x_{1} from the first equation
$x_{1}=\left(\frac{-0.5 x_{2}+6}{0.5}\right)=-x_{2}+12$ Plug this into the second equation

$$
\begin{gathered}
0.6\left(12-x_{2}\right)+0.4 x_{2}=6 \\
7.2-0.2 x_{2}=6 \\
x_{2}=6
\end{gathered}
$$

Plugging this back in either the first or the second equation gives $x_{1}=6$

Solve simultaneously

$$
\begin{aligned}
& 0.5 x_{1}+0.5 x_{2}=6 \\
& 0.6 x_{1}+0.4 x_{2}=6
\end{aligned}
$$

How do you find this point?

Minize $\mathrm{Z}=0.4 x_{1}+0.5 x_{2}$
Subject to

$$
\begin{gathered}
0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
0.5 x_{1}+0.5 x_{2}=6 \\
0.6 x_{1}+0.4 x_{2} \geq 6
\end{gathered}
$$

And

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{1} \geq 0
\end{aligned}
$$

To solve simultaneously
$0.5 x_{1}+0.5 x_{2}=6$
$0.3 x_{1}+0.1 x_{2}=2$.
Derive x_{1} from the first equation
$x_{1}=\left(\frac{-0.5 x_{2}+6}{0.5}\right)=-x_{2}+12$ Plug this into the second equation

$$
\begin{gathered}
0.3\left(12-x_{2}\right)+0.1 x_{2}=2.7 \\
3.6-0.3 x_{2}+0.1 x_{2}=2.7 \\
0.2 x_{2}=0.9 \\
x_{2}=4.5
\end{gathered}
$$

Solve simultaneously

$$
\begin{aligned}
& 0.5 x_{1}+0.5 x_{2}=6 \\
& 0.3 x_{1}+0.1=2.7
\end{aligned}
$$

How do you find this point?

Plugging this back in either the first or the second equation gives $x_{1}=7.5$

Assumptions of linear programming

Divisibility: Decision variables in a linear programming model are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since each decision variable represents the level of some activity, it is being assumed that the activities can be run at fractional levels

When a decision variable must be an integer, it becomes a case of integer programming

More cases: (2) Controlling Air Pollution
A steel producing company needs to cut the emissions from one of its plans. The desired reduction is:

TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

The pollution arises from two primary sources, namely, the blast furnaces for making pig iron and the openhearth furnaces for changing iron into steel.

Used at full power, the three methods available to reduce emissions (taller smokestacks, filters and better fuel) will yield the following reduction

TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
Pollutant	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Particulates	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

- TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
	Blast Pollutant Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Particulates	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

= TABLE 3.14 Total annual cost from the maximum feasible use of an abatement method for Nori \& Leets Co. (\$ millions)

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	8	10
Fiters	7	6
Better fuels	11	9

And this is the associated cost, still using the methods at their fullest power

- TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

- TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
	Blast	Open-Hearth Purnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Furnaces	Furticulates	12	9	25	20	17
Sulfur oxides	35	42	18	31	56	13
Hydrocarbons	37	53	28	24	29	49

[TABLE 3.14 Total annual cost from the maximum feasible use of an abatement method for Nori \& Leets Co. (\$ millions)

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	8	10
Filters	7	6
Better fuels	11	9

Then look at the constraints,
expressed as function of maximum feasible use ...

Decision variables?

Look at the structure of the cost; it depends on the three methods applied to the two furnaces ...

So we go from this

플 TABLE 3.14 Total annual cost from the maximum feasible use of an abatement method for Norl \& Leets Co. (\$ millions)

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	8	10
Filters	7	6
Better fuels	11	9

To this

TABLE 3.15 Decision variables (fraction of the maximum feasible use of an abatement method) for Nori \& Leets Co.

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	x_{1}	x_{2}
Filters	x_{3}	x_{4}
Better fuels	x_{5}	x_{6}

Putting the two tables together

ETABLE 3.14 Total annual cost from the maximum feasible use of an abatement method for Norl \& Leets Co. (\$ millions)

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	8	10
Filters	7	6
Better fuels	11	9

TABLE 3.15 Decision variables (fraction of the maximum feasible use of an abatement method) for Nori \& Leets Co.

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	x_{1}	x_{2}
Filters	x_{3}	x_{4}
Better fuels	x_{5}	x_{6}

We can write

Minimize $8 x_{1}+10 x_{2}+7 x_{3}+6 x_{4}+11 x_{5}+9 x_{6}$

- TABLE 3.15 Decision variables (fraction of the maximum feasible use of an abatement method) for Nori \& Leets Co.

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	x_{1}	x_{2}
Filters	x_{3}	x_{4}
Better fuels	x_{5}	x_{6}

TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
	Blast	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Purnaces	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

Now we have to put together these tables

We can write for particulate
$12 x_{1}+9 x_{2}+25 x_{3}+20 x_{4}+17 x_{5}+13 x_{6} \geq 60$

TABLE 3.12 Clean air standards for the Nori \& Leets Co.	
Pollutant	Required Reduction in Annual Emission Rate
(Million Pounds)	

TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
Pollutant	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Particulates	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

To write:
Particulate $\rightarrow 12 x_{1}+9 x_{2}+25 x_{3}+20 x_{4}+17 x_{5}+13 x_{6} \geq 60$
Sulphur oxides $\rightarrow 35 x_{1}+42 x_{2}+18 x_{3}+31 x_{4}+56 x_{5}+49 x_{6} \geq 150$
Hydrocarbons $\rightarrow 37 x_{1}+53 x_{2}+28 x_{3}+24 x_{4}+29 x_{5}+20 x_{6} \geq 125$

The same for the other pollutants

TABLE 3.12 Clean air standards for the Nori \& Leets Co.

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

To write:
Particulate $\rightarrow 12 x_{1}+9 x_{2}+25 x_{3}+20 x_{4}+17 x_{5}+13 x_{6} \geq 60$
Sulphur oxides $\rightarrow 35 x_{1}+42 x_{2}+18 x_{3}+31 x_{4}+56 x_{5}+49 x_{6} \geq 150$
Hydrocarbons $\rightarrow 37 x_{1}+53 x_{2}+28 x_{3}+24 x_{4}+29 x_{5}+20 x_{6} \geq 125$

Nonnegativity constraints
$x_{j} \geq 0$ for $j=1,2, \ldots 6$

Are we done?

$x_{j} \leq 1$ for $j=1,2, \ldots 6$

Pollutant	Required Reduction in Annual Emission Rate (Million Pounds)
Particulates	60
Sulfur oxides	150
Hydrocarbons	125

- TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the maximum feasible use of an abatement method for Nori \& Leets Co.

	Taller Smokestacks		Filters		Better Fuels	
	Blast	Open-Hearth				
Pollutant	Furnaces	Burnaces	Furnaces	Open-Hearth Furnaces	Blast Furnaces	Open-Hearth Furnaces
Particulates	12	9	25	20	17	13
Sulfur oxides	35	42	18	31	56	49
Hydrocarbons	37	53	28	24	29	20

[TABLE 3.14 Total annual cost from the maximum feasible use of an abatement method for Nori \& Leets Co. (\$ millions)

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	8	10
Filters	7	6
Better fuels	11	9

- TABLE 3.15 Decision variables (fraction of the maximum feasible use of an abatement method) for Nori \& Leets Co.

Abatement Method	Blast Furnaces	Open-Hearth Furnaces
Taller smokestacks	x_{1}	x_{2}
Filters	x_{3}	x_{4}
Better fuels	x_{5}	x_{6}

Solved with the method of simplex (not shown here) this gives the following solution:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(1,0.623,0.343,1,0.048,1)
$$

with $Z=32.16$

More cases: (3) Scheduling
An air company needs to allocate staff to different shifts as to cover flights while minimizing costs

The shifts are

	From time	To time
Shift 1	$6: 00 \mathrm{am}$	$2: 00 \mathrm{pm}$
Shift 2	$8: 00 \mathrm{am}$	$4: 00 \mathrm{pm}$
Shift 3	noon	$8: 00 \mathrm{pm}$
Shift 4	$4: 00 \mathrm{pm}$	midnight
Shift 5	$10: 00 \mathrm{pm}$	$6: 00 \mathrm{am}$

The five shifts cover different time windows at a different cost
TABLE 3.19 Data for the Union Airways personnel scheduling problem

What do we want to minimize?

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Period	Time Periods Covered					Minimum Number of Agents Needed
	Shift					
	1	2	3	4	5	
6:00 A.M. to 8:00 A.M.	\checkmark					48
8:00 A.M. to 10:00 A.M.	v	v				79
10:00 A.M. to noon	\checkmark	\checkmark				65
Noon to 2:00 P.M.	\checkmark	\checkmark	\checkmark			87
2:00 P.M. to 4:00 P.M.		\checkmark	v			64
4:00 P.M. to 6:00 P.M.			\checkmark	v		73
6:00 P.M. to 8:00 P.M.			v	v		82
8:00 P.M. to 10:00 P.M.				\checkmark		43
10:00 P.M. to midnight				v	\checkmark	52
Midnight to 6:00 A.M.					\checkmark	15
Daily cost per agent	\$170	\$160	\$175	\$180	\$195	

Cost, based on the number x_{i} of agents assigned to each shift $i, i=1, . .5$:

Minimize $170 x_{1}+160 x_{2}+175 x_{3}+180 x_{4}+195 x_{5}$

Time Period	Time Periods Covered					Minimum Number of Agents Needed
	Shift					
	1	2	3	4	5	
6:00 A.M. to 8:00 A.M.	v					48
8:00 A.M. to 10:00 A.M.	\checkmark	\checkmark				79
10:00 A.M. to noon	\checkmark	\checkmark				65
Noon to 2:00 P.M.	\checkmark	\checkmark	\checkmark			87
2:00 P.M. to 4:00 P.M.		\checkmark	v			64
4:00 P.M. to 6:00 P.M.			v	v		73
6:00 P.M. to 8:00 P.M.			\checkmark	\checkmark		82
8:00 P.M. to 10:00 P.M.				v		43
10:00 p.M. to midnight				\checkmark	\checkmark	52
Midnight to 6:00 A.M.					\checkmark	15
Daily cost per agent	\$170	\$160	\$175	\$180	\$195	

Minimize $170 x_{1}+160 x_{2}+175 x_{3}+180 x_{4}+195 x_{5}$
Which is the first structural constraint?

$$
x_{1} \geq 48
$$

Which is the second structural constraint?

$$
x_{1}+x_{2} \geq 79
$$

BARCELONA
SCHOOL OF
MANAGEMENT

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Period	Time Periods Covered					Minimum Number of Agents Needed
	Shift					
	1	2	3	4	5	
6:00 A.M. to 8:00 A.M.	\checkmark					48
8:00 A.M. to 10:00 A.M.	\checkmark	\checkmark				79
10:00 A.m. to noon	\checkmark	\checkmark				65
Noon to 2:00 P.M.	\checkmark	\checkmark	\checkmark			87
2:00 P.M. to 4:00 P.M.		\checkmark	\checkmark			64
4:00 P.M. to 6:00 P.M.			\checkmark	v		73
6:00 P.M. to 8:00 P.M.			\checkmark	\checkmark		82
8:00 P.M. to 10:00 P.M.				\checkmark		43
10:00 P.M. to midnight				\checkmark	\checkmark	52
Midnight to 6:00 A.M.					\checkmark	15
Daily cost per agent	\$170	\$160	\$175	\$180	\$195	

Minimize $170 x_{1}+160 x_{2}+175 x_{3}+180 x_{4}+195 x_{5}$

$$
\begin{gathered}
x_{1} \geq 48 \\
x_{1}+x_{2} \geq 79 \\
x_{1}+x_{2} \geq 65 \\
x_{1}+x_{2}+x_{3} \geq 87 \\
x_{2}+x_{3} \geq 64 \\
x_{3}+x_{4} \geq 73 \\
x_{3}+x_{4} \geq 82 \\
x_{5} \geq 43 \\
x_{5}+x_{6} \geq 52 \\
x_{6} \geq 15
\end{gathered}
$$

Anything weird about these structural constraints ?

Anything Missing?

$$
x_{i} \geq 0, i=1, \ldots 5
$$

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Period	Time Periods Covered					Minimum Number of Agents Needed
	Shift					
	1	2	3	4	5	
6:00 A.M. to 8:00 A.M.	\checkmark					48
8:00 A.M. to 10:00 A.M.	\checkmark	\checkmark				79
10:00 A.m. to noon	\checkmark	\checkmark				65
Noon to 2:00 P.M.	\checkmark	\checkmark	\checkmark			87
2:00 P.M. to 4:00 P.M.		\checkmark	\checkmark			64
4:00 P.M. to 6:00 P.M.			\checkmark	v		73
6:00 P.M. to 8:00 P.M.			\checkmark	\checkmark		82
8:00 P.M. to 10:00 P.M.				\checkmark		43
10:00 P.M. to midnight				\checkmark	\checkmark	52
Midnight to 6:00 A.M.					\checkmark	15
Daily cost per agent	\$170	\$160	\$175	\$180	\$195	

Minimize $170 x_{1}+160 x_{2}+175 x_{3}+180 x_{4}+195 x_{5}$

The optimal solution for this model is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ (48, 31, 39, 43, 15).
This yields Z
30,610 , that is, a total daily
personnel cost of \$30,610.

$$
x_{i} \geq 0, i=1, \ldots 5
$$

Sinimize $170 x_{1}+160 x_{2}+175 x_{3}+180 x_{4}+195 x_{5}$
$x_{1} \geq 48$
$x_{1}+x_{2} \geq 79$ $x_{1}+x_{2} \geq 65$
$x_{1}+x_{2}+x_{3} \geq 87$ $x_{2}+x_{3} \geq 64$ $x_{3}+x_{4} \geq 73$
$x_{3}+x_{4} \geq 82$
$x_{5} \geq 43$
$x_{5}+x_{6} \geq 52$
$x_{6} \geq 15$
Anything weird about these structural constrainis ?

Anything Missing?
$x_{i} \geq 0, i=1, \ldots 5$
machona
SCHCOL OF
HWUGEMEI
\approx

What happened to divisibility?

Method of simplex

A geometric illustration of the simplex method. Hillier 2014, chapter 4.

Simplified illustration of the simplex method, recalling the previous example

Recall the allimportant concept of Corner Point Feasible (CPF) solution.

The problem has three unfeasible (which are \cdots ?) and five feasible (CPF) solutions (which are ...?)

Recall that if there is only one optimal solution this must be a CPF

In n dimensions the feasible region is a hyper polyhedron while the objective function is a plane; when it touches the polyhedron it will be in on a CPF (a corner) - or if there are more solutions, it will touch at least two CPF's (an edge or a plane)

Source (both images): Wikipedia Commons

BARCELONA

SCHOOL OF
MANAGEMENT

In n dimensions the feasible region is a hyper polyhedron while the objective function is a plane; when it touches the polyhedron it will be in on a CPF (a corner) - or if there are more solutions, it will touch at least two CPF's (an edge or a plane)

Source (both images): Wikipedia Commons

BARCELONA

SCHOOL OF
MANAGEMENT

- If there is only one optimal solution this must be a CPF

So a brute-force strategy
 to find the solution is to compute Z in all CPF points

This is not what simplex does. What is the algorithm employed by simplex?

Without proof we say that two CPF are adjacent in a problem with n decision variables (2 in the example) the point share ($n-1$) constraints boundaries (1 in this case). So the five CPF points (0,$0 ; 0,6 ; 2,6 ; 4,3 ; 4,0$)

How many point could be adjacent to one another in the icosahedron?

TABLE 4.1 Adjacent CPF solutions for each CPF solution of the Wyndor Glass Co. problem

CPF Solution	Its Adjacent CPF Solutions
$(0,0)$	$(0,6)$ and $(4,0)$
$(0,6)$	$(2,6)$ and $(0,0)$
$(2,6)$	$(4,3)$ and $(0,6)$
$(4,3)$	$(4,0)$ and $(2,6)$
$(4,0)$	$(0,0)$ and $(4,3)$

If the points adjacent to a given CPF all have lower Z than the given point, the given point is the optimal solution. This implies that I do not need to explore all CPF, but to follow a trajectory and systematically explore at each stage the adjacent point of my position. I stop the trajectory when all adjacent points have lower Z.

TABLE 4.1 Adjacent CPF solutions for each CPF
solution of the Wyndor Glass Co. problem

CPF Solution	Its Adjacent CPF Solutions
$(0,0)$	$(0,6)$ and $(4,0)$
$(0,6)$	$(2,6)$ and $(0,0)$
$(2,6)$	$(4,3)$ and $(0,6)$
$(4,3)$	$(4,0)$ and $(2,6)$
$(4,0)$	$(0,0)$ and $(4,3)$

If the points adjacent to a given CPF all have lower Z than the given point, the given point is the optimal solution. Why?

If the points adjacent to a given CPF all have lower Z than the given point, the given point is the optimal solution. Why?

Because the solution space is convex: if you are on a peak, you are surrounded by a 'flat' landscape; there cannon be other mountains in sight

Source: https://www.istockphoto.com

Because the solution space is convex: if you are on a mountain surrounded by valleys, there cannon be other mountains beyond the valleys

From the cover of Proof and Refutation, of Imre Lakatos, Cambridge University Press

If the points adjacent to a given
CPF all have lower Z than the given point, the given point is the optimal solution.

Applying this to the $n=2$ example of the figure above, one can start from $(0,0)$, pass by (0,0), and stop at (2.6) since the adjacent points of $(0,6)$ have lower Z

Starting from $(4,0)$ leads to the same result

The nut-mix problem

The nut-mix problem of Charnes and Cooper (1953):

A manufacturer wishes to determine an optimal program for mixing three grades [A, B , D] of nuts consisting of cashews [C], hazels [H], and peanuts [P] according to the specifications and prices given in table 1. Hazels may be introduced into the mixture in any quantity, provided the specifications are met. The amounts of each nut available each day and their costs are given in table 2. Determine the pounds of each mixture that should be manufactured each day to maximize the gross return (contribution margin).

> Page 94 Gass, S. I.. \& Assad, A. A. (2006). An Annotated Timeline Of Operations Research: An Informal History (1st Corrected ed. 2005. Corr. 2nd printing 2006 edition). Springer-Verlag New York Inc.

Table 1

Mixture	Specifications	Selling price: $\phi /$ pound
A	Not less than 50% cashews Not more than 25% peanuts Not less than 25\% cashews Not more than 50% peanuts No specifications	50
D	N	25

> The nut-mix problem

Table 2

Inputs	Capacity: pounds/day	Price: $\not \subset /$ pound
C	100	65
H	60	35
P	100	25
Total	260	

Homework (to be handed over at the next lesson - handwritten)

1) Choose one Pitfall in Formulation or one Pitfall in Modelling from the list offered in this lecture, go to chapter 3 (from page 23) of the volume of Majone and Quade (on https://ecampus.bsm.upf.edu/) and read the relevant subsection. Write one page about what you read.
2) Consider the following model: Maximize

$$
Z=40 x_{1}+50 x_{2}
$$

subject to

$$
\begin{gathered}
2 x_{1}+3 x_{2} \geq 30 \\
x_{1}+x_{2} \geq 12 \\
2 x_{1}+x_{2} \geq 20
\end{gathered}
$$

and

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Use the graphical method to solve this model.
3) Solve with Excel SOLVER the case "Controlling Air Pollution; Nori and Leets Co., Hillier:
https://www.dropbox.com/sh/ddd48a8iguinbcf/AABF0s4eh1lPLVxdx0pesOfa? dl=0\&preview=Introduction + to + Operations + Research + -

+ Frederick+ S.+ Hillier.pdf Chapter 3, pages 51-53.

4) Write down the equations for the Nut-mix example of the previous slides without solving it.

Thank you

MANAGEMENT

[^0]: Frederick S. Hillier : Gerald J. Lieberman

[^1]: Comments here?

[^2]: Source: (Quade 1980)

[^3]: Wumben br Dent Mram

