Why sensitivity analysis

 (or: How not to do a sensitivity analysis)Andrea Saltelli

Bergen, Course MNF 990, March 20, 2024

The Politics of Modelling

Numbers Between Science and Policy

Andrea Saltelliland Monica Dil Fiore

66 The Politics of Modelling: Numbers between Science and Policy is a breath of fresh air and a much-needed cautionary view of the ever-increasing dependence on mathematical modelling in ever-widening directions. The five aspects of modelling that should be mind considered when evaluating any mathematical model. 99

ORRIN H, PILKEY, PROFESSOR OUKE UNIVERSTT'S NICHOLAS SCHOOL OF THE ENVIRONMENT, CO-AUTHOR, WITH LINDA PILKEY-ARVIS, OF USELESS ARITHMEIC: WHF ENVIRONMENTAL SCIFNTISTS CAN'T PREDICT
THE FUTURE, COLUMBIA UNIVERSTY PRESS, WASHINGON, DC, 2009

Where to find this talk: www.andreasaltelli.eu Andrea Saltelli

August 25 2023: The politics of modelling is out!

Praise for the volume

"A long awaited examination of the role -and obligation -of modeling."
Nassim Nicholas Taleb , Distinguished Professor of Risk Engineering, NYU Tandon School of Engineering. Author, of the 5 -volume series Incerto.

"A breath of fresh air and a much needed cautionary view of the ever-widening dependence on mathematical modeling." Orrin H. Pilkey, Professor at Duke University's Nicholas School of the Environment, co-author with Linda Pilkey-Jarvis of Useless Arithmetic: Why Environmental Scientists Can't Predict the Future, Columbia University Press 2009.
"The methods by which power insinuates itself into models, and facilitates their portability and

But the real strength of the models, in my mind at least, were in sensitivity analysis (where one could examine the response of the model to parameters or structures that were not known with precision (i.e., sensitivity analysis), and in the examination of the behavior of the model components relative to that of the real system in question (i.e., validation).

Hall, C. A. S. (2020). Systems Ecology and Limits to Growth: History, Models, and Present Status. In G. S. Metcalf, K. Kijima, \& H. Deguchi, eds., Handbook of Systems Sciences, Singapore: Springer, , pp. 1-38.
... By undertaking sensitivity analysis and validation, a great deal can be learned about the real system, including what you do not know. (Hall, 2020)

Linear programming and sensitivity analysis

Linear programming viewpoint: testing which parameter, when changed in isolation, lead to a change in the optimal solution

Global SA viewpoints: explore the distribution of the optimal solution when all uncertain coefficients are allowed to vary over their plausible range

We should not be surprised that the sensitivity analysis practiced in linear programming is linear!

Yet so much can be lost by neglecting that part of the uncertainty that escapes linearity

The advantages of understating global methods for uncertainty and sensitivity analysis are very large, including the possibility to test to flexibility of managerial

Operations Research

 decision when 'all the rest' is varying as wellModelling is a craft more than a science

Modelling as a craft rather than as a science for Robert Rosen

R. Rosen, Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. Columbia University Press, 1991.

Louie, A.H. 2010. "Robert Rosen’s Anticipatory Systems." Edited by Riel Miller. Foresight 12 (3): 18-29. https://doi.org/10.1108/14636681011049848.

Robert Rosen (1934-1998)

"models are most useful when they are used to challenge existing formulations, rather than to validate or verify them"

Naomi Oreskes
N. Oreskes, K. Shrader-Frechette, and K. Belitz, "Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences," Science, 263, no. 5147, 1994.

PREDICTION

Models are not physical laws

Oreskes, N., 2000, Why predict? Historical perspectives on prediction in Earth Science, in Prediction, Science, Decision Making and the future of Nature, Sarewitz et al., Eds., Island Press, Washington DC
" $[\cdots]$ to be of value in theory testing, the predictions involved must be capable of refuting the theory that generated them" (N. Oreskes)

PREDICTION

"When a model generates a prediction, of what precisely is the prediction a test? The laws? The input data? The conceptualization?

Edited by Daniel Sarewitr,

Any part (or several parts) of the model might be in error, and there is no simple way to determine which one it is"

Models have little memory
" [...] The process of constructing and validating [value-at risk] models is time consuming and detail oriented; normally even the people who produced the model will not remember many of the assumptions incorporated into it, short of redoing their work, which means that the client cannot simply ask then what went into it."

[^0]

Caeteris are never paribus

Ceteris paribus or caeteris paribus (Latin) $=$ "all other things being equal" or "other things held constant" or "all else unchanged"

The case of DSGE, dynamic stochastic general equilibrium models

Rational expectations of agents Efficient market hypothesis

Philip Mirowski

Philip Mirowski, 2013, Never let a serious crisis go wasted, Verso Books.

The US senate and Queen Elisabeth perplexed \cdots

Philip Mirowski, 2013, Never let a serious crisis go wasted, Verso Books.

Dangers of mathematization of economics

Wolfgang Drechsler

Erik S. Reinert

Paul Romer

Philip Mirowski
W. Drechsler, "On the possibility of quantitative-mathematical social science, chiefly economics," J. Econ. Stud., vol. 27, no. 4/5, pp. 246-259, 2000.
E. S. Reinert, "Full circle: economics from scholasticism through innovation and back into mathematical scholasticism," J. Econ. Stud., vol. 27, no. 4/5, pp. 364-376, Aug. 2000.
P. Romer, "Mathiness in the Theory of Economic Growth," Am. Econ. Rev., vol. 105, no. 5, pp. 89-93, May 2015.

Mirowski, Philip. 2013. Never Let a Serious Crisis Go to Waste: How Neoliberalism Survived the Financial Meltdown. Verso.

Don't confuse the map with the territory

If you do, sensitivity analysis will not save you

<<It is important, however, to recognize that the sensitivity of the parameter in the equation is what is being determined, not the sensitivity of the parameter in nature>>

Useless Arithmetic: Why Environmental Scientists Can't Predict the Future by Orrin H. Pilkey and Linda Pilkey-Jarvis, Columbia University Press, 2009.
<<…If the model is wrong or if it is a poor representation of reality, determining the sensitivity of an individual parameter in the model is a meaningless pursuit>>

One of the examples discussed concerns the Yucca Mountain repository for radioactive waste. TSPA model (for total system performance assessment) for safety analysis.

TSPA is Composed of 286 sub-models.

TSPA (like any other model) relies on assumptions \rightarrow one is the low permeability of the geological formation \rightarrow long time for the water to percolate from surface to disposal

The confidence of the stakeholders in TSPA was not helped when evidence was produced which could lead to an upward revision of 4 orders of magnitude of this parameter (the ${ }^{36} \mathrm{Cl}$ story)

In the case of TSPA (Yucca mountain) a range of 0.02 to 1 millimetre per year was used for percolation of flux rate. $\rightarrow \cdots$ SA useless if it is instead $\sim 3,000$ millimetres per year.

"Scientific mathematical modelling should involve constant efforts to falsify the model"
$\boldsymbol{\rightarrow}$ Organized skepticism (as per CUDOS)
Communalism, Universalism, Disinterestedness, Organized Skepticism, from sociology of science, Robert K. Merton.

Beware the size of your model

Mind the conjecture of O'Neil

Model complexity

Conjecture by O'Neill, also known as Zadeh's principle of incompatibility, whereby as complexity increases "precision and significance (or relevance) become almost mutually exclusive characteristics"

In M. G. Turner and R. H. Gardner, "Introduction to Models" in Landscape Ecology in Theory and Practice, New York, NY: Springer New York, 2015, pp. 63-95.
L. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Trans. Syst. Man. Cybern., vol. 3, no. 1, pp. 28-44, 1973.
Puy, Arnald, Pierfrancesco Beneventano, Simon A. Levin, Samuele Lo Piano, Tommaso Portaluri, and Andrea Saltelli. 2022. "Models with Higher Effective Dimensions Tend to Produce More Uncertain Estimates." Science Advances 8 (eabn9450).

Simple principles of responsible modelling

Mind the assumptions

Mind the framing

Match purpose and context
 models serve society: a manifesto, Nature 582 (2020) 482-484.

Mind the consequences

Quantification can backfire

Mind the unknowns

Acknowledge ignorance

Mind the assumptions

Assess uncertainty and sensitivity
... models require input values for which there is no reliable information...
 models serve society: a manifesto, Nature 582 (2020) 482-484

Models ask as input information which we don't have The case of WEBTAG

John Kay

WebTAG: Annual Percentage Change in Car Occupancy (\% pa) up to 2036

Journey Purpose	7am- 10am	10am- 4pm	4pm-7pm	7pm-7am	Weekday Average	Weekend	All Week
	-0.48	-0.4	-0.62	-0.5	-0.44	-0.48	-0.45
Non-Work (commuting and other)	-0.67	-0.65	-0.53	-0.47	-0.59	-0.52	-0.56

Source: J. A. Kay, "Knowing when we don't know," 2012, https://www.ifs.org.uk/docs/john_kay_feb2012.pdf

Mind the assumptions

Assess uncertainty and sensitivity

Mind the hubris

Complexity can be the enemy of relevance

Mind the framing

Match purpose and context
 models serve society: a manifesto, Nature 582 (2020) 482-484

Quantification can backfire

Mind the unknowns

Acknowledge ignorance

Mind the consequences

Quantification can backfire

* Buck to Articio

WIRED MAGAZINE: 17.03
Recipe for Disaster: The Formula That Killed Wall Street By Petix Salmon 0223.09

$\operatorname{Pr}\left[\mathrm{T}_{A}<\mathbf{1}, \mathrm{T}_{n}<\mathbf{1}\right]=\phi_{2}\left(\boldsymbol{\phi}^{-1}\left(\mathrm{~F}_{\lambda} \mathbf{1}\right), \boldsymbol{\phi}^{\mathbf{1}}\left(\mathrm{F}_{\mathrm{r}}(\mathbf{1})\right), \gamma\right)$

opploited it as a quich-mad fatally flawed-way to assess rish. A sharer wersion appours on this monoh's cover of Wired.

Here is what killed your $401(\mathrm{k}) \cdots$
Li’s Gaussian copula function ...

Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."

Felix Salmon, Wired, February 2009

Source: https://www.wired.com/2009/02/wp-quant/

Mind the assumptions

Assess uncertainty and sensitivity

Mind the hubris

Complexity can be the enemy of relevance

Mind the framing

Match purpose and context
 models serve society: a manifesto, Nature 582 (2020) 482-484

Mind the consequences

Quantification can backfire

Mind the unknowns

Acknowledge ignorance

Mind the unknowns

Acknowledge ignorance

From Socrates's "knowing of not knowing" to Nicolaus Cusanus' Docta Ignorantia, ignorance was a virtue until Descartes

Uncertainty analysis: the study of the uncertainty in model output-see also uncertainty cascade

Source: https://www.climate-lab-book.ac.uk/2014/cascade-of-uncertainty/

Sensitivity analysis: the study of the relative importance of different input factors on the model output

Sensitivity analysis can:

- surprise the analyst,
- uncover technical errors in the model,
- identify critical regions in the space of the inputs,

Source: The Simpson, 20th Television Animation (The Walt Disney Company)

Sensitivity analysis can :

- surprise the analyst,
- uncover technical errors in the model,
- identify critical regions in the space of the inputs,
- establish priorities for research,
- simplify models
- falsify models (show that a model is false or irrelevant)
- defend against your own model being falsified

Sensitivity analysis can:

verify whether policy options (or marketing strategies) can be distinguished from one another given the uncertainties in the system, \cdots

What method would one choose to perform sensitivity analysis?

BARCELONA
SCHOOL OF
MANAGEMENT

What method would one choose to perform sensitivity analysis?
Most of the sensitivity analysis found in the literature are local or otherwise OAT (One factor At a Time)

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots x_{k}\right) \\
& \left.\frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}} \longleftarrow \text { Local }
\end{aligned}
$$

What method would one choose to perform sensitivity analysis?
Most of the sensitivity analysis found in the literature are local or otherwise OAT (One factor At a Time)

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots x_{k}\right) \\
& \left.\frac{x_{i}^{0}}{y^{0}} \frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}} \longleftarrow \text { Local }
\end{aligned}
$$

What method would one choose to perform sensitivity analysis?
Most of the sensitivity analysis found in the literature are local or otherwise OAT (One factor At a Time)

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots x_{k}\right) \\
& \left.\frac{\operatorname{std}\left(x_{i}\right)}{\operatorname{std}(y)} \frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}}{ }^{4} \text { Hybrid }
\end{aligned}
$$

$$
\begin{array}{ll}
\left.\frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}} & \begin{array}{l}
\text { Relative effect on } y \text { of perturbing } x_{i} \text { around its } \\
\text { nominal value }
\end{array} \\
\left.\frac{x_{i}^{0}}{y^{0}} \frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}} & \begin{array}{l}
\text { Relative effect on } y \text { of perturbing } x_{i} \text { by a fixed } \\
\text { fraction of its nominal value }
\end{array} \\
\left.\frac{\operatorname{std}\left(x_{i}\right)}{\operatorname{std}(y)} \frac{\partial y}{\partial x_{i}}\right|_{x_{i}=x_{i}^{0}} & \longleftarrow \begin{array}{l}
\text { Relative effect on } y \text { of perturbing } x_{i} \text { by a fixed } \\
\text { fraction of its standard deviation }
\end{array}
\end{array}
$$

An introduction to variance based methods

Plotting the output as a function of two different input factors

Which factor is more important?

~1,000 blue points

Divide them in 20 bins of ~ 50 points

Compute the bin's average (pink dots)

Each pink point is $\sim E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)$

Taking the variance
of the pink points one obtains a sensitivity

$$
V_{x_{i}}\left(E_{x_{x}}\left(y \mid X_{i}\right)\right)
$$

measure

Which factor has the highest

$$
V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right) ?
$$

$$
S_{i}=\frac{V_{X_{i}}\left(E_{\mathbf{X}_{-i}}\left(Y \mid X_{i}\right)\right)}{V(Y)}
$$

The partial variance divided by the total variance is the so-called sensitivity index of the first order

For additive models one can decompose the total variance as a sum of those partial variances

$$
\sum_{i} v_{x_{i}}\left(E_{x_{i}}\left(Y \mid X_{i}\right)\right) \approx V(Y)
$$

... which is also how additive models are defined

$$
S_{i}=\frac{V_{X_{i}}\left(E_{\mathbf{X}_{i}}\left(Y \mid X_{i}\right)\right)}{V(Y)}
$$

The partial variance divided by the total variance is the so-called sensitivity index of the first order, identical in formulation to Pearson's correlation ratio

First order
$\frac{\mathrm{V}_{x_{i}}\left(\mathrm{E}_{\mathbf{x}_{\sim i}}\left(y \mid x_{i}\right)\right)}{\mathrm{V}(y)}$

Pearson's correlation Smoothed curve ratio

First order sensitivity index
Unconditional
variance

Non additive models

Is $S_{i}=0$?

Is this factor non-important?

There are terms which capture two-way, three way, \cdots interactions among variables

All these terms are linked by a formula

Variance decomposition (ANOVA)

$$
V(Y)=
$$

$$
\sum_{i} V_{i}+\sum_{i, j>i} V_{i j}+\ldots+V_{123 . . k}
$$

Variance decomposition (ANOVA)

The total variance can be decomposed into main effects and interaction effects up to the order k , the dimensionality of the problem (only for independent factors)

If fact interactions terms are awkward to handle: just the second order terms for a model with k factors are as many as $k(k-1) / 2 \cdots$
(10 factors $=45$ second order terms)

How about a single 'importance' terms for all effects?

In fact such terms exist and can be computed easily, without knowledge of the individual interaction terms

Thus given a model $f\left(X_{1}, X_{2}, \ldots, X_{3}\right)$
Where the variance decomposition would
read $1=S_{1}+S_{2}+S_{3}+S_{12}+S_{13}+S_{23}+S_{123}$

We compute

$$
\begin{aligned}
& T_{1}=S_{1}+S_{12}+S_{13}+S_{123} \\
& T_{2}=S_{2}+S_{12}+S_{23}+S_{123} \\
& T_{3}=S_{3}+S_{13}+S_{23}+S_{123}
\end{aligned}
$$

The measures and their 'settings' $=$ when to use them

Journal of the
American
Statitical American
Statitical
Association Association

On the Relative Importance of Input Factors in Mathematical Models

Safety Assessment for Nuclear Waste Disposal
Andrea Saltelli \& Stefano Tarantola
Pages 702-709 | Published online: 31 Dec 2011
G6 Download citation $\boldsymbol{\nabla}$ https://doi.org/10.1198/016214502388618447

The measures and their 'settings' $=$ when to use them

First order effect Factor
prioritization
(orienting
research)
Total effect
Factor fixing (model
simplification)

Making best use of model evaluations to compute sensitivity indices

Computing the indices efficiently

Andrea Saltelliv \oplus

Higher order Sobol' indices Getaccess >

Art B. Owen M, Josef Dick, Su Chen
Information and Inference: A Journal of the IMA, Volume 3, Issue 1, March 2014, Pages 59-81, https://doi.org/10.1093 /imaiai/iau001
Published: 01 March 2014 Article history v

Plenty of code available in R, MATLAB, and Phyton

https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf
https://cran.rstudio.com/web/packages/sensobol/index.html

https://www.uqlab.com/ (in MatLab, by Bruno Sudret and his team)

SALib https://salib.readthedocs.io/en/latest/
\cdots but there is more, in R, Phython, Giulia …

Advantages with variance based methods:

- graphic interpretation scatterplots - statistical interpretation (ANOVA)
- expressed plain English
- working with sets
- relation to settings such as factor fixing and factor prioritization
- give the effective dimension

Chapter 1 and its exercises
... but there are other methods that can be used for different settings, e.g. moment independents methods, Shapley coefficients, reduced spaces, VARS …
 where

Environmental Modelling \& Software
Volume 34, June 2012, Pages 105-115

Model emulation and momentindependent sensitivity analysis: An application to environmental modelling
E. Borgonovo ${ }^{\text {a }}$, W. Castaings ${ }^{\text {b, }}$ c, S. Tarantola ${ }^{\text {d }} \cap$

$$
s_{i}\left(x_{i}\right):=\int_{\Omega_{Y}}\left|f_{Y}(y)-f_{Y \mid X_{i}=x_{i}}(y)\right| d y
$$

Don't use One factor At a Time (OAT)

A geometric proof

Contents lists available at ScienceDirect

Environmental Modelling \& Software

journal homepage: www.elsevier.com/locate/envsoft

How to avoid a perfunctory sensitivity analysis
Andrea Saltelli*, Paola Annoni
Joint Research Center, Institute for the Protection and Security of the Citizen, via E.Fermi, 2749, Ispra VA 21027, Italy

OAT in 2 dimensions

Area circle / area square =?

$$
\sim 3 / 4
$$

OAT in 3 dimensions

Volume sphere / volume cube =?

$$
\sim 1 / 2
$$

OAT in 10 dimensions; Volume hypersphere / volume ten dimensional hypercube =? 0.0025

OAT in k dimensions

OAT does not capture interactions

\rightarrow The resulting analysis is non conservative

How would you test the scaffolding?

How coupled ladders are shaken in most of available literature

Quasi random sequences

Ilya M. Sobol’

Statistics > Applications

[Submitted on 10 May 2015]

Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte

 Carlo Sampling Techniques
Sobol' LP-TAU are used in high frequency trading

sample.method

- LHS
- QRN
- R

Root mean square error with different designs

Sensitivity analysis made easy

(馬) Cornell University

ZIXiV > stat > arXiv:2206. 13470
Statistics > Applications
[Submitted on 27 Jun 2022 (v1), last revised 17 Mar 2023 (this version, v2)]
Discrepancy measures for sensitivity analysis
Arnald Puy, Pamphile T. Roy, Andrea Saltelli

Do we need to compute indices?
Can we do without statistics and calculus using the histograms we have met already?

Another way to bypass statistics and calculus

INFORMS Transactions on Education

Publication details, including instructions for authors and subscription information: http://pubsonline.informs.org

Monte Carlo Enhancement via Simulation Decomposition:
A "Must-Have" Inclusion for Many Disciplines
Mariia Kozlova, Julian Scott Yeomans

Colouring the output histogram can give sensitivity insights ...

(a)
(b)
... without computing sensitivity indices

RESULTS						
$\begin{aligned} & \text { Min } \\ & \text { Expected mean } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & 100 \varepsilon \\ & 1855 \\ & 3925 \varepsilon \end{aligned}$	Probability of negative NPV Probability of positive NPV Standard deviation	$\begin{gathered} 0 \% \% \\ 1009 \\ 7136 \end{gathered}$			
				Update colors		
	Distribution of NPVS		Legend			
			color	Scenario	Investment	Price
			sc1	tight	pessimistic	
			SC2	tight	realistic	
			sc3	tight	optimistic	
				SC4	loose	pessimistic
2*				sc5	loose	realistic
				sc6	loose	optimistic

... without computing sensitivity indices

Results						
$\begin{aligned} & \text { Min } \\ & \text { Expected mean } \end{aligned}$Max	$\begin{aligned} & 12056 \\ & 1055 \\ & 3986 \end{aligned}$	Probability of negatine NPVProhabily of posiene NPY Probabily of pouslve Standard devation	$\begin{gathered} 0 \% 4 \\ \begin{array}{c} 100 \\ n 13 \mathrm{c} \end{array} \end{gathered}$			
				Updeto colors		
*	Distuaumow of NpVs		Legend			
	[-7,		color	Scenario	Investment	Price
			sc1	tight	pessimistic	
				sc2	tight	realistic
恝"				sc3	tight	optimistic
-				sc4	loose	pessimistic
*				sc5	loose	realistic
	-89,	-		sc6	loose	optimistic

\rightarrow The possibility of very low returns (dark blue) corresponds to loose investment and pessimistic prices

What is done here? We have two variables / options:

- Investment= 'tight' or 'loose'
- Price='pessimistic', 'realistic' or 'optimistic'

Combing the 2 levels of investment with the three levels of price gives $2 * 3=6$ 'scenarios'

Don't run the model just once

There is much to learn by running the model a few times, especially during model building

Lubarsky's Law of Cybernetic Entomology: there is always one more bug!

Model routinely used to produce point estimates may becomes non
conservative when the uncertainty is plugged in

Current Models Underestimate Future Irrigated Areas

- How much land will need to be irrigated by the year 2050?
- Here the dashed lines represent deterministic model predictions from different models and datasets (from FAO \& others organizations);
- An uncertainty analysis (grey histogram) reveals that the models are nonconservative: the need might be much larger

Don't sample just parameters and boundary conditions

Explore thoroughly the space of the assumptions

One can sample more than just factors:

- modelling assumptions,
- alternative data sets,
- resolution levels,
- scenarios ...

Assumption

Alternatives

Number of indicators	• all six indicators included or
	one-at-time excluded (6 options)
Weighting method	• original set of weights,
	• factor analysis,
	• equal weighting,
	• data envelopment analysis
Aggregation rule	• additive,
	• multiplicative,
	• Borda multi-criterion

Space of alternatives

Building a Monte Carlo analysis

$$
\begin{array}{ccc}
x_{11} & x_{12 \ldots} & x_{1 k} \\
x_{21} & x_{22 \cdots} & x_{2 k} \\
\ldots & \cdots & \cdots \\
x_{N 1} & x_{N 2} & x_{N k 1}
\end{array}
$$

Input matrix: each column is a sample of size N from the distribution of a factor

Each row is a sample trial of size k to generate a value of y

Examples of distributions of input factors

NEVER vary all factors of the same amount

Be it $5 \%, 10 \%$, or 20%

New WHO estimates: Up to 190000 people could die of COVID-19 in Africa if not controlled

Speculative scenario in which ten uncertain input probabilities are increased by an arbitrary 10% - as if

World Health Organization they were truly equally uncertain - with no theoretical or empirical basis for such a choice

In a numerical experiment relating to a real-life application the range of uncertainty of each input is crucial input to the analysis, and often the most expensive to get

Suggested reading:

- Nassim N. Taleb's books, and his via negativa, the science of what is not;
- A paper on why most sensitivity analyses fail

Environmental Modelling \& Software
Volume 114, April 2019, Pages 29-39

Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices

Andrea Saltelli ${ }^{\mathrm{a}, \mathrm{b}} \bigcirc \mathrm{O}_{\boxed{\Delta}}$, Ksenia Aleksankina ${ }^{\mathrm{c}}$, William Becker ${ }^{\text {d }}$, Pamela Fennell ${ }^{\mathrm{e}}$, Federico Ferretti ${ }^{\mathrm{d}}$, Niels Holst ${ }^{f}$, Sushan Li ${ }^{g}$, Qiongli Wu ${ }^{\text {h }}$

The End

mhttps://mstdn.social/@AndreaSaltelli/

[^0]: E. Millgram The Great Endarkenment, p. 29

