

BARCELONA

 SCHOOL OFMANAGEMENT
Course MNF990, University of Bergen, September 22, 2023

Where to find this talk: www.andreasaltelli.eu Andrea Saltelli

August 25 2023: The politics of modelling is out!

> the politics of modelling numbers between
> science and policy

edited by Andrea Saltelli
 Andrea Saltelli \& Monica Di Fiore

Praise for the volume

"A long awaited examination of the role -and obligation —of modeling."
Nassim Nicholas Taleb, Distinguished Professor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series Incerto.
Mastodon Toots by
@AndreaSaltelli
August 26 Podcast
(16m) - interview for
ABC NET RADIO, AUS:
Assumptions and
consequences: the
politics of modelling,
Guests: Ehsan Nabavi
and Andrea Saltelli,
Producer - Chris
Bullock.
abc.net.au/listen
Inrnarama/sun

Where to find this talk: www.andreasaltelli.eu Andrea Saltelli

Tweets by @AndreaSaltelli
andrea saltelli
@AndreaSaltelli
Worth listening all; pay heed to the bit at $31^{\prime} .50^{\prime \prime}$ Why economics needs to pay heed to its biophysical bases @1CTA_UAB @g_kallis

Resource Limits to American Capitalism \& the Predator State Today - \% \% GPEnewsdocs.com \% gpenewsdocs.com/resource-limit.

Resource Limits to American Capitalis. James K. Galbraith discusses the shift of gpenewsdocs.com

Something general about mathematical modelling

Modelling is a craft more than a science

R. Rosen, Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. Columbia University Press, 1991.

Louie, A.H. 2010. "Robert Rosen’s Anticipatory Systems." Edited by Riel Miller. Foresight 12 (3): 1829. https://doi.org/10.1108/14636681011049848.

"models are most useful when they are used to challenge existing formulations, rather than to validate or verify them"

Naomi
 Oreskes

N. Oreskes, K. Shrader-Frechette, and K. Belitz, "Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences," Science, 263, no. 5147, 1994.

Models are not physical laws

PREDICTION

Oreskes, N., 2000, Why predict? Historical perspectives on prediction in Earth Science, in Prediction, Science, Decision Making and the future of Nature, Sarewitz et al., Eds., Island Press, Washington DC
$"[\cdots]$ to be of value in theory testing, the predictions involved must be capable of refuting the theory that generated them" (N. Oreskes)

"When a model generates a prediction, of what precisely is the prediction a test?
The laws? The input data? The conceptualization?

Any part (or several parts) of the model might be in error, and there is no simple way to determine which one it is"

$$
\begin{aligned}
& \text { Models have } \\
& \text { little memory }
\end{aligned}
$$

" $[\cdots]$ The process of constructing and validating [value-at risk] models is time consuming and detail oriented; normally even the people who produced the model will not remember many of the assumptions incorporated into it, short of redoing their work, which means that the client cannot simply ask then what went into it."
E. Millgram The Great Endarkenment, p. 29

Caeteris are

never paribus

Ceteris paribus or caeteris paribus is a Latin phrase meaning "all other things being equal" or "other things held constant" or "all else unchanged" (Wikipedia)

The case of DSGE, dynamic stochastic general equilibrium models

Rational expectations of agents Efficient market hypothesis

Philip Mirowski

Philip Mirowski, 2013, Never let a serious crisis go wasted, Verso Books.

The US senate and Queen Elisabeth perplexed \cdots

Philip Mirowski, 2013, Never let a serious crisis go wasted, Verso Books.

A short trip through sensitivity analysis borrowing N. N. Taleb's via negativa

Environmental Modelling \& Software
Volume 114, April 2019, Pages 29-39

Why so many published sensitivity

 analyses are false: A systematic review of sensitivity analysis practices
Don't use just any method

Use the method appropriate to context and purpose

An introduction to variance based methods

Available for free at

http://www.andreasaltelli.eu
(3)WILEY

Plotting the output as a function of two different input factors

Which factor is more important?

~1,000 blue points

Divide them in 20 bins of ~ 50 points

Compute the bin's average (pink dots)

Each pink point is $\sim E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)$

Take the variance of the pink points one obtains a sensitivity

$$
V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)
$$

measure

Which factor has the highest $V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right) ?$

For additive models one can decompose the total variance as a sum of those partial variances

$$
\sum_{i} V_{x_{i}}\left(E_{X_{i}}\left(Y \mid X_{i}\right)\right) \approx V(Y)
$$

... which is also how additive models are defined

$$
S_{i}=\frac{V_{X_{i}}\left(E_{\mathbf{X}_{i i}}\left(Y \mid X_{i}\right)\right)}{V(Y)}
$$

The partial variance divided by the total variance is the so-called sensitivity index of the first order, identical in formulation to Pearson's correlation ratio

First order
$\frac{\mathrm{V}_{x_{i}}\left(\mathrm{E}_{\mathbf{x} \sim i}\left(y \mid x_{i}\right)\right)}{\mathrm{V}(y)}$

Pearson's correlation Smoothed curve ratio

First order sensitivity index
Unconditional variance

Non additive models

Is $S_{i}=0$?

Is this factor non-important?

There are terms which capture two-way, three way, \cdots interactions among variables

All these terms are linked by a formula

Variance decomposition (ANOVA)

$$
V(Y)=
$$

$$
\sum_{i} V_{i}+\sum_{i, j>i} V_{i j}+\ldots+V_{123 . . k}
$$

Variance decomposition (ANOVA)

The total variance can be decomposed into main effects and interaction effects up to the order k , the dimensionality of the problem (only for independent factors)

If fact interactions terms are awkward to handle: just the second order terms for a model with k factors are as many as $k(k-1) / 2 \cdots$
(10 factors $=45$ second order terms)

How about a single 'importance' terms for all effects?

In fact such terms exist and can be computed easily, without knowledge of the individual interaction terms

Thus given a model $f\left(X_{1}, X_{2}, \ldots, X_{3}\right)$
Where the variance decomposition would
read $1=S_{1}+S_{2}+S_{3}+S_{12}+S_{13}+S_{23}+S_{123}$

We compute

$$
\begin{aligned}
& T_{1}=S_{1}+S_{12}+S_{13}+S_{123} \\
& T_{2}=S_{2}+S_{12}+S_{23}+S_{123} \\
& T_{3}=S_{3}+S_{13}+S_{23}+S_{123}
\end{aligned}
$$

The measures and their 'settings' $=$ when to use them

Journal of the
American
Statistical

Statitical
Association Association

Volume 97, 2002 - Issue 459

979
Views
286
CrossRef citations
to date
6
Altmetric

Primary Article

On the Relative Importance of Input Factors in Mathematical Models

Safety Assessment for Nuclear Waste Disposal
Andrea Saltelli \& Stefano Tarantola
Pages 702-709 | Published online: 31 Dec 2011
6f Download citation https://doi.org/10.1198/016214502388618447

The measures and their 'settings' $=$ when to use them

First order effect Factor prioritization (orienting research)
Total effect
Factor fixing (model simplification)

Making best use of model evaluations to compute sensitivity indices

Computing the indices efficiently

Andrea Saltelliv \oplus

Higher order Sobol' indices Getaccess >

Art B. Owen M, Josef Dick, Su Chen
Information and Inference: A Journal of the IMA, Volume 3, Issue 1, March 2014, Pages 59-81, https://doi.org/10.1093 /imaiai/iau001
Published: 01 March 2014 Article history \mathbf{v}

Plenty of code available in R, MATLAB, and Phyton

https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf

https://cran.rstudio.com/web/packages/sensobol/index.html
https://www.uqlab.com/ (in MatLab, by Bruno Sudret and his team)

SALib https://salib.readthedocs.io/en/latest/

Journal of Statistical Software

Home / Archives / Vol. 102(2022) / Issue 5
sensobol: An R Package to Compute VarianceBased Sensitivity Indices

Arnald Puy (D) Samuele Lo Piano (D), Andrea Saltelli (${ }^{(D)}$, Simon A. Levin ($)$

Model's effective dimension

The effective dimension and quasi-Monte Carlo integration

Xiaoqun Wang ${ }^{\text {a,b,* }}$ and Kai-Tai Fang ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
${ }^{\mathrm{b}}$ School of Mathematics, University of New South Wales, Sydney 2052, Australia
${ }^{\text {c }}$ Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

Received 12 February 2002; accepted 6 November 2002

The difficulty of a function/model is not in its number of dimensions but in the number of effective dimensions, either in the truncation or superposition sense
truncation sense = how many factors are important? superposition sense=how high is the highest interaction?

Why using variance-based sensitivity analysis methods

Advantages with variance based methods:

- graphic interpretation scatterplots
- statistical interpretation
- expressed plain English (another lesson)
- working with sets (another lesson)
- relation to settings such as factor fixing and factor prioritization
- give the effective dimension

Chapter 1 its exercises new method tests it against S_{i}, T_{i}

QAGUPUBLICATIONS

Water Resources Research

RESEARCH ARTICLE A new framework for comprehensive, robust, and efficient
 10.1002/2015WR017558

Companion to

Razavi and Gupta [2016], doi:10.1002/2015WR017559.

Key Points:

- The VARS framework enables

Saman Razavi ${ }^{1,2}$ and Hoshin V. Gupta ${ }^{3}$
'Global Institute for Water Security \& School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, ${ }^{2}$ Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, ${ }^{3}$ Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA

S_{i}, T_{i} can be used to do a sensitivity analysis of a sensitivity analysis...

Environmental Modelling \& Software

Is VARS more intuitive and efficient than Sobol' indices?

Arnald Puy ${ }^{\text {a, } b} \bigcirc \stackrel{\circ}{\bullet}$, Samuele Lo Piano ${ }^{c}$, Andrea Saltelli ${ }^{\text {d }}$
... but there are other methods that can be used for different settings, e.g. moment independents methods, Shapley coefficients, reduced spaces, VARS …

Don't use One factor At a Time (OAT)

A geometric proof

Contents lists available at ScienceDirect

Environmental Modelling \& Software

journal homepage: www.elsevier.com/locate/envsoft

How to avoid a perfunctory sensitivity analysis

Andrea Saltelli*, Paola Annoni

Joint Research Center, Institute for the Protection and Security of the Citizen, via E.Fermi, 2749, Ispra VA 21027, Italy

OAT in 2 dimensions

Area circle / area square =?

~ 3/4

OAT in 3 dimensions

Volume sphere / volume cube =?

$$
\sim 1 / 2
$$

OAT in 10 dimensions; Volume hypersphere / volume ten dimensional hypercube =? 0.0025

OAT in k dimensions

OAT does not capture interactions

\rightarrow The resulting analysis is non conservative

How would you test the scaffolding?

How coupled ladders are shaken in most of available literature

How to shake coupled ladders

Environmental Modelling \& Software

 Volume 114, April 2019, Pages 29-39

Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices

Andrea Saltelli ${ }^{\mathrm{a}, \mathrm{b}} \mathrm{O}_{\circ}^{\boxed{\Delta}}$, Ksenia Aleksankina ${ }^{\text {c }}$, William Becker ${ }^{\text {d }}$, Pamela Fennell ${ }^{e}$, Federico Ferretti ${ }^{\text {d }}$, Niels Holst ${ }^{f}$, Sushan Li ${ }^{\text {b }}$, Qiongli Wu ${ }^{\text {h }}$

Don't use method that are not model-independent (such as PCC, PRCC)

Use model-free methods

Why not using correlation-regression based techniques? PCC, PRCC, SRC, SRRC

Reliability Engineering \& System Safety
Volume 28, Issue 2, 1990, Pages 229-253

Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques
A. Saltelli, J. Marivoet

Sensitivity analysis for model output: Performance of black box techniques on three international benchmark exercises
A. Saltelli, T. Homma
\rightarrow They assume linearity (PCC) or monotonicity (PRCC), which is difficult to know ex-ante

Don't use either LHS or optimized LHS

Quasi-random sequences perform better

Quasi random sequences

Ilya M. Sobol'

Statistics > Applications

[Submitted on 10 May 2015]

Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte

 Carlo Sampling TechniquesSergei Kucherenko, Daniel Albrecht, Andrea Saltelli

Sobol' LP-TAU are used in high frequency trading

Don't run the model just once

There is much to learn by running the model a few times, especially during model building

Lubarsky's Law of Cybernetic Entomology: there is always one more bug!

Model routinely used to produce point estimates may becomes non
conservative when the uncertainty is plugged in

Current Models Underestimate Future Irrigated Areas

nature communications

Explore content $\checkmark \quad$ About the journal $\checkmark \quad$ Publish with us \checkmark
nature > nature communications > comment > article

Comment | Open Access | Published: 08 June 2022

The delusive accuracy of global irrigation water withdrawal estimates

Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.

Sustainable Development Goals (SDGs), from Zero Hunger (SDG 2) to Water Stress (SDG 6), will be poorly assessed if irrigation water withdrawal convey an illusion of accuracy

nature communications

Explore content $\vee \quad$ About the journal $\vee \quad$ Publish with us \vee
$\underline{\text { nature }}>\underline{\text { nature communications }}>$ comment $>$ article

Comment \mid Open Access Published: 08 June 2022
The delusive accuracy of global irrigation water
withdrawal estimates
Arnald Puy \boxtimes, Razi Sheikholeslami, Hoshin V. Gupta, Jim W. Hall, Bruce Lankford, Samuele Lo Piano, Jonas
Meier, Florian Pappenberger, Amilcare Porporato, Giulia Vico \& Andrea Saltelli

Solution? Modelling of the modelling process

Jorge Luis Borges (1899-1986)

```
EL JARDIN
```

EL JARDIN
DE SENDEROS
DE SENDEROS
QUE SE BIFURCAN

```
QUE SE BIFURCAN
```


Ts'ui Pên
(character of the novel)

The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time*

Andrew Gelman ${ }^{\dagger}$ and Eric Loken ${ }^{\ddagger}$
14 Nov 2013

The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time*

> Andrew Gelman ${ }^{\dagger}$ and Eric Loken ${ }^{\ddagger}$ 14 Nov 2013

Why th PNAS

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

[^0]

Don't confuse the map with the territory

If you do, sensitivity analysis will not save you

Orrin H.

 PilkeyUseless Arithmetic: Why Environmental Scientists Can't Predict the Future by Orrin H. Pilkey and Linda PilkeyJarvis, Columbia University Press, 2009.
<<It is important, however, to recognize that the sensitivity of the parameter in the equation is what is being determined, not the sensitivity of the parameter in nature>>
$\ll \cdots$ If the model is wrong or if it is a poor representation of reality, determining the sensitivity of an individual parameter in the model is a meaningless pursuit>>

One of the examples discussed concerns the Yucca Mountain repository for radioactive waste. TSPA model (for total system performance assessment) for safety analysis.

TSPA is Composed of 286 sub-models.

TSPA (like any other model) relies on assumptions \rightarrow one is the low permeability of the geological formation \rightarrow long time for the water to percolate from surface to disposal.

The confidence of the stakeholders in TSPA was not helped when evidence was produced which could lead to an upward revision of 4 orders of magnitude of this
parameter (the ${ }^{36} \mathrm{Cl}$ story)

Type III error in sensitivity:
Examples:
In the case of TSPA (Yucca mountain) a range of 0.02 to 1 millimetre per year was used for percolation of flux rate.
$\rightarrow \cdots$ SA useless if it is instead \sim 3,000 millimetres per year.

"Scientific mathematical modelling should involve constant efforts to falsify the model"

\rightarrow Organized skepticism (as per CUDOS)

Communalism, Universalism, Disinterestedness, Organized Skepticism, from sociology of science, Robert K. Merton.

Steve Rayner

Rayner, s., 2012, Uncomfortable knowledge: the social construction of ignorance in science and environmental policy discourses, Economy and Society, 41:1, 107-125.

Rayner's (2012) strategies to deal with "uncomfortable knowledge".

Denial, Dismissal, Diversion, Displacement

Model based

Rayner, S., 2012, Uncomfortable knowledge: the social construction of ignorance in science and environmental policy discourses, Economy and Society, 41:1, 107-125.

Displacement: "The model we have developed tells us that real progress is being achieved" (The focus in now the model not the problem).

Rayner, S., 2012, Uncomfortable knowledge: the social construction of ignorance in science and environmental policy discourses, Economy and Society, 41:1, 107125.

Example of displacement: Chesapeake Bay Program (CBP) modelling work

"Bay models are used to track nutrient loads to ensure the cap is not exceeded"

\rightarrow The model results - rather than the actual measurements, become the substance of use

Rayner, S., 2012, Uncomfortable knowledge: the social construction of ignorance in science and environmental policy discourses, Economy and Society, 41:1, 107-125.

PREDICTION

Edited by Daniel Sarewitz,
Roger A. Pielke, Jr., and Radford Byerly

Model GENESIS for beach erosion

TM י:

US Army Corps of Engineers 。

Manipulated to support coastal-engineering projects

It neglected the role of extreme event

Sarewitz, D., Pielke, R. A. \& Byerly, R. Prediction: Science, Decision Making, and the Future of Nature (Island Press, 2000).

Beware the size of your model

Mind the conjecture of O'Neil
\square

A short comment on statistical versus mathematical modelling

Andrea Saltelli ${ }^{\text {M }}$

Model complexity

ScienceAdvances

Models with higher effective dimensions tend to produce more uncertain estimates

AnNal puy
. Piefrancescoobeneventano, smona levin - samvele lopano tonmaso portalur. And ander asuteul -
SCIENCE ADVANCES • 19 Oct 2022 - Vol 8, Issue 42 - DOI: 10.1126/sciadv.abn9450
\downarrow

> Empirical test using the SAbased concept of effective dimension

Conjecture by O'Neill, also known as Zadeh's

 principle of incompatibility, whereby as complexity increases "precision and significance (or relevance) become almost mutually exclusive characteristics"In M. G. Turner and R. H. Gardner, "Introduction to Models" in Landscape Ecology in Theory and Practice, New York, NY: Springer New York, 2015, pp. 63-95.
L. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Trans. Syst. Man. Cybern., vol. 3, no. 1, pp. 28-44, 1973.

Don't sample just

parameters and boundary

conditions

Explore thoroughly the space of the assumptions

An engineer's vision of UA, SA

One can sample more than just factors:

- modelling assumptions,
- alternative data sets,
- resolution levels,
- scenarios ...

Assumption

Alternatives

Number of indicators	• all six indicators included or
	one-at-time excluded (6 options)
Weighting method	• original set of weights,
	- factor analysis,
	• equal weighting,
	- data envelopment analysis
Aggregation rule	• additive,
	• multiplicative,
	• Borda multi-criterion

Space of alternatives

Don't go public

 with your resultswithout having
seen your SA

Try to Find God before God Finds You.

Find SA before SA finds you

Peter Kennedy, A Guide to Econometrics.

One of the ten commandments of applied econometrics according to Peter Kennedy:

"Thou shall confess in the presence of sensitivity. Corollary: Thou shall anticipate criticism

NEVER vary all factors of the same amount

Be it $5 \%, 10 \%$, or 20%

New WHO estimates: Up to 190000 people could die of COVID-19 in Africa if not controlled

Brazzaville - Eighty-three thousand to 190000 people in Africa could die of COVID-19 and 29 million to 44 million could get infected in the first year of the pandemic if containment measures fail, a new study by the World Health Organization (WHO) Regional Office for Africa finds. The research, which is based on prediction modelling, looks at 47 countries in the

Speculative scenario in which ten uncertain input probabilities are increased by an arbitrary 10% - as if

World Health Organization they were truly equally uncertain - with no theoretical or empirical basis for such a choice

In a numerical experiment relating to a reallife application the range of uncertainty of each input is crucial input to the analysis, and often the most expensive to get
.. beside uncertainty can be used instrumentally
The End

[^0]: Edited by Douglas Massey, Princeton University, Princeton, Nj; received March 6, 2022; accepted August 22, 2022

