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On the Relative Importance of Input Factors
in Mathematical Models: Safety Assessment

for Nuclear Waste Disposal
Andrea Saltelli and Stefano Tarantola

This article deals with global quantitative sensitivity analysis of the Level E model, a computer code used in safety assessment for
nuclear waste disposal. The Level E code has been the subject of two international benchmarks of risk assessment codes and Monte
Carlo methods and is well known in the literature. We discuss the Level E model with reference to two different settings. In the � rst
setting, the objective is to � nd the input factor that drives most of the output variance. In the second setting, we strive to achieve a
preestablished reduction in the variance of the model output by � xing the smallest number of factors. The emphasis of this work is on
how to de� ne the concept of importance in an unambiguous way and how to assess it in the simultaneous occurrence of correlated input
factors and non-additive models.

KEY WORDS: Analysis of variance; Correlated input; Nonadditive model; Sensitivity analysis.

1. INTRODUCTION

The work focuses on data that are the output from a com-
puter code. Statisticians have concerned themselves with these
kinds of datasets since the early 1990s (Sacks, Schiller, and
Welch 1989; Sacks, Welch, Mitchell, and Wynn 1989b; Welch
et al. 1992) addressing the issue from several viewpoints:
(a) how to approximate the output from a complex computer
code; (b) how to optimally design exploratory points to do (a);
(c) how to characterize the empirical distribution of the out-
put given probability distributions of the input; and (d) how
to assess the importance of input factors in relation to (c). In
this work, the emphasis is substantially on (d).

In recent years, global quantitative sensitivity analysis tech-
niques have received considerable attention in the literature
(RESS 1997; JSCS 1997; CPC 1999; JMCDA 1999). Many
techniques have been developed that can be applied even
to nonlinear, nonmonotonic models. In particular, in an ear-
lier work (Saltelli, Tarantola, and Chan 1999) we proposed a
model-free method for ef� cient global sensitivity analysis for
sets of noncorrelated input factors. A review of applications of
the same methods was given by Saltelli, Tarantola, and Cam-
polongo (2000). Saltelli, Chan, and Scott (2000) presented a
broad spectrum of techniques.

In the present work we extend the methodology for use in
the simultaneous presence of correlated inputs and nonaddi-
tive models, and apply it to a well-known test case, the Level
E model. The Level E test case was � rst used as a benchmark
to compare the performance of computer codes used in safety
assessment for nuclear waste disposal (OECD 1989), and later
was used as a test model for sensitivity analysis techniques
(OECD 1993). In this latter study, called Level S, the Level E
model was run in a Monte Carlo fashion, with the model fed
with samples from the distribution of the inputs. The Level S
aimed to rank the uncertain input factors in order of impor-
tance according to two different criteria:

a. Reduction in the spread of the output at given times for
a 5% reduction at each end of the input factor’s range, that is,

Andrea Saltelli (E-mail: andrea.saltelli@jrc.it) and Stefano Tarantola
(E-mail: stefano.tarantola@jrc.it) are researchers at the Joint Research Cen-
tre of the European Commission, Institute for the Protection and Security of
the Citizen, Ispra, Italy.

taking a new distribution for that factor running between the
former 5th and 95th percentiles

b. Change in the mean of the output at given times for a
5% increase of the central value of the factor’s distribution,
that is, shifting the whole distribution up, so that the bottom
end is at the former 5th percentile.

The results showed that the sensitivity analysis methods
applied in the Level S exercise were of limited value in rank-
ing the importance of the input factors in the Level E test
model. Depending on the formulation of the questions in Level
S, the results were in fact dependent on the criterium selected
(i.e., shrinking or shifting), and the effect of nonmonotonicity
in the input–output relationship was not captured.

The main dif� culty in sensitivity analysis at the time of the
Level S exercise was on how to interpret its results. Although
both criteria (a) and (b) are legitimate in principle, and answer-
able by straightforward Monte Carlo methods (OECD 1993),
one does not know what question is being answered by a rank-
ing of the input factors based on (a) or (b). Should we priori-
tize research on a given factor if it scores � rst in importance
under (a)? Or under (b)? What if the answer depends on the
percentage values previously stipulated? Should the same per-
centage apply to all factors, or should it include consideration
of the likely reduction in uncertainty subsequently achievable
in the laboratory, or in the � eld, for each individual factor?
Was neglecting the covariance structure of the problem legiti-
mate, or did it induce too large an error? A number of articles
that followed the Level S report attempted to answer these
questions (see Sec. 2.2).

In this work, we attempt to de� ne “importance” in a rigor-
ous fashion. The Level S benchmark revealed quite a latitude
of different understandings of the concept of “importance”
when applied to sensitivity analysis. We revisit the nonlinear,
nonadditive Level E case study, complementing it with the
input correlation that was omitted in the original exercise. As
we show, a sensitivity analysis in the simultaneous occurrence
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of correlation (a property of the input sample) and interaction
(a property of nonadditive models) is nontrivial.

2. THE LEVEL E MODEL

2.1 Description of the Model

Level E was used both as a benchmark of Monte Carlo
computation (Robinson and Hodgkinson 1987; OECD 1989)
and as a benchmark for sensitivity analysis methods (Level S),
(OECD 1993). The model predicts the radiologic dose to
humans over geologic time scales due to the underground
migration of radionuclides from a nuclear waste disposal
site. The scenario considered in the model tracks the one-
dimensional migration of four radionuclides (129I and the
chain 237Np ! 233U ! 229Th) through two geospheric layers
with different hydrogeologic properties. The processes con-
sidered in the model are radioactive decay, dispersion, advec-
tion, and chemical reaction between the migrating nuclide and
the porous medium. The repository is represented as a point
source. Sometime after the steel canister containing the waste
has lost its integrity (with the time of containment failure
indicated by T ), the release of radionuclides to the geosphere
depends on only the leach rates (k4¢5) and the initial inventory
(C4¢5). The source term for 129I is given by

¡CI

¡t
D ƒ‹I CI 1 t µ T 1

¡CI

¡t
D ƒ‹I CI

ƒ kICI 1 t > T 1

(1)

where CI (mols) is the amount of 129I and ‹I 4yrƒ15 and kI

4yrƒ15 are the decay rate and the leaching rate for 129I . The
initial condition is CI4t D 05 D C0

I , that is, the amount of 129I

at the time of vault closure (Table 1). The source term for
237Np, the � rst element of the chain, is also described by (1),

Table 1. List of Input Factors for the Level E Model

Notation De’ nition Distribution Range Units

T Containment time Uniform [100, 1000] yr
k I Leach rate for iodine Log-uniform [10ƒ3110ƒ2 ] mols/yr
kC Leach rate for Np chain nuclides Log-uniform [10ƒ6110ƒ5 ] mols/yr
v (1) Water velocity in geosphere’s 1st layer Log-uniform [10ƒ3110ƒ1 ] m/yr
l (1) Length of geosphere’s 1st layer Uniform [100, 500] m
R(1)

I Retention factor for I (1st layer) Uniform [1, 5] —
R(1)

C Factor to compute retention Uniform [3, 30] —
coef’ cients for Np (1st layer)

v (2) Water velocity in geosphere’s 2nd layer Log-uniform [10ƒ2110ƒ1 ] m/yr
l (2) Length of geosphere’s 2nd layer Uniform [50, 200] m
R(2)

I Retention factor for I (2nd layer) Uniform [1, 5] —
R(2)

C Factor to compute retention
coef’ cients for Np (2nd layer) Uniform [3, 30] —

W Stream ‘ ow rate Log-uniform [1051107 ] m3/yr

C0
I Initial inventory for 129I Constant 100 mols

C0
Np Initial inventory for 237Np Constant 1000 mols

C0
U Initial inventory for 233U Constant 100 mols

C0
Th Initial inventory for 229Th Constant 1000 mols

w Water ingestion rate Constant .73 m3/yr
‚I Ingestion-dose factor for 129 I Constant 56 Sv/mols
‚Np Ingestion-dose factor for 237Np Constant 608 � 103 Sv/mols
‚U Ingestion-dose factor for 233U Constant 509 � 103 Sv/mols
‚Th Ingestion-dose factor for 229Th Constant 108 � 106 Sv/mols

in which the parameters ‹Np and kC are used. (Here kC is the
leaching rate for the radionuclides of the chain.) The source
term for 233U is given by

¡CU

¡t
D ƒ‹U CU

C ‹NpCNp1 t µ T 1

¡CU

¡t
D ƒ‹U CU

C ‹NpCNp
ƒ kC CU 1 t > T 0

(2)

The source term for 229Th is described similarly by (2), where
U is replaced by Th and Np is replaced by U . The migration
through the geosphere is the core of the model. For example,
the migration of 233U is governed by

R
4k5
U

¡F
4k5
U

¡t
D v4k5d4k5 ¡2F

4k5
U

¡x2
ƒ v4k5 ¡F

4k5
U

¡x

ƒ ‹U R
4k5

U F
4k5

U
C ‹NpR

4k5

Np F
4k5

Np 1 (3)

where U stands for the isotope 233U , Np stands for 237Np,
4k5 refers to geosphere layer number k (1 or 2), Ri is the
retardation coef� cient for nuclide i (dimensionless), Fi4x1 t5 is
the � ux (amount transported per unit time) of nuclide i in the
geosphere at position x and time t (mols/yr), v4k5 is the water
travel velocity in the kth geosphere layer (m/yr), d4k5 is the
dispersion length in the kth geosphere layer (m), and ‹i is the
decay constant of nuclide i (yrƒ1).

The same equation holds for 229Th provided that the index U

is replaced by Th and the index Np by U . To simplify the
model structure, the retardation coef� cients RU 1RNp, and RTh

were replaced in the Level E exercise by a single parameter
RC . The equation for 129I is

R
4k5
I

¡F
4k5
I

¡t
D v4k5d4k5 ¡2F

4k5
I

¡x2
ƒ v4k5 ¡F

4k5
I

¡x
ƒ ‹IR

4k5
I F

4k5
I 0 (4)
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The same equation holds for 237Np provided that the index I

is replaced by Np. Modeling of the biosphere is extremely
simpli� ed; via an ingestion factor and the water consumption
rate, the dose to the most exposed individual of a hypothetical
critical group is computed. The radiologic dose (measured in
Sv/yr) from nuclide i is given by

dosei4t5 D ‚i

w

W
F

425

i 4l4251 t51 i D 129I1 237Np1 233U1 229Th1

(5)

where ‚i is an ingestion–dose conversion factor and is
assumed � xed, F

425
i 4l4251 t5 is the � ux at the end of the sec-

ond layer (the output to the biosphere), w denotes the drink-
ing water requirement for an individual in the most exposed
critical group, and W is the stream � ow rate. The quantity of
interest in this study is the annual radiologic dose due to the
four radionuclides,

Y 4t5 D
X

i

dosei4t50 (6)

The overall predictive uncertainty about that dose is due to
uncertainties in model parameters, both intrinsic (or stochas-
tic), such as the time of canister failure, and due to our poor
knowledge of the system, such as a poorly known kinetic
parameter. The simulation model includes 12 uncertain input
factors, listed in Table 1 together with a set of parameters that
are assumed constant.

The probability distributions for each factor were selected
on the basis of expert judgement. Such data refer to the origi-
nal formulation of Level E (OECD 1989). Although we were
aware of the existence of correlations (e.g., between RI and
RC for each layer of the geosphere), these were omitted in the
original system speci� cations for the sake of simplicity. For a
subset of our simulations, we have reinstated these correlations
by assuming that a serious vault failure induces high leaching
for both iodine and the chain elements, and vice versa. Also,
high release coef� cients for iodine should be accompanied by
high release coef� cients for the chain elements, within a given
geosphere layer. The geochemical properties in the two layers
of the geosphere could hardly be independent from each other,
and the water � ows in the two layers should show a certain
degree of dependency. Besides, the time of containment failure
is likely correlated to the � ow in the � rst layer, because cor-
rosion will be faster if the � ow is faster. The proposed corre-
lation pattern is given in Table 2. The set of correlation values
was de� ned by consulting with the authors of the benchmark
(P. C. Robinson 2000, personal communication).

Table 2. Con’ guration for Correlated Input of the Level E Model

Pairs of correlated factors Correlation

k I 1kC .5
R(1)

I 1R(1)
C .3

R(2)
I 1R(2)

C .3
T1v (1) -.7
v (1)1v (2) .5
R(1)

I 1R(2)
I .5

R(1)
C 1R(2)

C .5

To replicate the Level E exercise, the system (1)–(6) needs
to be solved numerically. We used the Crank–Nicholson
method (see Crank 1975; Prado, Homma, and Saltelli 1991).
As an alternative, the system can be solved using an algo-
rithm for accurate numerical inversion of the solution in the
Laplace space to obtain the solution in the real space (Robin-
son and Hodgkinson 1987). We tackled below both cases (cor-
related and noncorrelated) using two alternative de� nitions of
importance.

2.2 Previous Work on Level E

Following the Level S benchmark, a number of authors
attempted to address the concept of importance in sensitiv-
ity analysis using the Level E as a key test case. Saltelli and
Homma (1992) suggested an early version of the � rst-order
conditional variance Vj (Hora and Iman 1989; Ishigami and
Homma 1990) as a sensitivity analysis tool for nonmonotonic
models. We treat this measure in Section 3.

Saltelli, Andres, and Homma (1993) improved the estima-
tion procedure for Vj and applied it to the Level E exam-
ple. The results are reported in Section 5.1. A version of Vj

based on the ranks of the output values, rather than the values
themselves, was also suggested to reduce the relative error of
the estimates. It was realized later (Saltelli and Sobol’ 1995),
using, among others, the Level E case, that the improved
reproducibility of the rank-based measure came at the cost of
substantial alteration of the sensitivity pattern of the model
output Y considered. The sensitivity pattern of “rank of Y ”
was substantially different from the sensitivity pattern of Y .

Level E was instrumental in the development of the total
sensitivity indices STj (Homma and Saltelli 1996), described in
Section 4.1. In brief, the fact that some interaction terms were
important for this model led to the development of a sensitiv-
ity measure incorporating both the � rst-order and higher-order
effects of a given factor on model output.

The Level E proved instructive in other works. Saltelli and
Sobol’ (1995) used Sobol’ quasi-random LP-’ sequences to
sample the input factors space when computing conditional
variances using the method of Sobol’ (Sobol’ 1990). Saltelli
and Bolado (1998) compared the Sobol’ and FAST meth-
ods to compute sensitivity measures. Saltelli et al. (1999)
extended the FAST method to compute the total effect indices
STj . Draper et al. (1999) and Draper, Saltelli, Tarantola, and
Prado (2000) used an extended version of the Level E to
study the propagation of parametric and scenario uncertainty
in a Bayesian framework. Saltelli, Tarantola, and Campolongo
(2000) used different models, including Level E, to illustrate
the effectiveness of variance based sensitivity measures.

3. LOTTERY SETTING 1

How do we judge the relative importance of model input
factors? We assume to have information about the factors’
probability distribution, either joint or marginal, with or with-
out correlation, and that this knowledge comes from measure-
ments, estimates, expert opinion, physical bounds, output from
simulations, analogy with factors for similar species, and so
forth.

We also assume as good practice in model use that from
the many output variables generated by the model, we select
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a single top-level variable, Y , that summarizes the thesis that
the model is supposed to prove or disprove (Saltelli, Tarantola,
and Campolongo 2000). Examples of Y include the extent of
a geographic area where the concentration of a given pollutant
exceeds a given threshold value, the estimated failure proba-
bility of a given system in a given time range, and the risk
that the return of a given portfolio, falls below a preestab-
lished value within a given time span. As a general rule, the
functional of interest is selected so that it is meaningful with
respect to the question asked of the model.

Let us assume that we can extract a sample from the proba-
bility distribution of the input factors and that we can compute
the model output for every sample point. Also assume that
each factor has a true, albeit unknown, value. We are hence
poised to stipulate the following setting.

Lottery Setting 1. We are asked to bet on the factor that,
if determined (i.e., � xed to its true value), would lead to the
greatest reduction in the variance of Y .

The factors could be ranked according to V 4Y —Xi
D x ü

i 5 or,
equivalently, to V 4Y —Xi

D x ü
i 5=V , where V is the uncondi-

tional variance of Y and V 4Y —Xi
D x ü

i 5 is the variance obtained
by � xing Xi to its true value x ü

i . The problem is that x ü
i is

unknown for each Xi .
It would sound sensible to bet on the factor with the small-

est value of E6V 4Y —Xi57, that is, the average of the conditional
variance V 4Y —Xi

D x ü
i 5 evaluated over all possible values x ü

i

of Xi . Given that

V D V 6E4Y —Xi57 C E6V 4Y —Xi571 (7)

betting on the lowest E6V 4Y —Xi57 is equivalent to betting on
the highest V 6E4Y —Xi57.

Unsurprisingly, many practitioners of sensitivity analysis
have come up with different estimates of V 6E4Y —Xi57 (in short,
Vi) as a measure of sensitivity. Some have called this the
importance measure (see Chan, Tarantola, Saltelli, and Sobol
2000 for a review). Statisticians, and practitioners of experi-
mental design, call Vi the � rst-order effect of Xi on Y .

3.1 Noncorrelated Factors

The factors Xi are noncorrelated. Assume that Vl and Vr ,
related to Xl and Xr , are both smaller than Vj , associated with
Xj . However, Xl and Xr may be involved in an interaction
effect that is not captured by Vl or Vr . How can we estab-
lish whether Xj is actually more important than Xl and Xr in
lottery setting 1? The interaction effect between Xl and Xr is
given by

Vlr
D V 6E4Y —Xl1Xr57ƒ V 6E4Y —Xl57ƒ V 6E4Y —Xr 571 (8)

where V 6E4Y —Xl1Xr 57 is the joint effect of Xl and Xr and Vlr

is the pure interaction of Xl and Xr , known as a second-order
(or two-way) effect. Analogous formulas can be written for
higher-order terms. If there are no interactions, then

V D
X

j

Vj (9)

and we can establish the relative importance of the factors
using the respective Vj values. If the model contains interac-
tions, then

V D
X

i

Vi
C

X

i<j

Vij
C

X

i<j<m

Vijm
C ¢ ¢ ¢ C V12 : : : k3 (10)

that is, the sum of all the � rst-order and higher-order terms
adds up to the total unconditional variance V (Sobol’ 1990).
Vijm is the third-order interaction among Xi , Xj , and Xm.
V12 : : : k is the kth-order interaction among all of the factors. It
can be easily shown that, even when higher-order terms in (10)
are nonzero, the Vi are suf� cient to make an informed choice
on lottery setting 1, based on the very de� nition of this mea-
sure. If Vj

D V 6E4Y —Xj57 is greater than Vl and Vr , then Vj is
the most important factor, regardless of the value of Vlr . For
Vlr to come into play, one should stipulate a setting in terms
of “what couple of factors should be � xed” and so forth.

Conclusion 1. In lottery setting 1, for noncorrelated fac-
tors, the Vj’s are the measure to use to make an informed
choice, whether or not the factors interact.

3.2 Correlated Factors

When the Xj are correlated, the output variance cannot be
decomposed as in (10). Furthermore, the Vj are more expen-
sive to obtain because the computational shortcuts available
for noncorrelated inputs (see, e.g., Sobol 1990) are no longer
applicable. However, a rather ef� cient estimation procedure
for the � rst-order terms due to McKay (1995) uses the repli-
cated Latin hypercube sampling (LHS) design (r ƒ LHS). The
correlation in the r ƒ LHS sample is induced using the per-
mutation procedure proposed by Iman and Conover (1982).

Leaving aside the computational issues, and going back to
our lottery setting 1, we observe that Vj is again the measure
to use for making an informed choice, even when the input
is correlated. This descends from the de� nition of the setting,
which implies the “� xing” of a single factor when comput-
ing the conditional variance. Note that Vj will be sensitive
in general to the existence of correlations. Another observa-
tion relevant to the case of correlated input is that although in
lottery setting 1, the fact that factors are � xed one at a time
would normally prevent the detection of interactions, yet in
the presence of correlation, � xing one factor also in� uences
the distribution of the others. This may allow the in� uence of
interactions to emerge, depending on the relative patterns of
correlation and interactions. As a trivial example, if the model
is Y D x1 C x2 C x3 C a23 ü x2x3 and x1 and x2 are correlated,
then V 4E4Y —x155 will depend on a23 as well as on the dis-
tribution parameters of x2 and x3. In this sense, we say that
interactions may be “carried over” by correlation. This effect
is a possibility only when the input is correlated, and is absent
when the input is not correlated. As a result, an important
consequence of adopting lottery setting 1 is that we accept
the risk of remaining ignorant about important features of the
model that are the objects of the sensitivity analysis: the pres-
ence of interactions. We are hence ready to offer our second
conclusion.
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Conclusion 2. In Lottery Setting 1, the terms Vj are the
measures that guarantee an informed choice in the cases
where the factors do not interact and do not correlate, inter-
act but do not correlate (Conclusion 1), and correlate and
interact.

4. LOTTERY SETTING 2

This context is relevant to the broad area of risk assessment
and management, to which Level E belongs. Here one seeks
to achieve a preestablished reduction in the variance of Y .

Lottery Setting 2. We are asked to bet on sets of factors
(couples, triplets, and so on). The prize is for obtaining a
variance of Y equal or smaller than a given target variance,
Vtar < V , by � xing simultaneously the smallest number of
factors.

We introduce � rst a more compact notation, with the
superscript c standing for “closed” within a subset of
factors. For instance, V c

jm
D V 6E4Y —Xj1Xm57 and V c

npq
D

V 6E4Y —Xn1 Xp1Xq57.

4.1 Noncorrelated Factors

Assume that the model is additive (i.e., there are no inter-
actions) and that the target reduced variance is Vtar=V D 01,
which corresponds to 90% reduction in the variance of Y .
Given that V D P

i Vi, the factors can be ranked in order of
importance using the Vi (i.e., VR1 ¶ VR2 ¶ ¢ ¢ ¢ ¶ VRk). Then we
select the � rst r factors such that

Pr
iD1 VRi ¶ V ƒ Vtar .

If the model is nonadditive (i.e., there are interactions
between factors), then we could use this procedure to select
the smallest set of Vi1 1 i2 1 : : : 1 is

’s such that their sum just about
exceeds V ƒ Vtar :

1. Take the factor with the highest Vi. If Vi > V ƒVtar , then
end the procedure; otherwise, go to step 2.

2. Evaluate all of the second-order partial variances (i.e.,
k4k ƒ 15=2 terms) and take the pair Xj and Xm with the
highest V c

jm (neither Xj nor Xm must necessarily coincide
with the Xi considered in step 1). If V c

jm > V ƒ Vtar , then
choose Xj and Xm; otherwise, go to step 3.

3. Evaluate all of the third-order partial variances (i.e.
k4k ƒ 154k ƒ 25=6 terms) and take the triplet Xn1Xp1Xq

with the highest V c
npq . If V c

npq > V ƒ Vtar , then choose
Xn1Xp1 Xq , and so on with higher-order terms.

The number of terms Vi1 1 i21 : : : 1 is
required is not � xed a pri-

ori, and the procedure might be computationally impractica-
ble even for moderate values of k. We recommend a different
strategy for this setting that requires using the total sensitivity
index STi

D VTi=V , where the VTi for a given factor Xi is the
sum of all of the terms in (10) that include the index i. For
instance, in a model with three factors, the VTi are

VT 1 D V1 C V12 C V13 C V1231
VT 2 D V2 C V12 C V23 C V1231
VT 3

D V3
C V13

C V23
C V1230

(11)

VTi can also be de� ned as E6V 4Y —Xƒi57, representing the
average variance that would remain as long as Xi stays
unknown. Note that Xƒi indicates all of the factors but Xi. The
VTi can be computed without computing the single terms in

(11) (Homma and Saltelli 1996). The strategy that we recom-
mend in the presence of interactions is as follows:

1. Compute the full set of Vi’s and VTi’s.
2. Rank the factors by using the VTi , obtaining a sequence

VTR1
1 VTR2

1 : : : such that VTR1
> VTR2

> : : : .
3. Take the factor with the highest total index, that is, XR1

.
If VR1

> V ƒ Vtar, then end the procedure. Otherwise, go
to step 4.

4. Enter the factor with the second-highest total index, that
is, XR2

. If V c
R11 R2

> V ƒ Vtar , then end the procedure, and
so on.

This procedure is cheaper than the previous one, although
it could become cumbersome if it did not converge rapidly.
An even cheaper alternative could be to reach the threshold
V ƒVtar by using the Vi’s alone instead of the closed terms. But
for highly nonadditive models, this could lead to overshooting,
because � xing Xi and Xj removes Vij besides removing Vi

and Vj ; � xing Xi1Xj1Xk removes Vij1 Vik1Vjk , and Vijk besides
removing Vi , Vj , and Vk; and so on.

4.2 Correlated Factors

If the input factors are correlated, then we are not allowed
to relate V c

ir
D V6E4Y —Xi1Xr 57 to the sum of a “purely inter-

action” term Vir and the individual effects Vi and Vr , as in (8),
although we can still compute V c

ir . Furthermore, if either Xi or
Xr are correlated with a third factor Xj , then the V c

ir measure
will depend on the strength of such correlation as well as on
the distribution of Xj .

It should also be recalled that the estimation of the condi-
tional variances of any order is much more expensive compu-
tationally in case of correlated input (see Sec. 5.4 for details).
For this reason, the number of conditional variances must be
kept to a minimum. Our proposed procedure for correlated
input is as follows:

1. Rank the factors in order of importance using the Vi and
obtain a sequence VR1

1VR2
1 : : : 1 VRk

, where VR1
¶ VR2

¶
¢ ¢ ¢ ¶ VRk

. If VR1
¶ V ƒ Vtar , then XR1

is the choice; end
the procedure. Otherwise, go to step 2.

2. Compute the second-order term V c
R1 j , that is, the reduc-

tion of the variance of Y that can be achieved by � xing
the pair 4XR1

1 Xj5. Xj is the factor that exhibits the high-
est “� gure of merit” Mj (de� ned later). If V c

R1j > V ƒVtar ,
then 4XR1

1Xj5 is the choice; otherwise, go to step 3.
3. Compute the third-order term V c

R1jm , where Xm is
selected using the � gure of merit. If V c

R1jm > V ƒ Vtar ,
then 4XR1

1Xj1Xm5 is the choice, and so on.

The � gure of merit Mj is de� ned as

Mj
D S4Rj5

±
1 ƒ max

i2u
—cij

—
²³

1C
V NC

Tj
ƒ V NC

j

V NC

2́

1 (12)

where S4Rj5 D Pk
rDRj

1
r

is a Savage score (Savage 1956).
Equation (12) means that the rank Rj of the candidate factor
Xj provided at step 1 is � rst converted into a Savage score
and is then penalized or prized depending on its correlations
and interactions. Here u is the set of the input factors already
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selected, and cij is the correlation coef� cient between Xi and
Xj , which is known a priori. A candidate factor for inclusion
in u that is correlated with some of the factors already in u

must be penalized, because part of its effect on the output
variance might have already been offset by � xing the set in u.
This penalization should be proportional to the degree of cor-
relation. The resulting score is then prized if Xj interacts with
other factors already in u, because this could lead to a higher
variance reduction than is implied by its Vi. The extent of the
interaction is quanti� ed by V NC

Tj
ƒ V NC

j , where the superscript
“NC” means that the measures are computed for the noncor-
related problem. Empirical tests have shown that the � gures of
merit are effective when the prize for interaction is squared.

5. THE LEVEL E IN SETTINGS 1 AND 2

5.1 Setting 1 With Noncorrelated Factors

The output of interest is the total radiologic dose, Y 4t5,
from (6), calculated at t D 105 yr in the future. This time
point is special because it corresponds to the lowest value for
the model coef� cient of determination on ranks R ü 2

y (Fig. 1),
where the model shows a strong nonadditive, nonmonotonic
behavior.

We express computational costs in terms of model evalua-
tions, that is, the number of times the model must be evalu-
ated. Because Y may be the output of an expensive computer
code, it is clear that effective sensitivity analysis methods must
strive to keep this number low. The method of Sobol’ (Sobol’
1990), improved by Saltelli (2002), is used to estimate all of
the Vj1 and hence the � rst-order sensitivity indices Sj

D Vj=V .
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Figure 1. Model Coef’ cient of Determination for the Level E Case
Study as a Function of Time (yr ). Circles refer to the values of R2

y ;
diamonds, to the values of R ü 2

y (i.e., obtained using the ranks of the
model output values). The output variable is the total annual dose, Y .
The poor performance of the regression model is highlighted by the
very small value of R2

y at every time point. At t D 105 y r , R*2
y also is very

low, indicating that even rank-based statistics are inappropriate for the
purpose of sensitivity analysis. R2

y and R ü 2
y have been estimated using

the sequence of output values obtained by running the Level E model
on a Latin hypercube sample of size 1,000 generated over the space
of the inputs.

A base sample of 1,024 points is considered. The total cost
needed to estimate all the Vj is 11024 � 412 C 25 D 141336
model evaluations, where two extra samples of 1,024 points
each are taken to obtain two estimates of the output mean.
(Details on sample size and computational cost have been
given in Saltelli 2002.)

The analysis shows that the most important factors are v415

and R
415

I , with Sj equal to 018 and 009. The sum of all the
Sj is 038, meaning that the � rst-order effects explain 38% of
the uncertainty in the total dose, with the remaining portion
explained by interactions.

The ideal use for the lottery setting 1 is for the prioritiza-
tion of research, one of the most common uses of sensitivity
analysis. Under the hypothesis that all uncertain factors are
susceptible for determination (at the same cost per factor), lot-
tery setting 1 allows identi� cation of the factor most deserving
an experimental measurement. If we are in a forecast (prog-
nostic) setting and want to reduce the overall uncertainty in
our predicted dose, then v415 is the factor whose uncertainty
should be reduced � rst. If we are in a diagnostic or calibration
setting, then again v415 is the factor that has the best chance
of being calibrated. The total cost of this exercise is 14,336
model runs.

5.2 Setting 1 With Correlated Factors

Let us consider Level E with the input correlation structure
given in Table 2. The output of interest is again the total radi-
ologic dose, Y 4t5, at t D 105 yr. The pattern of R2

y and R ü 2
y

across time is almost identical to that in Figure 1 for the non-
correlated case.

We have estimated all of the Vj using r ƒLHS. An r ƒLHS
consists of r replicates of the LHS obtained as suitable per-
mutations of all the columns of a base LHS sample of size n.
We used n D 500 and r D 20. The results are listed in Table 3.
With respect to the noncorrelated case, v415 has lost its leader-
ship due the high correlation with T and v425, which are less
in� uential. This result shows that the omission of correlations
in the original speci� cation of the Level E exercise was legit-
imate as far as uncertainty analysis is concerned (the output
dose does not change much), but was an oversimpli� cation as
far as the identi� cation of the in� uential factors is concerned.

Note that for the noncorrelated case of Level E,
P

j Vj
D

2� 10ƒ15 and V D 503� 10ƒ15, the difference being attributable

Table 3. Lottery Setting 1: The Vj and the Ratios Sj D Vj =V
for the Correlated Case

Factor Vj ¢ 1017 Sj D Vj =V

W 9100 008
v (1) 3804 003
R(1)

I 1100 001
T 807 001
R(2)

C 608 001
v (2) 606 001
l (2) 604 001
l (1) 601 001
R(1)

C 509 000
R(2)

I 201 0
kC 104 0
k I 100 0

NOTE: The factors are ranked in decreasing order of importance with respect to the Sj .
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to interactions. For the correlated case
P

j Vj
D 1085 � 10ƒ15

and V D 1018 � 10ƒ14. When input is correlated, we cannot
conclude that the missing fraction of variance is that due to
interaction, because (10) does not hold. The fraction due to
interaction could in fact be higher than the difference V ƒP

j Vj . The total cost of this exercise is 10,000 model runs.

5.3 Setting 2 With Noncorrelated Factors

We now apply the procedure of Section 4.1 to Level E
with noncorrelated input. We assume that the targeted vari-
ance reduction in the model output is 40%. The technique
proposed by Saltelli (2002) enables us to estimate all of the
Vj and the VTj (step 1 of the procedure) for the 12 fac-
tors at the cost of 14,336 model runs, as in Section 5.1.
The model is strongly nonadditive given that, as mentioned
in Section 5.1,

P
j V NC

j =V D 038. Sizeable variance reductions
can be achieved only by � xing more factors simultaneously.
The top-ranked factor is v415 with the highest V NC

Tj (step 2),
but V NC

v415 =V D 018 is below the target imposed (step 3). W is
the factor with the second-highest V NC

Tj ; we estimate V c
v415W

with the method of Sobol’ at the cost of 1,024 model evalua-
tions (step 4). The target variance reduction is still not reached
(28%). We need to enter the third-ranked factor, l415, and esti-
mate V c

v415l415W
using the method of Sobol’ with an other 1,024

simulations. The variance reduction obtained by simultane-
ously � xing v415, W , and l415 is 51%, which enables us to meet
the target. This result is remarkable and novel. It shows that
we can achieve a considerable overall variance reduction by
judiciously � xing a set of interacting factors (a triplet in this
case). To a certain extent, we can generalize these results to
problems of mass transfer with chemical reaction. We know
that factors that are downstream in the modeling chain and that
in� uence the output linearly (W ) tend to interact with those
that govern the transit time, v415 and l415. The total cost of this
exercise is 141336C 11024C 11024 D 161384 model runs.

5.4 Setting 2 With Correlated Factors

We now apply the procedure of Section 4.2 to Level E
with correlated input, with the same target variance reduc-
tion (40%). The ranking provided by the Vj (step 1) yields
W as the top-ranked factor with Si

D 8% (see Table 3). The
cost of estimating the Vj is 10,000 runs, as explained in
Section 5.2. We compute the � gures of merit Mj as from (12)
(Table 4). This requires other 14,336 runs, as explained in
Section 5.3. The largest Mj is that for v415. According to step 2,
we compute V c

Wv415 . To obtain this estimate, we must com-
pute the inner conditional expectation E4Y —W1 v4155 through a
numerical integration over a base sample of, say, Nb

D 100
points. The same conditional expectation has to be evalu-
ated over a set of different values of the pair 4W 1 v4155 (say,
Nr

D 100), to compute the variance of the conditional expecta-
tions. Therefore, this estimate requires N D Nb

� Nr
D 101000

model simulations. The target is not reached, because a vari-
ance reduction of 32% is obtained by � xing the pair 4W 1v4155.
The factor R

415

I (with Mj
D 2043) is included in the anal-

ysis (step 3), and the term V c

Wv415R
415
I

is estimated (requiring

another 10,000 runs); the target is reached because the vari-
ance reduction rises to about 48%. (The variance reduction

Table 4. Lottery Setting 2: Values of the Ratios VNC
j =V and V NC

Tj =V
(for the noncorrelated set) and the Figures of Merit Mj for Use

in Our Recommended Procedure

Factor VNC
j =V VNC

Tj =V Mj

W 004 055 —
v (1) 018 087 6001
R(1)

I 009 032 2043
T 0 0 1027
l (1) 003 050 1010
R(2)

C 0 0 1002
v (2) 004 007 087
l (2) 0 002 076
R(1)

C 0 0 039
R(2)

I 0 0 027
kC 0 0 017
k I 0 0 008

NOTE: The factors are ranked in order of decreasing importance with respect to the values
of Mj .

grows rapidly if we are able to � x the “right” factors.) The
result of the correlation between factors, with respect to the
uncorrelated case is that R

415
I is now a better partner for W and

v415 for obtaining the maximum output variance reduction. If
l415 instead of R

415
I were � xed, then the output variance reduc-

tion would be less, that is, 43%. The total cost of this exercise
is 101000C 141336C 101000C 101000 D 441336 model runs.

6. CONCLUSIONS

The motivation of this article is to devise a strategy for sen-
sitivity analysis that could work even in the simultaneous pres-
ence of correlated input and nonadditive models. To establish
objective criteria for the evaluation of the proposed strategy,
we have tried to de� ne in a rigorous fashion the questions
posed by the sensitivity analysis. The literature shows that
many different approaches and framing assumptions result in
different de� nitions of importance and sensitivity. Without a
rigorous problem setting, alternative de� nitions of importance
are equally plausible (see OECD 1993).

The two lottery settings proposed in this article cover impor-
tant areas of application for sensitivity analysis. The � rst set-
ting can be used for priority setting, to identify which fac-
tor has the greatest potential for output uncertainty reduction
through additional research. The setting also applies to cali-
bration analysis; it would help to design an experiment in such
a way that the factors to be measured, in the presence of other
nonreducible uncertainties, are the most important in lottery
setting 1. For this setting, the Vj’s represent the proper mea-
sure to use whatever the correlation and interaction structure
of the model.

The second setting looks at the compounded effects of fac-
tors in a model and could represent the setting in which “risk”
is involved. Extreme events, those of interest to risk analysts,
often occur when interacting factors assume their most unfa-
vorable values concurrently. Lottery setting 2 aims to identify
the smallest number of factors to be � xed to obtain the max-
imum reduction in the variance of the output. Control theory
is another area in which this setting might be of use.

For the two settings, we have proposed procedures to � ght
the curse of dimensionality, for example, the fact that the num-
ber of conditional variances in a model grows exponentially
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with problem dimensionality. It is clear that importance assess-
ments are more cumbersome for correlated inputs than for
noncorrelated inputs, as many more evaluations of the model
are needed. In the procedure suggested in Section 4.2, the
number of conditional variances to be estimated remains on
the order of k. Better (although much more expensive) results
can be obtained by computing all possible conditional vari-
ances, O42k5, or using the procedure proposed by McKay,
Morrison, and Upton (1999), O4k4k ƒ 15=25.

The high computational cost of quantifying importance of
input factors makes the approach described in this article
unfeasible for computationally expensive models (1 hour or
more of CPU time per simulation, say). The present approach
is instead reasonable for models in the seconds-to-minute
range, which represent the vast majority of models. The test
case addressed in this work offered two main practical advan-
tages. On the one hand, it is very well known to practition-
ers in risk assessment and sensitivity analysis; on the other
hand, it is representative of a large class of environmental or
risk analysis models, that deal substantially with a problem of
mass transfer with chemical reaction. In our experience, for
instance, the pattern of interaction displayed by Level E is
very representative of situations found in hydrology, air pol-
lution, and nuclear safety studies.

[Received June 2000. Revised April 2002.]
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