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Abstract The present article is a sequel to an earlier study in this journal (Saltelli et al., 1993) where 
two new sensitivity analysis techniques were presented. Those techniques, the modified Hora and 
Iman importance measure (HIM*) (Hora and Iman, 1986; Iman and Hora 1990; Ishigami and Homma, 
1989, 1990) and the iterated fractional factorial design (IFFD) (Andres, 1987; Andres and Hajas, 1993) 
were proposed in order to overcome limitations in existing methods (Saltelli and Homma, 1992). 

Sensitivity analysis (SA) of model output investigates how the predictions of a model are related to 
its input parameters. In particular, Monte Carlo-based SA attempts to explain the uncertainty in 
model output by apportioning the total output uncertainty to the uncertainties of individual input 
parameters. It was pointed out in Saltelli and Homma (1992) that techniques employed in the existing 
literature were affected by severe limitations in the presence of nonmonotonic relationships between 
input and output. The search for better SA methods was pursued with reference to their "reproducibil- 
ity" and "accuracy". The former is a measure of how well SA predictions are replicated when repeating 
the analysis on independent samples taken from the same input parameter space. The latter deals with 
the correctness of the SA results. The present note continues and completes the analysis of the 
performance of IFFD with respect to the two requirements. 

IFFD was found to generate highly reproducible results for sufficiently large sample sizes. It 
exceeded the capability of linear methods by detecting quadratic effects in the relationship between 
input parameters and model predictions, but had difficulty in dealing with higher order effects. 
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I. Introduction 

1.1 Sensitivity analysis; the existing methods 

Methods for sensitivity analysis (SA) based on Monte Carlo sampling are 
increasingly being used whenever the model being investigated is complex and its 
input parameters range over several orders of magnitude. Those methods imply 
a scanning (sampling) of the input parameter space, followed by model evaluations 
for the sampled points, after which regression and correlation measures can be 
computed. Stepwise regression is also possible, as well as visual investigation of the 
input-output scatter plots. For a recent example of application of these techniques, 
see Helton et al. (1993). 

Monte Carlo-based SA methods treat the model under investigation, possibly 
implemented in a computer program, as a black box, and investigate the distribu- 
tions of outputs and inputs. In doing so, a SA technique based on Monte Carlo 
sampling tries to assess the influence of a given parameter on a global basis, i.e., 
averaged over the entire space of all the input parameters. By contrast a "local" SA 
technique (e.g., the adjoint method, Cacuci (1981), the Green functions method, 
Hwang et al., (1978) and others) investigates the local derivative of output Y with 
respect to input parameter Xi while keeping constant all the other parameters Kk, 
k ~ j .  Some local sensitivity methods are also described in Pandis and Seinfeld 
(1989). A special case of local SA for a chemical kinetics system is that of Vajda et al. 
(1985), where local sensitivity coefficients form the input of a principal component 
analysis (PCA). 

Not all the Monte Carlo-based SA techniques involve regression or correlation 
analysis. The measure of importance, described in Section 4, investigate the per- 
centage variance of the output accounted for by each input parameter or combina- 
tion of parameters. These techniques can be used in conjunction with Monte Carlo 
(Iman and Hora, 1990; Saltelli et al., 1993) or with quasi-Monte Carlo methods 
(Sobor, 1990; Homma and Saltelli, submitted). 

There are global sensitivity analysis methods which are not based on Monte 
Carlo, such as the Fourier amplitude sensitivity test (FAST, Cukier et al., 1973, 
1978; Schaibly and Schuler, 1973; Liepman and Stephanopoulos, 1985). In Cawl- 
field and Wu (1993) a method based on first-order reliability analysis (FORM) is 
described. 

A recent review of SA techniques is given in Helton et al. (1991) and Helton 
(1993); performance levels of different methods were earlier compared in Iman and 
Helton (1985, 1988). More specifically, in the field of global SA techniques based on 
Monte Carlo sampling, some quantitative comparisons were reported in Saltelli 
and Marivoet (1990), Saltelli and Homma (1992) and Saltelli et al. (1993). 

Other examples of SA in the field of nuclear fuel cycle safety can be found in Iman 
et al. (1981), Helton et al. (1989), Iman and Helton (1991), Helton et al. (1992) and 
Helton and Breeding (1993). Application of SA to models of environmental impact 
can be found in Wigley (1989), Thompson and Stewart (1991) and Alcamo and 
Bartnicki (1990). 
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1.2 The numerical experiment; previous work 

Our search for better SA estimators began in Saltelli and Homma (1992), where 
three different test cases were used to discuss possible inadequacies of available 
nonparametric statistics. The models investigated were international benchmark 
case studies in the field of nuclear safety. The investigation was continued in Saltelli 
et al. (1993), where two new techniques were proposed. One was the HIM* method, 
a modified version of an importance measure suggested by Hora and Iman (1986), 
and Ishigami and Homma (1989, 1990; see Section 4). The other was the iterated 
fractional factorial design (IFFD, Andres, 1987; Andres and Hajas, 1993; see 
Section 3). 

The reason for introducing a new estimator was the poor performance of 
normally reliable and robust nonparametric techniques, such as the standardized 
rank regression coefficient (SRRC) and the Spearman test, in the presence of model 
nonmonotonicity (Saltelli and Homma, 1992). In those earlier studies the perfor- 
mance levels of old and new methods were compared on the basis of their 
"reproducibility" and "accuracy". 

Reproducibility was defined as a measure of how well SA predictions were 
replicated when repeating the analysis on independent samples taken from the 
same parameter space. For example, an analyst could perform several Monte Carlo 
sensitivity analyses, each using an input sample of size 100 (i.e., in each analysis 100 
model executions are performed, each using an input vector containing a different 
combination of input parameter values). If the Spearman method is used to rank 
the input parameters in order of importance, how will this ranking change from one 
sample to another? The reproducibility analysis described in (Saltelli et al. (1993) 
was conducted on 14 different SA methods at sample sizes ranging between 50 and 
500 (see Section 6). 

A method's accuracy refers to the physical correctness of the SA predictions: how 
well justified is the ranking produced by the Spearman test in the above example, 
and to what extent is it the result of random associations between input and 
output? Accuracy is more difficult to evaluate than reproducibility. In certain 
instances the Spearman method can fail completely, yielding meaningless ranking 
that change when the simulation is repeated with a different sample (accuracy and 
reproducibility are hence correlated). On the other hand, a given input parameter 
can influence the magnitude of the output more than the rank of the output, or the 
output mean more than the output variance. Different SA techniques are more or 
less effective at detecting these aspects of parameter sensitivity. Care is needed in dis- 
criminating between technique failure and technique insensitivity to a particular feature 
of the input-output  relationship. Analysis of technique accuracy, in the end, largely 
relies on knowledge of the mathematical structure of the model being investigated. 

In Saltelli et al. (1993) the performance of IFFD was investigated with respect to 
a single test case, where IFFD showed the best reproducibility among the methods 
tested. The test case model, named Level 0 (OECD, 1987; Saltelli et al., 1989), is 
nonlinear, nonmonotonic and censored (many output values were zero) and de- 
scribes migration of isotopes through a system of barriers. 
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Fig. 1. Mean dose, bounds and pulses from the Level 0 exercise. 
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Some characteristics of the Level 0 model are recalled in Fig. 1 (from Saltelli et 
al., 1993). The model is mainly constituted by heavside step functions "cut" by an 
exponential decay term. Each peak in Fig. 1 corresponds to a different isotope. The 
peaks originates by the migration of the isotopes through a multi-barrier system. 
Each barrier (e.g. geosphere) has the effect to broaden (and flatten) the isotope pulse 
arising from the previous one (e.g. repository buffer), and to reduce its height by 
radioactive decay. 

The comparison of the reproducibility of IFFD relative to that of SRRC and 
HIM* for the Level 0 test case is recalled in Fig. 2 (see Section 6 for a description of 
the analysis). The Level 0 exercise can be considered as worst-case study, and it can 
be seen that the performance of IFFD is excellent. 

2. Level  E test case  

In the present article the IFFD is applied to the second test case discussed in 
Saltelli et al. (1993), i.e. the Level E exercise (OECD, 1989). Level E displays 
interesting nonmonotonic features that are suitable for a discussion of technique 
accuracy. 

Level E simulates the transport of radionuclides from an underground disposal 
vault containing nuclear waste. In this simplistic model, a small fraction of the 
radionuclides penetrate a system of barriers, such as the waste container and its 
surroundings, the geosphere and the biosphere, eventually reaching people and 
exposing them to a radiation dose. The geosphere model includes a two-layer 
pathway with nuclide dispersion, advection, retention and radioactive decay. The 
129I isotope and the 237Np-233U-229Th decay chain are considered. The system 
includes 12 uncertain parameters whose input is in the form of probability distribu- 
tions. 

The heart of the Level E exercise is constituted by the geosphere transport 
equations; to make an example for 2 3 3 U  it is 

R(k) ~F~ ) dF~ ) v(k)d(k)~32F(u k) U ~ "~ v ( k ) ~  --  ~ l~(k) l~(k) ~ R (k) t~'(k) (2.1) 
~ X  ~ X  2 = - -  " ; U J x U  z U -~- ~'N N l N  , 

where U stands for the 233U isotope, N for 237Np, the superscript (k) refers to 
geosphere layer number k (1 or 2), R is the nuclide retention (adimensional), F is the 
nuclide flux (mol/a), t is the time (a), v is the water travel velocity in the geosphere 
layer (m/a), x is position (m), d is the dispersion length in the geosphere layer (m) 
and 2 is nuclide decay constant (l/a). 

Fig. 3 shows the mean value of the output "total dose", plotted as a function of 
time, along with upper and lower bounds (the dose scale is on the right side of the 
plot). Superimposed on this figure is a plot showing two coefficients of determina- 
tion (Rr 2, left-hand scale). Those coefficients are based on the standardized regres- 
sion coefficients (SRC) and standardized rank regression coefficients (SRRC, Iman 
et al. (1981) see Section 4) and are useful in the interpretation of the SA results. It 
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Fig. 3. R 2 on ranks and raw values (left-hand scale) and mean total dose with 95% Tchebychefl% 
confidence bounds (right-hand scale) as function of time for the Level E test case. 
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can be seen that the R 2 based on the SRC is always low. This indicates that SA 
methods based on linear SA estimators (like the SRC, the Pearson test, etc.) are 
ineffective. The multimodal shape of the R 2 curve based on the SRRC similarly 
indicates that for the low R 2 points even the nonparametric estimators (SRRC, 
Spearman, etc.) are inappropriate. 

As shown in Saltelli et al. (1993) the most influential parameter at all time points 
is the water flow velocity in the first layer of the geosphere (v ~1), or FLOWV1), 
which is linked to total dose in a nonmonotonic fashion. The local minima of the 
R 2 curve correspond to those points where the total dose vs. FLOWV1 scatter plot 
(on ranks) is almost symmetrically bell-shaped (see example in Fig. 4 for the 
t = 90 000 a time point). Although the influence of FLOWV1 is evident from this 
scatter plot, linear regression tools tend to draw a horizontal line across the plot, 
and the nonparametric estimators mentioned above predict zero sensitivity for 
FLOWV1 at that time point. Deprived of its most influential parameter, sensitivity 
analysis shows substantial variability from one data set to another. R 2 is very low 
and the only influential parameter consistently identified is the water abstraction 
rate in the biosphere (STFLOW), which influences the output linearly. In the 
Results section the performance of IFFD on this test case is investigated, both for 
its reproducibility and accuracy. 

3. IFFD 

The IFFD method (Andres and Hajas, 1993) was designed to detect a few 
influential parameters within batches of hundreds or thousands of noninfluential 
ones. Influential parameters are defined to be those with a significant linear or 
quadratic effect, or a significant interaction effect with other parameters. In this 
study, the ability to pick out influential parameters from a large set was not tested, 
since the Level E model varied only 12 parameters. The ability to detect significant 
interaction effects among parameters was also not tested, since interactions were 
not considered in the original design of the comparison. The ability to detect both 
linear and quadratic effects was of particular interest, however, since the goal was to 
find SA techniques that could deal with nonmonotonic relationships between 
parameters and outputs. 

Sampling for IFFD differs from simple random sampling in two ways. First, 
parameters are sampled at three discrete levels, designated L (low), M (middle) and 
H (high), rather than from a continuous domain. Second, although the sampling is 
randomized, it is also constrained to follow an orthogonal fractional factorial 
design (FFD). The design ensures that the sampling is balanced, in that different 
combinations of values for two or three parameters appear with equal fre- 
quency. 

More specifically, IFFD is a composite design consisting of multiple iterations of 
a basic orthogonal FFD. The basic design has two levels, L and H (M values are 
discussed below). It is of Resolution IV, so that linear effects of the variables can be 
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distinguished from interaction effects involving two parameters. If the FFD sup- 
ports K = 2 q independent variables, then each iteration must have 2K simulations. 

The following procedure, based on a suggestion by Raghavarao (1971), generates 
a satisfactory base design in a simple manner. 

(1) Construct an initial design matrix Hr .  An order n Hadamard matrix Hn is 
defined to be a square matrix containing only l 's and - l's with the orthogonality 
property that H'nHn = nln, where In is the identity matrix with n rows and columns. 
The following matrix is a Hadamard matrix of order 2: 

(1_1) 
H 2 =  1 1 " 

One can construct a Hadamard matrix for any n that is a power of 2 by 
performing a sequence of Kronecker products with H2. For example, H4 is formed 
by multiplying each entry in/-/2 by the entire matrix HE. The resulting matrix has 
four 2 x 2 submatrices rather than 4 scalar entries, and so it can be considered 
a 4 x 4 matrix. Its properties can easily be verified. Since the number of variables in 
a design can always be increased by adding dummy variables, one can assume, 
without loss of generality, that K is always a power of 2. A Hadamard matrix HK 
describes a 2-level F F D  for K variables in which each variable can take only the 
values 1 and - 1 (representing H and L, respectively). Each column in the matrix 
represents the values for a particular variable, and each row represents an experi- 
ment  (i.e., a computer  simulation) to be conducted. The notation H r  [i, j ]  represents 
the value in the (i,j)th position of the matrix Hr.  

(2) Complement  the design to make it Resolution IV. By doubling the 
Hadamard matrix Hx,  one can construct a design matrix J r  representing an FFD 
of Resolution IV. That is, no main effect of a variable is aliased with any two-way 
interaction effect (Box and Wilson, 1951). The doubled design matrix is 
JK = (H~:, H~:)'. It has 2K rows and K columns, with 

J r [ i  + K , j ]  = - J r [ i , j ]  for i < K. (3.2) 

Given the basic FFD,  the assignment of parameter values is randomized in three 
ways. The first two randomization steps are performed independently for each 
iteration. 

First, parameters are randomly assigned to columns of the basic design matrix 
Jr .  If the number of parameters N exceeds the number of columns K, then some 
parameters will be assigned to the same column as others, inducing aliasing among 
the parameters. That is, if a group of parameters is assigned to the third column of 
the design matrix for one iteration, it is not possible to discriminate among the 
effects of members of the group using data from that iteration. 

Second, each parameter is randomly oriented. Those with a positive orientation 
take their values directly from the associated column of the design matrix (1 ~ H, 

- 1 ~ L); those with a negative orientation use the opposite of the value in the 
design matrix (1 --, L, - 1 - ,  H). In the ith simulation of the ruth iteration, the 
standardized value (i.e., the value mapped to the interval [ - 1, 1]) of parameter 
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a is X~[i']: 

Xr~[i] = S~.Jr[i ,  C"~], (3.3) 

where S~ is the random orientation, taking a value of 1, and C~ is the randomly 
chosen column associated with parameter A, taking a value from 1 to K. 

The third randomization step affects the whole set of iterations. The orientation 
variable S~ is set to zero in a specified proport ion of the iterations. For example, if 
M = 16 iterations are used, and six iterations are to be set to zero, then the 
sequence of values {S.~ }m = 1. M could be { 1, - 1, - 1, 0, 0, 1, 1, 0, - 1, 0, - 1, 1, 0, - 1 }. 
The positions of the zeros are randomly selected for each parameter A. Referring to 
Eq. (3.3), a zero for S~ gives a value of zero to X~[i] for each i in the mth iteration, 
which means in practice that the value M is used for the parameter A throughout  
the mth iteration. This step converts the entire composite design from a 2-level 
design to a 3-level design, even though each iteration is either l-level (M) or 2-level 
(L-H) for each parameter. 

The largest design used in this study took 504 simulations, consisting of M = 63 
iterations based on an F F D  with K = 4 columns requiring 2K = 8 simulations. 
Each parameter took the value M in 16 randomly selected iterations out of the 63. 

Each iteration of an I F F D  can be analyzed separately, and then the results can be 
combined for an analysis of the entire composite design. Designate the output  
variable from a model by the notation Y=[i], which represents the value of the 
variable in the ith simulation of the ruth iteration. The notation Z~ represents 
a variable that takes its values from the j th column of the basic design matrix Jr. 
There are just K such variables. The following expression gives the main effect in 
the mth iteration of Zj on ym[i]:  

1 2 K  

MEm(Zj, ym) = -K ~ JK[P,j]" ym[p]. (3.4) 
p = l  

The main effect is the difference in average responses between the two levels (1 and 
- 1) of Zj. It is a linear effect. 

The next equation gives the main effect of a parameter A throughout  the entire 
design: 

ME(A, Y ) =  avgm(S"~" ME(Zcr ,  Y m)[s~ v~ O) 
M ~.m = 1 S"~. ME(Zcr ,  ym) 

= ~ (3.5) 
~m=xlS~l 

The denominator  in this expression reduces to the number of iterations in which 
S~ was not zero. 

Quadratic effects can be defined as follows: 

QE(A, Y) = avg(YlSa = 0) - avg(YlSa ~ 0) 

~-'~M=I(1 m 2K IS~l ~ , ~ 1 Y m [  i] = - I S a l ) E , = l  Y ' [ i ]  EmM=I 
- ( 3 . 6 )  

2 K ~ = 1  (1 - IS~l) 2g~mM= 1 IS~l 



396  .4. Saltelli et al. /  Computational Statistics & Data Analysis 20 (1995) 387-407 

The actual computation of Eqs. (3.5) and (3.6) can be substantially simplified in 
practice by noting the terms that are reused in evaluating effects for different 
variables. 

The analysis of IFFD data sets is best accomplished using stepwise regression. 
Each important parameter will give rise to 'copycats"; these are unimportant 
parameters that by chance shared a column of the design matrix with the important 
parameter several times. Their linear effects will be correlated with that of the 
important parameter. By using stepwise regression, the contribution of each impor- 
tant parameter can be removed as it is identified, thereby eliminating the copycats. 
Stepwise regression requires many computations, especially when the number of 
parameters is large. It is possible to take advantage of the structure inherent in the 
IFFD method to simplify the application of stepwise regression. The details are 
described in Andres and Hajas (1993). 

In this comparison, ranks were required for all 12 parameters. There was no 
difficulty in generating these ranks in the larger data sets, but a problem arose for 
the smaller data sets. In some of these cases the estimates of 12 linear and 12 
quadratic effects were not all independent. That is, the quadratic effect of parameter 
A could be the same as some linear combination of the other linear and quadratic 
effects. In such cases, stepwise regression was carried out only as long as the 
estimated effects of the selected parameters were independent. Ranks for the 
selected parameters were based on the linear and quadratic effects. Ranks for the 
rest were assigned randomly. 

4. Other sensitivity analysis methods 

Although the present note focuses on the performances of IFFD, a short 
description will be given of the two other methods used for the comparison. These 
are a regression-based technique and a variance-based importance measure. 

4.1 Standardized-regression coefficients (SRC) 

Let y be an output vector of dimension N arising from a Monte Carlo computa- 
tion. The input (N x K) matrix X was used as input for the analysis, so that Xm~ is the 
value assigned to variable X~ in run number m and K is the number of independent 
variables. A regression model for y of the form 

K 

Y r , = b o +  ~ bix,,~+em w i t h m = l ,  2, ... , N  (4.1) 
i = 1  

can be built using the least-squares method (Draper and Smith, 1981), where the 
vector b = (b0, bl, ... , bx) is computed as to minimize the function 

F(b) = Ym -- bo - b l x r n i  - e r n  

m = l  i = 1  

(4.2) 
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Assuming b has been computed, the regression model can be rewritten as 

S(Y----~ = E SRC(Y, X,)  ' ,  (4.3) 
i=1 

where I7 and )(i are the averages of(y1 . . . .  , YN), (xl~ . . . .  , Ym), S are the respective 
standard deviations, Y is the model evaluation (i.e. Eq. (4.1) without the error term) 
and 

s(x,) 
SRC(Y, X~) = b ~ -  (4.4) 

s(Y) 

are the standardized regression coefficients. These can be used for sensitivity 
analysis (when the Xi's are independent) as they can quantify the effect of moving 
each input variable away from its mean by a fixed fraction of its variance while 
maintaining all other variables at their expected values. 

The SRCs can also be used on the ranks of the (Y, X~) values (standardized rank 
regression coefficient SRRC, Iman et al., 1985). 

When using the SRCs it is also important to consider the model coefficient of 
determination R 2. 

R~ E~--, 03m -- I7)2 
= N • (4.5) 

~ . ,=  , (Ym - 17)2 

R 2 provides a measure of how well the linear regression model based on SRCs can 
reproduce the actual output vector Y. R 2 represents the fraction of the variance of 
the output vector explained by the regression. The closer Ry 2 is to unity, the better is 
the model performance. The validity of the SRCs as a measure of sensitivity is 
conditional to the degree to which the regression models fits the data, i.e. to R~. 
When the value of the R 2 coefficient computed on the raw values is low, it is usually 
worth trying the rank equivalent of SRC, i.e. the SRRC. These are simply obtained 
by replacing both the output variable values y~ and the input vectors X~'s by the 
respective ranks. If the new Ry 2 coefficient (on rank) is higher, then the SRRCs can 
be used for SA. 

The transformed (ranked) variables are more often used because the R~ values 
associated with the SRCs are generally lower than that associated to the SRRCs, 
especially for non-linear models (Saltelli and Marivoet, 1990). The difference 
between the RyZ's (computed on the raw values and on the ranks) is a useful 
indicator of the non-linearity of the model. 

A small value of S(R)RC for input variable Xi relative to an output variable y, 
does not necessarily imply that 8y,/SX~ is small over the entire range of variation of 
X~. Low value of the index could be due to a failure of the SRRC to build an 
effective regression; this will be flagged by R~. A small range of variation of X~ 
could also result in a low SRC in spite of a high 8yr/SX~. 

The results for the SRC-based SA can be interpreted using hypothesis testing, 
which allows the probability of an erroneous parameter identification to be quanti- 
fied (Conover, 1980). 
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4.2 Importance measures 

The other technique used for the comparison is a test known as "measure of 
importance" S. This test is described in the literature under different forms (Hora 
and Iman, 1986; Ishigami and Homma, 1989, 1990; Iman and Hora, 1990; Sobol', 
1990; Saltelli et al., 1993). 

According to Hora and Iman (1986) the measure of importance is related to the 
quantity 

Uj = f (h(~j)> 2fj(~j) d2j (4.6) 

where the output variable Y is a function of K variables Y = h(X1, X2 . . . .  , XK), 
(h(2~) > is the mean of the output Y when the variable Xj is fixed to the value ~Tj, i.e. 

f f ;  <h(;j) > . . . .  h(X1, X2, ... , ; i  . . . .  , XK) 1--I f~(Xi) dXi, (4.7) 
i = 1  
14:j 

and f~(Xi) is the PDF of variable Xi. An alternative formulation for the same 
quantity is (Iman and Hora, 1990) 

Var Xj[E(hlXj) ] (4.8) 
Var(h) 

Eq. (4.8) represents the percentage variance in h explained by variable Xj. This is 
computed as the variance, over all the possible values of Xi, of the conditional 
expectation of h, normalized by the total variance of h. Iman and Hora (1990) 
observe that, although mathematically correct, this importance measure lacks of 
robustness, and can be highly influenced by outliers associated with long-tailed 
input distributions. They suggest an alternative measure based on replacingfwith 
log(f)  and estimating E(log(flXj)) using linear regression. This solution has in 
general the same advantage (e.g. robustness) and disadvantages of the rank trans- 
formation used in this work. Following an initial computational scheme developed 
by Ishigami and Homma (1989, 1990) and improved by Saltelli et al. (1993), we have 
taken as importance measure the statistics 

1 N 
HIM(Xj) = ~  ~ Y,,YJm, (4.9) 

m = l  

where N is the number of computer simulations, each corresponding to a different 
sampled set of values for the input variables, Ym is the output for the run (simula- 
tion) number m, and y~ is the output generated for run m when all the variables but 
variable Xj has been resampled. The relation between the various expression for the 
measure of importance are detailed in Saltelli et al. (1993); see also Homma and 
Saltelli (1994). In Monte Carlo terms, Eq. (4.9) is intuitive; if Xj is an influential 
variable, high value Ofym will be associated with high values ofy~ and HIM will be 
high. For a non-influential variable, Ym and y~ will be associated randomly and 
HIM will be smaller. In this form the HIM measure is very close to a sensitivity 
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index discussed in Sobol' (1990). The importance measure has substantial analogies 
with the FAST technique (Fourier amplitude sensitivity test; Cukier et al., 1973, 
1978; Shaibly and Schuler, 1973; Liepman and Stephanopoulos, 1985). 

Given the scarce robustness of HIM, already discussed by Iman and Hora (1990), 
we have replaced the raw values with their rank to compute 

1 N 
HIM*(Xj) = ~ m=~l R(ym)R(YJm)' (4.10) 

where R indicates the replacing of a function value by the corresponding rank. 
A limit of the rank version of the test is that it does not weight the real fraction of 
the total variance accounted for by the single parameters. For a rigorous variance 
analysis, HIM should be used instead, at the expenses of a larger sample. 

For a discussion of the rank transformation, see also Iman and Conover (1979), 
and the appendix in Helton et al. (1989). 

5. Computational tools 

The preparation of the analysis described in the next section required the 
coupling of several computational tools. First the IFFD input sample was gener- 
ated using the SAMPLE code. The simple Monte Carlo input sample needed for 
the other SA estimators (e.g. SRRC, HIM*) was generated using PREP (Homma 
and Saltelli, 1991). Then the LISA code (Prado et al., 1991) was used to execute the 
model, generating the output total doses. Stepwise regression subroutines were 
used to rank the input parameters on the basis of the outputs of SAMPLE (for 
IFFD). The SPOP code (Saltelli and Homma, 1991) was used to compute the other 
statistics (e.g. SRC, SRRC, R 2, etc.). Finally, a customised version of SPOP was 
used for the variance analysis. 

In this procedure, two steps were taken to guard against potential errors. First, in 
this comparison all simulations of the Level E model were carried out with the 
LISA code, whereas in the earlier comparison (Saltelli et al., 1993) IFFD simula- 
tions only were carried out with the SYVAC3 code (Goodwin et al., 1987). Second, 
in this comparison the SPOP code calculated all the variance statistics, whereas in 
the earlier comparison the IFFD variances only were computed with a different 
package. These precautions ensured that the comparison of techniques was fair. 

6. Results 

6.1. IFFD reproducibility 

Fig. 5 presents a comparison of the reproducibility of several techniques, using data 
primarily from (Saltelli et al., 1993). The IFFD data presented in the plot are new. 
The reproducibility of IFFD as compared to that of the other SA techniques was 
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Fig. 5. Reproducibility of I F F D  vs. other tests; the lower the variance, the better the system 
reproducibility. Data for the Pearson coefficient (PEAR), the Spearman test (SPEA), SRC, SRRC and 
the two versions of importance measure are from Saltelli (1993). Note that HIM is computed on the 
raw values and HIM* on the ranks. Data for I F F D  are from the present work. 

Table 1 

Other tests I F F D  

Number of samples Size of the samples Number of samples Size of the samples 

50 50 10 56 
20 125 10 104 
10 250 10 208 
7 357 6 416 
6 416 5 504 
5 500 

conducted via a variance analysis at different sample sizes. In this plot IFFD 
reproducibility is compared with the simple and modified importance measure 
(HIM and HIM*), with the SRC and SRRC, and with the Pearson and Spearman 
correlation coefficients (PEAR, SPEA). 

The number of samples used for the computation is given in Table 1. 
Taking IFFD and the 10 subsamples of size 56 as an example, the variances on 

the ordinate axis of Fig. 5 have been calculated as follows. 
- the first 10 IFFD input samples of size 56 were generated using SAMPLE; 
- for all the (560) input vectors, LISA was used to generate the total dose histories; 
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- for each of the 10 subsamples, stepwise regression was used to rank the 12 input 
parameters of Level E for each time point considered in the analysis; 

- For each time point ranks were assigned so that the most important  input 
parameter was given rank 1, and the least important  rank 12. These ranks were 
then converted into Savage scores (Iman and Helton, 1985) and the variables' 
scores for the 10 subsamples at each time point were stored. This transformation 
is needed to ensure that in the subsequent variance analysis the most influential 
parameter (rank = 1 implies score --- 3.691) weighs more than the least influential 
one (rank = 12 implies score = 0.0455). The scores S were computed as 

K 1 
Sk, . , I(IFFD)= ~ " - ,  (6.1) 

m = R  m 

where K = 12 is the number of variables, and 

R --- Rk,n,~(IFFD) (6.2) 

is the rank of variable number "k" at time point number "n", and "i" indicates the 
number of the subsample (between 1 and 10, in the example). 
At this point the classical variance V of Sk...i(IFFD) over the 10 subsamples Si 

was computed: 

Vk,., N, (IFFD) = ~ Sk,,, i(IFFD) - Sk,. (IFFD , (6.3) 
i = 1  

where N~ indicates that the value is relative to the sample size (e.g. 56) under 
consideration. This value was further averaged over the K variables and the 
selected time points to obtain VN,(IFFD) which is a function only of the technique 
(IFFD) and the sample size N~. This is the value of"variance" plotted for IFFD at 
sample size = 56 in Figs. 2 and 5. The procedure was similar for the other methods 
and sample sizes. 

The results show that IFFD is very stable at sample sizes larger that 200, 
performing even better than HIM* and SRRC at the largest sample sizes ( ~-, 400 
and ~ 500). The performance is worse at low sample sizes where IFFD tends to 
perform as well as the parametric tests (PEAR, SRC). 

6.2. IFFD accuracy 

The discussion on accuracy in (Saltelli et al. (1993) was based on the results from 
the Level E test case. The predictions of the various estimators were cross-checked 
against scatter plots of data points, similar to that given in Fig. 4. In particular, the 
comparison of the performances focuses on those "difficult" time points where the 
system was nonmonotonic.  In Fig. 6 and 7 the predictions of SRRC and that of 
HIM* are compared for the Level E input variables. HIM* predicts FLOWV1 to 
be the most important  over the entire time range (apart from the early time points), 
whereas SRRC indicates that, for instance, at 90 000 a, FLOWV1 is not influential. 
The scatter plot in Fig. 4 suggests that in this case HIM* is right. On the basis of 
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Fig. 7. Value of the HIM* vs. time for the Level E input variables. Apart from the early time points, 
FLOWV1 seems to be always the most important variable. 

similar scatter plot analyses it was concluded in the above paper that FLOWV1 is 
indeed the most important variable over almost the entire time range, and that 
HIM* is in general a robust predictor, in the sense that it is not deceived from 
model nonmonotonicities. 

The ranking for the variable FLOWV1 produced by IFFD,  SRRC and HIM* 
are compared in Fig. 8. Apparently, IFFD is also robust as far as model non- 
monotonicities are concerned; in fact, I F F D  identifies FLOWV1 as the most 
important variable even for the nonmonotonic time points t = 90000a  and 
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t = 700000a, the local minima of the rank-based R~ curve in Fig. 3. Yet, unlike 
HIM*, I F F D  estimates the influence of FLOWV1 to be low at t = 200000a and 
t = 300 000 a. Which estimator is to be believed for these time points? Again an 
analysis of the scatter plots can assist in the decision. Fig. 9 and 10 plot the rank of 
dose vs. the rank of FLOWV1 for the I F F D  sample and for the simple Monte  Carlo 
sample for the t = 200 000 a time point. Fig. 10 clearly shows a more than quadratic 
dependence of dose on F L O W V  1, but this behaviour cannot  be seen in Fig. 9, since 
data are available for only three values of FLOWV1. The trend for the other 
controversial time point t = 300 000 a is identical. As mentioned in Section 3 the 
I F F D  design can detect linear and quadratic effects, and it is natural  that it might 
fail in the presence of higher-order dependencies. 

7. Conclusions 

Two important  points should be made before discussing the performance of 
IFFD.  The first one is that I F F D  - at the present time - offers a unique advantage 
over the other techniques mentioned here. It is the only technique capable of 
identifying a few influential parameters  out of batches of thousands of noninfluen- 
tial variables using manageable sample sizes. The second point is that the Level 
E comparison should be considered as a difficult case for sensitivity analysis, being 
strongly nonlinear and nonmonotonic .  
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With these consideration in mind the results of the analysis can be summarized 
as follows. 
(1) IFFD predictions are extremely reproducible; IFFD performs as well as HIM 

and better than SRRC whenever the sample size is large enough (about 200 in 
the present application). 

(2) IFFD is more robust than SRRC in that it can detect quadratic effects. It is less 
robust than HIM* since it cannot cope with higher-order effects. 

It should be mentioned that, at present, HIM* is considerably more expensive to 
evaluate than IFFD. If a sample size N is used to compute IFFD (corresponding to 
N model evaluations), the HIM* technique requires N(K + 1) such evaluations, 
where K is the total number of uncertain input parameters. A reduction of the 
sample size needed to evaluate HIM* has been attempted in a separate article 
(Homma and Saltelli, 1994). Further investigations will be carried on to upgrade 
IFFD performances in case of more than quadratic effects. 
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