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a b s t r a c t

Mathematical modelers from different disciplines and regulatory agencies worldwide agree on the
importance of a careful sensitivity analysis (SA) of model-based inference. The most popular SA practice
seen in the literature is that of ’one-factor-at-a-time’ (OAT). This consists of analyzing the effect of
varying one model input factor at a time while keeping all other fixed. While the shortcomings of OAT are
known from the statistical literature, its widespread use among modelers raises concern on the quality of
the associated sensitivity analyses. The present paper introduces a novel geometric proof of the ineffi-
ciency of OAT, with the purpose of providing the modeling community with a convincing and possibly
definitive argument against OAT. Alternatives to OAT are indicated which are based on statistical theory,
drawing from experimental design, regression analysis and sensitivity analysis proper.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Existing guidelines and textbooks reviewed here recommend
that mathematical modeling of natural or man-made system be
accompanied by a ‘sensitivity analysis’ (SA). More specifically
modelers should:

(a) Characterize the empirical probability density function and the
confidence bounds for a model output. This can be seen as the
numerical equivalent of the measurement error for physical
experiments. The question answered is “How uncertain is this
inference? ”

(b) Identify factors or groups of factors mostly responsible for the
uncertainty in the prediction. The question answered is
“Where is this uncertainty coming from? ”

We call task (a) above ’uncertainty analysis’ e UA e and task (b)
sensitivity analysis e SA (Saltelli et al., 2008). The two tasks, while
having different objectives, are often coupled in practice and called
“sensitivity analysis”. The term ‘sensitivity analysis’ can also be
used to indicate a pure uncertainty analysis (Kennedy, 2007;
Leamer, 1990). Whatever the terminology used, SA is not to be
intended as an alternative to UA but rather as its complement.

Recent regulatory documents on impact assessment point to the
need of performing a quantitative sensitivity analysis on the output

of a mathematical model, especially when this output becomes the
substance of regulatory analysis (EC, 2009; EPA, 2009; OMB, 2006).
According to the US Environmental Agency (EPA, 2009):

“[SA] methods should preferably be able to deal with a model
regardless of assumptions about a model’s linearity and addi-
tivity, consider interaction effects among input uncertainties,
[.], and evaluate the effect of an input while all other inputs are
allowed to vary as well.”

According to the European Commission (EC, 2009):

“Sensitivity analysis can be used to explore how the impacts of
the options you are analysing would change in response to
variations in key parameters and how they interact.”

The term ‘interaction’ used in both guidelines naturally links to
experimental design and ANOVA. The US office for Management
and Budget prescribes that:

“Influential risk assessments should characterize uncertainty
with a sensitivity analysis and, where feasible, through use of
a numeric distribution. [.] Sensitivity analysis is particularly
useful in pinpointing which assumptions are appropriate
candidates for additional data collection to narrow the degree of
uncertainty in the results. Sensitivity analysis is generally
considered a minimum, necessary component of a quality risk
assessment report.”

Modelers and practitioners from various disciplines (Kennedy,
2007; Leamer, 1990; Pilkey and Pilkey-Jarvis, 2007; Saltelli et al.,
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2008; Santner et al., 2003; Oakley and O’Hagan, 2004; Saisana et al.,
2005) share the belief that sensitivity analysis is a key ingredient of
the quality of a model-based study.

At the same time most published sensitivity analyses e

including a subset reviewed in the present paper by way of illus-
tration e rely on ‘one-at-a-time’ sensitivity analysis (OAT-SA). OAT
use is predicated on assumptions of model linearity which appear
unjustified in the cases reviewed. While this is well known to
sensitivity analysis practitioners as well as to the statistical
community at large, modelers seem reluctant to abandon this
practice. The following examples have been retained for the
present work: Bailis et al. (2005), Campbell et al. (2008), Coggan
et al. (2005), Murphy et al. (2004), Stites et al. (2007).

The purpose of this paper is to present a novel, simple and
hopefully convincing argument against OAT, aimed at the modeling
community. We also sketch for each of the reviewed cases what
alternative technique could be used under which assumption. In
most cases the alternativewill come at no additional computational
cost to the modeler, where computational cost is defined as the
number of times themodel has to be evaluated. This cost is relevant
for models whose execution is computer and analyst time inten-
sive. To put the present criticism of OAT in perspective, it is also
important to stress that in recent years more examples of good
practices have appeared. Limiting oneself to environmental appli-
cations of good practices of sensitivity analysis appearing in the
present year, Thogmartin (2010) performs both an OAT and a global
sensitivity analysis using Fourier amplitude sensitivity test e FAST,
on a model for birds population. This author finds a typical, and for
us unsurprising, contradiction between local and global results
which is due to the effect of interactions between input parameters.
Another good example of global sensitivity analysis concerns
a relatively complex cropmodel described in Varella et al. (2010). In
this latter work the Authors apply the Extended FAST method to
compute estimates of the first and total order sensitivity indices.
Uncertainty analysis using the Latin Hypercube sampling strategy is
carried out by Albrecht andMiquel (2010). Note that the motivation
for using Latin Hypercube as opposed to random sampling to
explore a multidimensional space is precisely to maximize the
exploration of the space for a given number of points.

Good practices for sensitivity analysis are also increasingly seen
on this journal based on regression analysis (Manache and
Melching, 2008), variance based methods (Confalonieri et al.,
2010) and meta-modelling (Ziehn and Tomlin, 2009). All these
treat the model as a black box. When information is available of the
characteristics of the model ad hoc strategies can of course be
devised, see e.g. Norton (2008).

Finally, the purpose of the present paper is not to intercompare
in earnest methods’ performance as this is already accomplished in
many publications as, for instance, in Campolongo et al. (1999,
2007), Helton et al. (2006), Cacuci and Ionesco-Bujor (2004).

2. Local, global and OAT sensitivity analysis

Searching the literature in environmental and life sciences with
“sensitivity analysis” as a keyword, it is easy to verify that most
often SA is performed by changing the value of uncertain factors
one-at-a-time (OAT) while keeping the others constant. Some
examples of OAT-SA e selected out of a much longer list for the
purpose of illustration e are Ahtikoski et al. (2008), Bailis et al.
(2005), Campbell et al. (2008), Coggan et al. (2005), de Gee et al.
(2008), Hof et al. (2008), Hasmadi and Taylor (2008), Murphy
et al. (2004), Nolan et al. (2007), Stites et al. (2007), Van der Fels-
Klerx et al. (2008).

The present work is not concerned with the literature of ‘local’
sensitivity analysis, where factors’ importance is investigated by

derivative (of various order) of the output with respect to that
factor. The term ‘local’ refers to the fact that all derivatives are taken
at a single point, known as ‘baseline’ or ‘nominal value’ point, in the
hyperspace of the input factors.1 At times, e.g. in the treatment of
inverse problems (Rabitz, 1989; Turanyi, 1990), or in approximating
a model output in the neighborhood of a set of pre-established
boundary conditions, it may not be necessary to average informa-
tion over the entire parameter space and local approaches around
the nominal values can still be informative. In other applications
‘adjoint sensitivity analysis ’ can be performed which is capable of
handling thousands of input variables, as typical in geophysical and
hydrological applications (Castaings et al., 2007; Cacuci, 2003).
‘Automated differentiation’ techniques and software are also
popular for these applications (Grievank, 2000).

In principle, local analyses cannot be used for the robustness of
model based inference unless the model is proven to be linear (for
the case of first order derivatives) or at least additive (for the case of
higher and cross order derivatives). In other words, derivatives are
informative at the base point where they are computed, but do not
provide for an exploration of the rest of the space of the input
factors unless some conditions (such as linearity or additivity) are
met in the form of the mathematical model being represented.

When the property of the models is a-priory unknown, a global
SA is preferred (Kennedy, 2007; Leamer, 1990; Oakley and O’Hagan,
2004; Saltelli and Tarantola, 2002; Helton et al., 2006). Practitioners
call this a model-free setting. Thus we support methods based on
exploring the space of the input factors according to the consider-
ation that a handful of data points judiciously thrown in that space
is far more effective, in the sense of being informative and robust,
than derivative values estimated at a single data point at the centre
of the space.

A global approach aims to show that even varying the input
assumptions within some plausible ranges some desired inference
holds, see Stern (2006). The best illustration of this strategy is due
to Leamer (1990):

“I have proposed a form of organized sensitivity analysis that I
call “global sensitivity analysis” in which a neighborhood of
alternative assumptions is selected and the corresponding
interval of inferences is identified. Conclusions are judged to be
sturdy only if the neighborhood of assumptions is wide enough
to be credible and the corresponding interval of inferences is
narrow enough to be useful”.

Funtowicz and Ravetz (1990) similarly argue: “GIGO (Garbage
In, Garbage Out) Science e [is] where uncertainties in inputs must
be suppressed lest outputs become indeterminate.2

Modelers in Ahtikoski et al. (2008), Bailis et al. (2005), Campbell
et al. (2008), Coggan et al. (2005), de Gee et al. (2008), Hof et al.
(2008), Hasmadi and Taylor (2008), Murphy et al. (2004), Nolan
et al. (2007), Stites et al. (2007), Van der Fels-Klerx et al. (2008)
cannot assume linearity and additivity as their models come in
the form of computer programmes, possibly including differential
equations solvers, smoothing or interpolation algorithms, or
parameters estimation steps. Using OAT, these authors move one
factor at a time from the baseline (or ‘nominal’) value and looks at
the effect that this change has on the output. At the baseline point
all k uncertain factors are at their reference or ‘best’ estimated
value. All factors considered in these OAT analyses are taken to be
independent from one another. In this setting the space of the input

1 When derivatives are taken at several points in this space to arrive at some kind
of average measure the approach is no-longer local, see Kucherenko et al. (2009).

2 For a discussion of the work of Funtowicz and Ravetz in a statistician’s
perspective (see Zidek, 2006).
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factors can be normalized to the unit hyper-cube of side one, and
the task of a sensitivity analysis design it to explore this cube with
uniformly distributed points. These points can then be mapped
onto the real distribution functions of the input factors, using
a quantile transformation, see Shorack (2000). Based on these
premises, the geometric proof of the inadequacy of the OAT
approach is introduced next.

3. OAT can’t work. A geometric proof

Fig. 1 illustrates the ‘curse of dimensionality’. Hyper-spheres are
included in e and tangent to e the unit hypercube (the case of two
and three dimensions is shown), and the curve on the plot is the
ratio r of the volume of the sphere to that of the cube in k dimen-
sions. Why is this plot relevant here? Because all the points of the
OAT design are by construction internal to the sphere. The volume of
the sphere goes very rapidly to zero with increasing the number of
dimensions k.

In a systemwith just two uncertain factors (k¼ 2) the area of the
circle inscribed in the unit square, and hence the ratio of the
‘partially’ explored to the total area, is rð2Þ ¼ pð1=2Þ2w0:78. In
three dimensions, as in Bailis et al. (2005), Campbell et al. (2008),
this is rð3Þ ¼ ð4p=3Þð1=2Þ3w0:52. The general formula for the
volume of the hypersphere of radius 1/2 in k dimensions is:

rðkÞ ¼ p
k
2

G
�
k
2 þ 1

��1
2

�k

where Gðk=2þ 1Þ can be derived for both even and odd k by the
following properties: G(n)¼ (n� 1)! for n˛N; G(xþ 1)¼ xG(x)c
x˛R\(�N), G(1)¼ 1 and Gð1=2Þ ¼ ffiffiffi

p
p

(Abramowitz and Stegun,
1970). It is easy to see that in 12 dimensions, as in Stites et al.
(2007), the fraction of the hyperspace explored is equal to
r¼ 0.000326, less than one-thousandth of the factors’ space (Fig. 1).
This is one of the many possible ways to illustrate the so-called
curse of dimensionality. See Hastie et al. (2001) for a different
interpretation.

An OAT sensitivity analysis thus designed is therefore perfunc-
tory in a model free setting. In a high dimensional space, a deriva-
tive based analysis and an OAT based one are practically equivalent,
i.e. they are both local and thus by definition non-explorative.

Further OAT cannot detect interactions among factors because this
identification is predicated on the simultaneousmovement of more
than one factor. If factors are moved OAT the interactions are not
activated and hence not detected, i.e. one has no way to know
whether the effect of moving X1 and X2 is different from the
superposition of the individual effects obtained moving first X1,
coming back to the baseline and then moving X2.

The inadequacy of OAT is not limited to sensitivity analysis, e.g.
to the quest for the most influential model input factors, but to
uncertainty analysis as well. Elementary statistics about the model
output (inference), such as its maximum, or mode, can be totally
misinterpreted via OAT. We shall return to this point in Section 5,
but we discuss OAT’s fortune first.

4. Why modelers prefer OAT

For a modeler the baseline is a very important, perhaps themost
important, point in the space of the input factors. This is customarily
the best estimate point, thus one can understand why in a OAT
design one comes back to the baseline after each step. Yet to assume
that all what one needs to explore are the neighborhoods of the
baseline amounts to imply that all the probability density functions
for the uncertain factor has a sharp peak on this multidimensional
point. The ‘peaked’ pdf’s assumption does not belong to the exam-
ples reviewed here, but were it true why not using local methods?
Arguments which might justify the favor enjoyed by OAT are

(a) the baseline vector is a safe starting point where the model
properties are well known;

(b) all OAT sensitivities are referred to the same starting point;
(c) moving one factor at a time means that whatever effect is

observed on the output (including the case of no effect), this is
due solely to that factore no noise is involved unless the model
has a stochastic term. No effect does not mean no influence, of
course;

(d) conversely, a non-zero effect implies influence, i.e. OAT does
not make type I errors, it never detects uninfluential factors as
relevant;

(e) the chances of the model crushing or otherwise giving unac-
ceptable results is minimized, as these are likely to increase
with the distance from the baseline. The model has more
chances to crush when all its k factors are changed than when
just one is. A global SA is by definition a stress testing practice.

The last point might seem surprising but it is of practical
importance. In case of model failure under OAT analysis, the
modeler immediately knows which is the input factor responsible
of the failure. Further, as one of the reviewer of the present work
pointed out, the OAT approach is consistent with the modeler way
of thinking one parameter at a time as she/he wants to verify
systematically the effect of parameter variation. Taking all these
consideration into account, a possible way to correcting OAT is by
using the Elementary Effect method, which will be presented in
Section 5.3, and is based on a limited number of iterations of the
OAT analysis performed by changing the baseline.

5. Suggested practices

There are several alternative to OAT-SA which are based on
statistical theory. These are now illustrated, having care to use for
each of the OAT studies reviewed a number of model runs close to
that of the original OAT analysis. The first two approaches, linear
regression and factorial design, belong to the theory of statistics for
the analysis of physical experiments or observational data, while
the latter two have been developed specifically for the sensitivity
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Fig. 1. The curseof dimensionality. Ink¼ 3dimensions thevolumeof the sphere internal
to a cube and tangent to its face is rw05. r goes rapidly to zero with increasing k.
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analysis of mathematical models where the data are the output of
a numerical computation.

5.1. A two level design

For the analysis by Bailis et al. (2005), Campbell et al. (2008)
where k¼ 3, a simple Factorial Design - FD - can be suggested
(Box et al., 1978). Let Y be the experiment outcome depending on
three input factors Xi. A saturated two-level FD, where each factor Xi

can take two possible values (levels), denoted as ‘1’ or ‘0’ can be
applied. The design simulates all possible combination of the factor
levels with a computational cost in this case of 23¼ 8 points.

This simple design can be used to estimate factors’main effects
and interactions. As can be seen from Fig. 2, for Y¼ Y(X1, X2, X3) an
eight points, two level design involves all points from Y(0, 0, 0) to
Y(1, 1, 1,). The two faces of the cube in Fig. 2, respectively, defined
by {Y(0, 0, 0), Y(0, 1, 0), Y(0, 1, 1), Y(0, 0, 1)} and {Y(1, 0, 0), Y(1, 1, 0),
Y(1, 1, 1), Y(1, 0, 1)} are used to estimate the main effect of X1:

EffðX1Þ ¼
1
4
ðYð1;0;0ÞþYð1;1;0ÞþYð1;1;1ÞþYð1;0;1ÞÞþ

�1
4
ðYð0;0;0ÞþYð0;1;0ÞþYð0;1;1ÞþYð0;0;1ÞÞ

i.e. the difference between two faces of the cube along the X1
direction. The main effect of X1 is thus defined as the difference
between the average experiment outcome for the ‘1’ level of X1 and
the average outcome for the ‘0’ level of X1. Analogously for the main
effects of X2 and X3. The idea is extended to interactions. Two
factors, say X1 and X3, are said to interact if their effect on the
outcome Y if the effect of X1 is different at the two different levels of
X3. The second order interaction between X1 and X3 is defined as
half the difference between the main effect of X1 for X3¼ ‘1’ and the
main effect of X1 for X3¼ ‘0’:

EffðX1;X3Þ ¼ 1
4
ðYð0;0;0Þ þ Yð0;1;0Þ þ Yð1;0;1Þ þ Yð1;1;1ÞÞþ

� 1
4
ðYð1;0;0Þ þ Yð1;1;0Þ þ Yð0;0;1Þ þ Yð0;1;1ÞÞ

and so on for the other second order terms. The third order term
can be computed in a similar way (Box et al., 1978). In Campbell
et al. (2008) five points were used in three dimensions (one
dimensionwas explored with two steps instead of one). In this way
two single factor effects are obtained as well as two non-inde-
pendent estimates for the third factor. With three more points as
just described one would have obtained four non-independent
estimates for the main effect of each factor plus estimates for the
second and third order effects e this approach is not model-free,
neither does it explore thoroughly the input factors’ space, but at
least it is not bound by an assumption of model linearity.

5.2. Regression

A simple way to carry out a global SA is using regression tech-
niques, such as standardized regression coefficients. The analysis
consists in regressing, usuallywith an ordinary least squares, one (or
more) output variablesYwith respect to e set of input factorsX’s. The
classical formof a regressionmodel is:Y ¼ b0 þ b1X1 þ b2X2 þ.þ
bkXk þ 3 where the b’s are the unknown parameters and 3 is the
statistical error. The outcome can be seen as a a meta-model where
estimated output values are described in terms of linear combina-
tion of the input factors. By means of the model coefficient of
determination RY

2, non-linearity or non-additivity of the model may
be detected. In fact, RY2 gives by definition the proportion of vari-
ability in Y explained by regression on the X’s and is a scale-free
normalized number. It can be shown that RY2 is the square of the
multiple correlation coefficient between Y and the X’s, that is the
square of the maximum correlation between Y and any linear
function of the X’s (Weisberg, 1985). The lower RY

2 the higher the
non-linearity of themodel. The standardized regression coefficientsbbi are defined as the estimates of regression parameters corre-

sponding to standardized Y and X’s. Parameter bbi of factor Xi can be

used as sensitivity measure for Xi, since
Pk

i¼1
bb2
i ¼ bR2

Y when factors
are independent (Draper and Smith, 1981).

The regression method has three main advantages:

(a) it explores the entire interval of definition of each factor;
(b) each ’factor effect’ is averaged over that of the other factors;
(c) standardized regression coefficients give also the sign of the

effect of a input factor on the output.

Authors in Coggan et al. (2005) use 40 points for k¼ 4 (with
some waste given to the non independence of these effects once
taken along the same OAT line). These authors could more usefully
use the same 40 points in aMonte Carlo plus regression framework.
Similar considerations apply to the work of Murphy et al. (2004).

The main pitfall of regression based SA is that, when RY
2 is low

(non-linear and/or non additive model), it is pointless to use the
values of bbi for ranking input factors (Saltelli et al., 2004). Note that
although linear regression is in principle predicated on model
linearity, it in facts takes us further, by giving an estimate of the
degree of non-linearity RY

2, which works at the same time as
a measure of the quality of our bbi-based analysis.

5.3. Elementary effects method

The practice of reverting to the baseline point in order to
compute any new effect is what gives to OAT its appealing
symmetry as well as its poor efficiency. A good OAT would be one
where, after having moved of one step in one direction, say along
X1, one would straightway move of another step along X2 and so on
till all factors up to Xk have been moved of one step each. This type
of trajectory is variously known among practitioners as ‘Elementary
Effects’ (EE), from Saltelli et al. (2008), or ‘Morris’, from Morris
(1991) and Campolongo et al. (2007), or winding stairs, from
Jansen (1999). Both when using EE or winding stairs one does not
stop to a single trajectory, but tries to have as many as possible
compatibly with the cost of running the model. Inwinding stairs all
trajectories are joined, while in EE they are separate. Good albeit
non quantitative results can be obtained for screening purposes
using between four and ten trajectories but already two trajectories
can be quite informative as they give a double estimate for the
effect of each factor, and by difference of these an idea of the
deviation from linearity. This approach would be an ideal

Y(0,0,0)

Y(1,0,0) Y(1,1,0)

Y(0,1,0)

Y(0,0,1) Y(0,1,1)

Y(1,1,1)Y(1,0,1)

Fig. 2. Two-level, full factorial design for three factors.
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alternative to the OAT analysis by Stites et al. (2007), where k¼ 12,
and 2kþ 1¼25 points in the space of input factors were used by
taking two OAT steps along each direction. Note that using the two-
trajectory EE at the cost of 2(kþ 1)¼ 26 points one would obtain
two independent effects, while the two effects taken along the
same line in OAT are not independent. EE trajectories are consid-
ered as a good practice for factors screening in sensitivity analysis
(EPA, 2009; Saltelli et al., 2008).

One may wonder whether there is a way to ‘complete’ the OAT
approach e since this is the one naturally preferred by modelers e
with additional simulation as to make the result more reliable. In
fact this can be achieved by simply iterating the OAT analysis itself.
To understand how this may work one has to see OAT as a partic-
ular case of EE at one trajectory. Although OAT has a radial
symmetry which the trajectory has not, both a one-trajectory EE
and an OAT provide a single estimate for each factor’s effect. As
a result one can imagine a two-OAT’s (instead of a two trajectories)
design whereby, provided that the baseline points are different for
the two OAT’s, one still obtains two independent estimate for the
effect of each factor. This numerical approach can be termed
a ‘radial-EE’ design, and is a legitimate alternative to trajectory-
based EE (Saltelli et al., 2010).

5.4. Variance based methods on design points

When modelers can afford more ‘expensive’ travels across the k-
dimensional parameter space, variance based sensitivity indices can
becomputed. Thedesignneededtocompute these indices isbasedon
Monte Carlo or some form of stratified sampling, such as for instance
the LatinHypercube Sampling (LHS) (Bloweret al.,1991;McKayet al.,
1979). Quasi random numbers may be used as well and Sobol’ LPs
sequences (Sobol’, 1967, 1976) were found to perform better than
both crude random sampling and LHS (Homma and Saltelli, 1996).

A first order sensitivity index (or main effect) is defined as:

Si ¼
VXi

�
EXwi

ðY jXiÞ
�

VðYÞ (1)

where Xi is the i-th factor and Xw i denotes the matrix of all factors
but Xi. The meaning of the inner expectation operator is that the
mean of Y, the scalar output of interest, is taken over all possible
values of Xwi while keeping Xi fixed. The outer variance is taken
over all possible values of Xi. The variance V(Y) in the denominator
is the total (unconditioned) variance. The total sensitivity index is
defined as (Homma and Saltelli, 1996; Saltelli and Tarantola, 2002):

STi ¼
EXwi

�
VXi

ðY jXwiÞ
�

VðYÞ (2)

Both Si, STi have an intuitive interpretation. Referring to the
numerators in Eqs. (1) and (2) above:

� VXi
ðEXwi

ðYjXiÞÞ is the expected reduction in variance that would
be obtained in Xi could be fixed.

� EXwi
ðVXi

ðYjXwiÞÞ is the expected variance that would be left if all
factors but Xi could be fixed.

Si and STi are quite powerful and versatile measures. Si gives the
effect of factor Xi by itself, while STi gives the total effect of a factor,
inclusive of all its interactions with other factors. For additive
models Si¼ STi for all factors. If the objective of the sensitivity
analysis is to fix non-influential factors, then STi is the rightmeasure
to use (Saltelli et al., 2004). A detailed recipe to compute both Si and
STi when the input factors are independent from one another is
given for example in Saltelli (2002) and Saltelli et al. (2010) while

the case of non-independent input is discussed in Saltelli and
Tarantola (2002) and Da Veiga et al. (2009).

6. One at a time versus elementary effects

As discussed in the previous section, variance based Si and STi are
candidate best practices to carry out a sensitivity analysis. Still they
are not a good choice for all thosemodel which are computationally
expensive. In this section we show that even using a handful of
model evaluations, methods better than OAT can be adopted. The
method of the Elementary Effects just described (Section 5.3) is
used to this purpose. The comparison is ‘fair’ as approximately the
same number of points in the input factor space is used for both
OAT and EE.

6.1. Toy functions

Performances of the two methods are firstly compared on the
basis of the empirical cumulative distributions e CDFe of two toy
functions described below. In these terms the comparison is based
on an uncertainty analysis and not a sensitivity analysis, as defined
in Section 1. We rely here on the fact that the UA is the first step of
a SA. If one is wrong about the domain of existence of the target
function, there is little chance that a sensitivity analysis run on this
space may be reliable.

Two test functions commonly used in SA methods intercom-
parison are selected for the analysis (Saltelli et al., 2010; Da Veiga
et al., 2009; Kucherenko et al., 2009):

� G function of Sobol’, (Archer et al., 1997), defined as:

G ¼ GðX1;X2;/;Xk; a1; a2;/; akÞ ¼ Qk
i¼1 gi

gi ¼
j4Xi � 2j þ ai

1þ ai

where ai ˛ <þ ci ¼ 1;.; k, k total number of input factors.

� D function, (Da Veiga et al., 2009):

D ¼ DðX1;X2Þ
¼ 0:2expðX1 � 3Þ þ 2:2jX2j þ 1:3X6

2 � 2X2
2 � 0:5X4

2 � 0:5X4
1

þ 2:5X2
1 þ 0:7X3

1 þ 3

ð8X1 � 2Þ2þð5X2 � 3Þ2þ1

þ sinð5X1Þcos
�
3X2

1

�

The first function is more ductile as one can increase ad libitum
the number of input factors Xi. Indeed its typology is driven by the
dimensionality k as well as by the value of the coefficients ai. Low
values of ai, such as ai¼ 0, imply an important first order effect. If
more than one factor has low ai’s, then high interaction effects will
also be present. Function D has been recently used to compare SA
methods in a two-dimensional setting (Da Veiga et al., 2009).

In the argument against OAT the support of the two functions is
set to [�1, þ1]� [�1, þ1], that is we take two input factors varying
uniformly in the [�1,þ1] interval. Thevectorofparametersa for theG
function is set to (0, 0.01). Fig. 3 shows the two functions in this case.

In order to show that OAT may fail in catching even the
elementary statistics of a multidimensional function, we set up an
experiment to estimate the cumulative distribution function CDF of
theGandD functionsusingOAT (Section2) andEEapproach (Section
5.3). All statistics which constitute the subject of a plain uncertainty
analysis, such as minimum, maximum, mean, median and variance
will of course fail if the percentiles are wrongly estimated.
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The OAT experiment is carried out considering the origin 0 as
baseline point. For each factor four steps are taken symmetrically in
the positive and negative direction of length 0.2 and 0.4. The total
number of function evaluations for the OAT experiment is (1þ4k),
with k¼ 2 number of input factors.

For comparability purposes, the EE experiment is carried out
using a number g of trajectories equal to roundð1þ 4kÞ=ðkþ 1Þ
with ‘round’meaning the nearest integer. In this way the number of
function evaluations of the EE experiment is comparable (if not
exactly equal) to the number of function evaluations of the OAT
experiment, for each input factor number k. For example, for two
input factors the total number of function evaluationwould be nine.

The ‘true’ CDF of the two test functions derives from quasi
Monte-Carlo experiment using Sobol’ sequence of quasi random
numbers (Sobol’, 1993). The number of function evaluations in this
case is set to 1000$k. The CDF from the quasi Monte-Carlo experi-
ment is considered as the reference.

Fig. 4 shows OAT and EE empirical CDFs with respect to the true
one (solid line) of both test functions. It can be seen that OAToutput
estimates tend to ‘stick’ near the baseline in both cases, thus failing
in detecting high values.

The decreasing performance of OAT as k increases can be seen
from Fig. 5 which shows empirical CDFs by OAT and EE for the G
function with a. k¼ 5 and b. k¼ 7 input factors (as noticed already,
for the G function only is possible to increase the number of input
factors). The vector of input parameters is set equal to a¼ (0, 0.1, 0.2,
0.3, 0.4) for k¼ 5 and a¼ (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1) for k¼ 7. From
theseplots it is evident thatOAT isnot capable to ‘move’enough from
the reference pointwhile EE trajectories are relativelymore accurate
on roughly an equal number of points in the input factor space.

As mentioned above, similar results can be obtained by a radial
approach to estimate the effects, e.g. trajectories can be replaced by
iterated OAT’s. Note that the EE method captures interactions,
though it is unable to tell them apart from nonlinearities (Morris,
1991), because EE measures the effects at different points in the
multidimensional space of input factors.

6.2. An environmental case study

As additional case study of relevance to environmental studies
the Bateman equations (Cetnar, 2006) are considered. These
describe a chain of species mutating one into another without
backward reaction, of the type A transforming into B transforming
into C for an arbitrary long chain of species. These could be various
type of biota, chemical compounds, or nuclear radioisotopes.

The Bateman equations describe the concentrations Ni of
a number k of species in linear chain governed by a rate constants li
ði ¼ 1;.; kÞ:

dN1

dt
¼ �l1N1

dNi

dt
¼ li�1Ni�1 � liNi; i ¼ 2;.; k

(3)

If all the concentrations of daughter species at time zero are zero

N1ð0Þs0 Nið0Þ ¼ 0 ci > 1

the concentration of the last kth species at time t is:

NkðtÞ ¼ N1ð0Þ
lk

Xk
i¼1

liaiexpð � litÞ

ai ¼
Qk

j¼1jsi
lj

ðlj�liÞ
(4)

The rate constants li, ði ¼ 1;.; kÞ, are considered as uncertain
input factors with uniform distributions with support [ai, bi]. Both ai
and bi are expressed in s�1. They are randomly sampled in the
interval [1, 100] and reordered when bi< ai. Thus, all the factors
(rates in this case) have comparable orders of magnitude.

The case is particularly interesting in our setting because it
allows us to run various experiments with a different number of
uncertain factors and to show the decreasing level of performance
of OAT with respect to EE as the dimensionality of the problem
increases. To this aim six scenarios are set-up with different
numbers of species: from the simplest (in terms of dimensionality)
two species case to the most complex 12 species case.

The system output Nk(t) is a time dependent function. For our
experiments a fixed time t¼ 0.1 s is set for all the simulations, while
the starting concentration of the first species is set to N1(0)¼ 100
(in arbitrary units). As for the toy function case (Section 6.1), the
comparison between OAT and EE methods is based upon empirical
CDFs. OAT points are taken starting with 0.5 as central point and
taking four additional points for each factor corresponding to the
sequence {0.1;0.3;0.7;0.9}. Values of input factors li are computed
by inverting their cumulative distribution functions. The total
number of function evaluations for the OAT experiment is 1þ4k,
with k number of species.

As for the previous case, the EE experiment is carried out with
a number of trajectories g ¼ roundð1þ 4kÞ=ðkþ 1Þ. This allows for
the OAT and EE experiments to be comparable in terms of number
of function evaluations.

Fig. 3. Plots of the two test functions on the support [�1, þ1]� [�1, þ1]: (a) G function; and (b) D function.
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The ‘true’ CDF of the two test functions derives from quasi
Monte-Carlo experiment using Sobol’ sequence of quasi random
numbers (Sobol’, 1993) with 1000$k function evaluations. The CDF
from the quasi Monte-Carlo experiment is again considered as
reference.

Fig. 6 shows the comparison of the two methods with an
increasing number of uncertain input factors (k goes form 2 to 12
going from the upper-left side to the bottom-right side of Fig. 6).
We tested the twomethods with a minimum of 9 runs (for the two-

a

b

Fig. 4. OAT and EE comparison for the (a) G and (b) D function, k¼ 2.

a

b

Fig. 5. OAT and EE comparison for the G function with (a) five and (b) seven input
factors.
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Fig. 6. OAT and EE comparison for the Bateman equations. From up-left side to down-right side: (a) 2 species series; (b) 4 species series; (c) 6 species series; (d) 8 species series; (e)
10 species series; and (f) 12 species series.
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dimensional case) and a maximum of about 50 runs (for the 12-
dimensional case). At first sight, Fig. 6 suggests that the range of
variation of estimated values by OAT method is always lower than
that by EE. As the number of dimensions increases (from Fig. 6.c
onward) it is easy to note that OAT points are stuck in the neigh-
borhood of a central point and are less capable of following the
shape of the real CDF than the EE points.

7. Conclusions

A novel geometric argument was introduced to demonstrate the
inadequacy of an OAT-SA. A few practices have been illustrated as
possible alternatives. Of these, the full factorial design, the regres-
sion and the EE design could have been applied at the same sample
size adopted by the authors reviewed, that is at no extra cost.

The variance based methods require a larger investment in
computer time which might or might not be affordable depending
on the computational cost of the model. Awealth of approaches has
been omitted in this short note. Among these, an active line of
research focus on emulators, e.g. on trying to estimate the model at
untried points, thus facilitating the computation of the sensitivity
measures, especially variance based. An early example of this
approach is due to Sacks et al. (1989), while recent ones are by
Oakley and O’Hagan (2004), Ratto et al. (2007).

When modelers are constrained by computational costs, a rec-
ommended practice is to perform a screening step by means of EE
trajectories, followed by application of more computationally
intensivemethods to a smaller set of input factors, as exemplified in
Mokhtari et al. (2006).

One aspect worth noticing in sensitivity analysis is that similar
recommendations and recipes can be found in Economics
(Kennedy, 2007; Leamer, 1990) as well as in Ecology (EPA, 2009;
Pilkey and Pilkey-Jarvis, 2007). The importance of SA in impact
assessment (EC, 2009; OMB, 2006) would suggest that more
attention needs to be paid to the theory of sensitivity analysis to
increase the transparency of e and trust in e model-based infer-
ence. According to Zidek (2006) “[Statisticians] should be able to
take their legitimate place at the head table of science and to offer
clear and intelligent criticism as well as comment.” A anonymous
reviewer of Science, in reply to our critique of the papers just
reviewed, noted: “Although [the above] analysis is interesting [.]
it [is] more appropriate for a more specialized journal.” Although
this is likely a standard reply form, the discussion presented in the
present paper is plain, rather than specialized, and we consider
hence urgent that some concern for a well designed sensitivity
analysis seeps all the way to the less-specialized journals.
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