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Abstract. Some recent articles are reviewed where sensitivity analysis (SA) is implemented 
via either an elementary "one factor at a time" (OAT) approach or via a derivative-based 
method. In these works, as customary, SA is used for mechanism identification and/or model 
selection. OAT and derivative based methods have important limitations: (1) Only a reduced 
portion of the space of the input factors is explored, (2) the possibility that factors might 
interact is discounted, (3) the methods do not allow self-verification. Given that all models 
involved are highly nonlinear and potentially nonadditive, the adopted methods might fail to 
provide the full effect of any given factor on the output. This could deceive the analyst, unless 
the analysis were really meant to focus on a narrow range around the nominal value, where 
linearity may be assumed. Different methods are suggested, such as a rationalized OAT 
screening test, a regression-based method, and two implementations of global quantitative 
sensitivity analysis measures. Computational cost, efficiency, and limitations of the proposed 
strategies are discussed, and an example is offered. 

1. Problem 

Sensitivity analysis (SA) of model output is a valuable tool 
in the craftsmanship of modeling. It may help in verifying that 
the response of a model to its input conforms to theory. It may 
assist in the model calibration process, for example by 
optimizing the experimental conditions most suited to the 
determination of a given unknown factor. When testing 
different mechanistic hypotheses against available evidence, 
S A may help to decide to what extent the existing 
uncertainties allow a given mechanism to be unambiguously 
identified. 

We argue that often the full potential of SA is not exploited 
and that, in some instances, SA is used improperly, especially 
when making statements about the relative importance of 
input factors. For the sake of illustration, we focus on some 
recent articles published in this joumal. 

Most investigators in the sample selected performed 
sensitivity analysis by changing "one factor at a time" (OAT, 
in the jargon of experimental and numerical design), and 
exploring what the model did with the new datum. In these 
analyses the baseline value was kept constant, that is the 
factors were moved away from the baseline only once (or 
twice) and the baseline was not changed throughout the 
analysis. Let us call this approach "elementary OAT", or 
EOAT. 

While this approach is easy to implement, computationally 
inexpensive, and useful to provide a glimpse at the model 
behavior, it is limited. Any conclusion drawn on the relation 
between the output Considered and the individual factor being 
varied is only legitimate around the baseline case. 

An EOAT treatment is tried by Klonecki and Levy, [1997], 
where the response of a model for the chemical ozone 
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tendency (rate of change) is investigated by varying chemico- 
physical parameters one at a time. For example, uncertainty 
ranges found in the literature for kinetic constants are used 
(one constant and side of the range at a time) to investigate 
the sensitivity of the ozone tendency to uncertain reaction 
rates. 

Clegg and Toumi [1997] test the sensitivity of sulphur 
dioxide oxidation in sea salt with respect to activity 
coefficients, relative humidity, dry sea-salt mass, and aerosol 
lifetime by changing one factor at a time. The same is done by 
Kerminen and Wexler [1997], for a model of aerosol growth: 
factors are changed EOAT away from the base, case and the 
mean diameters of aerosol particles in the various modes 
(nuclei, Aitken, accumulation) as well as number 
concentration are computed. Kreidenweis and Zhang [1997], 
investigate the sensitivity of in the vertical profile of SO2 and 
CCN in a two-dimensional Eulerian cloud model. A set of 

nine simulations are performed for the purpose of SA, 
including two where the gridding of the model is changed. 

In all the studies above the investigators were not planning 
a full-fledged SA, but were interested instead in a cursory 
appreciation of the overall effect of any given factor on the 
output, mostly in the context of mechanism identification. 

In fact, all models considered (e.g. aerosol dynamics) are 
highly nonlinear, and the overall effect of a given factor could 
well escape or deceive the analyst when EOAT is used. This 
may easily happen because in some comer or edge of the 
input factors' space a different pattern of sensitivity exists, or 
because factors interact with each other. 

A derivative-based approach is applied instead by Capaldo 
and Pandis [ 1997], where the effect of a given input x on the 
output y is assumed to be proportional to the derivative 
Oy/0x. 

Derivative-based sensitivity analysis methods have been 
used extensively in chemistry, in a variety of applications 
such as the solution of inverse problems, for example 
computing kinetic constants from measured flow rates in a 
batch or flow reactors, (see Turanyi [1990], for a review), or 
relating variables at the molecular scale to those at the 
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macroscopic one [Rabitz, 1989]. Local sensitivity analysis 
allows the treatment of large systems of differential equations 
(see, e.g., the work on differential analysis and adjoint 
techniques by the Oak Ridge school [Cacuci, 1981a,b]). 
Present-day computational tools for local SA allow large 
numbers of sensitivity coefficients to be computed 
simultaneously, which provide a much more comprehensive 
picture than local EOAT. Local SA, used in this kind of 
problem setting, has vastly proven its worth. 

We contend that neither an EOAT approach nor a 
derivative-based SA should be used to rank the impact of 
different uncertain (or variable) input factors in determining 
the variation of the output under examination, unless the 
model is known to be linear or the range of variation is small. 
The fact that such a use has a long record in the literature 
should not be taken'as a foundation of its correctness. 

For instance, when using a derivative-based approach, the 
model under examination is forcibly linearized; that is, one 
assumes that the effect of x on y is completely captured by 
0y/0x. Both in EOAT and in the derivative-based methods 
the existence of interactions (see below) is discounted. 
Mostly, the investigator using these approaches obtains a 
partial view of the behavior of the model's response. Most 
nonlinear models are a complex function of the 
multidimensional space of the input factors. This complexity 
is lost when one focuses on the baseline point (of zero 
volume), as in the case of local derivative method. The same 
complexity is greatly simplified when one departs from that 
point only along the main axes, changing one factor at a time, 
as already mentioned. 

Experience with environmental models (e.g., those 
involving mass transfer with chemical reaction) shows the 
following: (1) Different factors are affected by different 
ranges of variation / uncertainty. Different sensitivity patterns 
predominate in different regions of the space of the input, 
especially when models are nonlinear. (2) There are often 

non-negligible interactions (i.e., the effect of changing x j and 
x i is different from the sum of the individual effects). For 
these reasons, statements of the kind "xj is more important 
than xi" using EOAT or local SA approaches can be 
unsustained (e.g., they might be U'ue, but this is not inferable 
from the SA). 

As an example, let us consider again the approach of 
Capaldo and Pandis [1997]. This particular study, among 
those reviewed above, is the most thorough from the SA 
perspective, and we are taking it here as the object of our 
criticism only for the sake of exemplification, as it is one of 
those most commonly seen in the literature. The target 
sensitivity measure considered by the authors is 

S= x/)y (1) 
y 

that is, the effect on the relative variation of y of perturbing x 
by a fixed fraction of x's central value. S is estimated via the 
computation of 

ln(y)-ln(yb ) 
'• = ln(x)- ln(xb ) (2) 

where the subscript b indicates a baseline value and x is a 
generic input factor. Each of the x is then given a different 
variation between the baseline and a "sensitivity test value". 
These authors compare the prediction of five different models 
over nine different scenarios, varying a total of 26 factors 
(seven meteorological, nine physical and ten chemical). 

Baseline and sensitivity test values for the first three 
meteorological factors are shown in Table 1. Capaldo and 
Pandis acknowledge that different parameters exhibit different 
variation ranges, but their SA-based inference on the relative 
importance of different factors is unwarranted, as it suffers 
from the forced linearization of the model. Their approach 
assumes that y responds linearly to x in the range [x, xb] for all 
26 factors. Further, each derivative is taken while the other 
factors are held at the central nominal value; the existence of 
edges and comers in the space of the input is neglected, and 
interactions are discounted. 

Their conclusion may well hold; that is, it might indeed be 
the case that the ratio of SO4 between the free troposphere 
(FT) and the marine boundary level (MBL) is 10 times more 
influential than any other parameter as far as nss-sulphate 
levels are concerned, as the authors state. Yet in a system with 
26 factors with appreciable coefficients of variation (e.g. 
cloud frequency varying between 1 and 3), significant 
interaction may be expected, which may also include the SO4 
ratio in FT/MBL; these could considerably change the picture 
of the model sensitivities. 

In the section entitled "improving the prediction", the same 
authors implement a transversal calibration of all five models 
with respect to a subset of the factors. For this setting we 
would recommend as a possible alternative the Monte Carlo- 
based approach of Fedra et al. [ 1981]. In fact, if one wanted 
to effectively discriminate among competing models, the 
entire space of variation of the inputs should be explored. 
According to Fedra et al., rather than calibrating to a unique 
value of the factors, the calibration should more realistically 
lead to admissible ranges for the same factors. 

The sensitivity analysis of Capaldo and Pandis is very 
much dependent upon the extremes selected for the 
differentiation if each factor, which increase the subjectivity 
of the analysis. This subjectivity would be reduced if one 
could perform SA via Monte Carlo by sampling from a 
nonuniform distribution (see below). 

Finally, the g coefficients give no guarantee of 
correctness, as local SA methods do not allow a self- 

verification of their correctness. A sensitivity analysis method 
can be said to allow self-verification when the analyst can 
estimate or quantify the error of the analysis directly from its 
results. As discussed in the next section, this is often possible. 
In Monte Carlo based regression, hypothesis testing can be 
used; when using variance-based methods, one can verify the 
fraction of the output variance accounted for by the factors. 
The õ coefficients instead do not offer an estimate of the 
error implicit in the linearization process. 

2. What Should Then Be Used? 

A useful review of sensitivity analysis methods is by 
Helton [1993], while recent material on SA is available in a 
series of recent special issues (Special Issue on Sensitivity 
Analysis of Model Output, Journal of Statistical Computation 
and Simulation, 57(1-4), 1997; Special Issue on Sensitivity 

Table 1. Baseline and Sensitivity Test Values From Capaldo 
and Pandis [1997] 

Factor Baseline Sensitivity Test Value 
Temperature, K 290 300 
Mixing height, m 500 1,000 

Cloud frequency, 1/d 3 1 
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Analysis of Model Output, Reliability Engineering and 
System Safety, 42(1), 1997; Special Issue on Sensitivity 
Analysis of Model Output, Computer Physics 
Communications, in press, 1998). Rather than offering here 
another review of S A methods, we shall try to provide the 
Journal of Geophisical Research reader with a few pointers to 
further reading. To this effect we will suggest some different 
SA methods that could have been used in the examples 
reviewed. These methods have different computational costs 
and ranges of application. In general, they could offer 
advantages with respect to the elementary OAT or derivative 
based approaches for the problem settings where finite factor 
variation is involved. 

2.1. First Approach 

Use an established regression analysis method, such as the 
standardized regression coefficients SRC(y,xj), and base the 
sensitivity analysis on the coefficients [Draper and Smith 
1981, Iman et al. 1985, Iman and Helton 1988] (see Raes et 
al. [1992] for a recent example in the field of aerosol 
dynamics). This Monte Carlo based method allows self- 
verification, as the effectiveness of the SRC(y,xj), as a 
measure of sensitivity is conditional upon the model 
coefficient of determination: 

y - / Z:.• (y•_y)• (3) 
where the y• are the original model evaluations and the •,• are 
the ones for the regression model. R• can be computed 
together with the SRC[y,x•], and gives the fraction of the 
model's output variance accounted for by the linear regression 
model. If R•is close to one, the absolute value of the 
SRC[y,x•) can be used to rank the relative influence of the 
input factors on the output. Otherwise, the analyst must be 
ready to try one of the methods below. This method (as all 
those based on Monte Carlo) also offers the advantage that 
input factors can be sampled from distributions, including 
nonuniform ones. Sampling, for example, from a normal 
distribution reduces the influence of the selected endpoints as 
compared to a uniform distribution with the same extremes. 
This could correspond to the realistic situation where one 
were to believe the central value more than the extreme ones. 

The cost of this method in terms of model evaluations N• is 
difficult to estimate a priori for a given target accuracy. A 
"rule of the thumb" offered by Irnan and Helton [1985] 
suggests that N• should be at least 4/$ k when using a Latin 
hypercube sampling scheme, where k is the number of factors. 
A postedoff, hypothesis testing can be used to test the correct 
identification of the influential factors. When the model is 

nonlinear, a rank-based version of the same test (standardized 
rank regression coefficients, SRRC) can be used. Although 
this alters the model being studied [$aftef/œ and Sobof', 1995], 
the R• based on the ranks is often higher (i.e., more variance 
is accounted for). When a factor has a low value of SRC, and 
a high value of SRRC, it is most likely related nonlinearly 
with the output. The rank based analysis comes at no extra 
computational cost, as the same sample used for the SRCs can 
be employed. 

2.2. Second Approach 

Use the Morris method [Morris, 1991]. This is a screening 
method that belongs to the OAT class, but with Morris the 
baseline changes at each step; that is, this methods wanders in 
the space of the input factors rather than oscillating around the 

baseline as in EOAT. Morris seeks to determine which 

factors may be considered to have effects that are (1) 
negligible, (2) linear and additive, or (3) nonlinear or involved 
in interactions with other parameters. Morris allows the input 
factors to be ranked in order of importance. This method is 
rather qualitative, and model-independent. It is in general 
cheaper than the regression-based ones: its cost is 
No = r/k + 1), where k is the number of factors and r the 
sample size. Values of r in the range (4-10) have been 
reported [Morris, 1991; Campolongo and Saltelli, 1997]. 
Morris does not allow self-verification in the sense discussed 

above. It should be used when the number of factors being 
varied is high (e.g. tens), and also in combination with a more 
quantitative method. In this latter case the purpose of the 
screening via Morris is to fix to their midpoint the 
noninfluential factors. 

2.3. Third Approach 

Use the Fourier amplitude sensitivity test (FAST) [Cukier, 
et al., 1973; Schaibly and Schuler, 1973; Cukier, et al., 1975; 
Koda et al., 1979; McRae et al., 1982]. FAST represents one 
of the most elegant methods for SA and is based on 
determining fractional contributions of individual factors to 
the variance of the output. The method is suited for nonlinear 
models, and, although it does not explicitly compute 
interactions, it tells the analyst how much of the total output 
variance can be due to interactions. In this respect, FAST 
allows self-verification (i.e., the analyst is informed of how 
much variation remains unexplained). In the terminology of 
ANOVA (analysis of variance), FAST offers estimates of S•, 
the "first-order" contributions of the input factors to the 
output's variance (fractional contribution of factor x j to the 
variance of y), which can be written as 

V(E(yl xi)) 
s• = (4) 

v 

where V is the unconditional variance of y, the inner 
expectation value in the numerator is taken over all the space 
of the xj, j,•i with x, fixed to a given value x[, and the 
outer variance V is over all the possible values of x•. This 
method works well even for nonlinear models as long as they 
are additive. In this case the sum of the S• over the k factors is 
close to one. When this is not the case, the next method 

should be used. The cost of FAST is quadratically dependent 
on the number of factors k. Minimum sample sizes N• for a 
few values of k are given below [from Cukier et al. 1975]: 

k N½ ' 
5 1 

1 8 

2 4 

5 4 

2.4. Fourth Approach 

Use Sobol' sensitivity indices which allow a full 
decomposition of the output variance, including interactions 
[SoboF, 1990; Homma and Saltelli, 1996]. This method gives 
the same answer as FAST when used at the first order [Saltelli 
and Bolado, 1998]. It can be considered as a quantitative 
method, as no fraction of the output variance is left 
unaccounted for. For an application to atmospheric chemistry, 
see Saltelli and Hjorth [1995]. This methods can give, for 
each factor x,, the index S•, defined as 

STi --S i d- ZSij d- Z ZSijk +... (5) 
j•i k•i•i 

k•j 
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that is, an index which includes all effects of x•, (first order, 
second order, higher order). For a system with just three input 
factors, the total sensitivity of x• is: 

gr• = S, + St: + S,• + S,z• (6) 

This method is model independent, it works even for non- 
linear non-additive models, but is computationally expensive, 
as one must evaluate the model N, times, where 

N, = (k + 1)N (7) 
and k is the number of factors one wishes to vary, and N is a 

number in the range of 100 or higher. There is now a cheaper 
computational implementation of the same S• measure, 
which can be computed via an extension of the FAST method 
[Saltelli et al., 1998]. 

3. An example 

It would he far too ea•y far the, OU.nOneo nf ill,,ctr•ting the 
advantages of the methods discussed here, to select a model 
displaying nonmonotonic and nonadditive features which 
would render EAOT and local sensitivity totally inapplicable. 
Further, these models can be easily generated analytically 
[Saltelli and SoboF, 1995]. 

We have taken instead the latest model used in our 

research work [Campolongo et al., 1998] without changing its 
configuration. This model, KIM, with 68 uncertain input 
factors, is suitable for a screening test like Morris. KIM stands 
for kinetic model for the oxidation of DMS ( CH3SCH3 ), and 
incorporates a description of the multiphase tropospheric 
reaction pathways for the formation of sulphur-containing 
molecules, such as sulphur dioxide (SO:) and methane 
sulphonic acid (MSA, CH3SO•H ), from DMS [Saltelli and 
Hjorth, 1995; Remedio et al., 1994; Campolongo et al., 1998]. 
KIM involves the numerical solution of about 40 differential 

equations describing chemical kinetics and air-to-drop 
exchanges. 

The variable considered is the concentration ratio in marine 

aerosol between MSA and non-sea-salt sulphates (nss- 
sulphate, including SO: and H:SO, ), that is 

o;= MSA/(SO: + H2SO,) (8) 

whose temperature dependency is the subject of the 
Campolongo et al., [1998] study. 

Morris results are contrasted against local SA in Table 2. 
Derivatives of the output were computed by changing all 

Table 2. Comparison of Morris and Derivative 
Methods 

Factor Ranking Ranking from 

from Morris 

WATLIQ 1 2 
QW7 2 ... 
DEHH202 3 (6) 
RtR. H202 4 (8) 
RFR. DMS 5 2 

RtR. O3 (6) 3 
Y00HRAD (8) 4 
Wll (14) 5 

Ranking in parentheses are not among the top 
five factors for one of the methods. 

Table 3. Results of Monte Carlo Analysis 
Factor Ranking from Ranking from Ranking 

SRC SRRC from 

(R:=0.74) (R:=0.87) 
Q1 1 1 ... 
Q21 2 2 ... 
WATLIQ (15) 3 1 
QW7 5 4 ... 
RHLH202 4 (6) (8) 
RHLDMS 12 l0 2 

RHLO3 3 5 3 

YOOHRAD ...... 4 

Wll ...... 5 

SRC denotes standardized regression coefficients, SRRC denotes 
standardized rank regression coefficients. Ranking in parentheses are not 
among the top five. 

inputs of a 1% around the nominal value. Only those factors 
are displayed that are in the list of the top five for either 
method (Morris or derivative). The factors are not described 
here, nor is their role in the model, for which the reader is 
referred to the original article. Factors were assigned different 
ranges of variation and different distribution types. 

As one can see, the disagreement is significant already at 
the level of the second most important factor. One should 
recall here that Morris also computes "derivatives", albeit 
over larger ranges, and averages them over the space of 
definition of the factors. As this space is much larger than the 
1% variation allowed to the differential analysis, the results 
differ. 

In the work by Campolongo et al. [1998] the KIM model 
was further investigated in the same configuration by fixing 
the factors not identified by the screening. A Monte Carlo 
analysis was then applied to just 20 variables (Table 3). 
Although hypothesis testing was used there, here we plot 
again the first five factors in the set of 20 which are identified 
by either the standard regression coefficients, their rank 
equivalent SRRC, or the 0et/0x. 

The disagreement between derivatives and regression is 
pronounced. It is important to appreciate that even the SRC 
analysis is not fully successful, as based on R: =0.74, 26% 
of the variation of the output is not accounted for. 
Nevertheless the analyst is informed of it. This was not the 
case with either Morris or the local approach. Likewise, the 
value for the rank based measures (R'-=0.87 ) flags the 
possible existence of some non-monotonicitiy, or interaction, 
likely involving WATLIQ, accounting for about 10% of the 
variance of c•. 

The analysis run so far could be refined by applying other 
quantitative measures, for example, FAST or the method of 
Sobol' described in the previous section [see Saltelli and 
Hjorth, 1995]. In particular, the problem of interactions is 
well tackled by computing the first-order as well as the total 
sensitivity indices for each variable [Saltelli et al., 1998]. If 
the two indices are different for a given factor, the factor is 
involved in interactions. 

This example shows that even a zero-dimensional, purely 
chemical, model such as KIM is nonlinear enough to render 
the local approach unwarranted, especially since one cannot 
appreciate its error without contrasting it with another 
method. Aerosol dynamics models are likely to be more 
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nonlinear than purely chemical ones. Superposition of 
transport to chemical reaction is also a potential source of 
complexity in the pattern of sensitivities. 

4. Conclusions 

We were motivated in the present note by the belief that 
long-established practices in modeling, especially in the field 
of chemistry, physics, and natural sciences, are sometimes 
used out of context. This is the use of EOAT or a local SA 

method to draw conclusions on the relative impact of 
uncertain or variable input factors on the prediction of a 
model, unless the variation of the factors is small. Even when 

the investigator does not desire to embark in a quantitative SA 
study, the Morris method, or even a plain Monte Carlo 
analysis at low sample size, should be preferred over 
elementary OAT. Similarly, the use of local methods should 
be confined to situations where they can perform effectively, 
as in the case of inverse problems or in the computation of 
large sets of sensitivity coefficients as function of time. 

More generally, we advocate the use of global, possibly 
quantitative, sensitivity analysis methods for all problem 
settings where finite parameters variations are involved. 
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