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1. INTRODUCTION 

A number of methods are available to assess uncertainty importance in the predictions of a 

simulation model for orthogonal sets of uncertain input factors. However, in many practical 

cases input factors are correlated. Even for these cases it is still possible to compute the 

correlation ratio and the partial (or incremental) importance measure, two popular sensitivity 

measures proposed in the recent literature on the subject. Unfortunately, the existing 

indicators of importance have limitations in terms of their use in sensitivity analysis of model 

output. Correlation ratios are indeed effective for priority setting (i.e., to find out what input 

factor needs better determination) but not, for instance, for the identification of the subset of 

the most important input factors, or for model simplification. In such cases other types of 

indicators are required that can cope with the simultaneous occurrence of correlation and 

interaction (a property of the model) among the input factors. 

In [1] the limitations of current measures of importance were discussed and a general 

approach was identified to quantify uncertainty importance for correlated inputs in terms of 

different betting contexts. This work was later submitted to the Journal of the American 

Statistical Association. However, the computational cost of such approach is still high, as it 

happens when dealing with correlated input factors. In this paper we explore how suitable 

designs could reduce the numerical load of the analysis. 

2. THE METHOD 

A thorough description of sensitivity analysis methods, including linear regression, 

correlation analysis, importance measures, variance-based and screening methods, can be 

found in [2]. In the present paper, variance-based importance measures are considered. This 

approach is a quantitative and model independent and is based on estimating the fractional 

contribution of each input factor Xi to the variance of the model output, also accounting for 

interaction terms. In variance-based methods the output variance V(Y) can be decomposed in 

the sum of a top marginal variance and a bottom marginal variance [3]. Specifically,  

  )]([)]([ UYVEUYEVYV       (1) 

where U is a group of one or more factors Xi. The top marginal variance from U is the expected 

reduction of the variance of Y in case U becomes fully known (it is fixed at some nominal value), 

whereas the other inputs remain variable as before. The bottom marginal variance from U is the 

expected value of the variance of Y that would remain in case all inputs but U  become fully 

known, U remaining as variable as before. The main effect, or first order sensitivity index Si, 
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representing the sensitivity of Y to the factor Xi, is defined as the top marginal variance for Xi 

divided by the total variance, where the subset U reduces to the single factor Xi: 

)(/)]([ YVXYEVS ii        (2) 

Many estimation procedures for Si are available in the case of independent inputs: the 

Fourier Amplitude Sensitivity Test, FAST [4], the method of Sobol’ [5], and others [6]. In the 

case of dependent inputs, the Si can be evaluated, though the procedure can be very 

demanding in terms of size of the input sample (and hence of number of model runs). The 

estimation of Si is done by a sequence of integrals and, given that the factors are correlated, 

specific sampling strategies are employed to generate the correlated samples. 

2.1. Estimator 

Let (xi, i=1,…n) be a random sample of size n from the input factor distribution fx and let 

(yik, k=1, …, r) be a sample of size r from fy|xi for i=1,…n. The sample means are: 
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The main effect sensitivity indices are computed by [7] and are called correlation-ratios: 
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McKay has showed that this kind of sample design introduces a bias for independent inputs 

(which is discussed briefly below: for details see [7]). McKay does not suggest strategies for 

correlated input. In this paper we study, through a number of numerical simulations, the 

statistical properties of the estimator Si=SSB/SST when correlation among factors is present. 

2.2. Sampling strategy 

The replicated Latin Hypercube Sampling method has been employed in the study (r-LHS: 

see [8]). In [9], McKay employs a single r-LHS sample in the computation of all the 

correlation ratios Si for a set of independent factors. Here we consider correlated input and 

investigate the possibility to obtain estimates of Si using one single r-LHS sample.  

Pure Monte Carlo (MC) sampling has also been considered in the study as a basis for 

comparison. A random sample is obtained by fixing n randomly sampled values of the factor 

of interest (and using them in all the replicates) and by sampling randomly the r replications 

for the remaining (k-1) factors. To match with a standard typical procedure, a separate MC 

sample is used for each Si. The total number of runs is (r x k) for the r-LHS design, while the 

computational cost must be multiplied by the number of factors in the case of pure random 

design. In the case of independent input, McKay evaluated the bias of the estimator, which 

can be written for the limit of high n as 

)1(/1
)(

)(
lim 22  
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     (3) 

where 2 is the true value of the correlation ratio. There do not seem to be objections in 

extending this evaluation also to the case of dependent inputs. 
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2.3. Correlation method 

Two methods for inducing correlation in the sample have been considered for the r-LHS: 

the Iman & Conover rank correlation method [10] and the Stein method [11]. In the case of 

the pure random sampling strategy, the Cholesky factorisation has been used to correlate the 

multivariate normal sample. This because, in the test cases, multivariate normal distributions 

have been considered, in order to obtain analytical solutions for the importance indicators. 

3. ANALYTICAL TEST CASES 

A few simple test cases have been considered. The factors are assumed to belong to a 

multi-normal distribution, with zero mean and unit variance. The analyses were repeated 

several times, to evaluate the properties of the estimator. 

3.1. A two-factor model 

In a first test, a two-factor model has been considered. The model is: 

21 xxy          (4) 

The importance indicators depend on the correlation between the two factors, specifically: 
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Numerical experiments have been performed with =0.8, and they have been repeated for 

a total of 100 times as to evaluate the distribution of the estimates of Si. In Figure 1, such 

distribution is shown, in the form of box plots, when pure MC random sampling or rLHS with 

Stein method for correlation are employed. Only X1 is shown due to the symmetry of the 

problem. As expected from equation (3), for a sufficiently large sample size n, by increasing 

the number of replicates r, the bias of the estimate tends to vanish. In the case of r-LHS, the 

estimates of both S1 and S2 have been carefully analysed to verify the occurrence of additional 

bias, due to the fact that one single sample is used. In particular, it has been noticed that: 
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Figure 1. Comparison of importance indicators computed applying pure random 

sampling and rLHS with Stein method for correlation. 
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1) With plain MC and correlation among factors induced by the Cholesky method, the 

sensitivity indices have a wider distribution and their mean tends to be less biased, while for 

r-LHS, the distribution is narrower but with a larger bias in the mean. 

2) The two estimates of S1 and S2 obtained with r-LHS and the method of Stein for 

correlation are consistent among themselves, i.e. the distributions of the two sensitivity 

indices are similar to each other and no spurious differentiation between the estimates is 

induced by the use of the same sample. 

3) By applying the Iman and Conover correlation method, however, the mean of the 

sensitivity index for X2 is systematically slightly larger than that for X1. This does not happen 

with Stein, which can be considered therefore the more consistent correlation method. 

4) Using the same sample (i.e. rLHS) the correlation between the estimates of the 

sensitivity indices can be high: in some cases we computed correlation coefficients of about 

0.7. 

3.2. Three-factor model 

Here, the reference model was: 

321 xxxy        (5) 

This model was a quite strong test to analyse the concomitance of interaction and 

correlation. First, the following simplified covariance structure was considered, 

12=13=23=. The analyses were repeated 50 times, to evaluate the properties of the 

estimator. A completely analogous behaviour as in the two-factor model was observed. It was 

confirmed that the Stein method is more consistent. The main difference between pure 

random design and r-LHS is that with r-LHS the distribution is much narrower. On the other 

hand, the mean converges more precisely with the random sampling. The augmented order of 

the interaction structure in the model makes convergence more difficult, implying a larger 

bias of the estimator at fixed n with respect to the two-factor model. 

The properties of the estimator changed by changing the structure of the model and/or the 

covariance structure: (i) by decreasing the correlation, the bias for the r-LHS design tends to 

vanish more quickly; (ii) by considering an additive model (i.e. no interaction), 

321 xxxy  , complete convergence is attained already with n=50, r=20 for all types of 

sample design. 

4. CONCLUSIONS 

The simultaneous occurrence of interaction in the model and of correlation between factors 

makes the convergence of the estimates to the correct solution more difficult. Advantages of 

the r-LHS are: the possibility of computing all the sensitivity indices with the same sample, 

and the fact that the distribution of the estimator is narrower. In spite of this, a residual bias in 

the mean is more persistent than when pure random sampling is employed: however, such 

bias tends to vanish for large values of r. Various other tests have been performed by 

changing the covariance and the model structures: they all confirmed the behaviour of the 

estimator described above. 
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The main concern in global sensitivity analysis of model output is to be able to quantify, in 

an efficient way, the importance of the uncertain input variables in the simultaneous 

occurrence of generic correlation patterns (a property of the set of input variables) and 

complex computational models (where the relationships between the output variable and the 

input variables can be non-additive and non-monotonic).  

A general methodology would be appreciated that is capable of estimating the indicators of 

importance not only for each input variable alone, but also for pairs of input variables, and for 

any subset of input variables, thus enabling us to answer the different problem settings (e.g., 

priority setting, identification of subsets of important variables, model simplification, etc.).  

In this paper a promising technique is presented, which builds on the multi-dimensional 

Fourier spectrum of the model output, computed using a set of sample points in the space of 

the input variables. The Fourier spectrum is obtained using a type of periodogram developed 

by Lomb (1976) and Scargle (1982), quite powerful to find weak periodic signals in otherwise 

random, unevenly sampled 1-dimensional data. The Lomb-Scargle approach is extended to a 

multi-dimensional space to estimate the variance of the model output and the sensitivity 

indices of any order (and for any group of variables). All these indices can be estimated with a 

unique (reasonably large) set of sample points. Numerical tests are being performed on 

different test models. The technique is being tested with crude Monte Carlo and LP-τ 

sampling design. 

1. BACKGROUND 

In a review paper, Cukier, Levine and Shuler (1978) give an interpretation of the Fourier 

spectral components as sensitivity coefficients.  

Assume that the computational model under analysis is a function ),...,,( 21 kxxxfy   with 

k input variables },...,,{ 21 kxxxx and a single output variable y.  

Assume that the input variables are defined over the k-dimensional unit hyper-cube, i.e. 
kIx , where I is the unit interval [0,1], and that  xx df

kI
)( . 

Under these assumptions, a representation formula for )(xf  exists  (called Fourier 

integral), which is obtained as the extension, for T , of the Fourier series expansion of a 

periodic function with period T. 

mailto:stefano.tarantola@jrc.it
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The ),...,,( 21 krrrc  are the Fourier coefficients that are defined, over a k-dimensional 

frequency domain k, as 

  k

I

k dxdxdxifrrrc
k

...exp)(),...,,( 2121   rxx .     (2) 

The function )(rc  is continuous over k and 0)(lim 


r
r

c . 

2. VARIANCE DECOMPOSITION 

Moreover, if )()( 2 kILf x , ie if  xx df
kI

2

)(  (in this case )(xf  is a square-

integrable function), the function and its Fourier coefficients are related by 

 


kk
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22

)()(         (3) 

which is called Parseval equality. The function )(rc  is even over each of its variables, 

because the function )(xf  is real-valued. Due to this symmetry property, the integrals 

computed over k can be restricted to +k (ie the subspace of k where all the frequencies are 

positive). The total variance V of the model output y can easily be obtained from (3) 

 


k kk drdrdrrrrcV ...),...,,(2 21
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21        (4) 

It is easy to prove (see Cukier, Levine and Shuler, 1978) that if we rearrange the integral in 

(4) into groups of terms where successively larger subgroups of the variables ),...,,( 21 krrr  are 

nonzero we get the quantities 
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so that each term in the decomposition 

  




 









k

i

i

j

k

i

i

j

j

l

ljiji

k

i

i VVVV
2

1

1 3

1

2

1

11

         (8) 

can be calculated. In summary, once a sample over the space domain has been generated, 

and the Fourier coefficients have been computed, it is straightforward to calculate all the 

partial variances at any order as well as the total variance V. The complete set of sensitivity 

indices is then obtained by simple normalisation 

VVS ii /   (main effect indices) 
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VVS ijij /  (two-way interaction terms), etc. 

This procedure is advantageous with respect to the standard evaluation in the space domain 

whereby each sensitivity index is obtained by  

1) integrating )(xf  over all but the variables of interest (which are conditioned to some 

value) and  

2) calculating the variance of the resulting function. 

For instance, 12V  would be obtained as   21,|)( xxfEV x . To compute each partial 

variance in the decomposition (8) a different sample has indeed to be generated. 

3. CALCULATION OF THE FOURIER COEFFICIENTS 

The simplest way to calculate Fourier coefficients would be to take a grid of uniformly 

distributed sample points in the space domain, evaluate )(xf  over each of these, and use the 

multi-dimensional Fast Fourier Transform to obtain the ),...,,( 21 krrrc  over +k. 

However, this is not practicable for large values of k, as a set of evenly spaced points over 

all the k dimensions would consist of a total of mk points (m is the number of points along 

each dimension), and as many model evaluations. 

Therefore, we have to create a sample of unevenly spaced points over the space domain, 

(eg a set of 1,024 LP- points can be generated whatever the dimension k of the space of the 

input variables is) and compute the Fourier coefficients using such sample. 

We take advantage from extensive research made in observational sciences (typically 

astrophysics), whereby the observer cannot control the time of the observations, but must 

simply accept a certain dictated set of time points. This concept is a 1-dimensional problem 

that we have to extend to k dimensions for the purpose of sensitivity analysis. 

There are some ways to get from unevenly spaced points to evenly spaced ones, such as 

interpolation. However, multi-dimensional interpolation is a very delicate and costly task 

(usually also of poor performance) that we prefer to avoid.  

A very elegant method of spectral analysis for unevenly sampled data was developed by 

Lomb (1976), based in part on earlier work by Barning (1963) and Vanicek (1971), and 

elaborated by Scargle (1982). The Lomb method evaluates the spectral power of )(tfy  , a 

function of time, using the times it  that are actually measured. Assume that there are N data 

points available: Nitfy ii ,...,1),(  . The Lomb spectral power, as a function of the angular 

frequency 0 , is defined by 
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where y  is the mean of the data, and   is a constant (offset) defined by 
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that makes the spectral power independent of shifting all the it  by any constant. Equations 

(9) and (10) are a summary of what one would obtain if one estimated the harmonic content 

of a data set, at a given frequency  , by linear least-squares fitting to the 

model tBtAtf  sincos)(  . The method can give results superior to Fast Fourier 

Transform methods, because it weights data on a 'per point' basis instead of on a 'per time 

interval' basis, when uneven sampling can render the latter seriously in error. The Lomb 

method has been tested against the classic method, in the special situation of evenly spaced 

data. In such case the two resulting spectral powers coincide.  

In Astrophysics, the Lomb spectral power is used to determine the presence of periodic 

signals out of background noise. In other words the interest is to determine how significant is 

a peak in the spectrum. Our interest is different: we need to estimate the total and partial 

variances. Therefore we have to grasp all 

the relevant information out of the spectral 

power. Note that, in the case of unevenly 

spaced points, the spectral power can be 

computed using any given frequency 

sampling step, and up to any desired 

frequency value. Therefore the relevant 

information can be redundantly present at 

different frequencies. 

Numerical tests (Figure 1) have shown 

that adding the Lomb spectral power 

coefficients from low frequencies up to 

larger and larger frequencies (using 

equation (4)) provide unbiased estimates 

of the total output variance. Tests for 

unevenly spaced points on partial 

variances (equations (5), (6),…) are in 

progress. 
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1. INTRODUCTION 

This investigation was inspired by the talk of Prof. H.Rabitz at the Second International 

Symposium on Sensitivity Analysis of Model Output (SAMO'98) in Venice [2]. First, there 

was a reasonable assumption that quite often in high dimensional models small subsets of 

input variables have the main impact upon the output. And second, a new family of model 

representations for approximating such models was introduced. The family included an 

arbitrary reference point. 

In  this work, a criterion is set up for testing whether the assumption is true; a class of 

models is described that can be approximated with arbitrary reference points; and another 

class of models is investigated where a careless choice of the reference point can spoil the 

approximation. 

The present paper contains formulations of main results. 

Let I  denote the unit interval [0,1], nI  the n -dimensional unit hypercube and nIx . 

The integrals below are as a rule from 0 to 1 for each variable and n1 dx...dxdx  . 

The model function )x(f is supposed to be square integrable in nI . We shall study its 

representation in the form 

)...(...)(
1

1

1

1 ...

0 ss

s

iii

n

s

n

ii

i xxffxf  
 

      (1) 

where the interior sum is over all sets of s integers s1 i,...,i , that satisfy ni...i1 s1  .  

Relation (1) means that 

 



i ji

nnjiijii xxxfxxfxffxf )...,(...),()()( 21.120  

and is often called high dimensional model represetation (HDMR). The total number of 

summands in (1) is n2 . 

2. ANOVA HDMR. 

Representation (1) is called ANOVA HDMR if the following requirements are satisfied: 

mailto:hq@imamod.ru


Session 1 Variance Based Methods   14 

 
1

0
ki...i 0dxf

s1
   for   s1 i,...,ik  . 

These requirements uniquely define all the  
s1 i...1

f in (1), in particular,  dxxff )(0 ; and 

all the members in (1) are orthogonal. The term ANOVA comes from Analysis Of Variances 

[1]. In my early writings [6, 7] representation (1) was called decomposition into summands of 

different dimensions. Clearly, the dimension of 
s1 i...1

f  is the number of variables s . 

3. MODEL  APPROXIMATIONS. 

Consider the constant    2
0

2 fdx)x(fD  that for obvious reasons is called total variance. 

If the model function )x(f  is approximated by another square integrable function )x(f
~

, 

the approximation error will be measured by the scaled 2L  distance 

   dxxfxfff
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,(      (2) 

The scaling allows to distinguish between good and bad approximations. Indeed, if the 

crudest approximations const)x(f
~

  are used, the best choice 0)(
~

fxf   implies 1 . 

Hence, good approximations are the ones with 1 . Error estimate (2) proved efficient in 

problems [8, 9], where the number of variables in )x(f
~

 is less than n .  

Prof. Rabitz's assumption suggests approximations 
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with  nL  . Here the number of variables is again n , but all the summands  in (3) are s -

dimensional with  Ls  . 

Theorem 1. If the model function (1) is approximated by (3) then the approximation error 

(2) is 
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where  
s1 i...i

S  are global sensitivity indices for )x(f  [4, 5, 8]. 

Formula (4) shows that the validity of Prof. Rabitz's assumption can be verified by 

estimating the low order sensitivity indices.  

4. FINITE DIFFERENCE HDMR. 

Let ),y,...,y(y n1  )h,...,h(h n1  and both  y  and  nIhy  .According to [7], the 

increment  )y(f)hy(f   can be decomposed into finite differences.  Inserting  yxh  we 

obtain a relation that includes y  as a parameter: 
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where )y(f)y,...,hy,...,y(f)y(f nii1hi
  is the ordinary finite difference operator. 

We shall call (5) a finite difference HDMR. It is identical with the cut-HDMR in [3].  

In principle, the summands in (5) can be computed much easier than the summands in (1) 

because there are no integrations in (5).  However, in practice this statement is true for small 

s  only: at higher s  the number of model estimations s2  is large and a  loss of accuracy may 

spoil the results. 

Instead of (3) the following approximations were suggested in [3]: 
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The authors of [3] stress that identity (5) i s true for all  nIy and believe that the choice 

of y  is not important. However, approximation (6) does depend on y  and an unlucky choice 

of y  (called reference point) can produce an unacceptable approximation error. 

First, here are conditions providing for a good situation. 

Theorem 2. Assume that all mixed partial derivatives of )x(f that include not more than 

one differentiation with respect to each variable are  continuous, and denote 
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It follows from Theorem 2 that approximation (6) will be good if A  is sufficiently small, 

and the choice of y does not matter. 

Second, here is a numerical example showing the bad situation. 

Example. Consider a model function 


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ipxpxf . 

For this function  1)1( 3  D , where  22 )1(8.0  pp . 

Approximation (6) with  2L  can be written easily: 
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It can be verified that the reference point  ,3/1(y  3/1 , 3/1 ),  provides for the 

best approximation with D/3min   , while the point  )1,1,1(y yields the worst 

approximation minmax 216  . If  p is large, 8.0 , 11.0min    But 23max  which is 

clearly unacceptable. 
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1. ABSTRACT 

FAST (Fourier Amplitude Sensitivity Test) is a sensitivity technique developed in the early 

70’s to estimate the fraction of the variance of an output model variable due to each input 

uncertain parameter. In its early versions only the contribution of main effects to the total 

variance could be computed. This technique is based in two key underlying ideas. The first 

key idea is to apply the ergodic theorem as demonstrated by Weyl, that allows the 

computation of an integral in an n-dimensional space through a mono-dimensional integral, in 

such a way that the integral 

 

   Y n Y x f x dx dxn   .. .. ...1                                           (1) 

 

may be assumed to be equal to the integral 

 

  Y lim
T

Y X S dST

T

T

 




1

2
       .                                     (2) 

 

The second key idea is to scan the multidimensional input parameter space through a 

search curve obtained varying simultaneously all the input parameters according to some 

specific frequencies (variable S in integral (2) is a real variable defined on that search curve). 

Recent research activities have extended the use of FAST to estimate global sensitivity 

indices. In this case not only first order effects contribution of each parameter to the output 

variable variance are computed, but also the contribution of all its interactions of any order. 

Anyway, though useful, the new technique does not provide a full error analysis that could 

provide the user a measure of the error in his estimates of the contribution of each parameter 

to the total variance. In this work we use bootstrap techniques conditioned by the Nyquist 

criterion on the sample in order to provide error estimates. Additionally, we study the problem 

of the incrementalism of this technique. In this case the possibility of merging several FAST 

samples to provide common estimates is studied. 
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1. INTRODUCTION 

The paper arises from a consulting project in which failures (gas escapes) are considered in 

the steel pipelines of an urban gas distribution network. The available data are the 33 failure 

times from 1978 to 1997 over a network of 275 kilometres. More details on the data can be 

found in [1]. Steel pipelines are subject to ageing and the global system reliability is barely 

affected by one failure. Thus, we consider the network as a repairable system, since it keeps 

the same reliability when minimal repairs immediately follow failures. Failures of such 

systems are often described by non-homogeneous Poisson processes (NHPP), which take in 

account the degradation of the components; see, e.g., [2]. 

In the paper we model the failures pattern with a NHPP with logarithmic intensity and 

present different sensitivity analyses when relaxing the assumption on the parametric model. 

We operate in a robust Bayesian framework; see [3] for a thoroughly illustration of the 

approach. In the paper we do not focus on the commonly addressed issue of sensitivity to the 

prior, but we are interested in model sensitivity and consider two ways to build classes of 

models around the NHPP. In the first approach, we consider the NHPP as an element of a 

class of processes, defined through differential equations whose solutions are mean value 

functions of NHPPs. In the second, nonparametric approach, we consider processes whose 

mean value functions are distribution functions of random measures. In both cases, we 

compare the models with the baseline, logarithmic NHPP. 

In Section 2 we analyse the logarithmic NHPP and the class of parametric models, whereas 

comparison between parametric and nonparametric models is performed in Section 3. Some 

concluding remarks are presented in Section 4. 

2. PARAMETRIC MODEL 

We consider the NHPP Nt with intensity (t)=a log (1+bt)+c, =(a, b, c)R+
3.  Its 

choice is well justified since the engineers in the project are confident the intensity function is 

increasing and concave. The mean value function (m.v.f.) of Nt, E Nt=(t), is given by  

(t)=0
t(s)ds = [a (1+bt)log(1+bt)] / b+(c-a)t. 

Suppose NT failures,  y=(y1, ..., yNT 
), are observed in [0, T], then the likelihood is given by 

).)1log(()1(),|(
1

)(/)1( cbyaebTNyL
TN

j

j
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Following a Bayesian approach, we choose independent Gamma priors on the parameters 

because of their mathematical tractability and flexibility. Namely, the Gamma priors are  

G(µa,a) ,  G(µb,b)  and  G(µc,c)  for  a, b  and  c , respectively. Combining the prior with 

the likelihood, we have that the posterior distribution  (| y, NT)is proportional to 

Choice of hyperparameters, parameters estimation, HPD intervals, predictive distributions, 

estimation of reliability (i.e. probability of no failures in a subset) and m.v.f., Kolmogorov-

Smirnov (K-S) test to check if the data are coming from the estimated logarithmic NHPP are 

illustrated in [4] and [5]. Prior sensitivity analyses are well justified in this context since the 

choice of hyperparameters was only remotely related to the experts' opinions, which were 

collected and used for different purposes, as shown in [1]. Here we report that, according to 

the K-S test, there is not enough evidence to reject the model but visual inspection of the 

optimal m.v.f. is quite unsatisfactory. Therefore, we consider a recently proposed ([6]) class 

of other NHPPs containing the logarithmic one.   

In [6] it is observed that the m.v.f. and the intensity function of many commonly    used 

NHPPs are functionally related. Using the well-known fact that the latter is the derivative of 

the former, the m.v.f.’s of those NHPPs can be seen as the solutions of a differential equation. 

Therefore, we define a class of NHPPs whose m.v.f.’s satisfy M(0)=0 and are the solutions of  

The (general) solutions are given by  

Very different NHPPs can be found and we are currently investigating the meaning of the 

parameters and their role in determining features of the processes. In particular, we are 

interested in considering neighbourhoods of models, defined by intervals on the parameters, 

and finding the model leading to the smallest Bayes factor. In a preliminary study, we 

consider what happens when taking a couple of processes from the class, namely the 

Homogeneous Poisson Process (HPP) with intensity function (t)=  and the Power Law 

Process (PLP) with (t)=t -1. The Bayes factor shows the HPP is slightly better than the 

logarithmic NHPP, whereas both are better than the PLP (see [5]). We observe that the 

estimators of the intensity function under both the HPP and the logarithmic NHPP are very 

close in the considered interval. Thus, there is the need for a different model, which is not too 

far from the trusted, logarithmic NHPP. 

3. NONPARAMETRIC MODEL 

We now embed the parametric logarithmic NHPP in a class of models given by a weighted 

Gamma process, stemming from results in [7]. We compare the parametric NHPP with the 

nonparametric models through the Bayes factor, like other authors did in different contexts. 

The novel comparison for weighted Gamma processes is thoroughly presented in [4] and [5], 

where we apply results from the theory of random measures: more details on them can be 

found in [8]. 
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Given a measure  and a measurable subset B, we define B:=(B). 

Definition 1.  Let  be a finite, -additive measure on (S, S). The random measure  

follows a Standard Gamma distribution with shape  (denoted by  ~ GG(, 1)) if, for any 

family {Sj, j=1, ..., k}  of disjoint, measurable subsets of S, the random variables Sj are 

independent and such that Sj  ~ G(Sj , 1), for j = 1, ..., k. 

Definition 2. Let  be an -integrable function and  ~ GG(, 1). The random measure  

=   follows a Generalised Gamma distribution, with shape  and scale  (denoted by  

~ GG(,  )). 

The Generalised Gamma distributions are conjugate for the Poisson processes as shown by 

the next result (see [7] for more details).  

Theorem 1. Let  = (1, ... n) be n Poisson processes with intensity measure M. If M 

~GG(,  ) a priori, then M ~ GG( + i=1,ni,,  / (1+ )) a  posteriori. 

Under a squared loss function, Bayesian estimators of the intensity measure and the 

reliability are found in [7] and [5], respectively.  Here we focus on the nonparametric model 

as a neighbourhood of the logarithmic NHPP and we search in a class of parameters of the 

nonparametric model for the best ones.  We start with the logarithmic NHPP with m.v.f.  

and embed it in a nonparametric model with intensity measure M whose expected value 

coincides with . We consider the same prior  for both models and compare the two 

alternatives via Bayes factor. Interest in comparisons between parametric (HP) and 

nonparametric (HN) alternatives is rapidly growing; see, e.g., [9], [10] and [11]. Weighted 

Gamma processes have been considered in [4] and [5] and we refer to them for further details. 

We consider the case in which the interval [0, T] is split into n disjoint intervals Ij = (tj-1, 

tj], j=1, ...,n and we record the failures in each of them. The sample will be k = (k1,..., kn) 

from the random vector N = (NI1,...,NIn). Since each  NIj  has a Poisson distribution, then the 

likelihood is given by 

We consider the following hierarchical structure to centre the model around the NHPP: k 

|M,  ~ f(k | M), M |   ~ GG(/, ) and  ~ , where  f  is the above likelihood and is 

the same prior used for the NHPP. As  varies, we get a class of nonparametric processes. 

Looking at the Bayesian estimator of the m.v.f. in [5], the role of  is evident: the weight of 

the prior decreases with respect to the observed processes when  increases and vice versa. 

The Bayes factor becomes (see [5]) 

The Bayes factor of HP vs. HN is a concave function of , which is smaller than 1 for  < 

1.7 and smaller than 1/3 (mild evidence in favour of HN)  for 0.2 <  <1.1, with a minimum 

at 0.509. The best value of  that is the one leading to the smallest Bayes factor, has been 
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considered in [5], where the nonparametric Bayesian estimators of intensity function and 

reliability have been compared with the optimal ones under the logarithmic NHPP. The new 

model definitely improves upon the previous ones. Wider classes, with general (x), are 

currently under investigation. 

4. CONCLUSIONS 

We have illustrated some of the sensitivity issues we have addressed in analysing gas 

escapes in the steel pipelines: more details and plots will be presented in the talk. Our main 

interest has been devoted to model sensitivity and we have illustrated two approaches based 

on recent results. In the paper we have discussed current directions of research, as well. In the 

last few years we have been working a lot with gas failures data. We have found that 

modelling these data is a difficult but stimulating task: we have been pursuing different 

strategies and sensitivity analysis has always played a relevant role in it; see [12] as an 

example. 
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ABSTRACT 

In this paper, we investigate the possibility of embedding neural networks, appropriately 

trained on the results of a Monte Carlo plant reliability evaluation, within a classical 

decomposition scheme for efficiently performing multiparametric sensitivity analyses of a 

reliability model. These analyses are of great importance for the identification of critical 

systems, structures and components of hazardous plants, such as nuclear or chemical  ones, 

thus providing significant insights for their risk-based design and management.  

1. INTRODUCTION 

Sensitivity analysis provides an important tool to the risk-based design and management of 

risky plants such as the nuclear and chemical ones, aiding the identification of the critical 

systems, structures and components. Several approaches have been developed for performing 

sensitivity studies, ranging from differential to Monte Carlo analysis, response surface 

methodology, and Fourier amplitude sensitivity test (FAST) [1]. Typically, these approaches 

entail to compute the model output (a reliability or risk measure in our case of interest) 

several times for different input values (system, structures or components reliability 

characteristics in our case of interest) sampled from appropriate ranges. Often, the 

computation times required by the numerical solution of the model render these analyses 

prohibitive, so that one has to resort to simplified but fast models or empirical response 

surfaces. 

The objective of this work is to devise a method for performing a multiparametric 

uncertainty and sensitivity analysis of the reliability model of a properly selected system. The 

technique used is based on the variance decomposition method [2]. It consists in considering 

several evaluations of the system unreliability characteristics in correspondence of different 

values of the uncertain parameters (e.g. components failure rates) and computing a variance-

based index of importance that measures how much a set of these parameters influences the 

uncertainty in the system unreliability. When the model of the plant is realistically 

complicated, its analytical evaluation is at least impractical and one has to resort to Monte 

Carlo simulation which, however, could be computationally burdensome [3]. Therefore, since 

the variance decomposition method requires a large number of system evaluations, each one 

to be performed by Monte Carlo, the need arises for substituting the Monte Carlo simulation 

model with a fast, approximated, algorithm. In our work, we employ an empirical model built 
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by training artificial neural networks on the results of Monte Carlo simulations. The type of 

neural network here employed is the classical multi-layered, feed-forward one trained by the 

error back-propagation method [4]. The networks used have been generated with a user-

friendly software NEST (NEural Simulation Tool) developed at the Department of nuclear 

engineering of the Polytechnic of Milan (www.cesnef.polimi.it/nest.htm). The training 

patterns for the ANNs have been generated using a user-friendly Monte Carlo simulation 

code, MARA (Montecarlo Availability Reliability Analysis), also developed at the 

Department of nuclear engineering of the Polytechnic of Milan 

(www.cesnef.polimi.it/mara.htm).  

2. THE PLANT MODEL 

The plant logic is given in Figure 1. There are 3 macro-components (called “block”)  made 

of a redundancy configuration of components with different failure and repair characteristics.  

 

 

 

 

 

 

 
 

Figure 1: Plant layout 

 

We consider the following assumptions: i) components B2, C2, C3 are in cold stand-by; ii) 

the components age linearly: failure rate taii  0 , where 0

i  is the nominal value and a 

is set to 10-4; iii) imperfect repairs are possible according to the Brown-Proschan model with a 

probability p=0.1. Such imperfect repairs have a deteriorating effect in that they determine an 

increase by a factor of 1+ of the failure rate of the repairing component and a corresponding 

reduction of the repair rate of the same factor, where  =0.1; iv) the components are subject to 

maintenance at variable periods  as determined from the model in [5]. The devised model is 

complicated enough so as to entail a Monte Carlo simulation evaluation. Embedding such 

simulation procedure within a variance decomposition scheme of multiparametric sensitivity 

analysis can lead to impractically large computing times. 

3. THE ARTIFICIAL NEURAL NETWORK  

Here we focus our attention on the importance of the components’ failure rates which are 

assumed to vary within the ranges specified in Table 1, whereas the repair rates are kept 

constant at their nominal values. The plant model output we refer to in the analysis is the 

unreliability at mission time, Tm=30 years. The training set is composed of 500 different 

input(failure rates)/output(unreliability at Tm) patterns created by the MARA code, with 

failure rates values sampled from uniform distributions over the ranges of  Table 1. Note that 

the components of blocks A and B have been purposely chosen to have nominally the same 

failure rates so as to allow us to highlight the effects of different logic configurations. 

A1 

A2 

C2 

C3 

B1 

B2 

C1 
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Table 1: range of variability of failure and repair rates. 

 

Comp. 

 

Nominal 

State 

Failure rate 

i[y-1] 

Repair 

rate 

i[y-1] 

  Nominal  Lower  Upper  Mean  Nominal 

A1 Working 6.00E-03 1.90E-03 1.90E-02 1.04E-02 1.70E-01 

A2 Working 6.00E-03 1.90E-03 1.90E-02 1.04E-02 1.00E-01 

B1 Working 6.00E-03 1.90E-03 1.90E-02 1.04E-02 3.00E-01 

B2 Stand-by 1.50E-02 4.75E-03 4.74E-02 2.61E-02 1.00E-01 

C1 Working 8.10E-03 2.56E-03 2.56E-02 1.41E-02 5.00E-01 

C2 Stand-by 2.50E-02 7.91E-03 7.90E-02 4.35E-02 3.00E-01 

C3 Stand-by 5.00E-02 1.58E-02 1.58E-01 8.69E-02 5.00E-01 
 

The optimal network architecture contains 7 input nodes receiving the 7 failure rates 

values, 7 hidden nodes performing intermediate processing and the single output node 

providing an ANN estimate of the plant unreliability at mission time. 

Figure 2 shows the comparison of the estimates of the plant unreliability at mission time by 

the MARA code with 106 trials (ordinates) and the predictions of the ANN (abscissas) for 

different values of the 7 input failure rates of the components sampled within their respective 

ranges. The top picture regards the predictions on the 500 examples of the training set 

whereas the bottom one regards the predictions on other 500 examples never processed by the 

ANN during the training. The approximation made by the ANN is certainly satisfactory, 

considering the fact that the space spanned by the 7 input parameters is rather large. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2
training set

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2
test set

 

Figure 2: plant unreliability at mission time computed by the Monte Carlo code with 106 trials 

(ordinates) and predicted by ANN (abscissas): top, in the training set; bottom, in the test set 

4. RESULTS  

In order to study the sensitivity of the plant unreliability y to the uncertainty in the 

components failure rates X, we consider the decomposition of the variance of y [2]. This 

method leads to the definition of the correlation ratio     yVXyEVX 2  which is taken as 

the importance measure of a given subset of input variables X. With the ANNs trained over 

the ranges of Table 1, it is possible to perform a variance decomposition sensitivity analysis 
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of the plant model in various situations characterized by different nominal values of the input 

parameters. Indeed, the trained Artificial Neural Network (ANN) can efficiently substitute the 

Monte Carlo code: on the same machine 100,000 runs of the ANN take about 2 minutes, so 

that in terms of computation speed there is a ratio of 1/50,000 with respect to the Monte Carlo 

evaluation. 

Figure 3 shows the results of the calculation of the index of importance 2

X  for the 3 

blocks A, B, C: the vector X thus contains, in turn, the failure rates of all the components in 

each block. The results reflect the logic of the plant configuration so that uncertainties in the 

failure rates values pertaining to the least reliable block A have a greater impact on the 

uncertainty in the plant unreliability than those pertaining to the more reliable blocks B 

(identical to A except that B2 is in stand-by and not in a critical parallel) and C (with two 

stand-bys). 

 

Index of importance of each block on plant 

unreliability at mission time 

Block 2 

A1 –A2 0.610 

B1 – B2 0.356 

C1 – C2 – C3 4.862e-2 

Figure 3: index of importance of the parameters of a block of components  

with respect to the plant unreliability at the mission time 

5. CONCLUSIONS 

This paper concerns the feasibility of using neural networks to build empirical models for 

use in variance decomposition-based sensitivity analysis. The idea behind the approach stands 

on the possibility of exploiting the speed of neural computing in the numerous model 

evaluations typically required to perform a thorough sensitivity analysis. Being a 

methodological feasibility study, the investigation was carried out on a suitable reference 

plant model, structured so as to easily show the influence of the different parameters involved. 

The approach followed has led to satisfactory results in both the training of neural 

networks to provide reasonably accurate model outputs and in the savings of computing time. 

Thus, we conclude that it is feasible to employ the approximate mapping provided by neural 

networks for the repetitive model evaluations required by thorough multiparametric 

sensitivity analysis. 
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1. ABSTRACT 

In this paper a new method for calculating the probability of failure is introduced. The 

method is based on transforming the initial set of variables into a n-dimensional uniform 

random variable in the unit hypercube, together with the failure region. In this way, the joint 

probability density reduces to unity and then, the probability of failure simply becomes the 

hypervolume of the failure region. Next, the probability of failure is calculated by 

approximating the corresponding hypervolume by two polytopes, one interior and one 

exterior to the region of interest, that give upper and lower bounds of the desired probability. 

If the desired bounds are not satisfactory, the user can increase the number of polytopes and 

improve the approximations. Two are the main advantages of the proposed method with 

respect to the classical methods: a simpler transformation of the initial set of variables is 

required, and two bounds, allowing a measure of the error, are obtained. Finally, an example 

of application is used to ilustrate the new procedure. 

2. INTRODUCTION 

Since the pioneering works of Freudenthal[5] in the fifties, safety analyses have been based 

on probabilistic concepts and the computation of the probability of failure, in a more or less 

direct fashion. Consequently, the classical methods, based on partial safety coefficients, are in 

the process of being abandoned. 

In the reliability of a system, there are many variables (X1,X2,…,Xn) involved. They belong 

to an n-dimensional space, which can be divided in two regions: the safe, g(x1, , x2 )  0,  and 

the failure, g(x1, , x2 )  0,  regions, where W=g(X1,X2,…,Xn) is a random variable. 

In general the function g(.) is not unique and can be written in many different, though 

equivalent, forms, with the only condition being that the region g(x)<= 0 be associated with 

the system failure. The boundary of such a regions is defined by the system limit states. 

The probability of failure of the system can be calculated by 

Pf  P(W  0)  FW(0)  f (x1,x2 , , xn )dxndxn 1 dx1
g(x1,x2 , ,x n )0

 ,  

where f(X1, X2,…, Xn) is the pdf of (X1, X2,…, Xn). The main problem is that the integral is 

usually difficult to calculate, due to the complicated forms of f(x) and g(x). Thus, approximate 

mailto:castie@unican.es
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methods are used to obtain the failure probability (see Galambos[6], Castillo[1] and Castillo, 

Solares and Gómez[2,3,4]). 

3. PROPOSED METHOD 

The proposed method for calculating the probability of failure of a given system is as 

follows: 

Step 1. Transforming to uniform variables 

The initial set of variables is transformed into a set of variables in the unit hypercube with 

standard uniform marginals U(0,1), using the Rosenblatt[7] transformation: 

),,,,|();|();( 2111212111 nnn XXXXFUXXFUXFU    

where F1(X1), F2(X2|X1), … , Fn(Xn|X1,X2,… ,Xn) are the cdf of the X1 marginal and the cdfs 

of the indicated conditional random variables. 

Step 2. Forcing the origin to belong to the failure region 

This makes the failure region to be a neighbourhood of the origin and simplifies the 

identification of the failure region. We assume that the random variables involved are such 

that any change in its value has a monotone influence on the safety of the system being 

studied. This  assumption implies that either the end point value 0 or the end point value 1 for 

such variable is the worst possible value with respect to the safety of the system. Then, it is 

clear that if we transform the variables Uk with 1 as their worst possible values, to 1-Uk, we 

get new variables such that the origin is the worst possible combination of values for all 

variables, and then, the origin belongs to the failure region. 

Step 3. Approximating the failure region by unions of disjoint polytopes 

To this end we present two options: 

 Option 1: Partition the failure region in polytopes as similars as possible, in terms of 

volume. To this end, we minimize the volume variance 
1

n
v(i) v 

2

i1

n

 ,  where v(i) is the 

volume of the polytope i, and v is its mean. In other words, we minimize the polytopes 

volume variance with respect to the positions of the triangle vertices subject to the boundary 

constraints, i.e. the corner nodes are fixed, the boundary nodes are restricted to move in the 

boundary, and the interior nodes are free to move in any direction, as illustrated in Figure 1. 

An illustrative example is shown in Figure 2, where it is assumed that we look for the volume 

associated with the region 0  z  sin(x)sin(y), that is shown in the upper part of the figure, 

together with the corresponding triangularization, obtained from an initial regular projected 

triangular mesh (lower part of the figure) that evolves, during the optimization process, to the 

final projected mesh in the figure. 

 Option 2: An spherical regular mesh is used to intersect the failure region and the 

intersection points are selected as the polytope vertices (see Figure 3). 

Step 4. Calculating the probability of failure 
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 Option 1: We calculate two estimates of Pf : v1i 
1

3
ai 3zgi  2(zi1  zi2  zi3 ) , and 

v2i 
1

3
aizgi ,  where ai is the area of the polytope triangular basis and zi1,, zi2,, zi3 and zgi are the 

z-values associated with the three vertices xi1 , xi2 ,xi3 , and its center of gravity respectively. 

These two formulas give the lower and the upper bounds for the polytope volumes. 

Determination of which one is the lower and which is the upper bound can be done by a 

simple comparison. 

 Option 2: The polytopes are decomposed in simplices and the corresponding 

determinant formula is used to calculate their volumes. 

4. PERFORMANCE OF THE METHOD 

To test the goodness of the method, it has been applied to the following example. Let X1, 

X2 and X3 be independent and identically distributed (iid) random variables with exponential 

distribution, E() . 

Figure 3: Initial surface to be triangulated, spherical regular mesh and resulting 

triangulated surface. 

Figure 2: Surface to be triangulated, initial and 

final meshes, and resulting triangulated surface. 

Figura 1: Ilustration of how 

the net is generated. 



 

Session 2 Sensitivity in Reliability  30 

Consider the random variable, Z  (X1  X2 ) /(X1  X2  X3 ),  which is known to have a 

cumulative distribution function FZ(z) z
2
;0  z 1. Since in this case we know the exact cdf 

of Z, we can compare the exact and the approximated results. Suppose that we want to 

calculate FZ(0.1), which exact value is 0.01. Table 1 shows the obtained results for differents 

number of polytopes in which we divide the failure region, for Options 1 and 2. 

 

Option 1 Option 2 

Size 
Lower 

 bound 

Upper  

bound  
Size 

Lower 

 bound 

Upper  

bound  

25 (32) 0.00841 0.01599 25 (28) 0.00822 0.01167 

36 (50) 0.00803 0.01497 36 (45) 0.00850 0.01115 

49 (72) 0.00825 0.01393 49 (66) 0.00870 0.01080 

64 (98) 0.00866 0.01271 64 (91) 0.00884 0.01057 

81 (128) 0.00886 0.01217 81 (120) 0.00894 0.01038 

100 (162) 0.00899 0.01190 100 (153) 0.00903 0.01023 

121 (200) 0.00920 0.01143 121 (190) 0,00909 0.01014 

144 (242) 0.00935 0.01205 144 (231) 0.00914 0.01003 

Infinity 0.01000 0.01000 Infinity 0.01000 0.01000 

Table 1: Estimations of the failure probability for an increasing number of polytopes. 

            The size column gives the number of nodes and polytopes (in parenthesis) 

5. CONCLUSIONS 

The Rosenblatt transformation together with a partition of the failure region in polytopes 

seems to be a useful way of calculating failure probabilities associated with complicated 

regions. Upper and lower bounds are easily obtainable. Option 2 is better than Option 1 

because it requires much less computational power. 
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1. INTRODUCTION  

Applications of computational models to complex real situations are often subject to 

uncertainty. In many cases this uncertainty is of "epistemic" type, i.e. it is due to the imprecise 

knowledge of deterministic parameter values, phenomena, model assumptions [IAEA, 1989]. 

The aim of sensitivity analysis in such cases is to quantitatively express the degree of impact 

of the uncertainty from the specific sources on the resulting uncertainty of final model output. 

This information  helps the analyst to identify the most important contributors to output 

uncertainty and, hence, to find the most effective ways of reducing that uncertainty.  

Various indices of sensitivity are currently used for this purpose. The best known among 

them are the traditional correlation/regression-related sensitivity and their rank counterparts 

[Helton 1993]. However, it is well known that sometimes these indices may not be 

appropriate, e.g. in models with highly non linear or non monotonic relationships between 

input and output. Therefore, more recently, a new class of sensitivity indices has been 

introduced which  result from the principle of "expected reduction in variance". The main 

characteristic of this principle is that it considers the variance of a probability distribution as 

an overall scalar measure of uncertainty which expresses by a single number the total amount 

of uncertainty represented by this distribution. This principle leads to the well-known 

expressions like 

varY - EvarY| Xi    or   E varY|X1,...,Xi-1,Xi+1,...,Xn 

which may be interpreted as "the amount of variance of output Y that is expected to be 

removed if the true value of parameter Xi will become known" respectively as "the amount of 

variance of output Y that is expected to remain if the true values of all parameters except Xi 

will become known". Expressions of this kind and their sample versions have been considered 

by several authors [Iman & Hora 1990, McKay 1995, Homma & Saltelli 1996].  

However, when considering the variance and its basic properties more closely, one may 

easily find some inconsistencies with the properties intuitively expected from an overall scalar 

measure of "epistemic" uncertainty. E.g. many people would agree that, over a bounded 

interval, the highest possible degree of "epistemic" uncertainty is expressed by the uniform 

distribution. Consequently, a scalar overall uncertainty measure should attain its maximum 

possible value for the uniform distribution over that interval. However, as simple examples 

may show, this is not the case if variance is used as a scalar "epistemic" uncertainty measure. 

An overall scalar uncertainty measure that is maximized by the uniform distribution is 

entropy [Kapur 1989, Kullback 1959, Reza 1961, Johnson & Kotz 1982]. It is defined by  

mailto:krb@grs.de
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H(Y) = -  pi   ln pi 

for a discrete distribution of Y with the probability function  (p1,..., pn), respectively by  

H(Y) = -  f(y) ln f(y) dy 

for a continuous distribution of Y with the probability density f(y). 

It may be interpreted as "a measure of the extent to which the distribution of Y is 

concentrated over a small range of values or dispersed over a wide range of values", or, in 

other words, as a measure of the degree of indeterminacy of Y represented by its distribution. 

In contrast to the variance, it possesses the desirable property (for "epistemic" uncertainty) 

that among all distributions over a bounded interval the uniform distribution has the 

maximum possible entropy value. From this and other properties it appears that the notion of 

entropy may be appropriate to represent the uncertainty of "epistemic" type while the notion 

of variance seems to be more appropriate to represent the uncertainty of "aleatory" type 

[IAEA, 1989]. 

2. BASIC APPROACH 

The most basic form of an entropy-based index may be obtained analogously to the 

variance based index  varY–EvarY|X. One therefore considers the following expressions: 

H(Y)  =  –  f(y) ln f(y) dy , 

i.e. the (unconditional) entropy of output Y interpreted as a ‘measure of  the total 

(unconditional) uncertainty of Y, i.e. uncertainty coming from all parameters’,  

H(Y|x)  =  –  f(y|x) ln f(y|x) dy 

i.e. the conditional entropy of Y given X=x, i.e. the entropy of the conditional distribution 

of Y given X=x, interpreted as ‘measure of uncertainty of Y coming from the other 

parameters if the value of the parameter X is known to be x’,  

H(Y|X)  =     H(Y|x) f(x) dx  =  –   f(y|x) ln f(y|x) f(x) dy dx 

i.e. the expectation of the conditional entropy of Y given X, interpreted as the ‘expected 

uncertainty of Y if the true value of parameter X will become known’, and finally 

H(Y) – H(Y|X) 

i.e. the difference between the unconditional entropy of Y and the expected conditional 

entropy  of Y given X. It may, analogously to varY–EvarY|X , be interpreted as  

"the amount of entropy of output Y that is expected to be removed if the true value of 

parameter X will become known" . 

Comments: 

1. Properties of  H(Y) – H(Y|X) as sensitivity index are: it is not negative, it is 0 if X and Y 

are independent, it is symmetric in X and Y, it is invariant under bijective transformations 

of X and Y. Note that its variance-based counterpart varY–EvarY|X  is not symmetric and 

invariant solely under bijective transformations of X alone.  Both  H(Y) – H(Y|X) and 

varY–EvarY|X  can easily be extended to vector-valued X thus providing sensitivity 

indices with respect to parameter subsets. However, only H(Y) – H(Y|X)  can be extended 

to vector-valued Y providing sensitivity indices for multidimensional model output Y. 
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2. By elementary manipulations the following alternative expression  

H(Y) – H(Y|X)  =    f(x,y) ln 
)()(

),(

yfxf

yxf
 dx dy 

may easily be derived. Therefore, with the concept of the Kullback-Leibler measure of 

discrepancy between two probability densities g and h [Kullback 1959, Kapur 1989] 

defined by  

I [g/h] =  g(u) ln 
)(

)(

uh

ug
 du , 

the following useful interpretation can be formulated: 

H(Y) – H(Y|X) = "discrepancy between the joint density of parameter X and output Y 

and the product of the marginal densities of X and Y"  

which indicates that H(Y) – H(Y|X) may also be regarded as a kind of degree of 

departure of output Y from being independent of parameter X (somehow like the 

covariance). 

3. A normalized version of  H(Y) – H(Y|X)  that  ranges between 0 and 1 is given by 

  =   
H(Y)

X)|H(Y- H(Y)
 

for discrete variables Y and by  

H
2   =    

exp(2H(Y))

X))|exp(2H(Y- exp(2H(Y))
 =  1 - exp[-2(H(Y)–H(Y|X))] 

for continuous variables Y. It is also called 'coefficient of entropic or informational 

correlation' [Linfoot 1957, Kent 1983]. In the bivariate Normal case it coincides with 2.  

4. Extending the above considerations to vector valued X one can consider the expression 

H(Y | X1,...,Xi-1,Xi+1,...,Xn ) 

= ... H(Y| x1,...,xi-1,xi+1,...,xn ) f(x1,...,xi-1,xi+1,...,xn) dx1...dxi-1dxi+1...dxn 

= ... [-f(y|x1,...,xi-1,xi+1,...,xn ) ln f(y|x1,...,xi-1,xi+1,...,xn )dy] f(x1,...,xi-1,xi+1,...,xn) 

dx1...dxi-1dxi+1 ...dxn 

which is the expectation of the entropy of the conditional distribution of Y given 

parameters X1,...,Xi-1,Xi+1,...,Xn. It can be interpreted as "the amount of 

entropy/uncertainty of Y that is expected to remain if the values of all parameters except 

Xi will become known" and can therefore be viewed as an global sensitivity index 

accounting for the ‘total effect of parameter X i’ analogously to its variance-based 

counterpart  E varY| X1,...,Xi-1,Xi+1,...,Xn  mentioned before and discussed e.g. in  

[Homma & Saltelli 1996] for independent parameters. 

3.  A SIMPLE ANALYTICAL EXAMPLE 

To illustrate the preceding results a simple example is presented where both variance-based 

and entropy-based sensitivity indices can be determined analytically and compared.  
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Let the model output Y be a linear function  

Y = a1X1 + a2X2 + .... + anXn 

of the n parameters X1,....,Xn having a joint multivariate Normal distribution Nn(,,R), 

/ = vectors of means/variances,  R = (ij)  = correlation matrix.  

Then it is not very difficult to verify that for any parameter Xi 

varY – EvarY|Xi  =  (  ak k ik )
2  . 

H(Y) – H(Y|Xi)   =  –1/2 ln [1 – (  ak k ik )
2 /at C a] 

with at  = (a1 ,..., an ) and C = (i j ij) the variance-covariance matrix of the parameters. In 

the simpler case with independent parameters (i.e. R = In) the corresponding expressions are 

varY – EvarY|Xi = ai
2

 i
2    and  H(Y) – H(Y|Xi) =  –1/2 ln [ 1 – ai

2
 i

2 /  ak
2

 k
2 ] 

Obviously, the two methods provide different values of the corresponding measures but the 

same parameter importance ranking, since one measure is a monotone function of the other. 

Moreover, their normalized versions  (varY – E varY|Xi)/var(Y)  and  1– exp(–2[H(Y)–

H(Y|Xi)])  are identical. 

Furthermore, in this example both versions of the ‘global sensitivity index for parameter 

Xi’   E varY| X1,...,Xi-1,Xi+1,...,Xn  and H(Y | X1,...,Xi-1,Xi+1,...,Xn ) can be determined. For i=1: 

E varY|( X 2 ,..., Xn ) =  a1
21

2[ 1 – (12 ,...,1n) R22
-1 (12 ,...,1n)

t ] 

H(Y| X 2 ,..., Xn )       =  1/2 ln ( 2 e a1
2

 1
2[1 – (12 ,...,1n) R22

-1 (12 ,...,1n)
t ] ) 

where R22
-1  is the inverse of the correlation sub-matrix  R22  of  R for parameters X2,...,Xn. 

In the simpler case with independent parameters the corresponding expressions are  

E varY|( X 2 ,..., Xn ) =  ai
2

 i
2   ,      H(Y| X 2 ,..., Xn ) = 1/2 ln [ 2 e ai

2
 i

2]. 

Again, the expressions are different but their normalized versions E varY|(X 2 ,..., Xn)/varY  

and  exp(2 H(Y| X 2 ,..., Xn ))/exp(2H(Y)) and the parameter importance ranking are the same. 

4. ESTIMATES FROM SAMPLES 

In practical applications all the quantities considered above cannot be determined 

analytically but must rather be estimated from appropriately generated sample values. 

Moreover, many computational models are extremely time-consuming to run such that only a 

relatively small number of model runs can be afforded for sample generation. The so-called 

‘simple random sampling (SRS)’ may be appropriate in such cases. An estimate of H(Y) – 

H(Y|X) using the sample values (xj, yj), j=1,...,N of the fixed parameter X and output Y is 

derived as follows:  

The three probability density functions f(x)   = marginal density of parameter X, 

f(y)   = marginal density of outcome Y,  f(x,y) = joint density of parameter X and outcome 

Y appearing in the above expression for H(Y) – H(Y|X) may be estimated by the following 

simple empirical density functions: 

f*(x) =  ni./n.. (ai–ai-1)
-1 1[ai-1,ai)(x) ,                  f*(y)    =   n.j/n.. (bj–bj-1)

-1 1[bj-1,bj)(y) 

f*(x,y) =   nij/n.. (ai–ai-1)
-1 (bj–bj-1)

-11[ai-1,ai)(x) 1[bj-1,bj)(y) 
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where, a0<a1<...<ak   and b0<b1<...<bm  are partitions of the ranges of X and Y into k 

respectively m disjoint subintervals to be provided by the user; nij = number of sample points 

(xk,yk) falling into the rectangle [ai-1,ai)x[bj-1,bj); ni. = number of xk values falling into the 

interval [ai-1,ai); n.j = number of yk values falling into the interval [bj-1,bj); n.. = total number 

of sample points (= N) , and 1[ai-1,ai), 1[bj-1,bj) are the indicator functions of the intervals [ai-

1,ai),  [bj-1,bj).  

Inserting these empirical density functions into the above expression for  H(Y) – H(Y|X) 

one obtains the estimate 

H*(Y)–H*(Y|X) =   f*(x,y) ln 
)(*)(*

),(*

yfxf

yxf
 dx dy =.......=  ji ]

))((
ln[
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..

.. nnnn

nn

n

n

ji

ijij
 

The above mentioned discrete normalized version of this estimate ranging between 0 and 1 

is 

* =  
(Y)*H

X)|(Y*H- (Y)*H
 =  ji  ]ln[/]

))((
ln[
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This expression can also be identified as a measure of association in contingency tables, 

the so-called (asymmetric) uncertainty coefficient U [Brown 1975], or Theil’s coefficient  

[Theil 1970, Johnson & Kotz 1982]. Its asymptotic sampling distribution may be used to 

construct approximate confidence intervals for . 
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1. SUMMARY 

The paper deals with regression analysis. We propose a special sampling that consists in 

oscillating each factor in its uncertainty range to identify the regression polynomial. We 

illustrate the method identifying the fifth order metamodel of eleven factors model. 

2. REGRESSION ANALYSIS 

Regression analysis consists in approaching the model by a polynomial also called a 

metamodel. Let’s suppose that the model is not linear as regard to its p-factors but contains 

non negligible second order interactions. Then, the metamodel is a second degree polynomial 

of the form : 

0

1

p

h h hh' h h'

h h h'

y x x x


              (1) 

The relative importance of each factor is measured by the absolute value of h, provided 

that the factors are standardized (mean 0 and variance 1). Moreover, verification of the 

numerical model can be partially achieved by analysing whether the metamodel has main 

effects with the correct signs (what-if analysis) [1]. 

Classically, design of experiments (DOE) is used to build the previous polynomial. DOE 

consists in simulating the appropriate combination of factors (for instance, fractional factorial 

design, the Plackett & Burman design,…) to estimate the regression coefficients of the 

presumed metamodel. 

3. THE PROPOSED DESIGN 

The proposed approach is based upon a special sampling of the factors in the frequency 

domain. Indeed, each continuous factor X is sampled as follow : 

Xi
k = Xi

0 + isin(2fik/n)       (2) 

where 

Xi is the ith factor (Xi
0 its nominal value) 

i  is the oscillation amplitude, range over which the level settings are changed 

fi  is the driving frequency of factor i 

n  is the number of simulation runs 

k   is the simulation number 
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This particular design is similar to the Fourier amplitude sensitivity technique (FAST, see 

[2]). To understand the interest of such an approach, one must notice that standardization 

brings to: 

xi = sin(2fiu) with u = k/n and u ε  {0, 1/n, 2/n, …,(n-1)/n} 

Hence, the number of simulation runs n is equal to the sampling frequency (fs) of the 

factors’ value. Substituting the latter relationship in eq. (1) and neglecting the error term 

gives: 

        
1

2 2 2
2

p

hh'
h h h h' h h'

h h h'

y sin f u cos f f u cos f f u



            (3) 

y = y - 0 is the variation of the output due to the oscillation of the factors around their 

nominal value according eq. (2). 

Qualitative inferences about the relative importance of a factor is possible analysing the 

spectrum of the Fourier transform of y : 

 

     

1 2

4

p

h
y h

h

hh'
h h' h h'

h h'

TF f   . ( f f )

                   . f f f f f f






  


       
 





    f0  (4) 

 is the distribution of Dirac. 

Several inferences can be drawn analysing Eq. (4) : 

1) the more a factor is influential on the output, the higher the amplitude at its assigned 

frequency. 

2) interaction between two factors induces two other frequencies which are the sum 

and the difference of the interacting factors’ driving frequencies. 

3) the induced frequencies may interfere with the original factors’ driving frequencies. 

The latter must be incommensurate to avoid such an interference or aliasing. 

4) Nyquist criterion requires that the frequency sampling of the factor's value (in other 

words, the number of simulations) must be at least greater than 2x
 

 
1

i
i ,p
max f


. 

Because sinus and cosinus are orthogonal functions, regression coefficients of the 

metamodel can be easily estimated. Indeed, according eq. (3), this property implies that : 

 
1

0

2
2

n

h h

k

y sin f k / n
n





     

and             
1 1

0 0

4 4
2 2

n n

hh' h h' h h'

k k

y cos f f k / n y cos f f k / n
n n

 

 

            

The proposed method based upon a special sampling in the frequency domain allows the 

estimation of the factors' effects on the model's output. This estimation is unbiased if aliasing 

is avoided. It is important to note that the advantage of the proposed design is to put forward 

the interactions between factors. 
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4. APPLICATION TO A MODEL OF INDOOR SOLAR ABSORTANCE 

To illustrate the method, let's consider the 11-factor model of indoor solar radiation 

absorptance. In the present study, to ensure a highly order polynomial, a large range of 

variation are assigned to the factors (Table 1). 

Table 1. The eleven factors and their assigned frequency. 

Factors Nominal 

value 

Range f Standardized 

factors 

Direct incident solar radiation (XD) 500 W [0 ; 1000] W 179 xD = XD /500 - 1 

Diffuse solar radiation (Xd) 500 W [0 ; 1000] W 209 xd = Xd /500 - 1 

Indoor absorptance of the floor (Xa,sol) 0.5 [0.05 ; 0.95] 293 xa,sol = (Xa,sol – 0.5)/0.45 

Average absorptance of envelope walls (Xa,par) 0.5 [0.05 ; 0.95] 301 xa,par = (Xa,par – 0.5)/0.45 

Average absorptance of internal walls (Xa,int) 0.5 [0.05 ; 0.95] 168 xa,int = (Xa,int – 0.5)/0.45 

Average absorptance of windows (Xa,vit) 0.075 [0.05 ; 0.1] 137 xa,vit = (Xa,vit – 0.075)/0.025 

Area of the floor (XS,sol) 30 m² [10 ; 50] m² 233 xS,sol = (XS,sol – 30)/20 

Area of envelope walls (XS,par) 80 m² [50 ; 110] m² 251 xS,par = (XS,par – 80)/30 

Area of internal walls (XS,int) 7 m² [0 ; 14] m² 270 xS,int = (XS,int – 7)/7 

Area of windows (XS,vit) 10 m² [1 ; 19] m² 154 xS,vit = (XS,vit – 10)/9 

Average transmittance of windows (Xt) 0.7 [0.5 ; 0.9] 219 xt = (Xt – 0.7)/0.2 

 

We perform 4096 (fs) simulation runs as described previously with the frequencies 

mentioned in Table 1. For each run, variation of total solar radiation absorbed by the room 

(y) is calculated (y0 = 920 W). Then, we estimate the Fourier transform of y. Analysis of 

the spectrum of y (Fig. 1) allows to identify the most important spectral component of the 

signal. For instance, according Fig. 1, we identify a first order polynomial of the form : 

P1 = y0 + 1xD + 2xd + 3xa,sol + 4xa,par + 5xS,vit  sin(2fiu) 
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Fig. 1: Spectrum of y . Identification of 

driving frequencies. 

Fig. 2: Spectrum of (y - P1). Frequencies 

induced by first order interactions. 

Because of the non linearity, we use a fitting algorithm to identify the regression 

coefficients i. Then, we analyse the spectrum of (y - P1) shown on Fig. 2. The latter puts 

forward the interactions (first order) between factors. According Fig. 2, it is possible to 

increase the degree of the previous polynomial to a second order one of the form : 
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P2 = y0 + 1xD + 2xd + 3xa,sol + 4xa,par + 5xS,vit + 6xd xS,vit + 7xa,par xS,vit + 8xa,sol xD + 9(xa,par)2 + 

             10(xa,sol)2 +… 

In the same way, a third order polynomial can be determined analysing the spectrum of (y 

– P2). The procedure is kept on until a satisfying metamodel is obtained. As far as we are 

concerned, we stop the procedure when the regression coefficients fall under 20W. The 

identified metamodel is the following 5th order polynomial : 

tot,abs = 920 + 449xd + 473xD + 29xa,par + 38xa,sol - 66xS,vit - 22xt + 27xa,sol xD - 49xd xS,vit + 41xa,par xS,vit - 

25xa,par xa,sol + 38xa,par xd + 31xa,sol xS,vit - 27xD xS,vit - 25(xa,par)2 + 26xa,parxdxS,vit - 28xa,sol xa,parxS,vit - 24(xa,par)2xd 

+ 22(xa,sol)2xa,par -28xa,sol xa,parxD + 28xa,sol xDxS,vit - 20xa,solxa,parxd – 22(xa,par)2xS,vit + 26(xa,par)3 - 34(xa,sol)2(xa,par)2 

- 35(xa,par)4 + 29(xa,par)2xdxa,sol + 20(xa,par)2xDxa,sol  + 19(xa,par)2xS,vit xa,sol + 19(xa,par)
2(xS,vit)2 + 30(xa,sol)(xa,par)3 + 

23(xa,par)4xa,sol 

5. DISCUSSION 

Analysing the previous response surface, one may notice that main effects (bold) are 

preponderant and that the sign of the latter are in agreement with physical sense. Indeed, 

concerning window's properties (xS,vit , xt), the higher they are the less the amount of solar 

radiation absorbed by the room (or the more the amount of solar radiation leaving by the 

window). A comparison between the original model and the metamodel is carried out using a 

pseudo-random sampling. Fig. 3 shows that the metamodel gives very satisfying results. The 

coefficient of determination is about R² = 0.96. 
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Fig. 3 
Comparison between the regression 

polynomial and the original model. 
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SUMMARY 

Sensitivity analysis is a technique by which one can determine, with good approximation, 

whether a system will work within the specification limits when the part parameters vary 

between their limits. This paper shows the use of Interval Arithmetic as an alternative and 

valid technique to calculate how system accuracy varies as parameters vary.  

Although this type of analysis, from input to output, can provide useful information to the 

decision-maker, we present an approach based on the use of Cellular Evolutionary Strategies 

(CES) and Interval Arithmetic (IA) in which the inverse problem can be solved especially 

when there are specifications for the outputs.  

1. SENSITIVITY, UNCERTAINTY ANALYSIS AND ROBUST DESIGN 

For examining the effects of uncertain inputs within a model, various analytic and 

computational techniques exist. These include methods for sensitivity analysis, uncertainty 

propagation, and uncertainty analysis [1]. Although this type of analysis, from input to output, 

can provide useful information to the decision-maker, we present an approach in which the 

inverse problem can be solved especially when there are specifications for the outputs. 

The robustness of a design is defined as the maximum size of component deviations from a 

design that can be made in such a way that the system still meets all defined specifications. 

This paper proposes an innovative approach based on optimisation instead of mapping from 

the output into the input space. 

2. INTERVAL ARITHMETIC  

Interval arithmetic originates from the recognition that frequently there is uncertainty 

associated with the parameters used in a computation [2-4]. This form of mathematics uses 

interval "numbers", which are actually an ordered pair of real numbers representing the lower 

and upper bound of the parameter range [4]. Interval arithmetic is built upon a basic set of 

axioms. If we have two interval numbers T = [a, b] and W = [c, d] (a  b, c  d then [6-10]:  

T+W=[a,b]+[c,d] = [a+c, b+d];  T-W = [a,b] +(- [c,d]) = [a-d,b-c]; 

1/T = [ 1/b , 1/a ], 0 [a,b];    T*W =[min{ac,ad,bc,bd}, max{ac,ad,bc,bd}]; 

T/W =[a,b]/[c,d] = [a,b]*[1/d,1/c],  0 [c,d] 

mailto:crocco@reacciun.ve
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Only some of the algebraic laws valid for real numbers remain valid for intervals. For 

example, the distributive law does not always hold for interval arithmetic [2]. But the 

subdistributivity law does hold: T(W+Z)TW+TZ. The failure of the distributive law often 

causes overestimation (dependency problem [3]). In general, when a given variable occurs 

more than once in an interval computation, it is treated as a different variable in each 

occurrence and overestimation could occur. 

The interval function F is an interval extension of f, if: F(t1..tn)=f(t1..tn). Moore [3] states 

that the range of a function f of real variables over an interval can be calculated from the 

interval extension F, changing ti by Ti. In this case, f(t1..tn)  F(T1..Tn),  ti Ti (i =1.. n). 

In many practical problems, it could be difficult to obtain an expression in which each 

variable occurs not more than once. In these cases, a single computation of the interval 

extension of f(t1..tn) only yields an interval F(T1..Tn), that is wider than the exact range for 

f(t1,..,tn). Several techniques have been developed to avoid the dependence problem [5]. 

Sensitivity analysis is  performed using Interval Arithmetic by assigning bounds (interval) 

to some or all the input parameters and determining the output interval, that will contain all 

possible solutions due to the variations in input parameters [4]. These intervals can be 

interpreted as worst cases values and are obtained with only one calculation. 

3. EVOLUTIONARY APPROACH  

During the last years, (global) optimisation algorithms imitating certain principles of nature 

have proved their usefulness in various domains of applications. A population of individuals 

each of which representing one point of the solution space collectively evolves towards better 

solutions by means of a parent’s selection process, a reproduction strategy and a substitution 

strategy. Parent selection determines which individuals participate in the reproduction 

strategy [6-8].  

Evolutionary Strategies (ES) (or Evolution Strategies [8]) were developed as a powerful 

tool for parameter optimisation tasks [6,9]. Three basic types of ES have been developed. In a 

two-member or (1+1) evolution strategy (ES(1+1)), one ‘parent’ produces one offspring per 

generation by applying a normally distributed perturbation, until a ‘child’ performs better than 

its ancestor and take its place [6]. In this technique, each individual (proposed solution) is 

represented by a couple (y,), where y is a vector that identifies a point in the search space 

and  is a vector of perturbation. In the next iteration an offspring is generated by the 

expression: yt+1 = yt + N(0,). The term N(0,) represents a vector of independent random 

numbers normally distributed with mean 0 and standard deviation in the vector  [7]. 

Schwefel and Bäck [9] and Bäck and Schwefel [10] generalized these strategies to the 

multimember evolution strategy now denoted by ES(  ) and ES(,). In these strategies, 

the standard deviation for mutation becomes part of the individual and evolves by means of 

mutation and recombination, a process called self-adaptation of strategy parameters [10]. The 

(,) strategy is more realistic and tends to emphasize on global search properties.  

Cellular Evolutionary Strategies (CES) [7] are an approach that combines the ES() 

techniques with concepts from Cellular Automata. In the CES approach, each individual is 

located in a cell of a two-dimension array and update looking only at determined cells (its 

neighbourhood). While the ES were originally designed with the parameter optimisation 
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problem in mind, the CES were designed to find the global optimum or “near” optimum for 

complex multi-modal functions. 

4. ROBUST DESIGN METHODOLOGY 

The designer formulates target values on the quality of a product by setting lower and 

upper bounds on the property yi(x). Suppose the area shown in figure 1a is the Feasible 

Solution Set (FSS) [11]. An exact description of the FSS (figure 1a) is in general not simple 

and could be limited by non-linear functions. For this reason, approximate descriptions are 

often looked for, using simply shaped sets like boxes or ellipsoids containing (outer bounding, 

figure 1b) or contained in (inner bounding, figure 1c and 1d) the set of interest [24]. In 

particular Maximum volume Inner Box (MIB) (figure 1c and 1d) are of interest. The 

maximum ranges of possible variations of the feasible values define the so-called Tolerance 

Region . We define the following slack function gi(x): gi(x)=UBi - yi(x) when there is an 

upper bound requirement or gi(x)= yi(x)-LBi when there is an lower  bound requirement 

(i=1..m) [12]. 

To obtain the MIB it is required that all the points inside the generated box satisfy the 

constraints. The mathematical formulation is: Let B:={x,Cnxi[xi,lower,xi,upper], 

Ci=(xi,upper+xi,lower)/2} and F:={gi(x)0}, (i=1....m). Then 

Center Specified   Center Unspecified 

x

max  


n

1i

abs((xi - Ci))  
x,C

max  


n

1i

abs((xi - Ci)) 

 s.t. x FB    s.t. x, C  FB 

5. GENERAL APPROACH 

We generate an initial random point x1o,.,xn0 (initial vertex) and check if this point is a 

feasible point. If the point is infeasible, then we generate a new point and check it for 

feasibility. If the generated point is feasible, we generate a symmetrical “box” (hyper 

rectangle) using C as symmetry centre. To check the feasibility of the generated box, we can 

evaluate gi at each vertex of the box. If each vertex is feasible, then we calculate the 

associated volume. The goal is then to maximize the inner volume. If at least one vertex is not 

feasible, then we discard the generated box, and generate a new point. In the case of centre 

unspecified, we also generate along with the initial random point x1o,.,xn0 (initial vertex), the 

initial random centre co-ordinate C= {C1o,..,Cn0}. 

To avoid the function evaluation at 2n vertices and the fact that extreme values are not 

necessarily at vertices of the tolerance region, constraint functions are evaluated using IA. 

Note that in the case that the FSS is non-convex, feasibility check using IA will consider this. 

6. EXAMPLE: A TEMPERATURE CONTROLLER [13] 

Consider the following example related to a temperature controller. The performance 

function is: 
)(

)(

2122423

314221

RERERER

RERERR
R onT






. We will use the proposed robust design approach in 

order to define the MIB to guarantee that RT-on belongs to the interval  [2.9,3.1] k. Because 

of the stochastic nature of CES, 20 trials were performed and the best solution from among 

the 20 trials was used as the final solution. All CES runs were performed using 30 
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generations, 49 individuals in a 7x7 grid,  = 0.01, Von Neumann neighbourhood with radius 

=1 and asynchronous substitution. Table 2. shows the result obtained using the hybrid 

approach CES and IA, with a MIB volume of 930296.40. The final intervals produce an 

output RT-on belonging to [2905.73,3099.99] . The MIB volume obtained using a non-linear 

optimisation program, was 931811.45, that is 0.163 % greater than the obtained with the CES-

IA approach. The average relative error obtained in 20 runs was only 0.272 %. 

 

 

VARIABLE 

Starting 

INTERVAL 

 

Final Interval 

R1 [0.5,1.5] k [0.994,1.005] ] k 

R2 [6,12] k [8.956,9.044] ] k 

R3 [2,6] k [3.973,4.027] ] k 

R4 [16,48] k [31.428,32.572] ] k 

E1 [7.5,9.5] V [8.427,8.573] V 

E2 [4.5,7.5] V [5.946,6.0535] V 
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1. INTRODUCTION 

The common theme that unites members of SAMO is that we all use techniques of 

sensitivity analysis.  We are here at this conference to discuss advances in these techniques 

and how we may make use of them in applications.  But do we notice that just as our use of 

the techniques unites us, the context of that use may distinguish us?  We use sensitivity 

analyses for many different purposes: e.g.  

A. to build and explore of models;  

B. to support the elicitation of judgemental inputs to an analysis;  

C. to develop efficient computational algorithms; 

D. to design experiments;  

E. to guide us in making inferences, forecasts and decisions; 

F. to explore and build consensus;  

G. to build understanding. 

The manner in which we use sensitivity analysis to serve one of these purposes may be 

inappropriate to serving another.  A further complication is that, because of their complexity 

models are often evaluated by Monte Carlo and other simulation methods, which are key 

techniques used in (global) sensitivity analysis, thus creating potential for further confusion of 

purpose.   In this paper, I categorise and explore the use of sensitivity analysis throughout a 

full Bayesian analysis, and in doing so I hope to provide a guide to a bludgeoning literature.  

2. BAYESIAN ANALYSIS 

It will come as little surprise that I write this paper as a Bayesian [1], [2], [3]: no other 

framework is able to structure statistical and decision analyses coherently.  The Bayesian 

approach has two simple mathematical formulae at its heart: the subjective expected utility 

model (SEU) and Bayes Theorem.  The former ranks alternative actions aA according to: 

           dxpacuxacuE
AaAa 




 ,max,max  (1) 

where p(· | x) is a probability distribution encoding the decision maker’s (DM’s) current 

beliefs, i.e. posterior beliefs after observing data x, about the state of the world  and u(.) is a 

(multi-attribute) utility function encoding her preferences for possible consequences, c(a, ), 
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which arise when action a is taken in the face of state .  Bayes Theorem determines how her 

prior beliefs p(·) are updated in the light of data x to her posterior beliefs p(· | x): 

      


 pxpxp X  

See, e.g., [2], [3] for details.  Within the Bayesian paradigm, consequences are modelled 

by c(a, ), a function which predicts the consequence of taking action a when the state of the 

world is .  The development and structuring of c(·,·) is precisely the scientific modelling 

process that lies at the heart of much work within the SAMO community: c(·,·) will be built 

upon the basis of our biological, economic, environmental and similar understandings of the 

world.  It will help if we restructure and define the arguments of the consequence model so 

that c(a, ) = M(a, , ), such that a represents parameters defined by the choice of action,  

are the parameters representing the state of the world and  are modelling parameters, 

although the distinctions, particularly between  and , are somewhat arbitrary [3]. 

These two formulae fit into the process 

whereby Bayesian analysis supports 

inference and decision as shown in Figure 1. 

Note how the process separates the science 

and modelling of what might happen from 

the valuation of its impact if it does. Also 

note how this separation corresponds to 

separation of roles between experts advising 

the DMs and the stakeholders in the decision.  

The DMs may, of course, be themselves 

experts and/or stakeholders.  Analysts 

support the process as indicated in Figure 1. 

 Decision? 

Science 

Model uncertainties 

with probabilities 

Values 

Model preferences with 

multi-attribute utilities 

Bayes Theorem 
      


 pxpxp X  

Combine  Advice 
       dxpacu

Aa 



,max  

Data 

Observe data 

X = x from 

pX(· | ) 

feedback 

to future 

decisions 

 

 
Figure 1: The Bayesian process of  inference and decision 
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Figure 2: The players in a decision. 
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3. SENSITIVITY ANALYSIS 

Sensitivity analysis simply seeks to learn how the output of a model changes with 

variations in the input [4].  The output needs to be interpreted with great care whenever it 

varies significantly for input variations that are ‘within the bounds of possible error’.  I have 

used scare quotes here because the what is meant by ‘bounds of possible error’ will require 

some exploration in interpreting the value and purpose of sensitivity calculations in different 

contexts.  Broadly, there are two classes of sensitivity analysis: local and global.  In local 

analyses, parameters are varied over a neighbourhood around what is believed to be their 

‘correct’ or ‘appropriate’ values.  In global analyses the variation is over their whole domain 

space, usually according to some probability distribution representing the uncertainty in their 

values. 

Bayesian analysis involves the following input parameters: 

Consequences model: M(a, , )  this involves parameters a, representing the action, , 

the state, and , the modelling parameters noted above. 

Prior distribution: p()  Firstly, in eliciting the distribution the DM or the experts 

will be asked for judgements to which the distribution 

will be fitted.  These judgements are input parameters in 

our meaning of the term. Secondly, in the fitting process 

the distribution may be constrained to fit some general 

property such as symmetry or a simple correlation 

structure, again introducing input parameters in a 

general sense.  Let these parameters be denoted . We 

may also note that  may be partitioned into parameters 

of direct interest and nuisance, ancillary and other 

modelling parameters.   

Likelihood: pX(x | )  Again, there will be parameters, call them X, related to 

the elicitation.  We may also think of the observation x 

as a parameter. 

Utility functions: u(c)   Utilities are elicited from the DMs and stakeholders so 

again there are parameters representing input 

judgements: call them .  Some of these will be values 

on individual attributes; some will be weights bringing 

the attribute scales together, and some will relate to the 

structure of the multi-attribute utility function. 

To these must be added, convergence and accuracy parameters set within the numerical 

processes of optimisation and integration in the SEU model (1).  Call these parameters . 

Thus to explore the purpose and interpretation of sensitivity analysis, we need to consider 

what we can learn by varying locally or globally each of a, , , , X,  and  , either singly 

or in combination, in relation to each of the following purposes: 

A. to build and explore of models; 

B. to support the elicitation of judgemental inputs to an analysis; 

C. to develop efficient computational algorithms; 

D. to design experiments; 

E. to guide us in making inferences, forecasts and decisions; 
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F. to explore and build consensus;  

G. to build understanding. 

See Figure 3 for an indication at where these fit into the Bayesian process of inference and 

decision. 

4. DISCUSSION 

A full paper discussing these and related issues will be available at the time of the 

conference. (Email: simon.french@mbs.ac.uk) 
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Figure 3: The various points at which sensitivity analysis is used in the process 
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1. INTRODUCTION 

Many complex decision problems have multiple objectives which may be conflicting in the 

sense that, once dominated strategies or alternatives have been discarded, further achievement 

in terms of one objective can occur only at the expense of some achievement of another 

objective. Therefore, preference trade-offs between differing degrees of achievement of one 

and other objectives must be taken into account by the decision maker (DM). Also, real 

problems are usually plagued by uncertainty and one can not predict with certainty the 

consequences of each strategy under consideration. Formal analysis is required because it is 

very difficult to consider the above complexities informally in the mind. 

This paper describes a decision support system based on multiattribute additive utility 

model to identify the optimal strategy, which is intended to allay many of the operational 

difficulties involved in assessing and using multiattribute utility functions.  

The usual or traditional approach to Decision Analysis (DA) demands for unique or precise 

values for the different inputs of the model, i.e., for the weight and utility assessments as well 

as for the multiattributed consequences of the generated alternatives. However, we shall 

develop here a system based on a less demanding approach for the DM, because it will 

possible to provide instead of unique values, ranges or value intervals, that will be later used 

in different sensitivity analyses (SA). The system allows for imprecise assignments in weights 

and utilities and uncertainty in the multiattribute strategies, which can be defined in terms of 

ranges for each attribute instead of unique values. Different sensitivity analyses are possible 

over the inputs permitting the users to test the robustness of the ranking of the strategies to 

gain insight and confidence on the final solution. The system that we shall describe has been 

implemented as the evaluation module of the MOIRA system (Model based computerised 

system for management support to Identify Optimal strategies for restoring Radionuclide 

contaminated Aquatic Ecosystems and drainage areas), see [1] and [7].  

2. METHODOLOGY 

The system follows the DA methodology beginning the definition of an objectives 

hierarchy with a maximum of 100 nodes and with the necessary objective levels to be 

considered. Due to the flexibility of the system, it will be possible at any moment to add or to 

drop a node if the DM considers convenient. An attribute will be next introduced for each one 

lowest-level objective and used as a measure of the effectiveness of each strategy. Next, 

feasible strategies must be identified and to establish how such strategies are measured in 

mailto:gallego@ctn.din.upm.es
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terms of attributes. Thus, the consequences of a decision strategy Sj can be described under 

certainty by the vector xj=(x1
j,...,xn

j), where xi
j is a level of attribute Xi and under uncertainty 

by a vector of ranges [xLj, xUj]=( [x1
Lj, x1

Uj ] ,…, [xn
Lj, xn

Uj ] ), where xi
Lj and xi

Uj are the lower 

(L) and upper (U) levels of attribute Xi for Sj. In the first case, when there are no uncertainties 

surrounding the problem, the meaning is that the impact for each strategy is known and thus 

the task of selecting the best strategy is  reduced to selecting the best xj . In case under 

uncertainty the systems ranks the strategies taking the midvalue of the utility intervals 

obtained from the extremes xi
Lj and xi

Uj, being the best strategy that with the best midpoint, 

although additional information from the ranges [xi
Lj, xi

Uj ] will be provided for the DM.   

Quantifying preferences involves assessing the DM single attribute utility functions and 

the relative importance of each one. Both will be used later to evaluate the strategies through a 

multiattribute utility function. First, we shall consider the utility assessment and then it will be 

provided the weight elicitation. 

The utility functions assessment is possible to be conducted by three different procedures 

depending on level of knowledge and characteristics of the attribute under consideration. The 

first procedure should be applied in the case of a natural attribute and when there is scarce 

knowledge or experience about the topic. Such procedure is based on the combination of two 

slightly modified standard procedures for utility assessment, the probability equivalent 

method and the certainty equivalent method, to mitigate some problems like biases and 

inconsistencies. Moreover, instead of obtaining only one precise number in each probability 

question, as these methods demand, we allow DMs to provide a range of responses, allowing 

DMs to provide incomplete preference statements by means of intervals rather than unique 

numbers. As a consequence, we obtain a class of utility functions rather than a single one for 

each method. As the evaluation process demands precise utility functions for the evaluation of 

the strategies, the system provides fitted utility functions by taking mid-points of the utility 

intervals of the intersection area for each ui and then fitting natural cubic splines to these data 

points. Consistency checks are run to verify the bounds assessed for the specific certainty 

equivalence and probability equivalence methods. If the DM is not consistent in the above 

sense, the system suggests possible changes until he/she reaches the consistency. 

The second procedure consist of constructing a class of piecewise linear utility functions. 

This will be useful when there also is a natural attribute but with a deep and precise 

knowledge about it. The user is asked to provide up to three intermediate intervals so the 

utility function will be constructed in this case by joining up to four linear segments between 

the best and the worst values.  

Finally, the third procedure is referred to the case in which the DM decides not to use a 

utility function but a subjective scale which consists of a thermometer scale, suitable for 

subjective attributes. Thus, in the case of subjective scales, the DM will enter utilities or 

utility intervals by hand using scrollbars.  

The very essence of multicriteria problems means that it is usually necessary to use some 

means to account for the relative importance of criteria. In the case of our system we have 

provided two procedures for assessing weights. The first procedure is based on trade-offs, see 

[4], among the respective attributes of the lowest-level objectives stemming from the same 

objective. As in the case of utility elicitations, we assume imprecision allowing the DM to 

provide an interval, rather than a unique value, and the system normalize the corresponding 

precise weights wi. The second procedure, perhaps more suitable for upper level objectives 

that could have a more political character, is based on a direct assessment. Here the DM is 
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demanded to provide as before, weight intervals, that in the case of degenerated intervals 

assessment a precise value is provided.  

Note that when the system is opened, the starting point is equally weighted objectives, but 

any interval weight or precise weight may be changed and the system automatically cares for 

how these changes must be propagated in the objectives hierarchy and recalculates the overall 

utility for each strategy. The weight intervals together with the value intervals will be used in 

SA, on the one hand to gain insight and confidence in the ranking of the strategies and, on the 

other, on aid in reducing if possible the set of alternatives. 

3. EVALUATING ALTERNATIVES 

This step involves evaluating each of the alternatives by means of the multiattribute additive 

if the utility independence is fulfilled, see [4], where ui are the component utility functions 

for each evaluation measure and wi are the weights or scaling constants for each component 

utility function obtained by multiplying the respective weights of the objectives of each path 

from the root (global objective) until each leaf (attribute).  

The evaluation of the set of strategies and their ranking is automatically done and can be 

displayed directly. The system provides a graphical representation with bars and including 

their overall utilities and the minimum and maximum utilities which are obtained from the 

minimum and the maximum strategy values, respectively. Some other displays are possible 

presenting useful information to the DM. Thus, it will be possible to watch by selecting a 

strategy, the objectives hierarchy with the assigned weights on each objective and the strategy 

values or subjective values. There is another display which shows the interval weights and the 

normalised weights that are associated to each attribute, obtained from the weights of the 

upper level objectives. The global weights (for the attributes) are represented both 

numerically (the normalised ones) and through a graphic. Note that such global weights will 

sum 1. Finally, it is possible to compare selected pairs of attributes for all the strategies by 

means of a graphical representation of the utility values resulting for these chosen attributes 

for the different strategies under analysis. This would help the DM to compare the 

performance of the strategies for each pair of selected attributes looking what are more 

relevants. 

4. SENSITIVITY ANALYSIS 

Sensitivity analysis (SA), which essentially involves examining changes in the ranking as 

input parameters (weights and or utilities) varying within a reasonable range, can give further 

insight into the quantitative analysis. Some types of sensitivity analysis are described in [5] 

and [6], which introduces a framework for sensitivity analysis in multiobjective decision-

making, see [7], which gives an introduction to sensitivity analysis in the MOIRA project. 

SA is usually performed by changing the weights or utilities and observing their impact on 

the ranking of alternatives. Hence, if the DM makes a change to a weight or the weight range, 

the system takes cares of how these changes should be propagated in the objective hierarchy 

and automatically recalculates the overall utility for each strategy and the resulting ranking. 
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Another way of performing SA involves assessing the interval in which weights can vary 

without affecting the overall strategy ranking. Suppose that there is now a ranking of the 

given strategies and the DM chooses a node or leaf of the tree, which has an associated 

weight. The system then calculates the weight interval for this node/leaf so that the ranking 

does not change, i.e., if the weight is changed and the new value is within the range, then the 

ranking will not change. However, if the new value is not within the range, the new ranking 

will be different to the previous one.  

The system also performs simulation techniques for SA. This kind of sensitivity analysis, 

see [2], allows for simultaneous changes of the weights and generates results that can easily 

statistically analysed to provide more insights into the multiattribute model recommendations. 

We propose selecting the weights at random using a computer simulation program so that the 

results of many combinations of weights, including a complete ranking, can be explored in an 

efficient manner. Three general classes of simulation will be presented: random weights, rank 

order weights and response distribution weights. We shall describe them briefly. 

 Random weights. As an extreme case, weights for the attributes are generated 

completely at random. This approach implies no knowledge whatsoever of the 

relative importance of the attributes. Once the simulation is conducted in this case, 

the system computes several statistics about the rankings of each strategy.  

 Rank order weights. Randomly generating the weights while preserving their 

attributes rank order places substantial restrictions on the domain of possible 

weights that are consistents with the DM’s judgement of attribute importance. 

Therefore, the results from the rank order simulation may provide more meaningful 

results.  

 Response distribution weights. The third type of sensitivity analysis using 

simulation recognizes that the weight assessment procedure is subject to variation. 

For a single DM, this variation may be in the form of response error associated with 

the weight assessment. Now attributes weights are randomly assigned values taken 

into account the interval weights provided by the DM in the weights assignment 

methods. 

All this information may be useful to discard some strategies and as an aid, the system 

displays for each above case a multiple boxplot for the strategies. 

Finally, the system also obtains the sets of nondominated solutions, potentially optimal and 

adjacent potentially optimal to the optimal one. The calculation of these sets supposes from a 

theoretical point of view, to solve different nonlinear optimization problems. However, due to 

the concrete characteristics of the problems and the use of natural cubic splines instead of 

exponential functions as utility functions, we can transform this nonlinear problem into 

equivalent linear problems, making possible to exploit the many advantages of the linearity. 
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The Italian government recently issued a new law for the regulation of pollutant loads in 

water-bodies, which is based on the so-called Maximum-Permissible-Loads (MPLs) policy. 

Within this framework, Local Authorities should make an inventory of the sources of 

pollution and then fix the level of emission of each of these activities, in order not to overstep 

a set of given concentration thresholds within the system, called “quality targets”, QT. The 

implementation of this new policy may clearly benefit from the use of mathematical models, 

which can be used as a tool for both estimating the MPLs by solving the so-called ”inverse 

problem” and exploring the consequences of different input scenarios. In fact, in 

mathematical terms, the loads are specified by a set of boundary conditions: numerical models 

can then be used for determining a functional relationship between the set of boundary 

conditions and the output variables which one decides to compare with the Quality Targets. 

Once this task has been accomplished, one can invert this function in order to estimate the 

MPLs which are compatible with the targets. 

These problems are investigated in this paper using the lagoon of Venice as a case-study 

and the sensitivity analysis in respect of each source of pollution as a tool. Because of its 

peculiarity, this system has been thoroughly investigated and a 3D reaction-diffusion water 

quality model is already available (Pastres et al., 1995). The reaction-diffusion equation (1), is 

solved using a finite-difference scheme.  

c(x,y,z,t)/t = (K(x,y,z) c(x,y,z,t)) + f( c(x,y,z),,t)     (1) 

In eq. (1), c is the state vector, K the tensor of eddy diffusivities, f is the reaction term and 

 the set of site-specific parameters. The model simulates the dynamic of the ecosystem up to 

the second trophic level by using twelve state variables, among which the concentration of the 

two main forms of inorganic nitrogen, ammonium and nitrate, and inorganic reactive 

phosphorous one: these chemicals are considered to be the main cause of the eutrophication 

and, therefore, the current legislation fixes their quality target for the lagoon of Venice. In this 

paper, we have applied the method outlined below to the estimation of the MPL’s of 

ammonium and nitrate: the sum of their concentration gives the Total Inorganic Nitrogen 

(TIN), as the concentration of nitrite is very low. At present, the concentration of TIN is 

above the target, while the concentration of phosphorous is already low, as its use in 

detergents was prohibited in 1989. 
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The dependence of the state of the system on the set of boundary conditions, which 

specifies the yearly evolution of the loads of ammonium and nitrate, has been investigated 

using a local sensitivity analysis with respect to each source. Ammonium, NH4, and nitrate, 

NO3, are carried into the lagoon by the rivers, and are directly released from the Industrial 

area of Porto Marghera, on the edge of the lagoon, and from the city of Venice and the nearby 

islands. The yearly evolutions of these inputs are modelled using Von Neumann-type time-

dependent boundary conditions: the fluxes i are specified using a set of trigonometric 

polinomia: 

i
 NH4 (t) = i,0

NH4 + j=1
3 [i,2j-1

NH4cos(2jt/365) + i,,2j
NH4sen(2jt/365)]  (3a) 

i
 NO3 (t) = i,0

NO3 + j=1
3 [i,,2j-1

NO3cos(2jt/365) + i,,2j
NO3sen(2jt/365)]  (3b) 

where i
NH4(t) and i

NO3(t) are the daily fluxes of ammonium of nitrate released by the i-th 

source at time t, expressed in days. 

The parameters i,0
NH4,..i,6

NH4
, i,0

NO3,..i,6
NO3

,  were estimated for each source by means 

of a least squares regression of monthly data. The exchanges with the Adriatic sea at the three 

inlets are described by means of Dirichlet-type boundary conditions: the concentrations of 

ammonia and nitrate at the boundaries are estimated by using the trigonometric polinomia (3) 

to interpolate a time series of field observations. On the basis of the available data, it was 

possible to define sixteen sources, which, plus the three inlets, lead to a total of 7x19 

parameters, to be considered as potential input factors. 

The dimension of the problem and the time required by a single run, about 5400 seconds to 

simulate one year on a 2-CPU Digital AU533Mhz WS, do not allow one to use MonteCarlo 

techniques to explore the dependence of the state of the system on the variation of the set of  

parameters. We therefore decided to use local sensitivity analysis with respect to each 

parameter  in order to:  

 estimate the role of each source in determining the concentration of TIN in a given cell 

of the spatial domain 

 estimate the MPL for TIN, MPLTIN, given the water quality target, QTTIN; 

 obtaine an initial idea of the evolution of the system within the MPLTIN input  scenario. 

In order to simplify the problem, we supposed that the QTTIN had to be respected for the 

yearly average concentration of the system: this interpretation of the law was arbitrary, but, at 

the moment, no precise statement exists about the type of average to be compared with the 

quality target. In this case, one has to take into consideration only the first parameters 

1,0
NH4,… i,0

NH4, ns,0
NH4, 1,0

NO3,… i,0
NO3, ns,0

NO3, for the ns manageable sources (ns=16). 

For the sake of conciseness, in the following development the second subscript index is 

dropped and the parameters are regrouped in a single vector, by setting i
NO3 = ns+i. 

The sensitivity equation for a generic parameter i reads as: 

Si(x,y,z,t)/t = (K(x,y,z) Si(x,y,z,t)) + JSi     (4) 

where S is the sensitivity vector and J = f/c is the Jacobian matrix of the vector function 

f. The set of 2xns vector equations (4) is solved by means of the direct method, (Koda et al., 

1979). The partial derivatives which form the Jacobian matrix are calculated using symbolic 
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calculus: this may appear to be a limit, with regard to extending this approach to other 

problems, but such calculations are now performed automatically by a number of software 

packages, which also give the corresponding piece of Fortran code as an output.  

The estimation of the MPLTIN is based on the linearization of the state equation (1): this 

hypothesis could be critical, but it allows one to obtain a quick first guess. Under this 

assumption, the effect of the simultaneous variation of all the parameters i
NH4, i

NO3 , on the 

state vector can be expressed as: 

  c(x,y,z,t)  i=1
2xnsSi(x,y,z,t) i     (5) 

In physical terms, equation (5) is an estimate of the effect of the variation of the yearly 

load of TIN, which is given by the sum i=1
2xns i , on each state variable. In accordance with 

eq. 5, the variation of TIN = NH4 + NO3, can be estimated as: 

  cTIN(x,y,z,t)  i=1
2xns[Si

NH4(x,y,z,t) + Si
NO3(x,y,z,t)] i  (6) 

The effect on the average yearly concentration, cav
TIN is obtained by integration over the 

spatial and time domains: 

 cav
TIN  (1/V)(1/T) i=1

2xnsi
 TV [Si

NH4(x,y,z,t) + Si
NO3(x,y,z,t)] dVdt  (7) 

which can be related to our problems and rewritten in a more compact form: 

  cav
TIN  QTTIN - cav

TIN()  i=1
2xns [Sav,i

NH4+ Sav,i
NO3] i  (8) 

where Sav,i
iv = (1/V)(1/T) TV [Si

iv(x,y,z,t)dvdt , iv=NH4, NO3 and cav
TIN() is the 

average concentration obtained using the current estimates of the loads . 

Eq. 8, can then be used to assess the MPLTIN, together with the equation: 

LTIN = i=1
2xns i      (9) 

which gives the total daily load of TIN. Eq. (8) and (9) form a set of two constraints for the 

2xns unknowns: in order to obtain a unique solution, one has to state in mathematical form 

the other 2xns-2 constraints: this could be done, for example, by taking into consideration the 

costs of reducing the load of each source, in order to optimize the interventions required to 

respect the QT. In this modelling exercise, we chose a very simple hypothesis, that is, to 

reduce all the loads in the same proportion, thus setting i = -i. 

By substituting the above expression in eq. (9) and (8) one gets: 

  -[QTTIN - cav
TIN()] /  i=1

2xns [Sav,i
NH4+ Sav,i

NO3] i    (10) 

MPLTIN = i=1
2xns (1-)i       (11) 

It should be noted that the estimate (11) can be obtained from a single run of the program 

which solves eq. (1) and (4) and that, once the sensitivity vectors Si are computed and stored, 

one can easily compare the water quality targets with other linear functions of the state vector 

and take into account other external constraints. 

The new input scenario, given by eq. (11), has been used in a second simulation, in order 

to assess the validity of the linear hypothesis in this case study and to evaluate the carrying 

capacity of the ecosystem. The results show that the linear assumption leads to a slight 
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overestimation of the reduction, around 5%, and that the productivity of the ecosystem could 

be strongly affected by the reduction of inputs required to meet the quality target: this may 

suggest a revision of this threshold, if one wishes to maintain the activities of sustainable 

fishery and acquaculture in the lagoon of Venice. 
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SUMMARY 

Banks trade every day a number of different financial instruments. Some of those, such 

as derivatives, are more difficult to be dealt with as their values depend, sometime 

complexly, on the behaviour of more basic financial instruments. Complex mathematical 

models are developed to evaluate derivatives (pricing), to quantify the maximum risk that a 

bank is facing trading these instruments, and to suggest an effective strategy to manage the 

risk (hedging). The construction of a hedging strategy involves the assessment of the risk 

deriving from a given contract and the search for one or more contracts to offset such risk. 

The final objective is that of building a portfolio that has minimum risk (ideally risk-less). 

A number of different hedging strategies can be thought. These depend on the type of risk 

that one is willing to offset (the risk associated with changes in the underlying, in 

volatility, and so on). In this paper it is shown how uncertainty and sensitivity analysis can 

be valuable tools to analyse the error made when hedging a certain financial instrument via 

a delta hedging strategy, which is a strategy offsetting the risk associated with changes in 

the underlying. 

1. INTRODUCTION 

Assume the financial instrument to be hedged is a caplet, which is an interest rate 

sensitive derivative. A natural candidate to offset the delta risk incurred when trading 

caplets is a forward rate agreement (FRA), which is a contract where two parties agree that 

a certain interest rate will apply to a certain amount of money (principal) for a certain 

period in the future. At time zero the investor sells a caplet and decides to buy a certain 

amount of FRA's in order to offset the (delta) risk associated with the caplet. The amount 

of FRA's is chosen such that the resulting portfolio (made by the caplet and FRA's) is, at 

time zero, delta neutral i.e. insensitive to certain movements of the yield curve (the curve 

relating interest rates to bond with different maturity). Delta neutrality is a local property. 

As time passes the portfolio tends to lose it. In principle, only revising the portfolio 

continuously it would be possible to maintain the delta neutrality. In practice a hedging 

error is generated as the portfolio is updated only at discrete times. 

The hedging error is defined as the discrepancy between the value of the portfolio at 

maturity and what it would have been gained investing the initial value of the portfolio at 

the risk free rate till maturity. Several studies have dealt with hedging error analysis in 

different contexts. Valuable examples are [1,2,3].  

mailto:francesca.campolongo@jrc.it
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In our case study we consider the delta hedging error as a random variable with a 

certain distribution centred on zero. Our purpose is that of focusing on the 5th percentile of 

this distribution. This value can be interpreted as the maximum loss that the portfolio's 

owner is facing with a probability of 95%. In the literature it is referred as value at risk [4].  

A Monte Carlo experiment is performed in order to obtain the hedging error empirical 

distribution and to estimate its 5th percentile. Uncertainty analysis is then used to quantify 

the uncertainty in the variable of interest, while sensitivity analysis is used to identify 

where this uncertainty is coming from, which is what factors are causing the value of the 

maximum loss to be uncertain. The method adopted is the Fourier Amplitude Sensitivity 

Test (FAST) in its extended version proposed by Saltelli et al. [5].  

Section 2 describes the financial framework assumptions and the hedging strategy 

adopted. Section 3 describes the uncertainty and sensitivity analysis settings, while section 

4 recalls the FAST method. Section 5 reports the results of the analysis and conclusions. 

2. THE FINANCIAL FRAMEWORK 

To quantify the hedging error, the value of the portfolio has to be known at time zero 

and at each time at which the portfolio composition is updated. This requires knowledge of 

the yield curve at any time, as well as the prices of FRA’s and caplet. Therefore to perform 

our analysis we first need to recover the yield curve dynamic. 

Let assume movements in the yield curve to be driven by only one factor, namely the 

short-term interest rate (spot rate). This is assumed to evolve according to the Hull and 

White one-factor model (HW, hereafter) [6]. HW describes the spot rate dynamic as: 

tttt dWrtdtrtdr ),(),(       (2.1) 

with 

    tt artrt ,  and     trt, .       (2.2) 

The terms  trt,  and  trt,  are respectively the drift and the standard deviation 

(volatility) of the spot rate, while  0: tWt  is a (standard) Wiener process. The model is 

mean reverting (with a the constant mean-reverting parameter) and the choice of the time 

dependent function  t  can be directly recovered from the initial yield curve. 

It can be shown that the whole yield curve at any time t, can be recovered from the 

knowledge of: the model parameters ( and a), today's pure discount bond (PDB) prices, 

and the level of the spot rate at time t. Therefore simulating a path for the spot rate 

dynamic from (2.1)-(2.2) is sufficient to derive the yield curve at any time. 

Let now consider a European put option, which in general is a contract giving the owner 

the right to sell the underlying S for a certain price K (strike) at a certain date t in the future 

(maturity). At maturity the contract pays off the amount ),0max( tSK  . 

The financial instrument of interest here is a caplet, which is an option that provides a 

payoff when a specified interest rate is above a certain level. Consider two times 1t  

(resetting time) and 2t . Let Δ (tenor) denotes the difference between 2t  and 1t , R the 

interest rate prevailing in the time interval ( 1t , 2t ), X the interest rate fixed at the outset of 
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the contract, and L the principal. A caplet is a contract paying at time 2t  the amount 

L  ),0max( XR .  

It is easy to show that the caplet is equivalent to a put option on a PDB with principal L 

and maturity 2t , with strike   XK 11 , and expiry 1t .  

In the HW framework, the actual price of a European put option can be recovered 

analytically. Hence, the same applies to a caplet.  

The problem of hedging involves the search of one (or more) financial instrument which 

sensitivity to movements in the yield curve is of opposite sign. The idea is to build a 

portfolio with zero sensitivity to changes in the yield curve. However, since there are many 

ways in which the yield curve can move, many different strategies can be thought. In this 

paper we consider delta hedging, which aims at offsetting the risk associated with shifts in 

the yield curve. As stated above, the instrument chosen to hedge the caplet is a FRA. A 

common market practice (non arbitrage arguments) makes the present value of the contract 

equal to 

))(,0(),0(),0(),,0( tTTPDTRTPDBtPDBTtF FRA    (2.3) 

where PDB(0,) indicates the today’ s value of a PDB with maturity , and RFRA 

designs the interest rate earned for the period of time between t and T on a certain 

principal. It is worth noting that the caplet and FRA have an opposite behaviour with 

respect to movements in the yield curve.  

The amount of FRA’s to be purchased in order to hedge the caplet depend on the 

underlying assumption about the type of movement followed by the yield curve. Three 

different scenarios are considered: a parallel shift up, a parallel shift down, and a curve 

inversion. In each scenario, changes in the FRA and caplet values are computed as the 

difference between the observed values and the ones given respectively by formula (2.3) 

and the HW analytical formula when applied in the new scenario. The ratio of these 

changes equals the amount of FRA’s to be purchased. By construction, such amount is 

such that the resulting portfolio is insensitive to such movements. 

The portfolio is updated a finite number of times (no updating it is also possible). 

Transaction costs are included in our analysis and are assumed to be a fixed proportion of 

the amount exchanged. These costs partially offset the benefit deriving from increasing the 

number of portfolio adjustments. 

3. THE ANALYSIS 

Our analysis focuses on the maximum loss that the portfolio's owner is facing, at least 

with 95% confidence level. This translates into the 5th percentile of the distribution of the 

hedging error. There are several factors contributing to the uncertainty in this value. These 

include: the features of the caplet (resetting time, interest rate agreed at the outset of the 

contract, tenor), the parameters of the model (the mean reverting parameter a and the spot 

rate volatility ), the strategy used to build the hedging portfolio (represented as a trigger 

factor describing the type of movements in the yield curve with respect to which the 

portfolio is immunised), and the number of times at which the portfolio is updated. 

Uncertainty and sensitivity analysis are used respectively to quantify the uncertainty in 

the objective function and to apportion it to sources (factors).  
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From a computational point of view, every single figure for the objective function is 

obtained via Monte Carlo. One hundred paths for the spot rate r are simulated from the 

discrete version (2.1)-(2.2) using the Eulero scheme for a period of time covering 3 years 

with weekly frequency. From the spot rates the PDB prices are computed by the HW 

model and the corresponding yield curve structure is then recovered (note that a one to one 

simple relationship holds between the yield curve and the PDB prices for different 

maturities). Given a yield curve, the prices of the caplet and FRA’s are computed in closed 

form. Knowledge of those prices allows the construction and the evaluation of the hedging 

portfolio at any time. In particular, it allows to establishing the final value of the portfolio 

and the hedging error. 

4. THE FAST METHOD 

The method used to perform SA on our case study is the Fourier Amplitude Sensitivity 

Test (FAST). FAST was proposed in the 70's and was successfully employed in 

investigating the sensitivity of large sets of coupled reaction systems to uncertainties in 

rate coefficients. Later on, the method was reviewed and re-interpreted as to fit into an 

ANOVA setting. In an ANOVA setting the total output variance D is decomposed into 

orthogonal terms of increasing dimensionality, e.g. for a model with three factors: 

12323131221 DDDDDDD         (4.1) 

The first order term iD captures the effect on the output uncertainty due to variations in 

factor i, while all the other factors are averaged over their range of uncertainty. The second 

order term ijD  is a two-way interaction between factors i and j not including the individual 

effects due to i and j, which are already taken into account by iD  and jD . Higher order 

partial variances express the influence on the output uncertainty due to higher order 

interactions among factors, and are defined in a similar way. The FAST sensitivity indices 

,...i,i 21
S are obtained by dividing equation (4.1) by D. 

In FAST, the input factors of a model are assumed to be non-correlated and all of them 

are varied simultaneously over their ranges of uncertainty, so that a global appreciation of 

the sensitivities can be achieved.  

The FAST method was extended by Saltelli et al. [5] in order to allow for the estimation 

of total effects, 
iTS , k,...,,i 21 .  A total effect index 

iTS is defined as the sum of the 

indices ,...i,i 21
S , which include the index i. For instance, in a model with three factors the 

total index for factor 1 looks like: 12313121 SSSSS
1

T . The total index 
iTS is a 

more accurate measure of the effect of a factor on the model output since it takes into 

account all interaction effects involving that factor. In the version proposed by Saltelli et 

al. the computation of the total indices comes at no extra cost: the same set of model 

evaluations used to estimate the iS 's can be used also to obtain the 
iTS 's.  

Here the method has been employed for a 7-factor model with a total computational 

cost of 959 model evaluations. The selected input factor distributions are specified in Table 

1. 
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Table 1. Input factor distributions 

Factor Distribution 

a N(0.03; 0.01) 

 U(0.05;0.055) 

r cap (1.2X, 1.1X, X, 0.9X, 0.8X)1 Discrete Uniform 

tenor (12, 24,48) Discrete Uniform 

resetting time (72,78,82,86,90,94,98) Discrete Uniform 

number of portfolio revisions (n rev) (0,1,…,72)  Discrete Uniform 

hedging (1,2,3) Discrete Uniform 

5. RESULTS AND CONCLUSIONS 

The main statistics computed on the objective function distribution, after it has been 

normalised by the principal, are: mean -0.43%; standard deviation 0.41%; 5th percentile -

1.27%, skewness –2.91%. These allow to drawing a number of conclusions. The mean 

value stresses that the average maximum loss faced by the portfolio’s owner is 0.43% of 

the amount invested (principal). In the worst case, this maximum loss reaches the value of 

1.27%.  

While these figures may seem to be relatively low, it is worth noting that in our 

framework the yield curve dynamic is quite simple and it has been simulated using the 

same model used for hedging. Taking into account a more realistic evolution of the yield 

curve independent of the model used for hedging, would imply a lower ability of the model 

in hedging the caplet and hence a higher maximum loss. 

The sensitivity indices computed for the 7 input factors are illustrated in the pie charts 

in Figures 1 and 2. The sum of the first order indices (Figure 1) indicates that nearly 55% 

of the output variance is due to interaction effects among factors. For models with such a 

high non-additivity, the total indices represent a more meaningful measure to look at. 

The symmetry in Figure 2 indicates a model where almost all input factors are similarly 

important on the output, which is a well-balanced model. This is not surprising as the 

number of factors included in the analysis is limited. Furthermore, a factor such the 

number of portfolio revisions, which a priori might be thought as a leading factor, it is 

likely to lose its role when transaction costs are included. The gain due to an increase in the 

number of revisions is offset by higher costs incurred updating the portfolio. 

The hedging trigger factor is the most important one. In our feelings its relevance could 

further increase when widening the number of possible hedging strategies.  

As expected, the caplet resetting time is the less important factor. We suspect that the 

main effect due to this factor is its interaction with the number of portfolio revisions. 

Further analysis may focus on an investigation of the importance of this effect.  

 

 

                                                 
1 X is the forward rate (as seen from zero) prevailing in the interval starting at resetting time and with length 

equal to tenor. 
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Figure 1 First order sensitivity indices  Figure 2 Total order sensitivity indices 
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1. INTRODUCTION 

As computer supported decision making is becoming increasingly important and popular, it 

is crucial that the underlying mathematical models can be thoroughly validated before 

deployment of the decision support system. An important element in model validation is 

sensitivity analysis: how sensitive are the resulting recommendations to changes in the model 

parameters? In some cases, the choice of parameter values is extremely influential on final 

results. For example, it is well known distributional assumptions and parameter values are 

highly influential on tail distributions [8,2]. If this influence is neglected, the consequences 

can be disastrous. 

Bayesian networks play an important role in modelling complex decision problems. In 

recent years, a number of approaches to sensitivity analysis in Bayesian networks have been 

suggested. Laskey [11] introduced a method for computing the partial derivative of a posterior 

marginal probability with respect to a given parameter. Castillo, Gutiérrez and Hadi [4,3] 

have shown that a posterior probability can be expressed as a quotient of linear functions in 

the parameters and the evidence; in the case of Gaussian distributed variables, covariances 

can appear squared. This discovery simplifies sensitivity analysis in Bayesian networks. 

Computationally efficient methods have been developed for determining the coefficients of 

such quotients [10,7]. 

In this paper we address the problem of sensitivity analysis in Gaussian networks (i.e., 

Bayesian networks with Gaussian distributed variables) and show how changes in the 

parameter and evidence values influence marginal and conditional probabilities given the 

evidence.  

2. BAYESIAN NETWORKS 

In this section we briefly review Bayesian networks and, specifically, Gaussian networks. 

For details on Bayesian networks and Gaussian networks, see e.g. [14,9,15,12]. 

Definition 1 (Bayesian network) A Bayesian network is a pair (D,P),  where D is a 

directed acyclic graph, P={p(x1|1),…,p(xn|n)} is a set of n conditional probability densities 

(CPD), one for each variable, and i is the set of parents of node Xi in D. The set P defines 

the associated joint probability density (JPD) as 

file:///E:/ym/Compose%3fTo=castie@ccaix3.unican.es&YY=17062&order=down&sort=date&pos=0
file:///E:/ym/Compose%3fTo=uk@cs.auc.dk&YY=17062&order=down&sort=date&pos=0
file:///E:/ym/Compose%3fTo=linda@cs.uu.nl&YY=17062&order=down&sort=date&pos=0
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The key features of Bayesian networks are the factorisation given by (1) and the fact that 

conditional independence relations can be inferred directly from the graph D. 

Definition 1 (Gaussian network) A Bayesian network is said to be a Gaussian network if 

and only if the joint probability density associated with its variables X is a multivariate normal 

(or Gaussian) distribution, N(,), given by 

 )()(2/1exp||)2()( 12/12/    xxxf Tn , 

where  is the n-dimensional mean vector,  is an nxn covariance matrix, | is the 

determinant of  and denotes the transpose of .  

The JPD of the variables in a Gaussian network can be specified as in (1) with the CPD for 

variable Xi given by  
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where ij is the regression coefficient of Xj in the regression of Xi on the parents, i, of Xi 

and  

T

iii
iiii 

 



1  

is the conditional variance of Xi given i = i where i is the unconditional variance of Xi, 

i are the covariances between Xi and the variables in iand i  is the covariance matrix 

of i. Note that ij measures the strength of the relationship between Xi and Xj. If ij=0, then 

Xj is not a parent of Xi. 

The following is an illustrative example of a Gaussian network. 

Example 1 Consider the Gaussian network indicated in Figure 1. Suppose the random 

variable  

X=(A,B,C,D) is normally distributed, i.e.,  ,~ NX ,. A Gaussian network is defined by 

specifying the set of CPDs appearing in the factorisation (1) which gives 

),|()|()|()(),,,()( cbdfacfcbfafdcbafxf  , 

where 

Figure 1: The independence graph of a Gaussian 

network. 
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This set of CPDs represents the Gaussian network. Three sets of parameters are involved 

in this representation, namely {CD}, {CD}, {BA, CA, DB, DC}. 

Note that so far, all parameters have been considered in symbolic form. Thus, we can 

specify a Bayesian model by assigning numerical values to the parameters above. For 

example, for 

C D 

C D  BA  CA  DB , DC 

we get 
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3. PROPAGATION IN GAUSSIAN NETWORKS 

In this section we present a conceptually simple and efficient algorithm for propagating 

evidence in Gaussian networks. The algorithm is based on the following theorem, which 

characterises the CPDs obtained from a Gaussian JPD (see e.g. [1]). 

Theorem 1 (Conditionals of a Gaussian distribution) Let Y and Z be two sets of random 

variables having a joint multivariate Gaussian distribution with mean vector and covariance 

matrix given by 
















Z

Y




  and 



















ZZZY

YZYY

, 

where Y and YX are the mean vector and covariance matrix of Y, Z and ZZ are the mean 

vector and covariance matrix of Z, and YZ =ZY is the covariance matrix of Y and Z. Then the 

CPD of Y given Z=z is multivariate Gaussian with mean vector  Y|Z=z and covariance matrix  

Y|Z=z  given by  

 ),(
1| ZZZYZYzZY z  
      (2) 

 ZYZZYZYYzZY 
 1|      (3) 

Note that the conditional mean (2) depends on z but the conditional variance (3) does not.  

Theorem 1 suggests an obvious procedure to obtain means and variances of any subset of 

variables XY   given a set of evidence variables XE   whose values are known to be e. 

Replacing Z in (2) and (3) by E, we obtain the mean vector and covariance matrix of the 

conditional distribution of Y given evidence e.  
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Although there exist more sophisticated methods for evidence propagation [16,6,12,13], in 

order to simplify the calculations, we shall use an incremental method, updating one evidence 

variable at a time (taking elements one by one from E). In this case we do not need to 

calculate the inverse of a matrix because ZZ degenerates to a scalar. Moreover, Y and YX 

and are column vectors. Then the number of calculations needed to update the probability 

distribution of the non-evidence variables given a single piece of evidence is linear in the 

number of variables in X. 

Below we illustrate symbolic computation in Gaussian networks using the conceptually 

simple method outlined above. The computations are performed in Mathematica; for details 

see [5]. 

Example 2 Consider the mean vector and covariance matrix in Example 1, where some of 

the parameters are specified in symbolic form: 























q

p

9

4
  and 




















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bcf

d

c

fda

28

28208

854

4

 

This gives us 











bc

c
YY

5
, 




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


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20d

da
YY , 








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28

84

f

YY . 

We use Mathematica to calculate the conditional means and variances for variables B and 

D given evidence {A=x1, C=x3}, and we get 

.
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


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



 

We see that the conditional means and variances are ratios of polynomials in the 

parameters. For example, the polynomials are first-degree in p, q, a, b, x1, and x3 (i.e., in the 

mean and variance parameters, and in the evidence values), and second-degree in d and f (i.e., 

the covariance parameters). Note also the common denominator for these functions. 

The observations made in Example 1 are formalised in Theorem 2 (see [4] for a proof ). 

Theorem 1 (Rational functions of polynomials) The mean and variances of the 

conditional probability distributions of the variables of a Gaussian network are rational 

functions of polynomials. Specifically, the polynomials involved are of degree at most one in 

the evidence variables, the mean parameters, and the variance parameters, and of degree two 

in the covariance parameters involving at least one evidence variable. Also, the polynomial in 

the denominator is the same for all variables.  
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4. SENSITIVITY ANALYSIS 

For Gaussian networks, one normally compute probabilities of the form 

 

).()()|(

),()|(

),(1)|(

||

|

|

aFbFebXaP

aFeaXP

aFeaXP

eXeXi

eXi

eXi

ii

i

i







      (5) 

Therefore, in performing sensitivity analyses on these probabilities with respect to a given 

parameter   or evidence value e , it is important to know the partial derivatives 







 ));(),;(;(| eeaF eX i  and 






 ));(),;(;(| eeaF eX i . 

In what follows we use the compact notation ),( e  and denote by  a single 

component of   (i.e., e ). We can write  












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Since 
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we have 
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and 
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and then (6) becomes 
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Thus, the partial derivatives   /))(),(;(| aF eX i
 can be obtained by a single 

evaluation of )(  and )( , and determining the partial derivatives   /)(  and 

  /)(  with respect to all the parameters or evidence variables being considered. Thus, 

efficient computation of these partial derivatives is crucial.  

They can be calculated either from the algebraic structure of the conditional means and 

variances or by direct differentiations of the formulas (2) and (3). Below, we shall concentrate 

on the former approach; see [5] for details on the latter.  
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To calculate   /)(N  and   /)(N  for node N we need to know the dependence 

of )(N  and )(N  on the parameter or evidence variable . This can be done with the 

help of Theorem 2. To illustrate we use the previous example. 

From Theorem 2 we can write  
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where N is B or D, and since we have only 6 unknowns, calculation of )(31 ,|
a
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Similarly, from Theorem 2 we have 
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and, again, we determine the constant coefficients based on different values of 
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Note that if N=B, then 3= 4= 34=0and we need no calculations. 

Finally, we can also obtain the partial derivatives with respect to evidence values. From 

Theorem 2 we have  
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Then, the partial derivatives with respect to x1 are 
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Note that if partial derivatives with respect to several parameters are to be computed, the 

number of computations reduces even more because some of them are common.  

Example 3 We continue with the previous example and calculate now the probabilities of 

B exceeding the critical value 11, and D exceeding the critical value 30, because they have 

been determined as those producing important damages in the associated areas B and D, 

respectively. Using (5) and (7) we get 

00135.0
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where the stepwise propagation method outlined in Sec 3 with evidence A=7 and C=17 

yields  
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In Table 1 we have calculated all the normalised partial derivatives of the failure 

probabilities. We have used the parameter values for the normalisation. 
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t

CADPt


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p 

q 

a 

b 

d 

f 

x1 

x3 

-0.01330 

0.00000 

0.00886 

0.00000 

0.00000 

0.00000 

0.03102 

0.00000 

-0.01550 

0.07233 

0.00000 

0.21700 

0.04134 

-0.06200 

0.03617 

0.08783 

Table 1: Normalised partial derivatives with respect of all 

parameters. 

5. CONCLUSIONS 

Sensitivity analysis in Gaussian networks is greatly simplified due to the knowledge of the 

algebraic structure of the conditional means and variances. The fact that conditional means 

and variances are quotients of linear or quadratic functions of the parameters and evidence 

values, which appear as linear or quadratic terms, allows an efficient evaluation. Closed-form 

expressions for the partial derivatives of probabilities of the form )|( eaXP i  , 

)|( eaXP i   and )|( ebXaP i   with respect to the parameters can be obtained. 
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SUMMARY 

Bayesian model calibration is introduced, and some of its advantages are mentioned. The 

theory is illustrated by the case of a simple model for a crop’s nitrogen uptake. 

1. INTRODUCTION 

Many studies in uncertainty and sensitivity analysis focus on the analysis stages taking 

place after the assessment of the uncertainty distribution of the model parameters (e.g. 

Saltelli, Chan and Scott; 2000). By now, quite a number of reasonably satisfying procedures 

exits for these latter stages. Thus it may be argued that the assessment of model parameter 

uncertainty is the bottleneck of  uncertainty analysis. Since parameter uncertainty has to be 

assessed in the form of a probability distribution, it seems very appropriate to perform this 

assessment by means of Bayesian statistical methods, which supplies such a distribution. We 

will call this a Bayesian calibration. 

 

Apart from its seamless link to uncertainty analysis, Bayesian calibration has several other 

advantages – at least in principle. In modelling, one typically uses very heterogeneous 

information to shed a light on a subject about which direct information is insufficient. The 

information available comes from observations and experiments at several spatio-temporal 

scales, from literature, from experts etcetera. Bayesian methods seem more apt to integrate 

such diverse information than classical frequentist methods. When calibrating a model 

otherwise, one has to decide which parameters to change and which to keep fixed; what 

measure of discrepancy between observations and prediction to choose; how to comply with 

expert knowledge; etcetera. After a non-Bayesian calibration the uncertainty about the 

parameters is often obscure. In Bayesian calibration the answer is: to consider all parameters; 

the criterion follows from the stochastic model for the data; and expert knowledge can be 

used as prior information (see also Kennedy and O’Hagan, 2001). 

 

Thus, the Bayesian approach promises to be very suitable for model calibration. This paper 

describes a first exercise for a relatively simple case – in order to find out if the promises 

mailto:m.j.w.jansen@plant.wag-ur.nl
http://www.plant.wageningen-ur.nl/
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come true. We consider a model describing a crop's response to the application of nitrogen. 

The model is descriptive and contains seven parameters specific to a situation – a field under 

particular weather conditions. After describing the model, we discuss the Bayesian estimation 

of parameters of a single data set from some situation. Next we discuss the possibilities of a 

Bayesian analysis of several data sets stemming from a number of situations. Such an analysis 

is appropriate when one wishes to make predictions for a new situation. The analysis is based 

on the assumption that the vector of seven parameters varies randomly from situation to 

situation. 

1.1. The case studied 

 

A single data set records the response of a sugar beet crop to the application of the nutrient 

nitrogen (N); it consist of the N-applications (A), the corresponding measured N-uptakes (U) 

and the dry-matter yields (Y). In an experiment of typical size 6, the data consists of three 

columns with length 6: A1...6, U1...6 and Y1...6 (in Kg per ha). 

In this paper we fit the seven-parameter model QUADMOD (Ten Berge et al. 2000) to 

such data. The model consists of a function u(a) that describes how the uptake depends on the 

application a, and a function y(u) describing how the yield depends on the uptake u. The 

response functions u(a) and y(u) share some parameters. Fig. 1 and 2 show data and model fit 

for a particualar situation: sugar beet, 1988. 

The uncertainty about the parameter values that remains after taking into account the 

information in a data set, is assessed with the – Bayesian – Metropolis algorithm (e.g. Gelman 

et al., 1995). The result is a sample of parameter vectors expressing the remaining uncertainty. 

The seven parameters describing the two crop response curves will be denoted by 1...7. 

Apart from these, there are two stochastic parameters 2 and 2. As model for the 

measurements we took 

 

Ui = u(Ai, 1...4) + i 

Yi = y(Ui, 1...7) + i 

 

in which the 's are mutually independent normal(0,2), while the 's are mutually 

independent normal(0,2), independent of the 's. These random components account for 

measurement errors and for variation between the plots in the field. Note that the two 

response functions u() and y() share some parameters, which is an argument to fit the two 

responses simultaneously. 
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Figure 1. Uptake vs. application    Figure 2. Yield vs. uptake 

2. METHODS AND RESULTS 

In a Bayesian analysis the uncertainty about the parameters before and after the analysis of 

a data set is represented by probability distributions: the prior and the posterior distribution. 

The prior distribution contains the information already present before the experiment. In our 

case there is not much prior information and the priors for parameters 1...7, ln() and ln() 

are assumed to be homogeneously distributed between liberal minima and maxima, which 

mainly exclude theoretically impossible values, like efficiencies greater than 1. 

The data come in through the likelihood, say . According to the stochastic model 

assumed, we have 

 = c i {
-1 exp-(Ui - u(Ai, 1...4))

2 / (22)} i {
-1 exp-(Yi - y(Ui, 1...7))

2 / (22)} 

in which c is a constant of no importance. According to Bayes' rule, the posterior density, 

say q, is proportional to the product of the prior, say p, and the likelihood , i.e. q()  p() 

(), in which  stands for the parameter vector (1...7, , ).  

A sample from the posterior distribution, expressing the remaining uncertainty about the 

parameters, is obtained with the Metropolis algorithm (e.g. Gelman et al., 1995). At each 

iteration, a new value * is proposed by some random mechanism. The proposal is accepted 

by lot, namely when (*) p(*) > u () p(), in which u is uniform(0,1). The next value in 

the sequence will be set to * if the proposal is accepted, otherwise the next value will be set 

to the old  again. The sequence thus obtained converges to a non-independent sample from 

the posterior distribution.  

Fig. 3 illustrates an aspect of a posterior sample: a scatterplot graph of parameters 3 

and 6 for the 1988 sugar beet data set (sample of size 1000). Note the strong dependence, 

probably caused by the relatively large number of parameters. The range plot Fig. 4 

summarises a feature of the analysis of 11 similar experiments with sugar beet done at one 

site in 1985-1995. It shows the means and standard deviations of the uncertainty distribution 

of a derived parameter, namely the uptake at application 100 kg/ha. 
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Figure 3. Posterior sample: 6 vs. 3  Figure 4. Uptake range plot for 11 years 

 

Subsequently, we tried to combine the results of the analysis of several data sets, 

which were considered as sample from a population of situations about which one wants to 

make predictions. The combined analysis can be used to provide the parameter uncertainty for 

a new situation from the same population of experiments. It is assumed that the 7-vector  of 

parameters varies randomly from case to case, because of the variation that can been observed 

in Fig. 4 – presumably due to differences in weather conditions and field plots. We could 

easily answer this question for individual parameters, but we have not succeeded to answer it 

for the complete parameter vector, due to theoretical as well as practical problems (familiarity 

with Bayesian methods, software and computer-time). The major problem was that the 

stochastic model for several data sets comprises a 7-by-7 covariance matrix for variation of  

from case to case, which implies many additional parameters, for which one should fabricate 

a suitable non-informative prior. 

3. DISCUSSION 

In the case studied, the number of observations in individual data sets was often hardly 

greater than the number of parameters. Although it takes more computer time than usual, a 

Bayesian analysis per data set appeared to be quite feasible. It often leads to strong 

correlations in the posterior distribution, and to large uncertainties in some of the response 

function parameters; but seldom to large uncertainties in the values of the response functions 

in the observed range. 

For the purpose of a subsequent uncertainty analysis, a Bayesian analysis of all 

parameters simultaneously over several similar data sets would be the most relevant. 

Unfortunately, we were not able to perform such an analysis, due to theoretical as well as 

practical problems. In contrast, a Bayesian analysis of individual parameters over several data 

sets posed no problems. 

In summary, although Bayesian calibration is a promising area, there is still much to 

do to make the promises come true – even in relatively simple situations. 



 

Session 5 Bayesian Methods  77 

4. ACKNOWLEDGEMENTS 

We would like to thank prof. dr. Mariusz Fotyma, Institute of Soil Science and Plant 

Cultivation, Pulawy, Poland, for providing the field data of the case discussed. 

5. REFERENCES 

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B., 1995. Bayesian data analysis, London: 

Chapman & Hall. 

Kennedy, M.C. and O’Hagan, A., 2001, Bayesian calibration of computer models. 

J.Roy.Statist.Soc, B (to appear). 

Saltelli, A., Chan, K. and Scott, E.M. (eds.), 2000, Sensitivity analysis. Chichester: Wiley. 

Ten Berge, H.F.M., Withagen, J.C.M., De Ruiter, F.J., Jansen, M.J.W. and Van Der Meer, 

H.G., 2002, Nitrogen responses in grass and selected field crops: QUADMOD 

parameterisation and extensions for STONE application. Wageningen: Plant Research 

International, Report 24. 

 



 

Session 5 Bayesian Methods  78 



 

Session 5 Bayesian Methods  79 
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SUMMARY 

We consider the problem of measuring uncertainty induced in model outputs by model 

inputs with uncertain values. Specifically, we address the problem of ascertaining which 

uncertain inputs contribute most to the uncertainty in the output. In variance-based sensitivity 

analysis this is achieved by partitioning the variance of the output into components relating to 

each input and their interactions. Monte Carlo methods are usually employed to estimate this 

partition. However, this may be impractical when the model is computationally expensive, so 

that inferences must be made using a small number of model runs. We propose a Bayesian 

alternative to conventional Monte Carlo variance-based sensitivity analysis. The Bayesian 

method allows accurate estimation of variance and components of variance from a much 

smaller number of runs of the code. 

1. INTRODUCTION 

A deterministic computer model returns an output y  when provided with a set of input 

values x . We represent the code by a function ).(xy Though the output will often be a 

vector, we only consider a scalar output y . It is further supposed that the function (.) is 

computationally expensive, so that the user of the model will be restricted to a relatively small 

number of runs of the code. We are interested in the case when there is uncertainty regarding 

some or all of the input values relevant to a particular situation. The true, unknown input 

values are denoted by X , and our uncertainty about X  is represented by the distribution G . 

We then wish to know the distribution of the corresponding unknown output, denoted by 

),(XY  which we call the uncertainty distribution. In principle, the uncertainty distribution 

can be determined using Monte Carlo methods; a large sample of inputs is drawn from G , the 

code is run at each set of inputs, and a sample from the distribution of Y is obtained. This 

approach is not practical in the case when (.)  is computationally expensive, due to the 

number of runs of the code required. 

A method for dealing with this problem is to model the code (.)  itself as a random 

variable, simply in the sense that the output of )(x will be unknown until the code is run. We 

can then consider the distribution of )(x  given a small number of runs of the code. 

Providing the function (.)  is fairly smooth, knowing the value of )(x  should give us good 

information about )(x'  for x  close to 'x . Whereas the conventional Monte Carlo approach 

uses sampling to learn about how much )(x  varies with x , the Bayesian method uses a 
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small number of code runs to estimate )(x  for all x . This leads to quite different and 

potentially more efficient ways to estimate the output uncertainty.  

Since we are modelling the function (.)  as a random variable, the distribution of Y is now 

also a random variable, and we must make inferences about the uncertainty distribution. 

Haylock and O’Hagan [1] derived the distribution of the expectation of Y , and the posterior 

mean and variance of the variance of Y , given a small number of runs of the code. Oakley 

and O’Hagan [2] considered inference about the distribution and density functions of Y . 

Here, we address the problem of assessing which elements in the vector X  are most 

responsible for inducing the uncertainty in Y . In particular, we follow the variance-based 

methods described in Chan et al [3], and give analogous techniques within the Bayesian 

framework. Some technical details of our method are presented in the next section, where we 

describe inference about the unknown function (.)  and give details of the computation of a 

partition of the variance of Y in the case of independent inputs. A simple illustration is given 

in section three. 

2.  METHODOLOGY 

We now review the Gaussian process model for the function (.)  used in Haylock and 

O’Hagan [1] and Oakley and O’Hagan [2]. We suppose that for any collection of inputs 

,x,,x n1   the corresponding set of outputs ,y,,y n1  have a multivariate normal distribution. 

A priori we state that  

βxhβx )(}|)({ TE  , 

for some vector of known functions h , and that 

||),'(||},|)'(),({ 22
xxβxx  cCov   

where )(dc decreases as d increases, and .1)0( c  Weak prior distributions for β  and 
2  

are commonly used, although the designers of the computer code may have proper prior 

knowledge about the function (.) . Incorporating this knowledge into the analysis is the 

subject of Oakley [4]. We now observe data 
,)}(,)({ T

n1 x,xd  
 and using standard 

results for multivariate normal distributions, outputs at any untested inputs also have normal 

distributions, with 

)},()(||)(||{},|)'(),({

),()()(})({

22

1
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
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
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



 

Using the conjugate prior for β  and 
2 , the normal inverse gamma distribution, it is then 

straightforward to remove the conditioning on β and 
2  to show that d|)(x  has a Student-t 

distribution. 
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2.1. Variance decomposition 

A variance decomposition of Y  for an input ),,( 1 rXX X  given in Cox [5] is 





ji

kijij

r

i

i VVVYVar ,)(
1

    (1) 
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),|(

),|(

),|(

),(

1

,1
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ml

lm

r

l lijk
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r

k kij

ii

ijkijk

XXXZZYEZ

XXZYEZ

XYEZ

ZVarV
















 

 

and so on. The elements rXX ,,1   must be independent. We can think of iV  as a main 

effect term giving the contribution to the variance of  Y from iX acting individually, and ijV  

as describing the variance due to the interaction of iX  and jX . In Chan et al [3], a total 

sensitivity index for a particular input is considered, which takes into account all interactions 

involving that input. Correspondingly, we can compute the total contribution of iX  to Var(Y)  

by calculating )}|({)( iYEVarYVar  X , where 
iX  denotes all the inputs in X except iX .  

Since the code (.)  is also treated as a random variable, the terms in (1) are also random 

variables, and so each term must be approximated by its posterior mean given the data d. In 

particular, we have 

22 )(})|({)}|({ YEYEEYEVar iii   XX , 

and the posterior mean of this with respect to (.)  is 

)'()()}'()({)()'()()},'(),({
X 'XX'

xxxxx dGdGEdGxdGxdGxxxxE

i i i
X X

iiiiiii     


  

3. EXAMPLE 

We now give a synthetic example to demonstrate the methodology described previously. A 

simple eight dimensional function is used: 

  
 




8

1

8

1

8

1 321)(
i i

i lkijii iiiiii
xxxwxxwxwx , 

where ),,(x 81 xx  , and weights 
iii

www 321 ,,  and indices iii lkj ,,  all chosen randomly. 

Input iX is assumed to have distribution ).1,(iN  Based on one hundred runs of the code, we 

estimate relative first order effects 
)(YVar

Vi , and relative total effects 

)(

)}|({)(

YVar

YEVarYVar i X
. (Estimating )(YVar based on a small number of runs of the code is 

described in Haylock and O’Hagan [1]). The estimates along with the correct values for 
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comparison are plotted in figure 1. We can see that in this example, fairly accurate estimates 

have been obtained using one hundred function evaluations only.  

Figure 1: Relative first order and total effects of each model input. 

4. DISCUSSION 

We have considered a partition of the variance of the uncertain model output, and shown 

that it is possible to estimate terms in this sum accurately using a relatively small number of 

runs of the code. The plots in figure 1 then provide a graphical summary of the contribution of 

each input to the uncertainty in the output. Other summaries can also be produced from the 

Bayesian model for (.) , such as plots of )|( iXYE  against iX , and contour plots of 

)|()|(),|( jiji XYEXYEXXYE   against iX  and jX  to illustrate interactions. Such 

outputs require very large numbers of runs using Monte Carlo methods, and provide a 

detailed analysis of the sensitivity of the output to one or more inputs. 
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1. INTRODUCTION 

When using simulation codes, one often has the task of minimising a scalar objective 

function with respect to numerous parameters. This situation occurs when trying to fit 

(assimilate) data or trying to optimise an engineering design.  For simulations in which the 

objective function to be minimised is reasonably well behaved, that is, is differentiable and 

does not contain too many multiple minima, gradient-based optimisation methods can reduce 

the number of function evaluations required to determine the minimising parameters. 

However, gradient-based methods are only advantageous if one can efficiently evaluate the 

gradients of the objective function.  Adjoint differentiation efficiently provides these 

sensitivities [1]. One way to obtain code for calculating adjoint sensitivities is to use special 

compilers to process the simulation code [2]. However, this approach is not always so 

‘automatic’. We will describe a modular approach to constructing simulation codes, which 

permits adjoint differentiation to be incorporated with relative ease. 

2. ADJOINT DIFFERENTIATION 

Figure 1 schematically shows a data-flow diagram for a sequence of calculations.  The goal 

is to determine the derivatives of the scalar output from this sequence with respect to the 

input data vector x.  Since  is a function of z, z is a function of y, and y is a function of x, the 

chain rule of differentiation applies: 



















 

x z

z

y

y

xi kj k

k

j

j

i,

         (1) 

Theoretically, the order of the summation doesn’t matter.  However, in computations it is 

better to sum over k before j, to avoid propagating large derivative matrices in the forward 

direction.  This reverse flow for the derivative calculation, shown in Fig. 1 as the dashed 

arrows, is called the adjoint differentiation calculation. 

Figure 1. A data-flow diagram describing a sequence of transforms of an input data vector 

x into a scalar output functional .  The data structures x, y and z may be large.  
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Derivatives of with respect to x are most efficiently evaluated by propagating 

derivatives of  with respect to the intermediate variables in the reverse (adjoint) 

direction (dashed lines). 

In the modular approach implied by Fig. 1, each box represents a software module that 

performs a particular transformation of the input data to produce output data.  In this approach 

adjoint differentiation can be achieved relatively easily.  The only requirement is that each 

module not only be able to perform its forward transformation, but also be able to calculate 

the derivative of its outputs with respect to its inputs.  The forward simulation process is 

achieved by linking together the necessary modules.  The output of the simulation is the 

objective function to be minimised, for example, the measure of mismatch to some given 

measurements.  The data-flow diagram (network or graph) that describes the forward 

calculation automatically provides the path for the reverse or adjoint calculation needed to 

accumulate the sensitivities of the objective function to any parameters in the simulation 

model.  In this framework, the sensitivities of the output objective function with respect to all 

the simulation parameters can be automatically calculated in a time that is comparable to the 

forward simulation calculation 

3. BAYES INFERENCE ENGINE 

The Bayes Inference Engine (BIE) provides a superb example of the modular approach to 

modelling and sensitivity analysis.  The BIE is a computer application for analysing 

radiographs and making inferences about an object being radiographed [3].  The BIE is a 

graphical programming tool that automatically implements adjoint differentiation, which 

facilitates advanced model building and allows hundreds or thousands of parameters to be 

determined by matching a radiograph in a reasonable time. 

The BIE represents a computational approach to Bayesian inference, as opposed to the 

traditional analytical approach.  The computational approach affords great flexibility in 

modelling, which facilitates the construction of complex models.  The BIE easily deals with 

data that are nonlinearly dependent on the model parameters.  Furthermore, the computational 

approach allows one to use nonGaussian probability distributions, such as likelihood 

functions based on Poisson distributions.  Figure 2 shows the canvas of the BIE for a 

tomographic reconstruction problem in which three projections of a 2D object are used to 

determine the shape of the object.  The reconstructed object is modelled as a uniform (known) 

density inside a flexible boundary, specified in terms of a 60-sided polygon.  A smoothness 

prior is placed on the boundary.  The BIE’s automatic adjoint differentiation permits the 120 

variables to be determined in 20 optimiser iterations, or in a time corresponding to around 50 

forward-model evaluations. 

The BIE is designed and programmed within an object-oriented framework in which it id 

easy to make connections work in the reverse direction.  An interesting aspect of the BIE is 

that there is no supervisory code.  The modules act autonomously by responding to requests 

from other modules that are connected to their output for updated results.  Each module asks 

its inputs for current information and then does its own calculation.  It is the module at the 

end of the calculation, the optimiser in Fig. 2, that initiates the requests and finally gets the 

results of the calculation.  The parameter modules (boxes labelled as P) terminate requests for 

forward calculations.  This modular approach greatly simplifies adjoint calculations.  The 

reverse flow of the derivatives proceeds in much the same manner. 
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Figure 2.  A canvas from the BIE showing a data-flow diagram composed to simulate a 

radiographic measurement of an object that is defined in terms of a geometric description of 

its boundary.  The minus-log-likelihood is added to a minus-log-prior to obtain a minus-log-

posterior, which is to be minimised with respect to the geometry.  Derivatives of the minus-

log-posterior with respect to the geometric parameters are automatically calculated in the BIE 

in a computational time that is comparable to the forward simulation calculation. 

Figure 3.  An optimisation achieved with the BIE with the diagram shown in Fig. 2.  Three 

noisy projections of the original object (left) are available, making this a very difficult 

reconstruction problem.  The image on the right represents the shape that minimises the 

minus-log-posterior on the right in Fig. 2, obtained by varying the 120 parameters that 

describe its geometric boundary. 

4. DISCUSSION 

The modular approach to adjoint sensitivity calculation incorporated in the BIE can readily 

be applied to other simulation applications.  References [4] and [5] demonstrate the use of 

adjoint differentiation to solve a complex inversion problem involving the diffusion of 

infrared light in tissue.  Figure 4 shows the data-flow diagram, which could be used as a basis 

for creating the modular design described above. 
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Adjoint sensitivities are only not useful for optimisation, but also for drawing inferences 

about the uncertainties in model parameters.  For example, the Hamiltonian method of 

Markov Chain Monte Carlo [6] uses the gradient of the minus-log-posterior function.  MCMC 

is implemented in the BIE by replacing the optimiser by an MCMC module. 

Figure 4.  A data-flow diagram for the simulation of a time-dependent diffusion process.  The 

parameters in the upper-left hand box, the position-dependent diffusion constant and 

absorption coefficient, control the diffusion.  The T boxes provide the time-step calculation 

for the light-intensity field U, which is sampled to compare to time-dependent measurements.  

The output of the calculation is the scalar 
2
/2, which is to be minimised to obtain the best 

match to the measurements.  The minimisation is efficiently accomplished through use of the 

gradients calculated by the adjoint method, which follows the direction of the dashed arrows. 
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ABSTRACT 

Local probabilistic sensitivity of input variable X with respect to output variable Z is 

proportional to the derivative of the conditional expectation E(X|z). This paper reports on 

experience in computing this conditional expectation. Linearized estimates are found to give 

acceptable performance, but are not generally applicable. A new method of linearization 

based on re-weighting a Monte Carlo sample is introduced. Results are comparable to the 

linearized estimates, but this method is more widely applicable. Results generally improve by 

conditioning on a small window around z. 

1. INTRODUCTION 

Local probabilistic probability measures (LPSM) were introduced in [3] to describe the 

importance of an input variable X to a given contour of an output variable Z: 
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This measure is indicated when we are particularly interested certain values of the output 

variable. Thus when Z represents the 'strength - load' of a structure, we are particularly 

interested in the value Z = 0 corresponding to failure of the structure. It was shown that if the 

regression E(X|Z) is linear, then LPSM(X) = (Z,X) (see section (5)). In special cases, 

including the independent normal linear model, LPSM(X) can be computed analytically [3]. 

Problems in computing LPSM have motivated further study of its properties. It can be 

shown that in the case of independent linear normal models, the LPSM and the standard 

global measures are dual in a straightforward sense. The generalization of the standard global 

measure to non-linear models makes use of the correlation ratio. A similar generalization is 

conjectured for the LPSM. The duality relation suggests alternative ways of calculating the 

LPSM which appear to give acceptable performance. 

Section (2) illustrates problems that can arise in computing the LPSM in Monte Carlo 

simulation. Section (3) reviews sensitivity measures in the linear model. Section (4) explores 

properties of the correlation ratio. Section (5) establishes the duality relationship for the 

independent linear normal case. This relationship suggests new ways of calculating the 

derivative of the conditional expectation. Analytical methods and linear approximations are 
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discussed. Though not always applicable in practice, these nonetheless provide a benchmark 

for the method introduced in section (6). This method `linearizes by re-weighting' a Monte 

Carlo sample, and can always be applied in Monte Carlo simulation. In section (7) the 

performance of these methods is compared. A final section gathers conclusions. 

2. AN EXAMPLE 

The obvious way to approximate LPSM(X) in Monte Carlo simulations is to compute 





2

)),(()),(( 0000 zzZXEzzZXE
    (2) 

In some cases this is very unstable. Consider the following example, which was proposed 

by Ton Vrouwenvelder, where X and Y are independent standard normal: 

)3,3( YXminZ   

One can calculate that (see appendix): 

507.0
)(

0






zz

zZXE
. 

On a Monte Carlo simulation with 5,000,000 samples and  = 0.1 the above method yields 

the estimates 

.807.0)0(

,517.0)0(











simulation

simulation

zYE
z

zXE
z

 

Of course, by symmetry these two derivatives must be equal. The number of samples used 

is unrealistically large, and still performance is poor. This is explained by a number of factors. 

First if high accuracy is desired,  must be chosen small in (2). On the other hand the 

difference in conditional expectations must be large enough to be statistically significant. In 

the above example this difference was barely significant at the 5% level for Y and was not 

significant for X. In this case, the difference in conditional expectations in (2) is small, 

because, roughly speaking, X feels the effect of conditionalizing on Z = 0 on only one half of 

the samples. Finally, conditionalizing on extreme values of Z, as in this case, can introduce 

strong correlations between the input variables. In this case the conditional correlations are 

negative. This means that sampling fluctuations in the estimates of the conditional 

expectations in (2) will be correlated. Indeed, it required an unrealistically large number 

simply to obtain estimates whose signs were both negative (see also the results in Table 4). 

It is clear that alternative methods of calculating the LPSM are needed. 
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3. THE LINEAR MODEL 

Let Z = Z(X) be a function of vector X=(X1,…,Xn). Assuming that Z is analytic, it can be 

expanded in the neighbourhood of some point ),...,( **

1

*

nxxx   and neglecting higher order 

terms (HOT's): 





n

i

iii xXxZxZXZ
1

*** ))(()()(      (3) 

where i denotes 
iX / . 

Let  i and i denote mean and standard deviation of Xi respectively. We obtain 

).()(),()(

),()()()(

*

1,

*

1

***

xZxZXXCovZVar

xZxxZZE

n

ji

jiji

n

i

iii













 

If Xi are all uncorrelated then 

iXZiiii XZZXZCov  ),(),( 2 . 

Hence, in the linear uncorrelated model, the rate of change of Z with respect to Xi may be 

expressed as 

2/),( iii XZCovZ  .     (4) 

We note that the left hand side depends on the point x* whereas the right hand side does 

not. This of course reflects the assumption of non-correlation and the neglect of HOT's. A 

familiar sensitivity measure involves a "sum square normalization": 

Z

ii
ii

xZ
XZ






)(
),(

*

. 

The factor i gives the influence of variable Xi on the standard deviation of Z. It depends 

on the slope of the tangent line of Z in the point z*. For the linear model and when Xi's are 

uncorrelated, 

1
1

22 


n

i

iR  .     (5) 

This can be considered as a measure of the variance of Z explained by the linear model. If 

R2 is less then one, this may be caused either by dependencies among Xi's or by the 

contribution of higher order terms neglected in (3). 

When employing the Taylor expansion as above, it is common to introduce a 

transformation of the variable Z which enables us to capture as much of the behaviour of the 

transformed variable as possible in low order terms. Alternatively, one could transform the 

variables Xi toward the same end. These considerations lead to the correlation ratio, whose 

properties we study in the next section. 
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4. CORRELATION RATIO 

The correlation ratio is one of the most important non-directional measures of uncertainty 

contribution [2]. 

Definition 4.1 (Correlation ratio) Let G be a random variable, and X a random vector. 

The quantity 
2

2

)|(

G

XGE




 is called the correlation ratio of X to G and denoted CR(X,G). 

We consider a function G = G(X,Y) of random vectors X and Y with 2

G . In analogy 

with non-linear regression methods, we may ask for which function f(X) with 2

)( Xf  is 

))(,(2 XfG  maximal? The answer given in the following 

    Proposition 4.2 Let G = G(X,Y) with 2

G  then 

(i) 2

)(
))(,(

XGE
XGEGCov   

(ii) ),())(,())(,(
2

2

)|(22

; 2
)(

GXCRXGEGXfGmax
G

XGE

f xf


 





 

    Proof:  

(i) ))|(())|(())|(()))|((())|(,( 22 XGEEXGEEXGEEGEXXGGEEEXGEGCov   

(ii): Let (X) be any function with finite variance. 

Put, 222

)(
;)),(),((;   DCXXGECovBA GXGE

, Then 

)2(

)(
))()(,(

2
2

BDAC

BA
XXGEG




 ,    (6) 

C

A

G

XGE


2

2

)|(




,      (7) 

ADB
C

A

BDAC

BA




 2
2

)2(

)(
.    (8) 

The latter inequality follows from the Cauchy Schwarz inequality. This is similar to a 

result in [5]. 

The correlation ratio of X to G may be taken as the general global, variance based 

sensitivity measure of G to X. This may be understood by recalling the simple relation: 

))(())(()( XGVarEXGEVarGVar  . 

Dividing both sides by Var(G), we may interpret CR(X,G) as the percentage of the variance 

of G which is explained by X. 

Note that the correlation ratio is always positive, and hence gives no information regarding 

the direction of the influence. Note also that in general CR(G,X)CR(X,G) 

The following propositions explore some properties of the correlation ratio. 
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Proposition 4.3 Let G(X, Y ) = f(X) + h(Y ) where f and g are invertible functions with f
2 

< ,h
2 < , and X,Y are not both simultaneously constant (G

2 >0). If X and Y are 

independent then 

.1))(,())(,( 22  YGEGXGEG  

Proof: 

We have ))(()( XfGEXGE  , and ))(()()),(()( YhGEXfXfGEYh  ; therefore, 

.)),()((

)))),(())(((
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))()),((()()),(((
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2
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GYGEXGECov
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YhXfYhGEXfGECov

YhYhGECovXfXfGECov

YhGCovXfGCov

YhXfGCovGGCov
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









 

The result now follows with Proposition (4.2).      

Proposition 4.4 Let G=G(X,Y), with Cov(E(G|X), E(G|Y)) = 0 then 

1))(,())(,( 22  YGEGXGEG . 

Proof: 

1
)(),((

))(),((
2

)(

2

)(

2

)(

2

)(










YGEG

XGE

YGEGXGE

YGEGXGECov
YGEGXGE






 , 

22

)(

2

)( GYGEXGE
  . 

4.1. Computing the correlation ratio 

The computations frequently use Monte Carlo methods. Efficiency in this context usually 

means on-the-fly. That is, we would like to perform all necessary calculations on a sample, 

then discard the sample and proceed to the next sample. A computation which involves 

retaining the entire sample is not efficient. 

Computing the correlation ratio may be difficult in some cases. However, if we can sample 

Y' from the conditional distribution (Y|X) independently of Y, and if the evaluation of G is not 

too expensive, then the following simple algorithm may be applied (Ishigami and Homma 

[4]): 

1. Sample (x,y) from (X,Y ), 

2. Compute G(x,y), 

3. Sample y' from (Y|X = x) independent of Y = y, 

4. Compute G' = G(x, y') 

5. Store Z = G * G' 
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6. Repeat 

The average value of Z will approximate E(E2(G|X)), from which the correlation ratio may 

be computed as 

2

22 )())((

G

GEXGEE




. 

Of course, if Y and X are independent, then this algorithm poses no problems. If Y and X 

are not independent, then it may be difficult to sample from (Y|X). In this case there is no 

alternative to the “pedestrian" method: save a large sample, compute )|(  ixXGE  for 

suitable x1,…, xn, and compute the variance of these conditional expectations. To do this for a 

large number of variables can be slow. 

The notion of the correlation ratio can be generalized by introducing the following 

definition 

Definition 4.5 [Generalized correlation ratio] Correlation ratio G with 
sii XX ,....,

1
is 

  
   

)(

,....,
,....,, 1

1 GVar

XXGEVar
XXGCR s

s

ii

ii  . 

5. LOCAL PROBABILISTIC SENSITIVITY MEASURES 

The local sensitivity measure (1) is intended to measure the rate of change with respect to 

Z of “some function” of X|Z at a given point. For the uncorrelated linear model, ”global” and 

“local” are equivalent, hence the global and local measures should coincide. This motivates 

choosing “some function” as a normalized conditional expectation in (1). In fact, local 

probabilistic and global sensitivity measures may be be seen as dual, in the following sense. 

Apply the Taylor expansion to E(X|Z): 

.
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Thus, if the regression of X on Z is linear, then higher order terms vanish and 

2

0

0 ),()(

Z

XZCov

z

zXE







.      (9) 

which may be compared with (4). If the roles of Z and X were reversed in the linear 

uncorrelated model, then (9) would express the rate of change of X with respect to Z. Of 

course, these roles cannot be reversed, as Z is correlated with X1,…,Xn. However, the 

regression E(X|Z) can be linear, indeed this arises for linear normal, mixed normal and 

elliptical models (correlated as well as uncorrelated) ([1]). Hence in the uncorrelated linear 

models with linear regression of X on Z, we have 

2

0
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
,      (10) 
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2
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


.     (11) 

Note that the quantities on the right hand side are global, whereas those on the left are 

local. As seen above, the correlation ratio of X to Z is the maximal squared correlation 

attainable between Z and some function of f(X) of X with finite variance. In the same vein, we 

could ask, `which function f(X) of X maximizes 
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? 

We conjecture that the maximum is attained for f(X) = E(Z|X). 

We first discuss methods of computing and approximating 
0

)0(

z

zXE




 . These methods 

cannot always be applied in practice, but serve as a benchmark. In the following section we 

develop a method based on the above duality. 

5.1. Computing 
0

)0(

z

zXE




 

We discuss methods for computing the derivative of a conditional expectation. In general, 

if the rightmost integral converges absolutely for all zo;  
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Alternatively, we could compute the conditional expectation E(X|Z) directly and take its 

derivative. Assume  for  example  that X,Y  are  independent  and  uniformly  distributed  on 

[0, 1], and let Z=Z(X,Y) be sufficiently differentiable in both arguments. To compute the 

expectation of X given Z=zo, we define a density along the contour Z=zo which is 

proportional to arc length. If the contour is simple we may parametrize arc length in terms of 

x and write zo=Z(x,y(x)) The arc length element, ds and conditional expectation are given by 





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dxdxdyx
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The reader may verify the following examples: 

Example 5.1 
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5.2.  Linear approximations 

Since (9) does not depend on zo, it does not provide a good basis for linear approximations. 

For random variables X, Y let Z=Z(X,Y) and suppose for some analytic function G we can 

write X=G(Z,Y). The Taylor expansion gives: 
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Take yo = E(Y|zo) and take conditional expectations on both sides with respect to zo. The 

first order terms, the cross term and the second order term in Z all vanish. We find 

)).|(())|(,()|( 0
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2
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000 0
zYGVarzYEzGzXE y    (12) 

We now take derivatives on both sides with respect to zo. Retaining only the first term 

yields estimate 1: 

               ))|(,(
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Retaining both terms yields estimate 2: 
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Note that both these estimates depend on zo. 

6. LINEARIZATION VIA RE-WEIGHTED MONTE CARLO SIMULATION 

The methods of the previous section are not generally useful in practice. Indeed, estimate 1 

will typically require )|(

0

XYE

z


to estimate )(

0

ZXE

z


 which is just as hard to calculate as 

quantity being estimated. Estimate 2 requires )0(

0

zYVar

z


 which is more difficult to estimate 

than )0(

0

zXE

z


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A new method of calculating
0

)0(

z

zXE




 suggested by Meilijson is currently being developed. 

The idea is the to make the duality relation (9) approximately true by re-weighting the sample 

emerging from a Monte Carlo simulation. Since E(X|Z) can be expanded around zo as 
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So if we assign a “local distribution” to Z such that the terms between curly brackets are 

equal to zero then 

)(

),()( 0

ZVar

ZXCov

z

zXE





. 

To achieve this the local distribution should be chosen so that 

ozZE   

and 

oo zzZE  3)(  

where Z  means Z with a local distribution. We want this distribution to be as close as 

possible to the distribution of Z. In our case we take the distribution which minimizes the 

relative information with respect to the original distribution of Z. 

7. RESULTS 

The first table presents the theoretical 

results for the functions given in example 

(5.1). X,Y are independent and uniform on 

[0, 1]. The theoretical values have been 

computed with MAPLE. Note that for 

Z=2X+Y the estimates are exact, as the 

regression is piece-wise linear: 

E(X|z)=z/4; 0 < z < 1; 2 < z < 3; but E(X|z) 

= z/2 ; 1<z<2. 

 

 

Table 1: Comparison of theoretical values 

and linearized estimates. 

 

Z zo 

0

)0(

z

zXE




 

est1 est2 

2X+Y 0.25 0.25 0.25 0.25 

0.5 0.25 0.25 0.25 

1.5 0.5 0.5 0.5 

2.5 0.25 0.25 0.25 

X2+Y2 0.1 1.0066 1.2189 1.2024 

0.5 0.4488 0.5451 0.5063 

0.9 0.3355 0.4056 0.3538 

XY 0.1 1.0724 1.8046 1.7764 

0.5 0.6342 0.7768 0.7095 

0.9 0.5180 0.5361 0.5271 

X2Y 0.1 1.2698 1.8013 1.5733 

0.5 0.4454 0.5099 0.4501 

0.9 0.2746 0.2816 0.2746 
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Table 2 shows the re-weighted estimates for the same models as in Table 1. To show the 

sampling fluctuations, the results have been computed on five runs, each run using 10,000 

samples. The weights defining the local distribution for Z have been computed with MOSEK. 

We see that the results are reasonably stable and are generally between those of estimate 1 

and estimate 2 in Table 1. An exception occurs for Z = 2X + Y; in this case the second 

derivative of the regression function E(X|z) does not exist for z=1. This suggests that better 

results could be obtained by first defining a window around the value zo and applying the re-

weighting method within this window. 

 

Z zo 

0

)0(

z

zXE





 

1 2 3 4 5 

2X+Y 0.25 0.25 0.2577 0.2387 0.2447 0.2500 0.2436 

0.5 0.25 0.2646 0.2496 0.2603 0.2514 0.2560 

1.5 0.5 0.4021 0.4007 0.3966 0.4022 0.4002 

2.5 0.25 0.2484 0.2440 0.2475 0.2540 0.2602 

X2+Y2 0.1 1.0066 1.1626 1.2117 1.1473 1.1391 1.1568 

0.5 0.4502 0.5309 0.5163 0.5428 0.5238 0.5317 

0.9 0.3355 0.4388 0.4441 0.4440 0.4411 0.4475 

XY 0.1 1.0020 1.4854 1.5025 1.5200 1.4916 1.6087 

0.5 0.6342 0.6939 0.7018 0.7031 0.6955 0.6860 

0.9 0.5180 0.4666 0.5908 0.4641 0.5108 0.5182 

X2Y 0.1 1.2698 2.3313 2.3890 2.3878 2.3453 2.3634 

0.5 0.4454 0.5784 0.5839 0.5822 0.5808 0.5782 

0.9 0.2746 0.2706 0.2974 0.2498 0.2636 0.2717 

 

Table 2: Comparison of theoretical values and re-weighting method, five runs of 10,000 

samples. 

The results in Table 3 are obtained by drawing 100,000 samples, and conditionalizing 

on the window Z  (zo – 0.2, zo + 0.2). Two runs are shown; Ñ indicates number of 

samples in the conditional distribution on each run. We note that for Z = X2Y = 0.1 the 

results are poor, despite the fairly large number of samples falling in the window. The 

function Y(x) = 0.1/x2 ; x  [0.1,1] is highly non-linear; the derivative ranges over 4 orders 

of magnitude. Reducing the window size to 0.05 returns results comparable to estimate 2. 
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Z zo 

0

)0(

z

zXE





 

1 Ñ1 2 Ñ2 

2X+Y 0.25 0.25 0.2530 5021 0.2464 4832 

0.5 0.25 0.2573 10079 0.2608 9874 

1.5 0.5 0.4943 19867 0.4894 20015 

2.5 0.25 0.2570 10047 0.2501 9949 

X2+Y2 0.1 1.0066 1.1564 23774 1.1655 23593 

0.5 0.4502 0.4610 31320 0.4509 31300 

0.9 0.3355 0.4141 29323 0.4180 29347 

XY 0.1 1.0724 1.5140 66131 1.5260 66072 

0.5 0.6342 0.6438 28813 0.6464 28713 

0.9 0.5180 0.5167 5020 0.5363 5038 

X2Y 0.1 1.2698 2.3759 79690 2.3580 79403 

0.5 0.4454 0.4564 17792 0.4469 17855 

0.9 0.2746 0.2689 2638 0.2871 2658 

Table 3: Comparison of theoretical values with re-weighting method results with window. 

Table 4 shows results for X, Y independent standard normal. There are five runs with 

10,000 samples per run and no window (the use of a window did not improve results). The 

results for Z = min(3-X,3-Y)=0 are quite bad and quite unstable. This presumably reflects 

the small number of samples in the region z = 0. The other values are quite acceptable. 

 

Z zo 

0

)0(

z

zXE





 

1 2 3 4 5 

X+Y 0 0.5 0.5058 0.4964 0.5000 0.4921 0.4965 

2 0.5 0.5387 0.4831 0.4983 0.5030 0.5086 

3 0.5 0.4292 0.4415 0.4840 0.4681 0.5826 

2X+Y 0 0.4 0.4005 0.4037 0.4012 0.3967 0.3939 

1 0.4 0.4006 0.3992 0.3497 0.3996 0.3967 

3 0.4 0.4033 0.3996 0.3927 0.4027 0.4027 

Min{3-X,3-Y} 0 -0.5067 -0.8779 0.7641 0.3178 1.1178 -0.6585 

1 -0.5568 -0.6478 -0.5839 -0.5445 -0.7650 -0.4516 

2 -0.6852 -0.6925 -0.6686 -0.7204 -0.6676 -0.6792 

3 -0.8183 -0.8061 -0.8031 -0.8002 -0.7979 -0.8048 

Table 4: Comparison of theoretical and re-weighting method results for normals. 

With regard to the example Z=min{3-X,3-Y} the results are better than those given in 

section (2), but not overwhelming. With 5,000,000 samples and window z[-0.1,0.1] we 

find 

.5038.0
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Needless to say, this number of samples is not realistic in practice. With only 10,000 

samples the results were not acceptable. Note that in this case the linearized estimates are 

not defined, as the function G satisfying X = G(Z,Y ) does not exist. 

8. CONCLUSIONS 

In the linear model (3), with X1,…,Xn independent normal, we have observed following 

relations: 

.
),(),()/(

,
),(),(

2

2

Z

Xi

Z

i

X
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X

i

i

ii

XZZXCov

z

zZXE
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
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
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






 

When these assumptions do not apply, one can still use these relations by way of crude 

estimation. Thus one can estimate the rate of change of Z with respect to Xi as, 

iX

ZiXZ



 ),(
and one can estimate the rate of change of E(X|z) with respect to z as 

Z

Xi i
XZ



 ),(
. Better estimates can be obtained by the linearization techniques introduced 

in sections (5.2, 6). In particular the re-weighting approach to linearization gives 

acceptable results in most of the benchmark problems and is applicable quite generally. 

None the less, there is room for improvement. We have tried adding additional constraints 

to the re-weighting algorithm, but did not find any constraints which produced better 

results for all of the benchmark functions. Reducing the window size generally leads to 

better results, but of course this drives up the number of samples required. For difficult 

problems, such as that discussed in section (2) the re-weighting method returns good 

results only after using a small window with a very large number of samples. It seems 

likely that the re-weighting method of linearization can still be further improved. 

Acknowledgements. We gratefully acknowledge assistance of M. Kallen, M. Poelman. 
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9. APPENDIX 

 

Let Z=min(3-X,3-Y) with X,Y independent standard normal. 
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and  is the standard normal density, with cumulative distribution function  . The 

partial derivative of the right hand side at z = 0 is 

507.05.0
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)()3()3()3(3
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1. INTRODUCTION 

In this paper, we propose a formal definition of local and global importance measures 

(Section 2).  This definition is, then, the basis for the definition of additivity property for 

importance measures (Section 3).  In Section 4 we introduce the Differntial Importance 

Measure (DIM) and other local measures based on partial derivatives.  In Section 5 we deal 

with the problem of finding the local importance of multiple parameters.  We show that it 

is not possible to compute the importance of parameter groups through normalized partial 

derivatives.  This is however possible using DIM, since the importance of a set of 

parameters is the sum of the individual parameter DIMs. 

2. DEFINITION OF LOCAL AND GLOBAL IMPORTANCE MEASURES 

In the literature several IMs are available that act on the point estimate of the output, 

with the parameters fixed at a nominal value (Borgonovo and Apostolakis, 2000; Saltelli, 

1999; Cheok, Parry and Sherry, 1998; Turany and Rabitz, 2000).  These measures are 

generlly referred to as “local”.  However, a formal definition of Local Importance has not 

been given yet.  We propose the following definition of local importance measure.  Let s 

be the set of input parameters( x1, x2, …, xn), in general a subset of  or C. 

Definition of local importance measure: {I: s} is a Local Importance Measure if it 

is an operator ]F[)x(I ^

i  on the function F(x1,x2,…,xn),  nn:)x(F  , such that it 

associates to the set s (the parameters xI) a set of real numbers I(xi) (the importance of the 

parameters with respect to F).  

This definition can be generalized to lead to the definition of global 

importancemeasures as follows.  If the parameters are characterized by uncertainty, each 

parameter is described by a distribution.  Thus the parameter itself is a subset of . We 

now indicate this subset as Xi.  Let us denote with S the collection of these sets, that is the 

collection of all the parameter distributions. The following follows:  

Definition of Global Importance Measure: {I: s} is a Global Importance Measure, 

if it is an operator on the function F(x1,x2,…,xn),  nn:)x(F  , such that it associates 

to the set S (the set of the parameter distributions) a set of real numbers I(Xi). 

mailto:eborgonovo@aol.com
mailto:apostola@mit.edu
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3. IMPORTANCE OF PARAMETER GROUPS: ADDITIVITY PROPERTY 

In many applications, the analyst is interested in the importance of a group of 

parameters, that we denote as: I(x1x2, …,xn).  We say that an importance measure is 

additive if: 

I(x1x2, …,xn)=


n

j

jxI
1

)(        (1) 

This property is useful from a computational point of view, since no further evaluation 

of the model is necessary to get the importance of any combination of model parameters, 

once the individual importance has been found. 

4. DIM AND NORMALIZED PARTIAL DERIVATIVE (NPD) MEASURES 

The definition of DIM is as follows: 


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     (2) 

where: dF  is the contribution to the F total differential of parameter xi, dF: total 

differential of F.  

It easy to see that DIM is additive (Borgonovo and Apostolakis, 2000), i.e.:  

)(...)()()...( 21 kjin xDIMxDIMxDIMxxxDIM     (3) 

Local Importance Measures based on partial derivatives are defined as follows (Saltelli, 

1999; Helton, 1993): 

0

i )PDI(
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
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
         (4) 

where: PDI(xi)= partial derivative importance of parameter xi, F0 = F base case value, xi 

= base case value of parameter xi.  The rationale behing PDI is the following normalization 

of the differntial (Helton, 1993): 
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The right hand side represents the percentage of variation of the output due to a small 

change in the input, while the terms in the summation in the left hand side contains the 

percentage of variation of the input (x-x0 /x0) multiplied by a weighting factor.  For each 

individual parameter, solving the following equations: 
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     (6) 

the coefficients or weighting factors can be defined and taken as the importance of the 

contribution of parameter xi to the total variation of y, as stated in (5).   
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It is possible to see (Borgonovo and Apostolakis, 2000), that for individual parameters, 

under the hypothesis: const
x

dx

x

dx

j

j

k

k  , DIM(xi) and PDI(xi) are related as follows 

(Borgonovo and Apostolakis, 2000): 




j

j

i

i
xPDI

xPDI
xDIM

)(

)(
)(       (7) 

In the next Section, we show that this relation cannot hold for multipe parameters, since 

NPDs cannot be defined for multiple parameters. 

5. GROUP IMPORTANCE THROUGH NPD MEASURES 

We now show that it is not possible to use NPD measures to compute the importance of 

parameter groups.  In fact, as we have seen in eqs. (4),(5) and (6), the logic for the 

definition of PDI(xi) is a normalisation of the partial derivatives and leads to coefficients 

independent of the parameter variations.  Suppose we want the local importance of a group 

of parameters, xI, xj and xk. Using the partial derivatives logic, we have to extract the 

coefficient from the following equation:   
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)]()()[()...( 000 kkjjiikkj xxxxxxxxxPDI     (8) 

It is easy to see that this and anlogous multiple parameter equations canot be solved for 

coefficients independent of the parameter variations, as in eq. (5).  Thus eq. (5) cannot be 

generalized to the importance of parameter groups.  Furthermore, eq. (7) cannot hold for 

multiple parameters. 

6. CONCLUSIONS 

In this paper, we have presented a general defintion of local and global importance 

measures, that sets importance measures as operators among abstract spaces and enables to 

formally define the additivity property for importance measures.  We have, then, focused 

on local importance measures, and we have seen that the importance of multiple 

parameters cannot be found using a the normalization of partial derivatives.  The 

underlying reason is that, when considering the output variation, the relative way 

parameters are varied is relevant.  Normalized partial derivatives alone are not able to take 

this into account.  If we shift the focus from the partial derivatives to the differential as in 

eq.(2), the way parameters are varied will be automatically accounted for.  Furthremore, 

since the differential is linear in the terms of the individual parameters, the importance of a 

set of parameters will always be the sum of the importance of the individual parameters, 

computed under any assumption on the parameter variations, as eq.(3) states. 
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1. INTRODUCTION 

When using classical optimization techniques to estimate the parameters of dynamic 

models, the sensitivities of the model, namely the rates of change of the model responses with 

respect to parameters, play a central role. They are often used at each step of the parameter 

estimation process to compute the gradient of the objective function in Newton type 

optimizers. At the final stage of the estimation process they can be used to calculate the Fisher 

information matrix, and then, for example, to construct confidence regions for the parameters. 

We give a brief summary of one method for calculating sensitivities. The method discussed 

is an efficient and reliable procedure for calculating model sensitivities together with the 

model solution. In the remainder of the paper we are concerned with system identifiability - in 

particular with local identifiability [8]. A minimum requirement for successful estimation of 

the parameters of a model is that the model be identifiable. Differential algebra methods can 

be used to check the identifiability of linear and non-linear dynamic models [6]. We consider 

statistical identifiability and the connection with differential algebra methods, via the model 

sensitivities and information matrix. In section three we present a theorem stating the 

equivalence of these two versions of identifiability. 

2. DEFINITIONS AND DISCUSSION 

2.1. Model and Sensitivities 

2.1.1.  Definition 

For a system of ordinary differential equations, 

),,( txg
t

x





,  )()( 00 xtx  ,      (2.1) 

where , T

nxxx ),...,( 1  and T

p ),...,( 1   , the sensitivity, ijz  , of the response ix  with 

respect to j  is,  
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and the sensitivity matrix , Z  , is )( ijz . 

2.1.2.  Computing Sensitivities 

When equation (2.1) is not integrable we must resort to numerical methods to calculate the 

sensitivities. One class of such numerical procedures are known as direct methods, and are 

outlined below. 

First differentiate the thi  equation from (2.1) with respect to j , to give, 
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  for the Jacobian matrices. Assuming the 

order of differentiation can be reversed, collecting together the n  equations (2.2) gives, 

JZJ
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Z
x 




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


 0

0 )(
x

tZ .      (2.3) 

These equations are called the sensitivity equations. Note that they are linear whatever 

form g  takes. All versions of the direct method bring together systems (2.1) with (2.3) and 

solve the combined equations numerically. The linearity of (2.3) and its close relationship to 

(2.1) means that very efficient numerical methods can be developed for the joint system. See 

[1], [2], [3], [5]. 

2.2. Local and Statistical Identifiability  

2.2.1.  Statistical Model 

If we are observing a physical process for which we assume a model of the kind given in 

(2.1), then of course the model predictions will not agree perfectly with our observations. The 

deviations can be incorporated in a number of ways, one method is to regard the deviations as 

measurement errors, in the simplest case these would be distributed normally, independent, 

and added to the model solution. Thus, our model is, 

)(),( ttGx   ,        (2.4) 

where )(t  are independent random variables ),0(~)( 2INt   , and G  represents the 

time integral of g  in (2.1). 

2.2.2. Fisher Information and Statistical Identifiability 

For the model (2.4) the Fisher information matrix, fI , for the parameters   is calculated 

using the sensitivity matrices at each time point, it  , 

m

T

mfI  , 

where 
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 TT
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m tZtZtZ )(...)()( 21 . 

We say that the model is statistically identifiable at   if 0fI  for some ,...2,1m . 

Of course, it may happen by accident that for our chosen mtt ,...,1 , the information matrix is 

singular. A more precise statement of our meaning is this : 

if we are able to find a set of q  time points tqtttt  )1(,...,,   'close' to some time 

),( 0  tt  such that the square matrix 
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is non-singular then the model is statistically identifiable at  . Note that we have assumed 

for the sake of simplicity that qnp   for Nq . 

2.2.3. Local Identifiability and Differential Information 

Alternatively we may say, roughly speaking, that the model is locally identifiable at   if 

and only if, when we are able to observe without error the process x  , and its time derivatives 

id  where ii

i txd   the transformation  

),( tGX  ,        (2.5) 

 is invertable for some ),( 0  tt , where 
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 so that ),( XtH . That (2.5) is invertable implies that the Jacobian  
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 is non-singular. This is the matrix of differential sensitivities, 
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and )()( tGtGT

 , the differential information, measures the amount of information in the 

model output at time t . In the next section we present a theorem which states that these two 

types of identifiability are equivalent. 

3. EQUIVALENCE THEOREM 

For the system defined by, 
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for some 0t  and ),( 0  tt . Furthermore let the terms 
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 be q  times continuously differentiable in  tqtt )1(,  . Then the model is locally 

identifiable at   if and only if  
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 as 0t . 

A sketch proof of theorem will be presented. 

The proof of this theorem is easily modified for the case when the number of parameters is 

not a multiple of the number of equations. 
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1. INTRODUCTION 

The purpose of this project has been to provide sensitivities of results from an Eulerian 

hydrodynamics computer code (hydrocode) [1] for use in design-optimization and 

uncertainty analyses. We began [2] by applying an equation-based sensitivity technique 

used successfully in the early eighties that was applied to reactor-safety thermal-hydraulics 

problems [3,4], which is called Differential Sensitivity Theory (DST) [5,6].  The 

methodology is as follows: the system of partial differential equations (the forward or 

physical PDEs) is assembled, and differentiated with respect to the model parameters of 

interest; the adjoint equations are then determined using the inner-product rules of Hilbert 

spaces [5]; and finally, the resulting adjoint PDEs are solved using straightforward 

numerical operators.  The forward-variable solutions when needed for the adjoint solutions 

are provided by the original computer code that solves the physical (or forward) problem.  

In the present hydrocode application, acceptable results were obtained for one-material, 

one-dimensional problems. The DST results were then improved by means of "compatible" 

finite difference operators [6,7].  We have seen, however, that DST techniques do not 

produce accurate values for sensitivities to all of the parameters of interest and for 

problems with discontinuities such as a multi-material problem [8].  To obtain accurate 

sensitivities for arbitrary numerical resolution a more code-based approach was then tried.  

We attempted to apply automatic differentiation (AD) in the forward mode using 

Automatic DIfferentiation of FORtran (ADIFOR, version 2.0) [9] and the Tangent-linear 

and Adjoint Model Compiler (TAMC) [10] in the forward and adjoint modes.  We were 

successful for one-dimensional problems in both modes but failed to obtain accurate 

sensitivities in the adjoint mode for two-dimensional problems [11]. 

Here we present the successful results for two-dimensional problems in both the 

forward and adjoint modes using ADIFOR, version 3.0 [12].  In what follows, we describe 

AD methods in the context of their use for a hydrocode.  We then examine setup time, 

results, accuracy, and computer run times for three test problems obtained by ADIFOR. 

Finally, we outline our plans for future work. 

2. AUTOMATIC DIFFERENTIATION  METHODS  FOR  A  HYDROCODE 

Both code- and equation-based methods can be implemented in either the forward or 

adjoint mode. By forward and adjoint, we mean the direction through the solution and in 

time and space in which the derivative values are obtained.  The forward mode is more 

efficient for determining the sensitivity of many responses to one or a few parameters, 

mailto:rjh@lanl.gov
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while the adjoint mode is better suited for sensitivities of one or a few responses with 

respect to many parameters.  The most recent version of ADIFOR [12] that is used here is 

applied in both the forward and adjoint modes.  

AD tools require several steps to get from the original code to an executable code with 

derivative coding included. A precompiler first analyzes the code and modifies it to include 

code that calculates the derivatives of interest.  For a non-linear hydrocode, information 

from the forward calculation is needed in the adjoint calculation. Independent storage or 

recalculation can provide this information. The second step in the process is to determine 

and set up the required storage.  For a large problem a technique called checkpointing is 

required.  This technique consists of dumping the solution at checkpoints as the forward 

solution is generated.  The forward solution is stored from the final checkpoint to the final 

time of the forward calculation.  One then calculates the adjoint solution backward from 

the final state. The forward solution is then calculated from the second to the last 

checkpoint.  This process is repeated until the starting time of the forward calculation is 

reached. The last step is to compile the enhanced code, auxiliary storage code, and the 

adjoint code, including run-time libraries that satisfy the external subroutine calls. 

3.  PROBLEM DESCRIPTIONS AND RESULTS 

Setup time, accuracy, and run times are described for three problems.  The problem test 

set consists of a one-dimensional shock-propagation problem, a two-dimensional metal-jet-

formation problem, and a two-dimensional shell-collapse problem. The physical situations 

for the problems are depicted in Figure 1. 

2 cm

copper plate

500 m/s

rigid 
wall

z=0 z=L  

uz

ux

initial outline outline at 2 µs

   

r0

 

 1a. 1b. 1c. 

Figure 1. Test problems: 1D shock; jet-formation; and shell collapse. 

To compare the computational times on an equal footing all of the problems had 17 

parameters and one response.  The model parameters were 4 initial conditions, 3 equation-

of-state parameters, 2 artificial-viscosity parameters, 5 boundary conditions, and 2 

material-strength parameters.  Setup time for ADIFOR was approximately two man-

months starting from a simplified fixed-dimension version of the original code.  Creation 

of the simplified code and getting it running on an SGI platform represents several months 

of work.  Run times for the problems are compared below in Table 1. 

3.1. One-Dimensional Shock Problem 

The first test problem is the one-dimensional impact of a copper plate with a rigid 

boundary where the plate has an initial velocity 500 m/s as indicated in Fig. 1a. Upon 

impact the plate experiences a right-going shock.  The impact problem was simulated to a 
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final time of 2.0 µs.  The response for the problem was arbitrarily chosen to be the time-

averaged density a distance of 0.6 cm from the rigid wall. 

3.2. Jet-Formation Problem 

The second test problem is a two-dimensional jet-formation problem in which a copper 

bar impacts a rigid boundary as is shown in Figure 1b.  The bar has an initial axial velocity 

(uz t  0 ) of 100 m/s and was run with three transverse velocities (ux t  0  ): 0.0; 100; 

and 700 m/s, respectively. For the non-zero transverse velocities a jet is formed that flows 

along the axis as in Figure 1b.  The response of interest is the final speed of a marker 

particle that is placed on axis at the right side of the copper bar (shown as a black dot in 

Figure 1b). The problem was run to a final time of 1 µs.  The sensitivity of the final speed 

to the initial axial velocity is 1.000 for the zero transverse-velocity case.  This seemingly 

trivial result provided an excellent test of the advection-scheme adjoint code. When 1.000 

was obtained for the adjoint initial-velocity sensitivity, the other sensitivities agreed well 

with the forward results obtained by ADIFOR (which is viewed as the “correct” solution) 

and by finite differences.  The sensitivities produced by the adjoint code for 100 m/s also 

agreed well with those of the forward code and finite differences.  It was not possible to 

produce reasonable sensitivities for times greater than 0.8 µs by any method for the 700 

m/s transverse velocity case.  Examination of the computed results for this case showed 

that the sensitivity was proportional to the marker particle acceleration, which became 

unstable after 0.8 µs.  A different response choice (other than following a marker particle) 

will be necessary to obtain a numerically smoother characterization of the jet tip speed and 

stable sensitivities. We intend to explore this issue in future work. 

3.3. Shell-Collapse Problem 

The third test problem is a free-running shell collapse.  In this problem, a spherical shell 

of elasto-plastic material is given an initial velocity toward its center (Figure 1c).  During 

the collapse, the shell thickens, and the kinetic energy is irreversibly converted to internal 

energy.  Under the appropriate initial conditions, the shell will stop at a finite inner radius 

r0'  when all of its kinetic energy has been dissipated.  We chose r0'  as the response.  

Verney [13] has provided the analytical solution for the plastic work done during the 

collapse of the shell from r0  to r0' .  By equating the plastic work to the initial kinetic 

energy, an initial velocity distribution may be determined that is consistent with a specified 

final inner radius.  The initial shell radius is 8 cm and its thickness is 2 cm.  For a final 

inner radius r0'  of 3 cm, the initial inner-radius velocity is 670 m/s.  Using this velocity, 

the fully collapsed (>99 % kinetic energy converted) inner radius was calculated to be 

approximately 3 cm, which is in good agreement with the analytical result.  For the 

analytical solution the only parameter that matters is the yield strength.  The yield strength 

is also the parameter with the largest sensitivity. 

3.4. Accuracy and Timing Comparisons 

ADIFOR-processed code provided accurate (as compared to finite difference) parameter 

sensitivities in both the forward and adjoint modes for all of the problems.   The run times 

for the various methods used to obtain the test problem sensitivities are listed in Table 1. 

These test problems had 17 model parameters and one response. We find that the ADIFOR 

forward mode is up to 39% slower and the ADIFOR adjoint mode is at least 11% faster 



 

Session 6 Local Methods  112 

than finding the gradient by means of finite differences.  Problems of real interest will 

certainly have more parameters.  The adjoint mode is thus favored since the computational 

time increases only slightly for additional parameters.  

Table 1. Comparison of computational times on an SGI Origin 2000 for 

test problems with 17 model parameters and one response. 

Problem 1D Shock Jet Shell 

Problem Information    

Cells in 2D 3 X 40 60 X 100 42 X 42 

Time steps 400 100 1000 

Run Times CPU seconds    

Finite Difference 36 126 347 

ADIFOR-Forward 15 146 484 

ADIFOR-Adjoint 12 63 309 

4. SUMMARY AND FUTURE WORK 

We have applied the automatic differentiation tool ADIFOR (version 3.0) to MESA2D 

(a Fortran77 code) and have obtained accurate sensitivities for three test problems in both 

the forward and adjoint modes.  We will apply this capability to experimental data 

assimilation and result uncertainty analysis with this code. We will then extend the 

capability to parallel hydrocodes written in languages other than Fortan77. 
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1. INTRODUCTION 

The validation of computer (simulation) models is a crucial element in assessing their 

utility for science and for policy-making. Often discussed and sometimes practiced 

informally, the process is straightforward conceptually: data are collected that represent 

both the inputs and the outputs of the model, the model is run at those inputs, and the 

output is compared to field data. In reality, complications abound: field data may be 

expensive, scarce or noisy, the model may be so complex that only a few runs are possible, 

and uncertainty enters the process at every turn.  Even though it is inherently a statistical 

issue, model validation lacks a unifying statistical framework. 

The need to develop such a framework is compelling, even urgent.  The use of computer 

models by scientists and planners is growing; costs of poor decisions are escalating; and 

increasing computing power, for both computation and data collection, is magnifying the 

scale of the issues. 

Building a framework for validation of computer models requires an assortment of 

procedures and considerations and recognition of the multiple stages in the development 

and use of the models. Verification, which encompasses procedures to assure that the 

computer code is bug-free, is often seen as a predecessor of validation whereas, in fact, it 

may be enmeshed with validation. Feedback from outcomes of steps in the validation 

process can impact model development through detection of flaws or gaps – the result is an 

intertwining of validation with development. 

We will focus on (the) five essential characteristics of a validation: context, data, 

uncertainty, feedback, and prediction and use a traffic microsimulator model applied to the 

planning of traffic signal timing as a test-bed. Our goal is to draw attention to the many 

complexities that need to be considered in order to achieve a successful validation. 
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2. THE TEST-BED 

The test-bed is the traffic simulation model, CORSIM ([3]); a model in prominent use 

by transportation engineers in the United States, especially for traffic operations.  CORSIM 

is a stochastic simulator that moves vehicles second by second through a network. The 

urban street network in Figure 1 is an important one adjacent to the central business district 

in the city of Chicago. 

Specification of the network includes a set of fixed inputs describing the geometry (e.g., 

distance between intersections, number of traffic lanes, length of turn pockets), the 

placement of stop signs, bus stops and routes, and parking conditions.  At each entry node 

of the network vehicles (autos, trucks, and buses) are generated through the sampling of 

interarrival time distributions. The interarrival time distributions are assumed to be 

independent (vehicle-to-vehicle, node-to-node), different for each entry node. CORSIM 

allows gamma densities 
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we take k=1 for all nodes. The parameter  (different at each node) must be estimated.  

The designation of vehicle type—auto or truck—is made through independent Bernoulli 

trials with a fixed probability. Buses are treated according to their schedule and routes, 

with random dwell times at bus stops and random interarrival times at entry nodes. 

Behaviour of the traffic is affected by other random factors such as turn probabilities, p, 

which will differ from link to link. Driver characteristics (car-following parameters, left-

turn “jumpers”, acceptable gaps between vehicles, lane-changing maneuvers) are a set of 

random factors with discrete distributions on 10 points. These distributions are very 

difficult to measure in the field but can be specified by use of defaults provided in 

CORSIM or used as tuning parameters.   

Signal settings must also be specified. They consist of 

Figure 1:  Network (Chicago, IL)
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 cycle length  

 green times at each intersection—how long the signal is green for straight through 

movement and how long for protected left turns, where present  

 offsets—the difference in time between the start of the “green” through-

movement at a signal and the time of the start of the green through-movement at a 

reference signal.   

The approach to improve existing signal-timing plans on the network of Figure 1 begins 

with collection of data to provide the necessary inputs to run CORSIM.  The computer model 

is then to be used to find an optimum (or, at least, an improved) signal timing plan which 

could be implemented in the field. To convince the Chicago Department of Transportation to 

put the new plan in effect, three questions must be answered: 

 Does CORSIM reliably reflect reality under existing conditions? 

 Can the current signal plan be improved (as measured in CORSIM)? 

 Can CORSIM be trusted to reflect reality under untried conditions?   

The first and third questions are at the heart of the validation process.  The second 

question, of course, must be answered affirmatively before signal settings are changed.  

3. VALIDATION ACTIVITIES 

The validation framework includes a list of activities, dynamic because some may be 

repeated as conditions are updated. Explicit carrying out of the activities may be very 

complicated and require substantial subject-matter knowledge and development of 

methodology.  

The activities are readily categorized as  

 Specification of inputs and  related uncertainties 

 Specification of evaluation criteria 

 Data collection 

 Parameter estimation, calibration and tuning 

 Analysis 

 Prediction 

 Interpretation 

3.1. Specification of Input/Uncertainties  

Table 1 lists, for the test-bed, inputs and some comments on the (initial) uncertainties to be 

attached to them. The geometry of the street network (lanes of traffic, left-turn lanes, signals, 

stop signs, bus stops, etc.) is a critical detail. Detecting errors in transcription or identification 

of specific elements of the geometry may not always be obvious. For example, entering a stop 

sign where one is absent may go undetected unless doing so causes extreme conditions such 

as “spillback” or gridlock which may be detected during runs of the model. 
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3.2. Evaluation Criteria 

Evaluation criteria require 

 Specification of an evaluation function (or functions) defined on model output. 

 Specification of the domain of input variables over which evaluation is sought. 

These specifications are context-driven. The need to compare model output with real data 

constrains the choices of evaluation functions to ones that have both model and field 

counterparts that can be feasibly calculated.   Evaluation quantities that are feasibly calculated 

from field data and available as model output are throughput, stop time, queue length for 

individual links for each signal cycle.  Stop-time per stopped vehicle (STVS) on specified 

links over a one-hour period was selected as the evaluation function.  The definition: Fix the 

link; fix the cycle. Compute the stop-time for each vehicle in the link during the cycle. 

Aggregate the stop-time for all such vehicles and count the number of such vehicles with 

positive stop-time. Accumulate both quantities over all 48 cycles (3600/75) in the one-hour 

period and divide to get STVS for the link 

3.3. Data Collection 

For our test-bed example field data were collected initially on a single day (Thursday, May 

25, 2000).  Processing of the data and analyses were limited to the rush-hour periods, 8am-

9am and 5pm-6pm. Traffic volume data were collected manually (by observers counting 

vehicles) and, on an interior twelve intersections, by video (camera) recording of traffic. The 

video data are highly reliable and costly; the manual data are notoriously unreliable. 

These data were used to estimate key parameters for the inputs to CORSIM (see 3.4 

below). With such inputs and other specifications CORSIM runs were made and output 

examined. CORSIM has an animation module that exhibits the motion of vehicles through the 

network. Visual comparison of the CORSIM animation with the video data turned out to be 

an essential tool in detecting anomalies of the model that ultimately fed back to adjustments 

of the inputs (see 3.5).     

The data were used to answer the first two questions, leading to a new signal plan that was 

put into effect on September 26, 2000.  New data, only from cameras, were collected on 

September 27, 2000 to assess the predictions made by the computer model (see 3.6).  

INPUT UNCERTAINTY COMMENT

GEOMETRY Adjusted to reality after

observation

dependence on data

cycle fixed at 75 seconds

green time ---------- to be optimized

SIGNALS

offsets ---------- to be optimized

DEMAND – arrival rates independent exponentials Estimates from counts;

Bayes estimates

TURNING MOVEMENTS independent multinomials “   “    “     “

DRIVER BEHAVIOR

aggressiveness, etc

10 pt distributions default; tunable

FREE FLOW SPEED speed limit tunable

                                            Table 1. Inputs
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3.4. Parameter Estimation, Calibration and Tuning 

The parameters  and p, as well as the vehicle mix, were directly estimated from the field 

data for each of the one-hour periods. , at an entry link, was estimated by the total number of 

vehicles entering the link/3600. At each intersection, the turn (left-turn, right-turn) 

probabilities, p, were estimated by proportions of vehicles making those turns.  Vehicle mix 

was similarly estimated from counts at each entry link.   

Some ’s were later (ad hoc) adjusted to reduce discrepancies between downstream counts 

generated by CORSIM and those observed by video – the discrepancies are believed to be due 

to inaccuracy of manual counts.  The effect on uncertainty of these modifications and manual 

measurement errors is addressed in [1]. 

With these inputs CORSIM was run a number of times (different random seeds), output 

was collected and compared to field data. Several anomalies were observed. In particular, a 

key corridor (LaSalle Street in Figure 1) had far less STVS in CORSIM than in the field. This 

led to a visual examination and comparison of CORSIM animation with the video data, 

revealing the presence of illegally parked vehicles that had the effect of removing an entire 

traffic lane. The resulting revision to the geometry of the network was, of course, data 

dependent and affects uncertainty calculations, but in non-obvious ways. This calibration 

“fix” did not completely solve the problem: traffic in CORSIM still moved too smoothly and 

swiftly compared to the video data. By experimenting with the free-flow speed parameter and 

changing it to reflect the speed at which traffic did move on the LaSalle corridor we were able 

to better tune2 the model. The feedback process was not simple – it required familiarity with 

the particular network and careful detective work to go from suspect numerical output to 

visualization and detection of the discrepancies. 

3.5. Analysis 

A first level comparison of CORSIM with reality is visual: comparing CORSIM animation 

with video.  Defects, other than those noted in 3.4, were revealed that stemmed from 

CORSIM’s difficulty in recovering from congestion created by a temporary spillback.  

A more data analytic approach is to construct histograms of throughput and STVS (see 3.2) 

from a battery of 100 CORSIM runs. This reveals the inherent variability in CORSIM and 

allows a “test” of whether observed field values are consistent with the CORSIM distribution. 

In general there was reasonably close agreement. Additional comparisons were made between 

a time-series of a CORSIM run (selected as a median run among 100 independent runs) and 

the corresponding time-series from the field (Figure 2).  

                                                 
2 Tuning is a phrase commonly associated with adjusting input parameters to match model 

output. In this instance, free-flow speed is a somewhat artificial parameter affecting the 

movement of vehicles in the model. 
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Figure 2. Comparison of CORSIM and Field Time Series 

 

All of these comparisons are, of course, coloured by the use and reuse of the same data 

collected in May, 2000.  Steps towards a more coherent analysis are in [1].  An indication of 

the effect of incorporating parameter uncertainty was observed by producing a (“Bayes”) 

histogram from 200 runs of CORSIM with each run including a selection of  and p from a 

prior distribution. This histogram was compared with that obtained from 200 runs with  and 

p fixed at their estimates given in 3.4.  The Bayes histogram showed greater variability and a 

10% probability of extreme values, compared to a 2% “tail” in the second histogram.  These 

extreme values correspond to serious congestion and even gridlock, conditions that do not 

occur on the network. The interpretation of this result and its effect on validity is unclear. 

Optimization of the parameters of the signal plan is difficult because the number of 

parameters is large (over 50), the computer model is stochastic, and the dependence on the 

signal parameters, especially the offsets, is not smooth. A genetic algorithm was used but 

limited to optimizing over a corridor at a time. The objective function (not an evaluation 

function) was the system queue time (total amount of time vehicles spend either stopped or 

moving at very low speed).  The current plan’s queue time could be improved by about 8%, 

with enough improvement on key links to warrant implementation. 

3.6. Prediction 

The most compelling form of validation is through confirmation by predictions in new 

circumstances. In the test-bed example the new plan was put in place four months after the 

initial field data were collected.  The predictions made for the new plan in September 

assumed that the conditions in the field in September were the same as in May, except for the 

signal settings.  The predictions were then compared to the data collected in September by 

camera.   

Only one discrepancy was large enough to cause further investigation. On one link (an 

entrance to a freeway at Orleans and Ohio) inspection of the video revealed that drivers were 
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effectively using 20 seconds of green time instead of the displayed 16 seconds. Implementing 

this change reduced the large discrepancy to a minor one.    

An informative evaluation function of CORSIM is the change in CORSIM predictions, 

CORSIM (September STVS - May STVS) compared to the corresponding change in the 

field values, Field. Even though the CORSIM predictions were not always accurate, the ’s 

are close and of the same sign (Table 2).  On one link there was degradation in performance 

both in the field and in CORSIM, a reflection of the failure to implement the proposed 

improved signal plan on all parts of the network – the new plan is the implemented one.   

Table 2.  CORSIM vs.  Field 

 

EB Ohio at LaSalle 0 3

SB LaSalle at Ohio -11 -10

NB LaSalle at Ontario -9 -5

NB Orleans to Freeway 13 15

NB Orleans at Ontario 1 -2

Link CORSIM Reality

 

 = STVS[September] – STVS[May] 

3.7.  Interpretation and Conclusions 

The details encountered in carrying out the validation activities are the essence of the 

validation process. The criticality of context cannot be overstated: it drives the formulation of 

evaluation, the collection of data and affects interpretations of uncertainty. Thus, in the test-

bed some of the observed discrepancies between model and field are statistically significant 

(albeit, overstated by not taking account of estimation, measurement errors and tuning) but 

are of no practical significance. Engineering/scientific expertise is essential in detecting, 

circumventing and correcting flaws in the model. There are no convenient recipes for such 

“forensic” activity - suspicions may be aroused by numerical discrepancies but tracking the 

sources is typically through informal, ad hoc investigations assisted by expertise and, as in the 

test-bed, by visualization. 

The model has flaws that cannot be fixed.  It may have been possible to “hide” the flaws 

by tuning the model (especially through driver characteristics) but we refrained from that 

except for treating the free-flow speed parameter on one corridor.  Despite the flaws, 

predictions for the new signal plan were reasonably close to reality and, strikingly, as seen in 

Table 2, changes were predicted correctly.   

CORSIM predicts gridlock uncomfortably often. Levels of uncertainty must be assessed to 

determine how often (but see [1]).  Our conclusion at this time is that CORSIM can be used 

for signal planning and the frequency of gridlock is unlikely to be large enough to be 

troublesome.  This does imply, however, that the distribution of CORSIM outputs must be 

examined, lest a single run of CORSIM be misleading. 
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Open Questions 

Collecting data for validation is most conveniently done simultaneously with data 

collection for inputs. The use of the same or closely related data for both input and validation 

is an issue that is rarely confronted. The conventional wisdom is that such dual-use of the data 

is “forbidden”. In fact, it can be done but how to attach computable uncertainties, essential to 

producing fully reliable results, is not straightforward.  An approach based on [2] holds 

promise for producing methodology to treat the issue. 

The impact of data of inferior quality on the model has barely been studied. The problem is 

complicated by the need to specify the “brunt of the impact”; quantify scenarios of alternative 

collections of data; measure the consequences, or sensitivities, of model output to wrong data 

inputs including incorrect signal settings or drifts in signal timing. 
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ABSTRACT 

Dimensional and similarity analyses are used in Physics and Engineering, specially in 

Fluid Mechanics, to reduce the dimension of the input variable space. Here, we apply these 

techniques to the Propagation of Uncertainties for Computer Codes in order to reduce the 

variance of the estimators of the parameters of the output variable distribution. We illustrate it 

with an application to a physical problem. 

Keywords: Dimensional Analysis, Similarity Analysis, Propagation of Uncertainties, 

Simulation Codes. 

1. INTRODUCTION 

Since real experimentation is very expensive, with the introduction of faster and cheaper 

computers, computer code simulation has become an essential research tool of science and 

engineering. The relationship between input and output is very frequently expressed through 

functional equations (differential equations or finite difference equations). 

Let us consider a system of functional equations where Z1,..., Zn are the dependent or 

output variables and X1 ,...,Xm are the independent variables (e.g., space coordinates and time). 

Let Y1 ,..., Yp be the parameters of the system, i.e., coefficients of the differential equations 

and of the initial and boundary conditions. The solutions to the system are Zj =Ij(X1,..., Xm; 

Y1,..., Yp). Let us assume that some of the values of Y1,..., Yp, X1,..., Xm are not known 

precisely, i.e., there is uncertainty about their values, this uncertainty is described through a 

known probability distribution. This implies that Z1,..., Zn become stochastic, and the problem 

arises of calculating their joint distribution for given values of the non-stochastic subset of 

X1,..., Xm. In computer code simulation literature, this problem of transformation of variables 

in probability theory is often called propagation of uncertainties or uncertainty analysis. In 

general, the problem can not be solved analytically, so approximate methods are applied, 

preferably Monte Carlo, where variance reduction methods are applied to reduce 

computational costs. The most frequently used variance reduction methods are stratified 

sampling, importance sampling and Latin Hypercube Sampling (McKay, Conover and 

Beckman 1979). 

In physics, one speaks of similarity between two problems when one can transform one 

problem into the other by a change of scale in the variables. It is shown that this is possible 

when a set of dimensionless numbers (in mathematical terms, we shall speak instead of 

invariant functions) which are functions of the parameters Y1,..., Yp coincide in both problems. 
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A classical example is the Reynolds number in fluid mechanics. The dimension of the 

parameter space, originally p, can thus be reduced to the number of dimensionless quantities 

which define the system of functional equations as far as the parameters are concerned. This 

problem is referred to in the literature as dimensional analysis, and though in many physics 

and engineering works it is formulated in terms of physical magnitudes and dimensions, the 

authors prefer to deal with it using a more abstract, mathematical and hence physics 

independent language, such as in Moran (1971). 

An a priori different problem is the reduction of the number of independent variables X1,..., 

Xm. For example, a partial differential equation can be thus reduced to an ordinary differential 

equation. 

In this paper, we see how one can use the two dimension reduction problems mentioned 

above to increase the efficiency of variance reduction techniques in uncertainty analysis and 

we illustrate it with an example. 

2. USING GENERALISED DIMENSIONAL ANALYSIS IN UNCERTAINTY 

ANALYSIS 

Moran and Marshek (1972) have shown that the two problems of the reduction in the 

number of parameters through dimensional analysis and the reduction of the number of 

independent variables, can be formulated in terms of a more general framework called 

generalised dimensional analysis which includes both. 

Moran and Marshek's generalised dimensional analysis consists in finding a set of linear 

transformations: 
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where the aji, bkl and cet are exponents such that the system of functional equations is 

invariant under the transformations i.e., ),...,;,...,( 11 pmjj YYXXIZ  transforms to 

),...,;,...,( 11 pmjj YYXXIZ  . The system of functional equations can then be expressed in 

terms of q=n+m+p-r invariant (''dimensionless'' in the physics terminology) functions j and 

k of the type 
p
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1
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1

1

1 instead of in terms of the original and larger set 

formed by pmn YYXXZZ ,...,;,...,;,..., 111 . 

(...))),...,,...,;,...,((),...,;,...,;( 11111  pmjpmjj YYXXFYYXXZ 
   (2) 

where  =m+p-r, so, since there are now m+p-r independent variables and parameters 

instead of the original m+p, there is a dimension reduction which can be used for a better 

analysis of the system of functional equations. The invariants i which are in general a 

function of the independent variables X1,..., Xm and the parameters Y1,..., Yp can be built in 

such way that there is a reduction in either the number of parameters or in both the number of 

parameters and independent variables. The reduction of dimensionality can be of use for the 

problem of propagation of uncertainties formulated above because we avoid redundant 

sampling. 
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3. APPLICATION 

We apply the ideas above to the problem of the release and transport of a radioactive 

contaminant in a porous medium. We shall use the results provided by Moran and Marshek 

(1972). 

We assume that there is a nuclear waste repository with an initial mass of contaminant M0. 

The quantity of contaminant in the repository decreases due to radioactive decay (at constant 

fractional rate ) and release (at constant fractional rate k). The contaminant released from the 

repository gets into a porous medium through which it is transported to the biosphere. We 

assume that there is uncertainty about the actual pathway that the contaminant may follow to 

reach the biosphere, and the pathway is characterised by its length x, the fluid velocity v, the 

retardation coefficient R and the dispersivity length d. The transport in the pathway is 

simulated as an advective diffusive process in a 1-D medium with radioactive decay. We are 

interested in the flux F of contaminant in x, the junction of the porous medium and the 

biosphere, as a function of time. This physical problem is formulated through the following 

differential equation: 

 0 , 0
2

2















xF

x

F

x

F

t

F
  ,    (3) 

with the following boundary and initial conditions 
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There is thus one dependent variable F, two independent variables x and t, and five 

parameters , , , k, M0. In the notation defined above, m=2, n=1 and p=5. If  ,  and x are 

given random nature, then the response F becomes a random function with index t and, given 

the distribution of x, and , it is of interest to calculate the distribution of F. 

Applying Moran and Marschek's generalised's dimensional analysis, we obtain the 

following invariants:  kxtMF  '';'';';'; 5

2

4210 , so that we have 

reduced the variables and parameters from the initial set formed by F, x, t, , , , k, M0 to the 

new one formed by '' and '',',', 5421  . As mentioned above, the reduction is concentrated 

entirely on the parameters: the original response or dependent variable F is replaced by the 

''mixed '' invariant  (mixed in that it is a function of both the original dependent variable and 

the original parameters); x, t, the initial set of two independent variables, is replaced by also 

two ''mixed '' invariants ' and ' 21   (functions of both the original independent variables and 

the original parameters); the original set of five parameters , , , k and M0 is replaced by 

the two invariants '' and '' 54  . However, since only ,  and x are considered random, as far 

as uncertainty analysis is concerned, we only profit from the reduction of dimensionality in 

replacing the subset formed by ,  and x by that formed by '' and '' 54  . This means a 

reduction from 3 to 2 in the dimension of the stochastic input space for the uncertainty 

analysis. 
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4. RESULTS 

Calculating the full distribution of the random function F would imply obtaining the joint 

distribution of any set ))(),...,(( 1 utFtF for all possible vectors ),...,( 1 utt . In this paper, to 

illustrate the use of dimensional analysis we have taken 100 equally spaced time points 

between 0 and 100,000 years and estimated a) the mean, variance and distribution function for 

each of the corresponding marginal distributions, b) the correlation coefficients between the 

response at t=30,000 years and the responses at each of the remaining 99 time points. We 

have drawn 60 samples of size 64 of the random input. The four following sampling 

techniques have been applied when drawing each sample: 

1. Stratified sampling in an input space of dimension 3: we sample on the joint 

distribution of , , x;  

2. Latin hypercube sampling (LHS) in the same input space and with the same sample 

size as in point 1; 

3. Stratified sampling in the input space of size two of  x and 2 , thus profiting 

from the results of dimensional and similarity analysis; 

4. Conventional Monte Carlo (random sampling) in the same input space and with the 

same sample size as in points 1 and 2. 

An example of the results is shown on figures 1 and 2: In figure 1 we show, for each of the 

four sampling techniques and for each of the 100 time points, the values of the mean of the 60 

sample means; in figure 2 we show the standard deviation of the 60 sample means. 

We see how the standard deviations (figure 2) are significantly smaller for the third 

sampling technique (stratified sampling in the two dimensional input space), while the 

differences between the remaining sampling techniques are less important. This result was to 

be expected, because we avoid a certain degree of redundant sampling from regions of the 

three dimensional space which turn out to be the same, as far as the response is concerned, in 

the two dimensional input space. However, the results for the LHS samples are rather 

disappointing and should be studied more deeply in future research. 
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1. INTRODUCTION 

The field of computational structural dynamics is on the threshold of revolutionary change. 

The ever-increasing costs of physical experiments coupled with advances in massively 

parallel computer architecture are steering the engineering analyst to be more and more reliant 

on numerical calculations with little to no data available for experimental confirmation. 

New areas of research in engineering analysis have come about as a result of the changing 

roles of computations and experiments. Whereas in the past the primary function of physical 

experiments has been to confirm or “prove” the accuracy of a computational simulation, the 

new environment of engineering is forcing engineers to allocate precious experimental 

resources differently. Rather than trying to “prove” whether a calculation is correct, the focus 

is on learning how to use experimental data to “improve” the accuracy of computational 

simulations. This process of improving the accuracy of calculations through the use of 

experimental data is termed “model validation.” 

Model validation emphasises the need for quantitative techniques of assessing the accuracy 

of a computational prediction with respect to experimental measurements, taking into account 

that both the prediction and the measurement have uncertainties associated with them. The 

“vugraph norm,” where one overlays transparencies of simulated data and experimental data 

in an attempt to show consistency, is no longer an adequate means of demonstrating validity 

of predictions.  

To approach this problem, a paradigm from the field of statistical pattern recognition has 

been adopted [1]. This paradigm generalises the extraction of corresponding “features” from 

the experimental data and the simulated data, and treats the comparison of these sets of 

features as a statistical test. The parameters that influence the output of the simulation (such 

as equation parameters, initial and boundary conditions, etc.) can then be adjusted to minimise 

the distance between the data sets as measured via the statistical test. However, the simple 

adjustment of parameters to calibrate the simulation to the test data does not fully accomplish 

the goal of “improving” the ability to model effectively, as there is no indication that the 

model will maintain accuracy at any other experimental data points.  

Effective model validation requires “uncertainty quantification” to ensure that the adequate 

agreement achieved between the numerical prediction and the experimental measurement is 

mailto:doebling@lanl.gov
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robust to changes in the experimental conditions. Uncertainty quantification refers to the 

exploration and understanding of the sources of uncertainty in a simulation: 

 Solution uncertainties, such as errors introduced by spatial and temporal discretization, as 

well as model form errors 

 Parametric uncertainties, such as distributions on simulation inputs and the propagation of 

these distributions to the simulation outputs 

 Relationship between simulation inputs and outputs, such as the generation of reduced-

order models (response surfaces) using design of experiments sampling techniques 

The contents of this paper will illustrate the pursuit of a systematic treatment of this 

problem via an example. The validation of transmission of shock energy through a complex, 

jointed structural assembly is the problem of interest, and the solution uncertainty is neglected 

for the purposes of the example. (This neglecting is legitimate, as the uncertainties introduced 

via simulation parameters are typically much more significant in structural mechanics 

applications.) 

2. EXAMPLE APPLICATION 

Quantifying shock transmission through complex, jointed structures has traditionally been 

possible only with experimental methods. These experiments are expensive and time-

consuming and thus only a few cases can be studied. With the advent of large scale 

computing capabilities estimation of the shock transmission with numerical models has 

become a tractable problem. A primary advantage of these models is that, when validated, 

parametric studies can be efficiently performed to evaluate the effects of different input loads 

and variations to the structure’s design or to load path changes caused by ageing. The U.S. 

Department of Energy's Accelerated Strategic Computing Initiative (ASCI) is developing 

massively parallel hardware and software environments for modelling these types of 

problems. 

The ASCI computing environment is being used at Los Alamos to study the transmission 

of shock through a complex, jointed structure. A three-dimensional explicit finite element 

model has been developed that includes a detailed representation of the geometry and contact 

surfaces including preloading effects. A series of full-scale experiments has been performed 

to provide data for model validation and uncertainty quantification. 

Several issues of open research are addressed in this example. First, large computer 

simulations tend to generate enormous amounts of output that must be synthesised into a 

small number of indicators for the analysis. This step is referred to as data reduction or feature 

extraction [1]. These features are typically used to define the test-analysis correlation metrics 

optimised to improve the predictive accuracy of the model. The main issue in feature 

extraction is to define indicators that provide meaningful insight regarding the ability of the 

model to capture the dynamics investigated. 

Second, efficient numerical optimisation requires that the correlation between the model’s 

input variables and output features be assessed with adequate accuracy. Statistical response 

surface models (RSM) must be generated to replace the expensive, large-scale simulations. 

One difficulty of fitting RSM’s is efficient sampling, i.e. the generation of sufficient 

information in regions where representative variation in the features of interest will be 

observed. 
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The test article used for the experiments and subsequent analyses consists of several 

components fabricated from a variety of materials. A titanium component designated the 

"mount" to which all other components are attached is shown in Figure 1. Two payload mass 

simulators and two aluminium shells attach to this mount. For the experiments the test article 

was suspended using wire rope creating a pendulum with a length of about 1m. An impulse of 

a few microseconds in duration was delivered to the assembly using an explosive charge. A 

total of four experiments were performed. SRI International performed these tests at their 

Menlo Park, California facility. 

 

 

 

Figure 1: Titanium Mount (left) and Experimental Test Configuration (right) 

The explicit finite element model (FEM) of the test article was developed using the 

ParaDyn finite element code [2]. The resulting model had approximately 1.4 million 8-node 

hexahedral elements, 56,000 4-node shell elements, and 1.8 million node points. The finite 

element model was run on 504 processors on the Los Alamos Blue Mountain computer. 

Using this number of processors resulted in 1.3 CPU hours for each ms of the simulation. A 

typical response of the model after a short increment of time is shown in Figure 2. 

 

 
 

Figure 2: Displacement Contours of the Mount ParaDyn Model 
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3. PARAMETER SCREENING: FEATURE SELECTION & MAIN EFFECTS 

ANALYSIS 

To quantify and understand the influence of each of the simulation model parameters on 

the model response, a higher-order RSM must be constructed. Because of the large number of 

simulation runs required (to cover many levels of each parameter), and the length of time 

required to run each simulation, the number of parameters must be limited to about 5. 

Based on the judgement of the engineering analysts, a total of twelve parameters in the 

finite element model were selected as being of possible importance to the response and also 

having a relatively high uncertainty associated with their value. These parameters consist of 

three component preloads, four static and four kinetic coefficients of friction, and the 

magnitude of the explosive impulse. So the first step in the model validation/uncertainty 

quantification process was to build a multidimensional linear RSM of the response features of 

interest over the parameter space of interest to screen the total number of parameters from 12 

to about 5. For the 12 parameters of interest, 4 had 2 levels of interest while 8 had 3 levels. 

The total number of runs to build a full factorial RSM was therefore 104,976. To limit the 

required simulation time, a first set of 48 runs was completed from parameter samples 

selected using the Taguchi Orthogonal Array technique [3]. 

Because the transmission of shock across the mount to the payload components was the 

primary event of interest, errors between the predicted and measured statistical moments of 

the time history, shock response spectrum (SRS) and power spectral density (PSD) at each 

accelerometer location were used as features of interest. An analysis-of-variance analysis was 

performed on the 48 runs for each feature to compute the influence of each parameter on each 

feature. The features were evaluated based on whether a) the total contribution of the 

individual parameters was significant (e.g. the feature was significantly sensitive to at least 1 

of the parameters) and b) whether the feature was amenable to a linear RSM fit (i.e. the linear 

fit had a high R2 value). 

A few of the features either were not amenable to linear screening or did not demonstrate 

significant sensitivity to any of the parameters. Generally, however, a trend was observed for 

features from all sensors indicating significant effects due to the following five parameters: 

one preload, three kinetic coefficients of friction, and the impulse magnitude. Thus the 

parameter space of interest was reduced from dimension 12 to dimension 5, allowing realistic 

generation of a higher-order RSM. 

4. CONCLUSION/FUTURE WORK 

Work to date has indicated that it is possible to reduce a high-dimension parameter space 

to a reasonable dimension using a moderate number of runs of a very large finite element 

model of a transient structural dynamics event. A higher-order RSM will be created using this 

lower dimension parameter space for the purposes of understanding the sensitivity of the 

response features to each of these parameters, and for the optimisation of these parameters to 

adequately represent the measurements from the actual test article. A second round of 

validation experiments will then be designed to further explore the parameter space and define 

the regime of validity of the model. The validated model can then be used with some 

confidence to predict events outside the regime of practical testing. 
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ABSTRACT 

In this paper we calculate the predictive distribution for a bivariate kriging model (or 

cokriging model). The model is successfully applied to the prediction of the sampling 

distribution of test statistics used in the detection of outliers in time series. 

1. INTRODUCTION 

Kriging models, a special case of random fields, are applied in Statistics to predict the 

value of one or more response variables for given space and time coordinates SX ,  given the 

values of those responses for a different set of inputs DX . If the response is univariate, we 

speak of a univariate kriging model, if it is bivariate of a cokriging or bivariate kriging model. 

Typical examples appear in Geostatistics, where the response is one or more properties of the 

mineral and X are the position of any location of the mine. For a better understanding of the 

problem let us assume there are two responses 1y  and 2y  corresponding to, say, hardness 

( 1y ) and elasticity ( 2y ). Then, given the values of 1y  and 2y  for any set of locations DX , 

when predicting the hardness for a new set of locations SX , we would not only use the data 

on hardness for DX , but also the data on elasticity in DX  and vice versa. This implies that 

there is not only autocorrelation for each response but also cross correlation between the two 

responses. 

Handcock and Stein (1993) developed a univariate response model with regression term 

plus a zero mean stationary Gaussian process uXY   , with a correlation structure defined 

in terms of a vector of parameters  . They included several cases: first, the value of   was 

estimated and “plugged in“ so that the uncertainty of the estimation was not incorporated into 

the predictive distribution. Second, they incorporated this uncertainty by means of  




dyfyyfyyf DDSDS )(),()(  . In this case ),( DS yyf  and )( Dyf   were obtained 

analytically but integration with respect to   was numerical. 

In this paper we calculate the predictive distribution for a bivariate response (bivariate 

random field) without regression term, i.e., with zero stationary mean. We then apply this 

model to the prediction of two deterministic functions, namely to the computation of the 

sampling distribution of two statistics used in the outlier detection in time series. 

mailto:jmira@etsii.upm.es
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2. COMPUTATION FOR THE MULTIVARIATE CASE 

Let )(xy be a bivariate random field with a zero stationary mean for both responses, 

constant (stationary) variance for each response and an auto and cross correlation structure 

which is expressed in terms of a vector of parameters  . 

The model is based on the hypothesis of normality for the distribution of )(xy , conditional 

on the stationary standard deviations 1 and 2  and  on non-informative priors for 1 and 2 . 

As in the univariate case, 


dyfyyfyyf DDSDS )(),()(  where )( Dyf  is the 

posterior distribution for    and ),( DS yyf  is the predictive distribution, but conditional on 

the value of  . 

It is assumed that we know the two responses 1y  and 2y , for the set of m inputs of matrix 

DX , these two responses are stored in vector Dy . We want to predict  1y  and 2y for the new 

set of n  inputs of matrix SX , these unknown responses are vector Sy . 

 The main result of the paper consists in integrating out the two standard deviations 1  and 

2 , a problem which appears when computing 


dyfyyfyyf DDSDS ),(),,(),(  . 

This is done by means of the diagonalization of  a quadratic form which appears on the 

exponential, followed by a conversion to polar coordinates and a computation of integrals of 

powers of trigonometric functions. 

As mentioned above, 


dyfyyfyyf DDSDS )(),()(  is computed through Monte 

Carlo simulation using the analytical expressions for ),( DS yyf  and )( Dyf  . The same 

applies to the mean and second order moment of )( DS yyf , 




dyfyyEyyE DDSDS )(),()(   and 


dyfyyEyyE DDSDS )(),()( 22

  where 

),( DS yyE  and ),( 2 DS yyE have also been obtained analytically. )( DS yyE  can be used as a 

point predictor and 22 ))(()()var( DSDSDS yyEyyEyy   as a measure of the uncertainty of 

the predictions. 

We have used the following stationary correlation structure: the autocorrelation function is 
d

ed 1)(
 

 and the cross –correlation function is 
d

ed 2

3)(
 

 where d  is the euclidean 

distance between the inputs. These correlation functions must verify, both individually and 

jointly, the condition of positive definiteness, we use here the permissibility criteria of 

Christakos (1992), which, when applied, require that ),(0;0;0
1

2

2

1
321








 min . 

3. APPLICATION 

We now apply the results above to the prediction of two deterministic functions: the 95% 

percentiles of the sampling distribution of the test statistics used to detect two different types 

of outliers in time series: IO (innovative)  for the first function and LS (Level Shifts) for the 

second. 



 

Session 7 Statistical Analysis of Computer Code Output 137 

If yt is a time series which follows an ARIMA(p,d,q) model, the models for an additive 

outlier (AO), innovative outlier (IO) and level shift (LS) can be written:  

Zt=yt+wiVi(B)It
(Ti) 

where Vi(B)= 1 for an AO, 1/(B)  for an IO and 1/(1-B)  for a LS, (B) is the 

autoregressive representation for the ARIMA model and It
(Ti) is an impulse variable which 

takes the value 1 if  t=Ti  and 0 otherwise. 

To test the existence of an outlier the following hypothesis are established: H0: no outliers; 

H1: there exists an AO; H2: there exists an IO and H3: there exists a LS. Given a time series 

with n  time points, to test H0 versus H1, H2 and H3, three statistics tA, (for AO), tI , (for IO) 

and tL, (for LS) are calculated for each time point t; then, for t=1,…, n the maximum of 

tA, and  tI , is calculated, and we also compute the maximum (AI ) of these n  maxima. 

Next, for t=1,…,n the maximum of the tL, (L)  is calculated.  Each of the two maxima is 

compared with a reference value which is the 95% percentile of its sampling distribution 

under H0 (Sánchez and Peña, 1997); these percentiles are calculated by simulation  and their 

values depend on the length n  and on the parameters of the series; since computing the 

percentiles is expensive, specially for large series, we suggest here just calculating the 

percentiles for a subset of all possible combinations of n  and the series parameters and then 

interpolate through our cokriging predictor for any other combination. 

We shall consider only AR(1) as time series model, defined by a parameter ( ). Our two 

response variables in the cokriging predictor will thus be the 95% percentile for IO and the 

95% percentile for LS, and the two input vector X will be the length of the series, n, and the 

value of  . 

4. RESULTS 

In this section we show the results of a cross-validation exercise carried out using the 

cokriging predictors presented above. 

As mentioned above, we have considered here only AR(1) models, which are defined 

through one parameter ( ) and have taken different values for the length of the time series 

( n ); the dimension of the input variable X is thus two. 

We have obtained the values of the two responses for the 42 design points which result 

from all the possible combinations of the values shown in table 1. We have then predicted the 

two responses for four new points ( SX ). 

Table 1: Values of the input variables.  

N 30 50 100 150 250 500  

 0.2 0.4 0.6 0.8 -0.3 -0.5 -0.8 

 

In table 2 we show the results: the first column shows the input values, the second the 

mean of the cokriging predictive distribution, which we take as point predictor; the third 

column shows the variance of the cokriging predictive distribution, which is a measure of the 
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uncertainty of the predictions; the fourth column are the true values, obtained by simulation;  

the fifth column are the relative errors and the last column are the run times for the predictors. 

The run times for the original function are of three hours in average. The first half of the rows 

corresponds to the first response (IO) and the second half to the second response (LS). 

Table 2: Results for IO and LS 

SX  Point 
Predictor 

 (IO)  

Predictor 
variance  

 (IO)  

True value 
(simulation) 

(IO) 

Error 
(%) 

Run 
time 

N=200,  = 0.6 3.6105 0.0120 3.6280 1.75 3'18'' 

N=200,  = -0.4 3.6534 0.0123 3.5702 -8.32 3'09'' 

N=100,  = 0.5 3.3722 0.0122 3.3464 -2.58 3'28'' 

N=100,  = -0.6 3.3226 0.0144 3.2938 -2.88 3'24'' 

SX  Point 
Predictor 

(LS) 

Predictor 
variance 

(LS) 

True value 
(simulation) 

(LS) 

Error 

(%) 

Run 
time 

N=200,  = 0.6 2.8752 0.0191 2.8842 0.90 2'45'' 

N=200,  = -0.4 2.6110 0.0197 2.5929 -1.81 3'09'' 

N=100,  = 0.5 2.7700 0.0178 2.7409 -2.91 2'54'' 

N=100,  = -0.6 2.4595 0.0272 2.5007 4.12 2'47'' 

 

We can see that the errors are small and thus validate the predictor. 

5. CONCLUSIONS 

Using the univariate case as a starting point, we have calculated the predictor for the 

bivariate case, including the mean and variance of the prediction. The application to the 

prediction of the sampling distribution (percentiles) of the statistics used to decide if there 

exist outliers in a time series was very successful. This is very encouraging in the direction of 

using random fields (kriging) as interpolating predictors in problems of mathematical 

statistics, a promising new field of application. 
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ABSTRACT 

Petroleum engineers analysing the oil potential of sedimentary basins are confronted with 

modelling tasks such as the computation of the temperature and pressure 3D fields, the 

generation and expulsion of hydrocarbons (HC), and the secondary migration of HC in the 

traps. The last task also involves, more than others, the definition of a methodology to 

perform the calibration to the known data (dry holes, discovered reserves, etc.). 

In this paper, we focus on the modelling of the generation and expulsion of HC from a 

source rock in a particular sedimentary basin. We explore how some concepts deriving from 

the field of global sensitivity analysis can provide insights upon a better understanding of the 

models employed to simulate the generation and expulsion of HC from source rocks.  

In this preliminary study, in addition to a visual scatter-plot analysis, we apply global 

quantitative techniques of sensitivity analysis. We employ the extended FAST method 

(Saltelli et al., 1999), which has been applied for the sensitivity analysis of expelled oil, gas 

and wet gas time histories to groups of uncertain factors (ie model parameters and input data). 

1. INTRODUCTION 

Global quantitative techniques for sensitivity analysis, that are based on the decomposition 

of the variance of the target model output, have received a considerable boost in recent years, 

due both to more efficient computational strategies and to a widening of their range of 

application.  

In this paper we show a preliminary sensitivity study that has been conducted on a 

numerical model that simulates the generation and expulsion of HC from a source rock in a 

particular sedimentary basin. The numerical model employed in the study is called PMOD, it 

was originally developed at the Lawrence Livermore National Laboratory and it has been 

modified by ENI – AGIP Division, a brief description is given in the next section. 

An interesting aspect of this preliminary study is that the PMOD model requires, in 

addition to a set of standard (ie scalar) parameters, also a collection of four time histories  

(temperature, pressure, effective stress and hydrostatic pressure), which are highly non-

stationary and cross-correlated over millions of years before present.  

mailto:stefano.tarantola@jrc.it
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This circumstance, rather unusual and complex to handle for the purpose of sensitivity 

analysis, but rather common in practical problems, has led us to ponder in detail how to work 

out a reliable and effective analysis. The procedure adopted in the study is described in 

Section 3. 

2. THE SIMULATION MODEL PMOD 

The 0-dimensional model PMOD has been used to calculate hydrocarbon expulsion. The 

code simulates oil generation, cracking, and other chemical reactions occurring during the 

pyrolysis of petroleum source rocks over a specified history of temperature and pressure. It 

simulates also compaction of the source rock and expulsion of hydrocarbons and water.  

A point in the sedimentary basin under study has been selected and the PMOD model 

applied to it, obtaining as result the history of hydrocarbon expulsion out of the source rock 

from the beginning of the sedimentation (65 million years before present) through to the 

present time.  

The quantities of interest for the sensitivity analysis are the cumulative expelled amounts 

of oil, gas (CH4) and wet gas (CHX) at selected time-steps. 

Among all the input parameters of PMOD a number of them has been selected for the 

subsequent sensitivity analysis: chemical parameters (KEM/FIZ files), phi-stress curve, TOC 

(Total Organic Carbon), porosity, permeability, source rock thickness and time-series, that 

describe the evolutions of temperature, pressure, effective stress and hydrostatic pressure. 

These parameters are considered to be the most uncertain from a physical, geological and 

geochemical point of view in the study area. 

The ‘KEM/FIZ’ files are input files to PMOD. They contain the stoichiometric and kinetic 

description of the chemical reactions taking place in the source rock and the chemical and 

physical properties of reactants and products. Eight ‘KEM/FIZ’ pairs of files have been used 

as alternative scenarios, in order to take into account the uncertainties both in the kinetics of 

the reactions and in fluid expulsion parameters.  

Phi-stress curves describe the mechanical behaviour of the rock. As no data were available 

for the study area, three different curves, relative to similar sedimentary environments in other 

geographical areas, have been used.  

TOC represents the total organic carbon content of the source rock. The variation of this 

parameter can change the timing of the beginning of expulsion. It is expert belief that TOC 

can have great influence on the overall efficiency of the expulsion process. TOC values are 

generally obtained from laboratory analyses of rock samples: the TOC range used in this 

study comes from experimental data.  

Porosity and permeability are petro-physical properties of the rock, whose uncertainty can 

be due to lack of data or to up-scaling problems. Bibliography values of porosity and 

permeability in similar lithologies at similar depths have been used and combined into 

probability distributions.  

For source rock thickness, an uncertainty of 50% has been considered with respect to the 

data obtained from the geological interpretation of this area.  

Several sets of time-series of four variables (actually 32 sets) have been calculated with an 

ENI-AGIP Division internal 1D temperature and pressure modelling tool, they represent 32 
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different scenarios. Each set contains the description of the evolution through time of: 

temperature, pressure, effective stress and hydrostatic pressure in the selected point of the 

basin. All the time series were sampled for six time points, in million years before present 

(mybp):  30, 11.5, 8.5, 4.8, 1.9 and 0. All the 32 scenarios are acknowledged in the sensitivity 

analysis. This set up is representative of a credible range of uncertainty in the evolution 

through time of the four variables, as a consequence of the uncertainties in the sedimentation 

history of the basin and in its petro-physical properties. 

 

NAME GROUP TYPE RANGE of 

VALUES 

PDF 

"KEM/FIZ" files A Discrete 1,…,8 Uniform 

"phi-stress" curves A Discrete 1,2,3 Uniform 

TOC A Continuous 0.005 - 0.05 Uniform 

Porosity A Continuous Min=0.04; 

Mode at 0.05; 

Max=0.09 

Triangular 

Permeability A Continuous 1.e-9 – 1.e-6 Log-uniform 

Source thickness A Continuous 907 – 1814 - 2721 Triangular 

Time-series  B Discrete 1,2,…,32 Uniform 

Table 1: list of the uncertain input factors and their stochastic properties 

3. SENSITIVITY ANALYSIS 

A uniformly distributed statistical variable (the ‘KEM/FIZ’ factor) is defined and takes 

discrete values from 1 to 8. A sample from the distribution of the ‘KEM/FIZ’ factor is 

generated at run-time, i.e. at each run of PMOD, and the corresponding pair of ‘KEM/FIZ’ 

files is used as alternative scenario for the chemical and physical characterisation of the 

source rock.  

In a similar fashion, an identification number is assigned to each one of 32 sets of time 

histories that have been calculated to describe the evolution through time of temperature, 

pressure, effective stress and hydrostatic pressure in the selected point of the basin. The 

identification number takes integer values from 1 to 32. At each run of PMOD, a sample is 

taken randomly between 1 and 32 and the corresponding set of time series is used as input to 

PMOD. This procedure is very easy to implement and has been used in this preliminary study.  

A first sensitivity analysis is aimed at quantifying importance of the input time histories 

against all the other contributions to uncertainty. Therefore, the 7 uncertain factors have been 

partitioned into two groups (called A and B) as indicated in table 1. The extended FAST has 

been employed to compute the first order and the total sensitivity indices for each of the two 

groups (i.e. TBTABA SSSS ,,, ) and for each of the six time points considered. The total cost of 

the analysis is of about 1,000 model executions: each model execution requires a few seconds 

to run. The results are shown in Table 2 for CH4. 
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Fast first order indices     

Time 
(in 10 Myears) 

              
CH4[1] 

              
CH4[2] 

              
CH4[3] 

              
CH4[4] 

              
CH4[5] 

              
CH4[6] 

 

Group A 0 0.17 0.33 0.43 0.79 0.75 

Group B 0 0.12 0.11 0.02 0.01 0.02 

Fast total effect indices     

Time  (Myears)               
CH4[1] 

              
CH4[2] 

              
CH4[3] 

              
CH4[4] 

              
CH4[5] 

              
CH4[6] 

 

Group A 0 0.78 0.86 0.93 0.96 0.96 

Group B 0 0.78 0.58 0.40 0.09 0.14 

 

Table 2: sensitivity analysis (first order and total effect indices) of the output "CH4" to the 

two groups of factors. Almost identical results have been obtained for "CHX" and "oil". 

The first order indices indicate that group B is not influent over time, whereas group A 

shows an increasing importance (up to a maximum of 0.79 at point 5). At points 2, 3 and 4 the 

sum of the first order indices is very small (i.e. 0.3, 0.44, 0.44 respectively). This indicates a 

high level of non-additivity of the model, which is probably undergoing a complex transient. 

This transient is driven by both groups A and B, which have large values for their total indices 

(denoting remarkable interactions between A and B). Note how the total index for group B 

becomes smaller at time points 5 and 6, indicating that group B does not concur to 

interactions anymore (i.e. the transient is probably terminated), and that the system is almost 

entirely regulated by the parameters of group A. 

Fast first order indices      

time (Myears) CH4[1] CH4[2] CH4[3] CH4[4] CH4[5] CH4[6] 

KEM/FIZ files 0.00 0.03 0.07 0.08 0.03 0.03 

phi-stress 0.00 0.06 0.08 0.02 0.01 0.02 

TOC 0.00 0.07 0.12 0.26 0.64 0.63 

Porosity 0.00 0.04 0.04 0.04 0.00 0.01 

Permeability 0.00 0.04 0.04 0.04 0.03 0.02 

Source thickness 0.00 0.05 0.02 0.03 0.01 0.01 

Time series 0.00 0.08 0.08 0.04 0.02 0.03 

Fast total effect indices      

time (Myears) CH4[1] CH4[2] CH4[3] CH4[4] CH4[5] CH4[6] 

KEM/FIZ files 0.00 0.52 0.44 0.43 0.13 0.19 

phi-stress 0.00 0.76 0.52 0.50 0.12 0.14 

TOC 0.00 0.80 0.68 0.76 0.79 0.84 

Porosity 0.00 0.67 0.35 0.38 0.07 0.12 

Permeability 0.00 0.80 0.41 0.44 0.14 0.24 

source thickness 0.00 0.52 0.34 0.38 0.12 0.22 

time series 0.00 0.78 0.54 0.31 0.12 0.17 

 

Table 3: sensitivity analysis (first order and total effect indices) of the output "CH4" to the 

seven factors. Almost identical results have been obtained for "CHX" and "oil". 
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Subsequently, another FAST analysis has been performed for the 7 factors taken singularly 

to investigate which factors of group A are driving the uncertainty of the output, especially in 

the time range (2, 3, 4). It has been found (see Table 3) that TOC is the only factor with an 

appreciable value of first order index (especially at time points 5 and 6). The TOC is also the 

only factor that has a large value of total index at all time points (except the first): the total 

indices for phi-stress, porosity, permeability and time series are quite large at time point 2, but 

then this value decreases 

In conclusion, the highly non-linear 

behaviour of the model is shown by the 

very low value of the sum of the first order 

indices. The scatter plot given in figure 1 

highlights that TOC acts as a threshold 

parameter: if the TOC values are below 

some threshold no expulsion can take place, 

even if high temperature and pressure 

values would facilitate oil expulsion. 

 

Figure 1: scatterplot of oil expelled vs. 

TOC. Note the threshold effect of TOC 

 

4. CONCLUSIONS 

These analyses are essential to geologists, modellers and analysts to improve their 

knowledge on the mechanisms that govern the system over different regions of interest. 

Different outputs of PMOD, such as the 'time of initial expulsion' for light oil, heavy oil, 

and gas, will be the object of future sensitivity analyses. These analyses will contribute to a 

better understanding of the physical system. 

Monte Carlo filtering, and the GLUE approach that derives from it (Generalised 

Likelihood Uncertainty Estimation) are also promising tools to use in the presence of 

considerable model uncertainty. GLUE can further be combined with global sensitivity 

analysis in an effective fashion. This will also be the object of future work.    
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1. INTRODUCTION 

The abundance of radionuclides in marine biota is usually characterised by coefficients 

called concentration factors. These coefficients are derived from data from coastal waters and 

are used as simple multiplicative factors to assess the risk from radionuclide discharges into 

the sea. This approach implicitly assumes that the transfer of radionuclides from sea water 

into fish follows a linear relationship, independent of time and space, which has no physical 

justification. This assumption is slightly improved in the case of so-called “non-conservative” 

radionuclides, e.g. 239Pu, and 240Am. However, the model used in that case is very simplified 

due to the small number of observations produced since this technique was introduced [1]. 

Since then many observational programmes have been performed and there is a need to 

introduce a more justified, data-based approach into the regulatory practise concerning the 

transfer of radionuclides  into the food chain.  

In this paper a transfer function approach is applied to modelling the transfer of 

radionuclides from sea-water to the marine biota. Concentrations of 137Cs in sea-water and 

fish flesh in the Irish Sea near Sellafield are used to derive the transfer function parameters. 

The structure of the transfer function model and the values of its parameters are chosen using 

statistical and optimisation techniques within the DBM (Data-Based Mechanistic) modelling 

technique and the microCAPTAIN toolbox [2]. Concentrations of radionuclides not included 

in the calibration are used to validate the transfer function model predictions. The results are 

also compared with the predictions of radionuclide concentrations in fish obtained from an 

input of Sellafield discharges of 137Cs into the Irish Sea. The uncertainties of the predictions 

are analysed using the Generalised Likelihood Uncertainty Methodology (GLUE) and 

expressed in the form of confidence limits for the predictions. As a result, the sensitivity of 

the prediction errors to the variations in the radionuclide discharges and observation errors are 

evaluated. 

2. METHODOLOGY AND RESULTS 

2.1. Available data  

Available data include discharges of 137Cs from the Sellafield pipe-line and the 

concentrations of radionuclide in different marine biota in the Sea and on the coast in 

Cumbria and Morecambe Bay. There are given mean annual radionuclide concentrations for 

particular locations within the Irish Sea in fish, mussels, winkles, crab and lobster. The 

mailto:R.Romanowicz@lancaster.ac.uk;
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observations from different sources were combined together for the same species and the 

same location. For the purpose of the comparison of the model results with the observations, 

two sets of data were chosen for the radionuclide 137Cs. They all come from MAFF annual 

reports, but consider different consumers.  

2.2. Application of transfer function techniques to model transfer of radionuclide 137Cs  

to fish  

The time dependent annual observations of the marine biota make it possible to implement 

the transfer function approach [2] to the dose modelling. The single input single output 

transfer function model used for the off-line predictions has the form:  

   ttn

m

t u
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
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       (1) 

where yt is the dose prediction at the end of year t, ut- is the concentration of pollutant at 

the end of year t,  denotes delay with which the concentrations are observed. t is the white 

gaussian noise and the polynomials A(z-1) and B(z-1) are defined by : 
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an, bm, are model parameters and  m=0,..,M; n=0,...,N 

The operator z--n denotes a shift backward in time, i.e. z--mu(t) = u(t-m), which is equivalent 

to introducing the process dynamics (in static model the process output does not depend on 

the past values, but only on the present). The value of the transfer function (TF) method 

depends on the amount of information available to define the model parameters. The 

microCAPTAIN toolbox and Data Based Mechanistic (DBM) modelling have been applied to 

identify the order of the TF and estimate the associated parameters [3]. The best optimised 

model for the discretisation period equal to one week has the form: 

The resulting predictions of the concentration of 137Cs in fish flesh based on sea-water 

measurements of 137Cs for the validation data set are shown on Fig. 1. The figure also shows 

the 95% confidence limits for the predictions. It is worth noticing that the microCAPTAIN 

toolbox uses all the input measurement data, while the use of the simple transfer function 

method requires smoothing the data before hand. By characterising the data in this manner,  

the DBM approach demonstrates the analogy between TF and compartmental modelling 

techniques applied to transfer of pollutant in the food chain. 

2.3. Transfer function and Generalised Likelihood Uncertainty Estimation technique 

applied to model transfer of radionuclides 137Cs from liquid discharges to fish 

In the next step in the analysis, the discharges from Sellafield as used as an input to a TF  

model of the marine biota. The discharges are carried out under authorisation by British 

Nuclear Fuels (BNFL) and have the form of a liquid radioactive effluent released through a 

pipeline into the Irish Sea.  Only annual discharge data are available to the public. The 

transfer function approach described in the previous section was applied to annually averaged 
137Cs concentration measurements in fish flesh.  

 )1(08.14)(26.14)1(992.0)( tututyty
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The goal of this work is the evaluation of the sensitivity of the prediction errors to the 

variations in discharge and observation measurements. Two approaches are used. In the first 

approach, the TF model was derived for the discharges and observations equal to the given 

mean annual values interpolated into the monthly periods. The resulting predictions for the 

calibration and validation stage are given on Fig. 2. The second approach consists in 

derivation of prediction errors for the discharges and concentration observations varied 

normally from their specified values using full microCAPTAIN toolbox transfer function 

routines for each discharge realisation. 500 simulations of the transfer model for 48 years 

starting from 1952 are used in this Monte Carlo analysis. The resulting model predictions are 

used to evaluate the posterior distributions of concentrations of radionuclide in the marine 

biota and prediction errors. The predictions with 95% confidence limits for 137Cs, fish, are 

shown on Figure 3 D. The posterior cumulative distributions for all three parameters of the TF 

model are shown on Figures 3A-C. In this case, the choice of TF parameters requires the 

solution of the inverse problem and therefore it is non-unique. Neither is unique the choice of 

a model structure. This choice should be supported by the research leading to better 

understanding of the mechanisms of transfer of radionuclides from the marine environment to 

marine species.  

3. CONCLUSIONS  

The work presented in this paper considers the generalisation of the uncertainty analysis 

applied to the marine dispersion models into the environmental assessment problems. Two 

aspects of the problem are described: (i) calibration of models on site specific data; and (ii) 

the availability and reliability of input data. Both of these aspects contribute to the modelling 

errors, which can be estimated only when the stochastic approach to the modelling is taken. In 

order to improve the marine dose model results, the dynamic dose model was introduced 

using the transfer function approach. It is based on the introduction of time series 

methodology to the error model analysis. The resulting predictions take into account the 

dynamics of the radionuclide transfer to the marine animal flesh and are generally superior to 

traditionally applied simple regression models. The examples show that a much better 

explanation of the data (model fit) is achieved by introducing the dynamic dose model and 

this gives greater confidence in the prediction studies.  

4. REFERENCES  

1. Hunt G.J., 1984, Simple models for prediction of external radiation exposure from aquatic 

pathways, Radiation Protection Dosimetry, 8, 4 215-224. 

2. Young, P. C. (1999a). Nonstationary time-series analysis and forecasting. Progress in 

Environmental Science,  1, 3-48. 

3. Young, P.C.  (1999b). Data-based mechanistic modelling, generalised sensitivity and   

dominant mode analysis. Computer Physics Communications, 115, 1-17. 

4. Beven K.J., A. Binley, 1992, The future of distributed models: model calibration and 

uncertainty prediction, Hydrol. Process., 6, 279-298. 

5. Romanowicz, R.J., Beven, K., and Tawn,  J., 1994, Evaluation of Predictive Uncertainty in 

Nonlinear Hydrological Models Using a Bayesian Approach, in: Statistics for the 

Environment 2, Water Related Issues, eds. V. Barnett and K. F. Turkman, 297-315. 



 

Session 8 Applications I  148 

Figure 1. Transfer Function model for weekly data: y(t)+0.99y(t-1)=14.5u(t)-14.1u(t-1)+

Figure 2. Transfer Function model for monthly data: y(t)+1.95y(t-1)+0.97y(t-2)=0.07u(t-4)+


Figure 3. Sensitivity analysis of the transfer function model regarding discharge and 

observations uncertaintyA. – C.: Posterior cdfs for parameters; * denote 90% 

confidence limits and median. D.: Predictions of 137Cs concentrations in fish with 

90% confidence limits. (+) denotes observations.    
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1. INTRODUCTION 

Temporal trends and spatial patterns in the state of the environment are often obscured by 

large year-to-year variation in climate conditions. Aim of this paper is to investigate how 

sensitivity analysis (SA) methods can be employed to achieve model reductions that facilitate 

the interpretation of temporal changes in the state of the environment. This includes model 

reductions undertaken to enable model calibration to empirical data. The SA approach is here 

applied to a water quality model. A new approach is applied here [1]. The approach consists 

of a combination of the Generalised Likelihood Uncertainty Estimation technique (GLUE) [2] 

and Global Sensitivity Analysis (GSA) [3]. The method is based on multiple model 

evaluations. The GSA is a quantitative, model independent approach and is based on 

estimating the fractional contribution of each input factor to the variance of the model output, 

also accounting for interaction terms. In GLUE, the model runs are classified according to a 

likelihood measure, conditioning each run to observations. In calibration procedures, strong 

interaction is observed between model parameters, due to model over-parameterisation. The 

use of likelihood measures allows an estimate of the posterior joint pdf of parameters. By 

performing a GSA to the likelihood measure, input factors mainly driving model runs with 

good fit to data are identified. Moreover GSA allows highlighting the basic features of the 

interaction structure. 

2. THE METHOD 

Many techniques for SA have been proposed (e.g. linear regression or correlation analysis, 

measures of importance, sensitivity indices, screening, etc.). A thorough description of such 

techniques can be found in [4]. The SA methods employed here is a new approach [1] based 

on a combination of the Generalised Likelihood Uncertainty Estimation technique (GLUE) 

and Global Sensitivity Analysis (GSA) techniques. 

The GSA-GLUE method is based on multiple model evaluations. In GLUE [2], the model 

runs are classified according to a likelihood measure, conditioning each run to observations. 

The likelihood measure used here is defined by: 

 22
/exp)|( obsii

YL           (1) 

where 

mailto:marco.ratto@jrc.it
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is the mean squared difference between predictions and observations for the i-th run and 

obs
2=mini

2), i.e. the 'best' model run provides the estimate of the measurement error. At 

each run corresponds a particular factor set. Rescaling of the likelihood measures such that 

the sum of all the likelihood values equals 1 yields a distribution function for the factor sets. 

From this, the uncertainty estimation can be performed, by computing the model output 

cumulative distribution, together with prediction quantiles. An interesting feature of the 

GLUE approach is that correlation between factor values is reflected implicitly in the 

likelihood measure associated with the factor sets, so that no hypothesis about the correlation 

structure is necessary in defining the a priori distributions of the model factors. A covariance 

structure can be obtained a posteriori when each factors' combination is weighted via the 

likelihood measures. Moreover, the use of likelihood measures allows an evaluation of the 

interaction structure between model parameters: interaction is usually observed in calibration 

procedures, due to model over-parameterisation. 

The GSA [3] is a quantitative, model independent approach and is based on estimating the 

fractional contribution of each input factor to the variance of the model output, also 

accounting for interaction terms. In order to calculate the sensitivity indices for each factor, 

the total variance V of the model output is decomposed as  

k

mji

ijm

i ji

iji VVVVV ...12...  


        (3) 

and dividing by V, sensitivity indices of singular factors and interaction terms of increasing 

order can be defined. Two measures will be applied here: )]|([/ iii XYEVVVS   (the main 

effect of Xi) and )]|([/)( ~~ iiTi XYVEVVVS   (the total effect of Xi, where X~i stands for 

all factors except Xi). Estimation procedures for Si and STi are an extended version of the 

Fourier Amplitude Sensitivity Test, FAST [4], the method of Sobol’ [5]. By performing a 

GSA of the likelihood measure, input factors mainly driving model runs with good fit to data 

are identified. Moreover GSA allows highlighting the basic features of the interaction 

structure. 

3. CASE STUDY: WATER QUALITY MODEL 

This case study focuses on water quality in a major river, the Elbe River. A simple zero-

dimensional model, the WAMPUM model, has been applied which describes the oxygen 

concentrations and major nutrient processes in the Elbe River at the Weir Geestacht [6]. A 

data set of daily data is available for model calibration [7]. Period of study is 120 days (May 1 

to August 28 1997). The model is run with a time step of 30 minutes. Input data are 

meteorological time series and initial conditions for concentrations. Model outputs are time 

series of chlorophyll (CHL), phosphates (PO4), oxygen (O2). 

3.1. Application of the GSA-GLUE technique 

Six factors have been selected for the analysis, sampled from uniform distribution as 

shown in 
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Variable Name Min Max Reference 

X1 Depth (Water depth) 1.2 4 2.5 

X2 T_ref (Reference temperature) 0 30 14 

X3 k_light (Critical light intensity) 2 50 20 

X4 Tendency_scale_factor (for experimental purpose) 0.1 3 1 

X5 k_att_min (Non-algal light extinction coefficient) 0.1 1.5 1 

X6 k_att_shade (Algal self-shading coefficient) 0.002 0.01 0.005 

Table 1. Factors of the analysis of the WAMPUM model. 

 

Table 1. The factors are 

statistically independent. Two 

outputs are considered: the time 

series (at 10 equally spaced times) of 

chlorophyill (CHL) and the 

likelihood measure. The likelihood 

measure is computed by considering 

the available observed chlorophyll 

concentration time series. 

3.1.1. Uncertainty analysis 

In Figure 1 the confidence band 

for the prediction of the chlorophyll 

time series is shown, based on the 

likelihood measure (1). This band is 

also compared with the case of plain 

Monte Carlo uncertainty prediction 

without conditioning to observations. The effect of applying likelihood weights is clear 

through the narrower confidence bound, where worst runs have a negligible contribution 

3.1.2. Sensitivity analysis 

FAST sensitivity indices for the time series of chlorophyll concentration are shown in 

Figure 2. Parameter X4 is the most important parameter. It is the highest 1st order sensitivity 

index and also its total effect doubles the total effect of any other parameter. Among the 

remaining factors, X1 is the only factor with significant main effect, while considering the 

total effect X2 and X6 are almost non-influential. 

The sensitivity indices for the likelihood measure are shown in Figure 3. The only 

significant main effect (i.e. first order) is detected for X4, while analysing total effect the 

couple: X1 and X4 have the most remarkable effect, X3, X5 and X6 have intermediate effect 

and X2 has a small impact. These results imply that a large interaction (signalled by the high 

difference between main effect and total effect) characterises the calibration of WAMPUM. 

This means that good runs (behavioural runs) are not driven by a particular factor, but by 

combinations of them. This kind of picture indicates that the model is over-parameterised and 

that the estimation problem is under-determined. 
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Figure 1. Confidence bands of chlorophyll 

applying GLUE with the likelihood weigths and 

when no likelihood measure is applied. 
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An important outcome of the analysis is that factor X2 has a clearly smaller impact than 

other factors. This result could only be obtained applying GSA and in particular computing 

the total effect of factors and not only the main effect. In fact, considering only main effects in 

Figure 3, nobody could distinguish between the importance of X2 and the other factors. Only 

considering total effect, we could state that X2 has a negligible effect for the calibration of the 

WAMPUM model, while all other factors have a significant effect in the interaction structure. 

Finally, it seems useful to underline the difference between SA on raw data and on their 

likelihood. In particular, factors X1, X3, X5, have an almost zero main effect for the likelihood 

measure, while for the physical output the main effect is more significant. This is due to the 

fact that they induce variability in the algae concentration, but for most of such runs the 

likelihood is null. So a small variance 

in the likelihood can correspond to a 

large variance in the raw data. In this 

sense the GSA-GLUE analysis is much 

more informative about the model with 

respect to the analysis of raw data only. 

Moreover, the predominance of X4 in 

terms of total effect for the time series 

(Figure 2b) is drastically modified 

using the likelihood, where X1 has the 

principal effect. 
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Figure 2. (a) FAST first order sensitivity indices for chlorophyll concentration; (b) FAST 

total effect sensitivity indices for chlorophyll concentration 
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Figure 3. FAST sensitivity indices for the 

likelihood measure (1). 
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4. CONCLUSIONS 

In the present paper, a SA based approach is applied for the calibration a water quality 

model. A GSA-GLUE approach has been applied, a new method addressing the problem of 

calibration for time- or spatially-distributed models. Model over-parameterisation usually 

implies that factors important for calibration hardly have an effect identifiable through 

elementary structures. On the other hand, a highly complex interaction structure is usually 

present. GSA provides quantitative criteria for choosing 'leading' factors based on main and 

total effect. 
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1. FOREWORD – MODEL PRESENTATION 

Solids budget affects significantly environmental quality of a water body since the solids 

carry sorbed toxics that follow solids final fate within the aquatic environment. In particular, 

incoming solids loading can be flushed away with the outcoming flowrate or can be 

exchanged, meanwhile it is transported within the system, between water column and 

sediments through settling, resuspension and burial processes. These processes are 

particularly relevant in standing waters, such as lakes and reservoirs, and they are usually 

included in solids budget modeling frameworks. However, these models are difficult to be 

applied since a correct parameterization must face up to a lack of field data, that produces 

remarkable uncertainties on model outputs. Since steady-state solutions provide an estimate of 

the average water quality that will result if solids loading are held constant for a sufficiently 

long time period, in a previous paper [1] a dimensionless steady-state model for solids budget 

in a lake, which provides a general insight in exchange phenomena between water column 

and bed sediments, has been proposed; in that model water column and bed sediments were 

idealized as three well-mixed reactors: water column, active sediments layer and deep 

sediments layer (Fig.1). 

Fig.1 - Water column- bed sediments system in a lake
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The active sediments layer represents the bed volume which is really involved in exchange 

phenomena with water column, i.e. settling and resuspension or scour; this layer could be 

considered having a constant thickness; thus, if water-sediment interface moves upward or 

downward as a result of settling/scour phenomena, the downer boundary of active sediments 

layer moves upward/downward too producing a downward/upward burial flux which accounts 

for solids loss from this layer to the deep sediments or vice versa. Model solutions were the 

transfer functions lake e sed, which specify how a system loading input is transformed into a 

water column and sediment layer concentrations. In fact, if fake<<1, it means that the lake’s 

removal mechanism acts to greatly reduce the level of solids in the water column; conversely, 

if lake1, it means that incoming solids tends to remain in the water column. These functions 

were derived applying dimensional analysis to mass balance equations for water column and 

active sediments layer, resulting in the following expressions: 
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       (1b) 

where  is = vb/vr and, if Q is water flowrate and A is lake area, vf = Q/A is the filling 

rate, that for each lake is known. Also, since >1, it is possible to skip the first unity at the 

denominator of (1b), which yields: 

 sed
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s

f
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v

v

1
v

v


         (2b) 

As a result, key point in (1a)/(2b) is the characterization of exchange rate parameters vs, vr 

and vb, i.e. settling, resuspension and burial velocities, respectively, and, consequently, of . 

Notably, vr is extremely difficult to measure, while both vs and vb could be measured directly 

[2] [3] and vs could be also approximated from literature values. However, in many real 

contexts their values are not available. Therefore, since fuzzy sets theory is often used to 

characterize uncertainty about models parameters [4], this paper proposes an application of 

that theory to evaluate the uncertainty about these rates involved in the solids budget. 

Membership degree functions are defined for each rate and, consequently, for model solutions 

lake e sed. 

2. APPLICATION OF FUZZY SETS THEORY TO MODEL SOLUTIONS 

The theory of fuzzy sets can be applied when parameterization process is affected by 

relevant uncertainties. In fact, this theory assigns to all the uncertain parameters, instead of a 

single value, a variability range that is defined through a set of values, called fuzzy set. 

Within the set, parameter variability is stated using a degree membership function  that can 
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assume any value in the range [0,1]. Thus, the values comprised in the fuzzy set are all true, 

but each one with a different grade of membership. 

Therefore, as a first step, fuzzy parameterization requires the definition of membership 

degree function for each rate. i.e. vs, vr and vb, and, consequently, for . 

Definition of membership function for settling rate vs should be focused to the solids to 

whom toxics are sorbed. As a rough estimation, a range of 0.30÷2.40 m/day, which 

corresponds to 110÷890 m/year, could be suggested for settling velocity of solids in lakes and 

reservoirs; in fact, this range, which represents organic and clay particles, encompasses the 

majority of available field data. These types of solids are most relevant, since they have a 

greater capacity than larger, less flocculent particles to adsorb organic chemicals and heavy 

metals [5] [6]. Membership function s can be considered as symmetric respect to a value of 

500 m/year (Fig.2a). 

Resuspension is mostly due to short-term perturbations, such as storms and high winds; 

however, this process, in water quality modeling, is often modeled as a continuous process, 

that is characterized by a constant rate [7]. With some approximation, membership function 

for resuspension rate vr can be defined in the range from 1×10-4 to 1×10-2 m/year, where 

maximum membership value is in the range from 2×10-3 to 4×10-3 m/year (Fig.2b). 

 

 

 

 

 

 

 

Fig.2a - Membership function for vs
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Finally, in sedimenting systems, such as deep lakes and reservoirs, burial rate vb is positive 

and it lies in the range from 1×10-3 to 1×10-2 m/year, that are the values assumed for its 

membership function, where maximum value is achieved in the range 1×10-3 to 1×10-2 m/year 

(Fig.2c). Notably, all membership functions herein defined have a trapezoidal shape. 

The functions now defined can be used to derive membership degree functions for model 

analytical solutions, i.e. (1a) and (2b); thus, a reasoning algorithm that links inputs and 

outputs should be applied. A correlation product encoding, that reduces the membership 

function using a scale factor which is function of input membership function values, has been 

assumed [4]. First of all, a membership function has been derived, using those for vb and vr, 

for  parameter, that is present in (1a). This function is shown in Fig.2d. Now, filling rate vf 

must be defined to derive membership functions for (1a) and (2b). For example, filling rate 

for Lago Maggiore, one of the most important Italian lakes, is vf=43.0416 m/year. Therefore, 

using this value membership functions for transfer functions lake and sed can derived 

(Figg.3a/3b). They have trapezoidal shape too, where maximum values identify a relatively 

narrow bands of responses of the system water column-sediments. Notably, for lake, 

membership function domain lies in the range [0.0459, 0.900] with maximum value from 

0.0687 to 0.418, while sed belongs to the range [2006, 82154] with maximum value from 

3764 to 40548. Therefore, typical response of the system is to yield, at steady-state, in the 

water column, a solids concentration comprised between 6.87% and 41.8% of incoming 

concentration. 

 

 

 

 

 

 

Fig.2c - Membership function f or vb
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Fig.2d - Membership f unction for 
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3. CONCLUSIVE REMARKS 

Solids budget modeling can provide useful information about final fate within surface 

waters of environmental contaminants that are often sorbed onto the solids of water column 

and bed sediments. However, if modeling framework is relatively simple, careful attention 

should be paid to a proper parameterization in order to obtain reliable predictions. 

This paper has proposed the application of fuzzy sets theory to parameterization of a 

dimensionless steady state model for solids budget in a lake. In fact, this theory allows to 

underline the influence that uncertainty about input parameters has on model results. Firstly, 

membership functions for exchange rate parameters have been defined. Then, membership 

functions for model solutions have been derived resulting in a useful identification of typical 

response of the system water column-bed sediments. Particularly, solids concentration in the 

water column is typically comprised from 6.87% and 41.8% of that of the inflow. 
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ON PREDICTION AND MODEL VALIDATION 
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1. INTRODUCTION 

Quantification of prediction uncertainty is an important consideration when using 

mathematical models of physical systems.  This paper proposes a way to incorporate 

“validation data” in a methodology for quantifying uncertainty of the mathematical 

predictions.  The following sections outline a theoretical framework. 

2. NOTATION 

Let ( )y m x= be a model-predicted value and x a random variable with probability 

distribution );( xf . Let );( yg denote the induced probability distribution of y.  The 

parameter   is assumed to characterize a scenario in the real world.  The probability 

distribution );( xf characterizes our (incomplete) knowledge of the values of model inputs 

for the scenario. For example, if the model input x is Wind Speed At Time Of Event, the 

probability distribution f could be Normal with being the mean and standard deviation we 

choose to associate with wind speed for the scenario.  An important point in this development 

is that the scenario is characterized by   from which the model input values x are determined 

as random variables. 

The difference between a real-world response w and the model-predicted value y for the 

scenario   is denoted by )()( xmwxd   with );( xfx  . The difference or error term d, in 

its general form, is thought to include terms that refer to “modeling error” or “model-structure 

error”, as well as to other considerations that might make w a random variable, like 

“observation error.”  (We postpone the expansion of d and the treatment of   itself as a 

random variable.)  If the joint probability distribution of d and y at the valueq were known, it 

could be used to establish a prediction region for w.  We intend to use the validation data to 

estimate that distribution. 

3. VALIDATION DATA 

Suppose that the validation data are n observations iw from scenarios i . For these 

observations, we might hypothesize the description 

,,,1),;(),()( nixfxxdxyw iii    

where it is important to recognize that the iw are random variables for which the data 

represent realizations. Figure 1 depicts a relationship among realizations 

mailto:mdm@lanl.gov
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*,  ,  and *i i i i iw y d w y= - . The probability distributions );( iyg  are symbolized on the 

vertical axis.  The distributions for i , conditional on the values *iw , are symbolized by the 

vertical bars in the graph. 

Figure 1.  Two observations of w, corresponding probability 

 distributions of y and d. 

 

In order to estimate the joint probability distribution of   and y for some future 

scenario
~

we will need to make some assumptions about d.  When n is large enough relative 

to the dimension of x, assumptions about the form of d might include things like it being a 

response surface or a random (gaussian) process in x. Another possibility is that d might be a 

function of only a small number (relative to n) of inputs that dominate model predictions. 

This paper investigates another alternative. The function d depends on the scenario 

description   through the probability distribution f.  For cases where the dimension of   

space (and that of x) is large, we suggest replacing d by a series of functions of reduced 

dimension, transformations of  .  For example, we begin by replacing d(x; ) by the function 

  ;yEd y .  Further possibilities, not discussed in this short paper, include the addition of 

functions of selected components of  , as well as of other model-calculated response 

variables.  Then, the validation data are described by 

   .,,1),,(,)( nixfxyEdxyw iiyii    

In this form, the difference function yd is to be estimated as a function of y and evaluated 

at [ ]E y .  The complexity induced by the dimensionality of x is confined to the (estimation) 

probability distribution of yd as a dependency on  . 

Let ig denote the probability distribution of iy at i , which is induced by x and may be 

estimated via simulation. Consider as data{ *, | 1, , }i iw g i n= L and the derived variables 

*i i id w y= - with their associated probability distributions );( idh  . Figure 2 depicts a 

relationship among [ ],  ,  ( )E y d h d , and the “observed” value * [ ] * [ ]d E d w E y= = - , say. 
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The probability distributions );( idh  are symbolized on the vertical axis and by the vertical 

bars in the graph. 

Figure 2.  Two “observations” of d, corresponding probability distributions  

and estimated function d̂ . 

 

From these data, we propose to develop a functional relationship between d* and [ ]E y for 

the validation data points indexed by i . For example, we could model 

*( )d y a by e= + + where the error term e has mean value 0 and variance  iyV , . The 

parameters a and b would be estimated with weighted least squares. The form of the estimated 

predicted difference becomes ˆ ˆˆ( )d y a by= + . 

4. PREDICTION 

Finally, we would describe a future observation w~  for scenario
~

by  

     
~

;,0),
~

,(,)(~ yVnexfxeyEdxyw 


 

Uncertainty in w~ could be quantified from the estimation distribution of d̂ and the 

probability distributions of x and e, in a way similar to that used in regression analysis with, 

for example, a prediction interval.  

5. EXAMPLE 

We present the following very simple, artificial example to illustrate the notation and 

method. Suppose that the model is 

 ,),,()( 2121 Inxwithxxxmy    

Suppose that the response in the real world is generated according to 
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21 2 w . 

Let the validation data be 4n = values 1 4{ * , , * } {0,2,1,3}w w =L , corresponding to 4 

values    )1,1(),0,1(),1,0(),0,0(,, 41   . The values of   21  yE  for the validation 

data points are{0,1,1,2} .  The values of * * [ ]d w E y= -  are{ }0,1,0,1 .  Estimating a linear 

relationship between [ ] and *E y d , we have 

1ˆ( )
2

d y y= . 

The prediction of a future observation is 

   2,0),
~

;(,
~~

)(~
212

1 nexnxexyw    

with point estimate 

       2121

~~

2

3~~

2

1
)(~   xyEwE  

The error in the point estimate is seen to be  

     122121

~~

2

1~~

2

3~
2

~
 d  

6. DISCUSSION 

Clearly, it is a very strong the assumption that the difference term ( )d x can be replaced by a 

function of [ ]E y . Because there are very reasonable examples where the approach produces 

absurd results, investigation of conditions under which the assumption is viable are needed.  

The motivation for the assumption is straight forward, however.  Suppose that there are only a 

few validation data points and that the number of model inputs is quite large.  Further, 

suppose that the principal contribution to d comes from either incomplete representations of 

reality in ( )m x or even from omission of important considerations.  In that case, trying to 

determine empirically a suitable functional form for d, where necessary input variables might 

not be included in x, would seem to be a daunting task.  As a possibility for dimension 

reduction, we choose to use a transformation of the inputs x, namely, the response variable y.  

We propose to exploit any trend in a plot of w versus [ ]E y for the validation data points.  

Additionally, we propose to exploit any trends in plots of additional components of 

multivariate response vectors y and w to construct the difference term.  The degree to which 

success is achieved will certainly be model dependent. 
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STATISTICAL UNCERTAINTY ANALYSIS 

AS A TOOL FOR MODEL VALIDATION 

Doug Fraedrich and Robert Gover 

Naval Research Laboratory 

Washington DC 20375 USA 

Email: fraedric@ninja.nrl.navy.mil 

SUMMARY 

This paper applies a new concept from the epistemological literature to model validation.  

The concept of a Severe Test is defined and then shown how it dictates a model validation 

methodology.  Sensitivity analysis proves to be a key element in both planning a Severe Test 

and analysing subsequent data. 

1. INTRODUCTION 

The practice of model validation is essentially a scientific endeavor (establishing the 

relationship between model predictions and reality) while the study of the model validation 

process is essentially an epistemological one.  Recent advances in the field of epistemology 

have emphasized a testing approach toward validating scientific theories as opposed to the 

more conventional “evidential - relationship” approach [1] favored by previous schools of 

thought. This new testing approach, called Error Statistics, stresses the role of the theory (or 

in this case, model) in designing the experiment that results in a Severe Test of the model. 

A Severe Test, in the context of model validation, is defined as a test that will have a high 

probability of indicating good prediction accuracy if the model is truly accurate and a high 

probability of indicating poor prediction accuracy if the model is truly inaccurate.  This is 

equivalent to stating that the test will have a small probability of indicating a poor prediction 

accuracy if it is truly accurate (we will label this as a Type I error) and a small probability of 

indicating a good prediction accuracy if in fact is in truly inaccurate (Type II error). 

The method of Error Statistics requires that one identifies the possible or logical 

mechanisms that can result in the above epistemological Type I and II errors, and then designs 

an experiment and analysis method to test for their existence.  Type II errors can occur if: 1) 

the validation was performed with the same data as was used to build the model [known as ad 

hoc validation]; 2) the model was tested over a smaller or different domain than which the 

model is intended to be used over; or 3) a small number of data points were collected and they 

indicate good prediction accuracy by chance.  The probability of these types of errors 

occurring can be reduced by: 1) using a statistically independent data set for validation 2) 

ensure the dataset spans the domain of the model’s intended use [i.e. sample design] and 3) 

collect an adequate number of data points [i.e. sample size]. 

Type I errors can exist if: 1) large residuals between the model’s output and measured data 

are caused by errors in the measured data; or 2) large residuals are caused by measurement 

errors in the INPUT variables propagating through an accurate model, which result in a 

mailto:fraedric@ninja.nrl.navy.mil


 

Session 9 Validation and Calibration  166 

mismatch between the model output and measurements (as well as sample size and design 

issues as before). Sensitivity analysis (SA) is an invaluable tool to reduce the probability of 

these Type I errors.  This paper will describe how to use SA in a methodology for model 

validation that yields reduced probability of a Type I error. 

2. METHODOLOGY 

The model under test is represented as an input-output relation: S = f (x, y, z) where S is 

the endogenous variable (scalar or vector) which is a function of three types of exogenous 

variables.  The x’s are controllable (in a validation experiment), and the y’s are 

uncontrollable. The z’s are variables that remain constant between validation and future 

prediction.  If the values of the z variables are changed, the model must be re-validated over 

this new domain. The total uncertainty between the measured and modelled values of S is 

referred to as Ut.  This is partitioned into several logical components [2,3]: 

U2
t= U2

m + U2
x + U2

y + U2
z + U2

f      (1) 

Where Um is the measurement error in S (from the validation experiment), Uf is due to 

errors in the underlying conceptual model f, and Ux, Uy and Uz refer to uncertainties in S due 

to measured errors in the inputs from the validation test which propagate through the model.   

The relative errors, Um , Ux , Uy and Uz  are directly estimated and Uf  is derived using 

Equation 1.  For future predictions, the prediction error is: 

U2
p= U2

z + U2
f       (2) 

For Equations 1 and 2 to hold, the various terms must be both statistically independent and 

distributed normally.  (If normality does not hold, Equation 1 is approximately valid for small 

values of the Ui’s.) Normality can be tested quantitatively on the directly measurable terms 

(e.g. Ut and Um) by performing a Shapiro-Wilk normality test [4].  For the Ux , Uy and Uz 

terms, a Monte Carlo analysis can be run by injecting normally distributed errors in the inputs 

(x’s, y’s and z’s) of the appropriate magnitude into the model. The distribution of the output 

can then be tested for normality. 

Regarding independence, the model error term Uf is expected to be independent of the 

measurement related terms (Um, Ux, Uy, Uz) as long as the same data was not used to both 

build and validate the model.  For the measurement related terms, independence can be 

assessed by checking for common error sources, such as: 1) Common measurement 

instrumentation, 2) Common calibration standards, 3) Common noise sources (such as noisy 

line voltage or EMI) or 4) Operator bias (for analog instruments.)  If independence is not 

established for individual variables within a logical component of Eq. 1, then the methods of 

[5] can be readily applied to account for these correlation effects. 

The various terms in Equation 1 are estimated using methods outlined below. 

I. Design Validation Test 

A. Decide on an acceptable level of Uf. 

B. Perform backwards Uncertainty Analysis to define maximum levels of error in Um, Ux, 

Uy and Uz. 

C. Perform Sensitivity Analysis to decide which x’s are most important. These variables 

should be varied systematically in the validation test using standard Design of 

Experiment techniques [6]. 

II.  Perform Test 
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A. Perform Test. 

B. Perform Error Analysis to define measurement errors in S’s, (Um) and also x’s, y’s and 

z’s [7]. 

III.  Perform Validation Analysis 

A. Compute variance of difference between measured and predicted values of S (U2t). 

B. Use results from Error Analysis (IIB) to perform Uncertainty Analysis to estimate 

U2x, U2y and U2z. 

IV.  Compute Uf term (using Eq. 1) and then Prediction Error Up (using Eq. 2). 

Thus, uncertainty is ascribed to modelling errors only if they exist.  If the model is truly 

accurate but large values of total uncertainty are observed which are due to measurement error 

or propagated errors, uncertainty will be appropriately assigned.  If the model errors are 

indeed large, total uncertainty will not be explained by either measurement or propagated 

errors and thus a large uncertainty will be assigned to the model. The result is a Severe Test of 

the model. 

3. RESULTS 

The above methodology was used by NRL to perform a validation on a model that predicts 

the infrared radiometric properties of Navy ships [8].  The output S is infrared intensity.  The 

x variables are ship speed and heading and the y variables are weather observations.  Details 

of the ship design (e.g. geometrical, thermal and optical) are the z variables and do not change 

between validation and prediction. 

Infrared field measurements were made on a U.S. Navy ship and compared to predicted 

values; the overall relative uncertainty Ut was 24%, which was estimated from 21 pairs of 

data points. Normality was tested on both the Ut and Um terms.  For the Ut term, the P-value 

from a Shapiro-Wilk test was 0.17, indicating that we cannot reject the Null Hypothesis (at 

the 5% level) that the underlying distribution is normal. The P-value for the measurement 

error term Um was even better, 0.57 [9]. The propagated terms were tested via Monte Carlo 

simulation; an example P-Value from this procedure is 0.81. With the exception of two of the 

yi’s (air temperature and sea temperature) none of the x’s, y’s or z’s share a common error 

source with each other or S and are treated as independent. The thermocouples that measure 

air and sea temperature use the same calibration sources and therefore correlated bias errors 

are expected.  However, the magnitude of this error is estimated to be 0.2% and is justifiably 

ignored. 

Measurement errors of IR intensity, S (Um) and all of the x’s, y’s and z’s were estimated 

and the terms Ux, Uy  and Uz were then computed by performing a sensitivity analysis on the 

model.  Model error, Uf , was then derived using Eq. 1. The apportionment of the different 

terms in Eq. 1 are shown in Figure 1. It is seen in Figure 1 that the measurement error and 

propagated terms, which are usually ignored, are of comparable magnitude to the model error 

(which is what needs to be estimated.) The resultant estimate of prediction error (Up) is 19%, 

compared to the total uncertainty of 24%. Thus, this procedure results in a reduction of Type I 

error. 
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4. DISCUSSION 

The epistemological concept of a Severe Test is successfully applied to model validation.  

The Severe Test ensures that good prediction accuracy is indicated only when the model is 

truly accurate and poor prediction accuracy is indicated only when the model is truly 

inaccurate. Sensitivity analysis is a powerful and necessary methodological tool to apportion 

the total measured uncertainty between the various logical components. This partitioning 

enables to reduction the probability of Type I error, namely assigning a large prediction error 

to an accurate model. 

Figure 1. Apportionment of Uncertainty 
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SENSITIVITY ANALYSIS METHODS APPLIED 

TO RADAR RANGE TRACKER BEHAVIOR 
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Washington DC 20375, USA  

1. INTRODUCTION 

The Naval Research Laboratory has developed an interesting application of model 

sensitivity analysis (SA) to radar range tracking in multiple target and diffuse target 

situations. The application is notable mathematically in that the tracker equations involved are 

fundamentally stochastic, non-linear and time-dynamic. The SA is performed at runtime on 

each solution sample path using auxiliary equations derived from the simulation's own 

dynamical equations. These auxiliary SA indicators are able to rank target importance in 

governing tracker behavior and indicate whether or not a genuine track condition exists or if 

the results are merely due to chance. Far greater testing efficiency is achieved by this method 

than physical testing or traditional modeling involving the tracker dynamics alone. Similarly, 

the process of model validation is simplified and strengthened because a clear an indication is 

provided per run of which targets or target features govern the outcome. 

2. SYSTEM DYNAMICAL BEHAVIOR 

The system of interest here is a radar target tracker that attempts to follow a specific target 

among a field of several possible alternatives. Think of a ship at sea as the target and a guided 

missile’s radar seeker as the tracker. The tracker uses feedback control to maintain a small 

three-dimensional cell over the desired target as it moves. The cell represents the missile’s 

estimated location of the missile’s quarry. The cell is made small deliberately to help 

eliminate extraneous targets from influencing the tracker behavior. When an alternate target, 

such as a decoy, crosses through the cell, the intrinsic non-linear dynamics of the tracker 

follow the combination of both 

targets until one or another reach 

the boundary of the cell. See 

Figure 1.  At such a moment, the 

tracker dynamics “make” a 

decision and the outcome is a 

selection of only one remaining 

target as being tracked from that 

time forward.  It is important to 

analyze or simulate such a 

situation to determine the 

likelihood of tracker deception 

by an alternate target.  It is even 

more important to understand 

Figure 1.  Ship and Decoy Competing Within 

Tracker Cell 
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why the deception occurred and how reliable alternate targets are at achieving this deception. 

This latter pursuit is tantamount to sensitivity analysis (SA).  

For simplicity, we’ll focus on the range tracker loop alone, setting aside azimuth and 

elevation tracking behavior. The basic model is [1], [2]: 

     
  dwtEe

dt

d
D  

 22 , , (1) 

     
  dwtEe

dt

d
D  

 22 , , (2) 

     1,
22  

 
  dwtEe

dt

d
S . (3) 

The range tracker consists of two coupled non-linear feedback loops represented by 

differential equations. One of them, the range error loop, involves a pair of differential 

equations, and its job is to maintain an accurate estimate of target range,  , and estimated 

velocity,  .  The second loop, the automatic gain control (AGC), involves a first order 

differential equation, and its job is to stabilize the loop gain exponent,  , affecting the range 

estimator loops. Both feedback loops are driven by information supplied by the radar about 

the external world.  This information signal, E , the so-called complex video envelope 

supplied by the radar, may be written as a raster signal parameterized by two time variables, t  

and  .  The variable t  keeps track of radar pulses (sweeps), while   denotes distance in the 

range dimension (range position within each sweep).  The complex video envelope is thus 

also denoted  ,tE .  The tracker’s range estimate is denoted by  , which coincides with the 

cell position in range, its velocity is denoted by  , and its AGC voltage denoted by  .  The 

model involves three integrals with the kernel functions Sw  and Dw .  The kernel functions, 

design characteristics of the tracker, specify the precise method used by the tracker to derive 

the error laws.  To represent a small cell tracker, these two functions are of compact support.  

Each target in the environment is comprised of numerous scattering surfaces that reflect 

and redirect radar energy back to the radar receiver. The amplitude and phase of this scattered 

energy is determined for each scatterer by its directivity pattern and orientation with respect to 

the radar and the sea surface.  The complex video envelope,  ,tE , is the superposition of 

the radar scattering returns from all the scattering surfaces of the targets in the range cell.  It is 

stochastic in nature. The magnitude of  ,tE  is the driving function for the range gate 

tracker, and its stochastic fluctuations (along with the initial conditions of   and  ) 

determine the outcomes of our experiments.   

3. IMPACT OF INDIVIDUAL TARGETS / SENSITIVITY ANALYSIS 

In a real physical radar situation, the radar can only experience the environment as a total 

effect from all targets in the field of view.  This is also true of conventional models, even high 

fidelity models that attempt to simulate the real environment and radar electronics.  While 

such modeling may be extremely faithful to the physical problem at hand, it obscures the 

impact of each target (or each element within a target) upon the tracker response.  By means 

of auxiliary equations, as described in what follows, far greater clarity is achieved.  The 

superposition of individual scattering elements in  ,tE  permits us to write: 
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              
i j

jjiiD dftbdftadwtE 21
2

,   + […], (4) 

where  f  is the error law for a single unit amplitude scatterer,  tai  and 1

id  are the radar 

cross sections (RCS) and position, respectively, of the thi  ship scatterer,  tb j  and 2

jd  are the 

RCS and position, respectively, of the thj  decoy scatterer, and […] denotes cross terms.  In 

our simulations, the range tracker experiences the entire integral in (4), including the cross 

terms.  However, important simplifications can be made in order to derive efficient 

meaningful measures of individual target sensitivity.  The dominant scatterers that comprise 

both of our targets are widely separated and target translation and rotation are relatively rapid.  

In addition, the second order range tracker dynamics provide smoothing over a succession of 

pulses.  Because of this, the cross-terms occurring in (4) can be neglected in this sensitivity 

analysis.  (As it turns out, the full composite target calculation in (4) is available at any time 

to substantiate the quality of this simplification.)  The resultant approximation is: 

              
i j

jjiiD dftbdftadwtE 21
2

,  . (5) 

The RHS of (5) can be seen as the sum of the individual target error characteristics, the 

ones that would be observed if only a single target was present.  These individual target 

responses are what we mean by the auxiliary calculations.  It is important to realize that the 

real physical system never gains access to individual terms expressed in (4) or (5).  These 

sub-expressions are a prelude to sensitivity analysis. 

For the sake of basic illustration in this paper, the equilibria associated with range estimate 

  are directly traceable to the zero crossings in (4) and its approximation (5).  The 

trajectories of the zero crossings (equilibria) can be plotted in a simple fashion as the targets 

fluctuate and separate from one another.  Which target is getting the attention can be 

discovered by comparing the individual target pictures with that of the composite.  To 

illustrate these ideas, output from our simulation is presented in Fig. 2.  These plots show 

range gate position and equilibria as a function of range-to-go for the case of two separating 

targets.  The central points to be made here are that the trajectory of the range gate is 

governed by local conditions, and that auxiliary calculations can be made expressly to identify 

the model variables that most strongly influence these local conditions. 

To understand Fig. 2, imagine a missile radar on the left, approaching a ship and a decoy 

that are separating in downrange.  The downrange view is referenced to the ship center of 

gravity, located at 0.  Time, or equivalently, range-to-go, evolves from the bottom of the plot 

to the top.  The decoy is initially at far range.  It moves to near range, passing over the ship, 

with final position some distance in front the ship. 

The equilibria points for the composite error function, which includes both ship and decoy 

targets, are shown in Fig. 2(a).  Asterisks represent stable equilibria, and open circles 

represent unstable equilibria.  The continuous line in Figs. 2(a)-(c) is the trajectory of the 

range gate,  , as it tracks signal energy in accordance with (1) – (3).  The range gate position 

follows the local stable equilibrium except in regions where the latter is moving too rapidly 

for the former to follow.  The location of the equilibria points, an analytical calculation that is 

not performed by the range gate tracker, gives us powerful insight into the dynamical 
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behavior of the range tracker.  Even so, the composite ship/decoy picture, Fig 2(a), does not 

isolate the influence of the individual targets on the range tracker trajectory. 

             

   (a) Ship and Decoy (b) Ship only      (c) Decoy only 

Figure 2.  Range gate trajectory and stable and unstable equilibria for two separating targets. 

 

Figures 2(b) and 2(c), respectively, illustrate the stable and unstable track points for the 

ship only and for the decoy only that are derived from the auxiliary calculations.  Between 

maximum and intermediate ranges-to-go, the range gate is solidly tracking the ship.  Then the 

targets separate and a bifurcation emerges.  Two loci of stable track points develop, and the 

range tracker must choose between them. Ultimately, the decoy is tracked.  While Fig. 2 

presents a global view of stability, in each region the range gate is actually responding only to  

the attractor or attractors (in the case of a bifurcation) local to the range gate position.  

Initially, range gate position is driven by only a subset of the ship scatterers.  At bifurcation, it 

is strongly influenced by both local ship and decoy scatterers.  At small ranges-to-go, the 

range gate is only affected by a subset of the decoy’s scatterers. 

4. CONCLUSIONS 

We have identified of the most important driving variables for a nonlinear, stochastically 

driven simulation (a range gate tracker).  We have identified the importance of model 

variables by inserting explicit, auxiliary calculations that identify the targets that most 

strongly influence each trajectory. Model validation is simplified and strengthened because a 

clear indication is provided per run of which targets or target features govern the outcome. 
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1. INTRODUCTION 

Probabilistic radionuclide transport and dose calculations are central in the evaluation of  

performance of nuclear waste repositories. It has recently been shown how the numerical 

models used for such calculations in a safety assessment of a deep repository for spent nuclear 

fuel in Sweden can be well approximated by closed form analytic expressions [1]. This paper 

demonstrates how the analytic model is used to extend the preliminary probabilistic analyses 

reported in the mentioned safety assessment.  

In the KBS 3 concept for storage of spent nuclear fuel, the waste is placed in 5 cm thick 

corrosion resistant copper canisters with a cast iron insert giving mechanical strength. The 

canisters are surrounded by 35 cm bentonite clay and deposited in individual deposition holes 

at a depth of approximately 500 m in crystalline bedrock.  

In the recently completed safety assessment SR 97 [2] of this concept, it is shown that 

initially intact canisters are expected to keep their isolating capacity for millions of years. An 

important scenario in the assessment treats initially defective canisters, e g due to imperfect 

sealing. Such deficiencies are today deemed unlikely but must be further evaluated by results 

from the development of fabrication methods for the canisters.  

The consequences of the canister defect scenario are evaluated by numerical radionuclide 

transport and dose calculations. The numerical models for radionuclide transport in canister, 

buffer and geosphere have recently been approximated by closed form analytic expressions 

[1]. The analytic model was evaluated in a number of single realisations covering together the 

data uncertainties identified in SR 97. The agreement with the numerical models is good, both 

regarding maximum releases and overall time dependencies. For nuclides that dominate the 

total dose, the agreement is within a factor of two. 

Figure 1 shows the results of probabilistic calculations with the two models. The numerical 

results are those presented in SR 97. Three sites in different parts of Sweden, all with real 

bedrock data, are evaluated. The same input, determined by detailed evaluation of data 

uncertainties in SR 97 [3], are used for both models. The calculation end-point is the 

maximum total annual dose to man in the time interval up to one million years after repository 

closure. The regulatory target is the expectation value of this quantity, which must not exceed 

1,510-4 Sv/yr for the situations discussed in this paper. (The Swedish compliance regulations 

were issued recently; discussions of their interpretation are on-going.) 

The agreement is again good, with deviations in expectation values and standard deviations 

within a factor of two for all three sites. 5000 realisations per site were run with both models. 

mailto:allan.hedin@skb.se
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Commercially available software was used for the calculations with the analytic model. The 

numerical models and the probabilistic frame-work for them have been developed by SKB 

over the past decade. The numerical calculation required three weeks of computer time on 

dual SUN Ultra SPARC II CPUs whereas the corresponding analytic calculation was 

completed in less than an hour using an ordinary office PC.  

 

Figure 1. Cumulative distribution functions of maximum total annual doses for the three 

sites studied in SR 97 obtained with numerical (thin, grey) and analytic (thick, 

black) models. The dashed, vertical lines represent the expectation values of the 

distributions, which should be compared to the mean dose limit. The three sites 

Aberg, Beberg and Ceberg are about one, two and three orders of magnitude 

below the limit, respectively. 

2. EXTENDED PROBABILISTIC CALCULATIONS 

The probabilistic analyses in SR 97 were of a simplified and preliminary nature. In the 

following, results of extended probabilistic calculations using the analytic model are 

presented, giving insights into the probabilistic properties of the system. 

For most input parameters, probability density functions (PDFs) were not determined in 

the SR 97 study, but only a reasonable, best estimate value, and a pessimistic, most 

unfavourable value, given current knowledge [3]. In the probabilistic calculations, the PDFs 

were simplistically taken to be bimodal distributions with p(reasonable) = 0.9 and 

p(pessimistic) = 0.1. This assumption is based on a general evaluation of the data for the 

calculations and was deemed to be on the pessimistic side. Hydrology data are an important 

exception; PDFs were determined through detailed groundwater modelling of the three sites.  

An obvious complement to the simple approach taken in SR 97 is an exploration of 

different types of PDFs. A replacement of all bimodal PDFs by log-normal distributions, 

while preserving expectation values and variances, altered the shapes of the low dose parts of 

the distributions, whereas the high dose ends and most importantly the expectation values and 

standard deviations are rather similar to results with bimodal distributions, see Table 1. 
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Table 1. Expectation values (EV) and standard deviations (SD) of maximum 

total annual dose distributions for the cases discussed in this paper. 

Site Aberg Beberg Ceberg 

 EV 

(Sv/yr) 

SD 

(Sv/yr) 

EV 

(Sv/yr) 

SD 

(Sv/yr) 

EV 

(Sv/yr) 

SD 

(Sv/yr) 

Numerical model 

Base case 
1.710-5 6.310-5 8.210-7 6.910-6 3.310-8 7.710-8 

Analytic model 

Base case 
1.510-5 4.710-5 7.110-7 3.410-6 4.110-8 7.510-8 

Analytic model  

log-norm PDFs 
2.210-5 1.010-4 1.210-6 1.210-5 4.010-8 7.910-8 

Analytic model  

I-129 + Ra-226 

2.110-5 1.210-4 1.410-6 1.510-5 3.910-8 8.910-8 

Analytic model  

Geochem. corr. 

1.910-5 7.010-5 1.410-6 7.210-6 1.510-7 6.510-7 

Analytic model  

Biosphere corr. 

1.410-5 5.010-5 5.210-7 2.610-6 3.610-8 6.810-8 

 

Uncertainty analyses using rank order correlations reveal that the hydrological indata has 

the dominating influence on the output uncertainty. Also the biosphere input data and the 

likelihood of initial canister defects are important, two areas where much research is being 

carried out at present.  

Scatter plots show that, for all sites, either only I-129 or only Ra-226 of the 32 nuclides 

analysed, contribute significantly to the total dose in almost all realisations. A re-run with 

only these two nuclides yields an almost unchanged result, see Table 1, meaning that a 

number of nuclide specific input parameters do not significantly impact the resulting dose 

distributions. 

The geochemical properties of a site influence several parameters in the transport 

calculations, which could thus be expected to be partially correlated. To determine an upper 

bound on the effects of such correlations, the bimodal PDFs of all geochemistry dependent 

transport parameters in canister, buffer and geosphere were forced to take either their 

reasonable (p = 0.9) or pessimistic (p = 0.1) value simultaneously. Even this full correlation 

yields mostly minor effects on both the shape of the resulting dose distributions and on their 

statistics, see Table 1. The effect is most pronounced for the Ceberg site, where doses from 

Sn-126 become significant with fully correlated geochemistry related data. 

Similarly, the biosphere input data for different nuclides may be assumed to be correlated 

since several conditions in the biosphere influence all nuclides in a similar manner. Also in 

this case, a full correlation reveals only a minor influence on the distributions and their 

statistics, see Table 1. This finding is compatible with the dominance of only one nuclide in 

almost all realisations. 
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3. DISCUSSION 

This paper demonstrates how, in this particular case of radionuclide transport modelling, 

complex numerical models can be replaced by analytic approximations which can 

subsequently be used to study the probabilistic properties of the system. Calculation speed is 

thereby improved by almost three orders of magnitude. Both approaches do however rely on 

data from elaborate and time consuming modelling of both groundwater flow and the turn-

over of radionuclides in the biosphere. 

The simple calculation exercises reported here, point out fields of research where further 

knowledge may yield improved calculated performance (biosphere studies, canister sealing 

technique) and other fields where this is not likely to be the case. 

Most of the width of the output distributions is caused by hydrology parameters, which are 

influenced by both uncertainty and spatial variability of the hydraulic properties of the 

bedrock. This emphasises the importance of the quality of i) the groundwater modelling 

yielding input to the transport calculations and ii) the site data on which groundwater 

modelling is based. Moreover, the naturally occurring spatial variability puts a limit on the 

extent to which calculated performance may be enhanced through improved knowledge of the 

site. 

Furthermore, it has been shown that correlations, which might be expected for physical 

reasons but are difficult to quantify, have in general a limited influence on the calculation 

end-point and how an upper bound of these influences can be determined. 

Concerning PDFs for parameters where these are difficult to determine objectively, correct 

expectation values and variances are crucial, whereas the type of distribution assumed is of 

secondary importance.  

Considering that this probabilistic modelling exercise is based on bedrock data from three 

different sites in Sweden, and on extensively evaluated data for the near field barriers, the 

above conclusions can be expected to be valid also for other sites, which are about to be 

investigated as candidates for a deep repository. This will have to be confirmed by renewed 

both analytic and numerical calculations for these sites. Analytic expressions of this kind are 

however not meant to replace numerical models. The analytic expressions will always have to 

be verified against numerical models, for the data set and calculation cases under 

consideration in a particular calculation exercise. 
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SUMMARY 

A new optimization algorithm based on stochastic sensitivity analysis is described and its 

performance is evaluated. The relationship between the performance and the roughness of 

objective landscapes is also discussed by using the notion of fractal dimension. 

1. INTRODUCTION 

When an objective function to be minimized is differentiable or has certain smooth 

property, many optimization techniques are available, e.g., gradient methods, mathematical 

program-ming, etc. For discrete problems, problem-specific approaches are often required 

because solutions need to utilize problem-specific neighbourhood structures. In this paper, a 

new gradient-based optimization algorithm that uses stochastic sensitivity analysis is 

presented. The algorithm, referred to as Stochastic Noise Reaction (SNR) [1], can locally 

minimize arbitrary objective functions, such as non-differentiable or discrete functions, 

whenever their objective landscapes have a certain roughness (smoothness) in a stochastic 

sense. Because the computation of a gradient is problem-independent, SNR may cope with 

the discrete problems efficiently independent of the neighbourhood structures. In [1], SNR 

was shown to be applicable to combinatorial optimization problems. This paper focuses on its 

performance analysis compared to a deterministic algorithm and another stochastic algorithm, 

i.e., Simulated Annealing (SA). The present paper also focuses on the relationship between 

their performances and the roughness of the objective landscapes. Because of limitations of 

space, only the continuous functions )(tanh2 x  and XOR are treated for the numerical 

experiments. 

2. METHODOLOGY 

Consider an optimization problem: Minimize )(xf  subject to Sx , where a state x  is an 

n -dimensional column vector, and the feasible domain S  is a set in nR . Conventional 

Gradient-based methods iteratively update the current solution (state) x  so that the objective 

function )(xf  is locally minimized as follows: 
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Unlike the deterministic algorithms that use partial derivatives for sensitivity information, 

SNR approximates each component of a gradient vector by using additive Gaussian white 

noise. In SNR, a Gaussian white noise sequence, )1,0(Ni  , is injected into each variable 

ix , and each component of a corresponding sensitivity derivative is approximated by 

j

i

M

j

j

i

xf
Mx

xf
E )(

1)(

1
















,   j

ii

j

i xx  ,     (2) 

where ][E  denotes the expectation operator, M  is a loop count for taking the average, j

i  

denotes the j -th noise in the noise sequence injected into the i -th variable, and j

ix  is a 

realization of a stochastic variable of ix  into which i  is injected. Note that, in (2), Novikov’s 

theorem ])([]/)([ ii HEHE    has been used, where )(H  is an arbitrary functional of 

a Gaussian white noise sequence i , ,2,1i  n, , and iH  /)(  denotes the functional 

derivative. Note also that, in (2), all of the n  

components of gradient vector are computed 

at the same time. 

SNR is performed following the 

algorithmic framework described in Fig. 1. In 

Step 4, a step width k  is gradually 

decreased from max  to max1.0  . Step 12 

adjusts each state variable ix  to the value 

range ],[ maxmin xx .  

2.1. Measure of roughness: fractal 

dimension 

In this study, the roughness of an objective 

landscape (also referred to as an energy 

landscape or a fitness landscape in different 

contexts) is measured by the value of H  

inherent in the following relationship, called 

a power-law relation [2]: 

HxxdxfxfE 22 ),~(]))()~([(  , (3) 

where ),~( xxd  is a distance function. Note that the power-law relation (3) depicts an 

evidence of fractal property. Intuitively, in fractal functions, good solutions are distributed 

around good ones, and local-search- or gradient-based heuristics work well for such functions. 

The value of H  is computed by plotting ]))()~([( 2xfxfE   and Hxxd 2),~(  for randomly 

sampled pairs of solutions on a log-log scale and fitting a straight line to the data. When the 

data does not fit a line, it is fit to portions of the data within small distances (Fig. 2). When the 

value of H  is small, the objective landscape is harsh, while the landscape is moderate when 

H  is large. 

 

 

1.  Initialise the current solution 0: xx  . 

2.  Initialise the best solution xxbest : . 

3.  For Nk ,,2,1:   do begin 

4.     ))1/()1(9.01(: max  Nkk  . 

5.     Initialise decent direction 0:x . 

6.     For )100(,,2,1:  Mj   do begin 

7.        Generate a noise vector j . 

8.        j

i

j

ii xfxx  )(:  . 

9.        If )()( jbest xfxf   then jbest xx : . 

10.   end; 

11.   xxxx k  /:  . 

12.     minmax ,,minmax: xxxx ii  . 

13.   If )()( xfxf best   then xxbest : . 

14.   end; 

15.Output bestx .  
 

Figure 1. Algorithmic framework of SNR. 
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2.2. Other methods used for comparison 

A deterministic algorithm with the framework described in Fig. 1, called DA in this paper, 

is used for comparison with SNR. In DA, Steps 5 to 10 are replaced by )(xfx  . 

Simulated annealing (SA) was also considered. In SA, Step 4 is replaced by kT 999.0 , i.e., 

geometric cooling, and Steps 5 to 11 are replaced by a neighbourhood generation step, 

),(~ bxNx  , and a transition step. Each neighbourhood solution in ),( bxN  is defined as 

iix   for randomly selected b  variables, where ]1,1[ i . The parameter nb 1  

specifies the size of the neighbourhood. In the transition step, the generated solution x~  is 

accepted, i.e., xx ~ , if 0)()~(  xfxff  or with probability Tfe / . 

3. NUMERICAL EXPERIMENTS 

3.1. Application to )(tanh2 x  

SNR was applied to minimize )(tanh)( 2 xxf  , 

which has a narrow valley around its global minimum 

at 0x . The values of N  and max  were set to 100 

and 0.5, respectively; i.e., 5.27
1

 

N

k k . 

Theoretically, SNR starting from ]5.27,5.27[0 x  

should find the global minimum. Figure 3 shows 

average values of bestx , plotted against 0x . The 

simulations starting from ]20,20[0 x  converged 

to 0x  with high probability. SNR did not converge 

to the global minimum from the region where 

0/)( dxxdf , i.e., when the sensitivity information 

of SNR fails to provide the correct descent direction. 

3.2. Application to the logical XOR function 

SNR, DA, and SA were applied to XOR (the logical XOR function), which is modelled as 

a layered neural network that has 2m  input units, m  hidden units, and one output unit. It 

has additional threshold units in the input and the hidden layers, respectively. Each 

Figure 2. Mean squared functional 

differences against distances 

between randomly sampled 

data pairs for XOR. 

Figure 3. Initial and average best 

values by SNR 

minimizing )(tanh2 x . 
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component of x  represents a connection weight in the network; therefore, the dimension of x  

is 2)1( m ; i.e., 9n . The signal transmission function used in the neural network is 

)tanh()( ysyS   where s  is a constant to control the slope of the function around the origin 

and is set to 0.5. The maximum number of iterations was set to 100N  for SNR and DA, 

and 3000 for SA. 

 

Figure 4 shows results of SNR, DA, and SA. Thick lines show the average numbers of 

iterations required for convergence, and thin lines show ratios of failed simulations, i.e., 

fractions of simulation runs that could not learn the XOR pattern. The graph shapes of SNR 

and DA are similar. They were both minimized around 2.0/max n , and further reduced 

when max  is large. This may be because the number of local minima is small, while SNR and 

DA generate many solutions in the feasible domain in almost random fashion when max  is 

large. The performance of SNR is better than DA in this case. (This is generally not true for 

higher dimensional functions, and DA is usually preferable when a function is differentiable.) 

The performance of SA simply depended on the neighbourhood size. Note that the result of 

SA also depends very much on the maximum number of iterations, and so that the result in 

Fig. 4 could be improved if the number is larger. The results are presented only to illustrate 

the trend of the performance with respect to the neighbourhood size. 

3.3. Relationship to the roughness of the objective 

landscape 

The parameter s  in the neural network was 

changed between 0.1 and 5.0 to control the fractal 

dimension of XOR. When s  was set to 0.1, the 

parameter H  was about 0.97, which means that the 

landscape is moderate, and it was about 0.43 when s  

was set to 5.0, which means the landscape is harsh. 

The parameter n/max  was fixed at 0.2 for both SNR 

and DA, and the parameter b  of SA was fixed at 5. 

Figure 5 shows the relationships between the failure 

ratios and the roughness of the objective landscape of 

SNR, DA, and SA. The figure depicts that the two 

stochastic search algorithms, SNR and SA, are less 

sensitive to the roughness of the objective landscape 

Figure 4. Results of SNR (left) and DA (centre) for XOR, plotted against n/max , and 

result of SA (right) for XOR, plotted against the neighbourhood size b . 

 

Figure 5. Relationship between 

performances of SNR, DA, and SA 

and the roughness of the objective 

landscape of XOR. 
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when the landscape is harsh, while DA is more affected. When the landscape is moderate, DA 

outperformed the stochastic search algorithms. The remarkable point is that SNR and SA 

exhibit similar relationships, although an explicit hill-climbing mechanism is not provided in 

SNR. This is because SNR levels the sensitivity information around a current solution in the 

gradient approximation (Steps 5 to 10) in a stochastic sense. 

4. DISCUSSION 

It was shown that the stochastic sensitivity approach provides correct descent direction 

unless the sensitivity is nil (Fig. 3). The convergence property of the present stochastic 

method, SNR, was comparable to that of the deterministic algorithm, DA (Fig. 4). SNR 

outperformed DA when the objective landscape was harsh, and the convergence property of 

SNR was similar to SA (Fig. 5). The performance of SA depended on the neighbourhood size; 

i.e., SA requires larger neighbourhood as the problem dimension increases. Note that SNR 

can be scalable to higher dimensional problems without much additional effort. 
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ABSTRACT 

In this paper, we investigate the evolution strategy followed by a Genetic Algorithm (GA) 

in finding the optimal estimates of the effective parameters in a lumped nuclear reactor model 

of literature. It is shown that the GA evolves towards convergence in such a way to stabilize 

first the most important parameters of the model and later those which influence little the 

model outputs. In this sense, besides estimating efficiently the parameter values, the 

optimization approach also allows us to provide a qualitative ranking of their importance in 

contributing to the model output. The results thereby obtained are in good agreement with 

those derived from a variance decomposition-based sensitivity analysis. 

1. INTRODUCTION 

Genetic algorithms are numerical search tools used for the optimization of a multivariate 

function (called fitness or objective function) [1-3]. The search of the optimal solution is 

basically performed proceeding from one group (population) of possible points in the search 

space to another, according to procedures that resemble those of natural selection and genetics 

and designed such as to steer the search towards better solutions. While evolving through its 

generational steps, the algorithm examines and evaluates several solution points in the search 

space, before converging to the best solution. The significant amount of data thereby handled 

contains relevant information on the search space and on the model characteristics so that it 

seems worthwhile to make an effort to appropriately process these data so as to extract 

additional, spin-off results. 

This work aims at analysing the evolutionary process of the genetic algorithms in order to 

infer qualitative information on the importance of the optimization control variables with 

respect to the objective function. More precisely, in our study we start from the observation 

that in the process of  convergence some variables tend to set earlier than others. A tempting 

conjecture, to be verified, is that the genetic algorithms optimization strategy proceeds by 

adjusting first the most important variables, i.e. those which mostly influence the objective 

function, and worries only at a later stage about tuning the other less important variables 

which determine only minor variations to the fitness function. If this conjecture were true, 

then we could expect to be able to extract information on the importance of the control 

variables governing the objective function from the analysis of the evolution process towards 

convergence. 

mailto:marzio.marseguerra@polimi.it
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In the next Section, we look into the genetic  algorithms’ evolution procedure. In Section 3 

the nuclear reactor model application is illustrated. A short discussion ends the paper. 

2. ANALYSIS OF THE GENETIC ALGORITHM’S EVOLUTION 

In our work, the analysis of the GA process towards convergence is performed on a 

suitably devised archive containing a given number of different best solutions, each solution 

being a vector of values of the control variables, and consists in investigating, for each control 

variable, how the first and second order statistics of the archived best solutions set behave 

through the successive generations. Of particular relevance is, thus, the construction and 

management of the archive.  

After each generation, the best chromosome-solution’s fitness value is compared to those 

of the individuals already present in the archive: 

 if the archive’s capacity is not filled up, then the current generation best chromosome 

is inserted;  

 otherwise, if the current generation best chromosome’s fitness value is larger than, 

and sufficiently different from, that of any of the already archived chromosomes, the 

current generation best chromosome is added to the archive and the archived 

chromosome with smallest fitness is discarded. 

Thus, the archive set-up amounts to considering all chromosomes-solutions ever 

encountered throughout the generations, ranking them in increasing order of fitness, 

discarding the replicas (i.e. those chromosomes which appear in the list more than once) and 

keeping only a given number of the different individuals with the highest fitness values in the 

list.  

3. APPLICATION TO A SIMPLIFIED NUCLEAR REACTOR MODEL 

We consider the simple Chernick’s nuclear reactor model [4, 5] to be used for predicting 

on line the reactivity variation necessary to adapt the power production to the loads of the 

electrical grid. In order to predict the system behavior starting from a given time 0t , we use 

pseudo experimental (i.e. obtained by simulation) power and reactivity data taken from the 

past reactor history back to a time **t  preceding 0t  by, say, five days (several characteristic 

times of the Xe and I dynamics). The interval  0

** , tt  is further divided into two 

subintervals:  *** , tt  during which we only use the reactor power, and  0

* , tt  during which 

both the reactor power and the reactivity changes with respect  to the value at *t  are used as 

experimental data. The model equations, written in terms of the available data, i.e. the reactor 

power fP   and the reactivity variation  t   t  *t , are: 

  PPXe
c

t
dt

dP

ff

X ][ *








     (1) 

XePXeIP
dt

dXe

f

x
xIx





     (2) 

IP
dt

dI
II         (3) 
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where   is the reactivity; (cm-2s-1) is the flux; Xe(cm-3) and I(cm-3) are the Xenon and 

Iodine concentrations, respectively; f  (cm-1) is the effective fission macroscopic cross 

section; x (cm2) is the effective Xenon microscopic cross section; x  and I are the Xenon 

and Iodine fission yields, respectively; x  (s-1) and I (s-1) are the Xenon and Iodine decay 

rates;  (s) is the effective neutron mean generation time. The temperature and Xenon 

feedbacks are modeled via the introduction of two lumped parameters, namely: the 

temperature feedback coefficient,  (cm2s) and the adimensional conversion factor of Xenon 

concentration to reactivity, c. 

In this model, the assumed values for the known nuclear constants are x = 0.003, I = 

0.061, x = 2.09*10-5  s-1, I = 2.87*10-5  s-1 and the values to be estimated are the quintuplet 

of  effective parameters  
f

x




, 

f


, c,  *, t  plus the Xe and I concentration at *t . The 

model is admittedly very simple but the use of effective parameters to be periodically updated 

renders it potentially very reliable. Thus, the strength of this approach mainly rests in the 

capability of estimating the effective parameters. In addition to the effective parameters, the 

initial concentrations of Xe and I should also be estimated. 

For the genetic algorithm, we consider chromosomes made up of five genes, each one 

coding one of the five effective parameters. Table 1 contains the relevant data. Each 

population is composed of 1000 chromosomes. As objective function to be optimized, we 

consider the inverse of the average squared residuals R between the experimental power 

history and the computed one normalized to the nominal power,  summed over a succession 

of 2001 discrete time points ),( 0

* ttti  . 

The values found by the genetic algorithm are reported in the second-to-last column of  

Table 1. The resulting power profile from *t  to 0t  turns out to be in very good agreement 

with the corresponding (pseudo)experimental profile. Now, at the present time 0t , we have 

available a ‘good’ model, all its effective parameters and the Xe and I values, so that we can 

predict the reactivity changes needed to satisfy future power load variations.  

 

Table 1: genetic algorithms data and parameters values for the reference power load 

profile 

 

 Simulation phase Genetic Algorithms 

Parameter True value Range (50% # bits GA value Relative error (%) 

C 1.3606 0.6-2.0 10 1.2938 5.0 

/f*1016 8.3802 4.0-12.0 10 8.7148 4.0 

x/f*1018 3.5358 1.75-5.25 10 3.5290 0.2 

*102 8.3000 4.0-13.0 10 9.8652 20.8 

0*102 1.5063 0.75-2.5 10 1.3695 10.6 
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Note that the described genetic algorithms procedure leads to very good results even 

though one of the parameters, namely the generation time  , has a relative error close to 20% 

(Table 1), thus suggesting a scarse sensitivity of the results to such parameter. The larger error 

in the estimation of the mean generation time  is due mainly to the fact that  in eq. (1)  

multiplies the derivative of the power which is zero most of the time, except during the power 

variations: since these last only half an hour, not much information is provided for the 

estimation of  . 

3.1. Analysis of the genetic algorithm’s evolution process 

The purpose of this analysis is to extract some information on the relative sensitivity of the 

model to the different parameters. Figure 1 shows the behaviour of the square of the 

coefficient of  variation as a function of the generations. The variable fx /  is shown to 

converge first, followed by (t*), f/ , and c. The parameter  is shown to converge much 

slowlier, thus confirming a relatively smaller sensitivity of the model to such parameter. 

Similar conclusions can be drawn by an analysis of the behaviour through the successive 

generations of the sample means of the parameter values characterizing the individuals in the 

archive (here not reported for brevity). 

 

 

Figure 1: square of the coefficients of variation as a function of  the generations 

 

The qualitative sensitivity ranking thus far obtained is in agreement with the results 

obtained by a standard variance decomposition analysis [6], whose sensitivity coefficients 

values are defined as   ][/][
2

yVxyEV s
sx
 . These coefficients measure how much of the 

unconditional variance V[y] of the model output y is accounted for, by the variance of the 

expected value of y conditioned on the input parameter xs. The values obtained are 2.4710-3, 

2.0610-3, 1.3210-3, 1.0010-3, 3.1510-4 for the parameters xf, (t*), f, c, , respectively. 
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4. CONCLUSIONS 

Genetic algorithms are optimization methods based on procedures which resemble those of 

natural selection and genetics. While performing its steps, the method evaluates several 

solution points within the search space, thus offering the possibility of disclosing the 

characteristics of the underlying model object of the optimization. 

In this paper we have shown that the genetic algorithm convergence procedure at first is 

effective in settling the most important variables to their best values, and only afterwards in 

focussing on the tuning of the less important variables. Thus, the succession of convergences 

of the variables throughout the generations gives a qualitative indication of the importance of 

the variables with respect to the function objective of the optimization.  

5. REFERENCES 

1. J.H. Holland, (1975). Adaptation in Natural and Artificial Systems, University of 

Michigan Press, Ann Arbor, MI. 

2. D.E. Goldberg, (1989). Genetic Algorithms in Search, Optimization, and Machine 

Learning, Addison-Wesley Publishing Company. 

3. L. Chambers, (1995). Pratical Handbook of Genetic Algorithms, Vol. 1 and 2, CRC Press. 

4. M. Marseguerra, E. Zio, (2000). Genetic Algorithms for Estimating Effective Parameters 

in a Lumped Reactor Model for Reactivity Predictions, accepted for publication in 

Nuclear Science and Engineering. 

5. J.Chernick, (1960). The Dynamics of a Xenon-Controlled Reactor, Nuclear Science and 

Engineering 8, pp. 233-243. 

6. M.D. McKay, (1995). Evaluating prediction uncertainty. Tech. Rep. NUREG/CR-6311, 

U.S. Nuclear Regulatory Commission and Los Alamos National Laboratory.  



 

Session 10 Optimisation and Sensitivity  188 



 

Session 10 Optimisation and Sensitivity  189 

EMULATOR-BASED GLOBAL OPTIMISATION USING LATTICES 

AND DELAUNAY TESSELATION 

R A Bates(1) & L Pronzato(2) 

(1) Dept. of Statistics, University of Warwick, 

Coventry CV4 7AL, UK. 

 (2) Laboratoire I3S, CNRS--UNSA, bât. Euclide 

Les Algorithmes, 2000 route des Lucioles, BP 121 

06903 Sophia-Antipolis Cedex, France 

1. SUMMARY 

Emulators are fast statistical approximations of engineering systems or simulators used to 

increase the speed of analysis for design optimisation. This paper presents a method intended 

for global optimisation of engineering systems using design of experiments and emulators in a 

unified fashion. The Rosenbrock optimisation example describes the method. 

2. INTRODUCTION 

The use of Design of Experiments (DoE), modelling and optimisation in engineering is 

well-established for cases where a product or process is too complex for a complete whole-

system model to be identified, or, where a model is available, but computationally too 

expensive to evaluate[1]. The idea is to use DoE to test the system, or a computer simulation 

of the system, at specific combinations of input factors, gather the results and use this data to 

build a more efficient empirical approximation to the system which can then be used for 

optimisation. These approximate models are variously called meta-models, low-fidelity 

models, surrogates or emulators, but their purpose remains the same: to approximate the 

system response. Areas where this technology is useful can be characterised by: (i) high 

number of (important) input factors, x=x1,…,xd, (ii) several system responses (multi-

objective), y=y1,…,yd, (iii) possibly highly constrained input and response spaces, (iv) high 

cost of evaluating design points si=s1,…,sd. In this paper we focus on complex systems that 

match the above characteristics, specifically the combined use of experimentation, modelling 

and optimisation, in order to present an efficient and holistic method of optimisation for use in 

engineering design. 

3. SEQUENTIAL DESIGN AND OPTIMISATION 

Performing experiments is costly and the goal is often straightforward optimisation so it is 

reasonable to proceed sequentially. What is required is to calculate the expected improvement 

in the current minimum value of y when the next design point is evaluated. It could well be 

the case that, in parts of the design space that are poorly modelled, the expected improvement 

is very high. The generalised expected improvement criterion Ig(x), as described in [4,5], can 

be used to indicate the best location of additional design points to improve the emulator 

model. It is defined as the expected value of 

(1)                                              
otherwise                            0

)(if.        )]([
)( minmin



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
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where g  0 is an integer-valued parameter that controls how globally the function searches 

the design space (in this paper g is set to 2), and where, in the DACE model, the prediction 

y(x) is a Gaussian random variable, with known mean (x) and variance v(x). Thus the search 

for an optimal point in the design space is guided by the emulator model. An algorithm for 

combined sequential experimentation, modelling and optimisation is as follows: (i) compute 

an initial space-filling experiment (e.g a lattice design), (ii) fit an emulator to the experimental 

data, (iii) select a new design point that maximises the expected improvement of the model, 

(iv) evaluate the design point and return to (ii), (v) stop adding points when the expected 

improvement drops below a pre-defined threshold value. In this way the quality of the 

emulator is refined until it reaches the desired level of prediction accuracy. The emulator can 

then be used to predict the optimal point that can be confirmed with a final experiment. In 

practice there are some problems to be resolved before this procedure can be of use. The first 

is that, as the algorithm converges, design points tend to be placed very close together, 

leading to conditioning problems in model fitting. For example, using the DACE emulator, 

the covariance matrix rapidly tends towards being singular, which affects predictions such 

that the algorithm does not converge. Another problem is in ensuring a global search of the 

design space. If the function for expected improvement is used to determine the next design 

point it may become trapped in a local minimum and not explore the whole design space for 

the best point. In order to overcome these difficulties one possibility is to restrict the selection 

of design points to a candidate set defined by an integer lattice. This means that the design 

points will always be a certain minimum distance apart, and also that the design space can be 

more fully explored to find the best next point in the sequence. 

4. LATTICE-BASED EXPECTED IMPROVEMENT 

Integer lattices are used widely in numerical integration due to their excellent space-filling 

properties in high dimensions. In order to demonstrate the approach outlined in this paper, the 

well-known 2-dimensional Rosenbrock function (y = 100(x2-x1
2)2 + (1-x1)

2 ) is used as a test 

case with  x1, x2  [-2 , +2]. The minimum value for y is 0 and can be found at x1=1, x2=1. A 

lattice in d=2 dimensions with N=100 points is used as a candidate set and n=7 well-spaced 

points are chosen from it by hand as an initial experimental design, S=s1,…,sn and used to 

obtain response values Y=y1,…,yn, yi=y(si), i=1,…,n. An initial DACE model is fitted to the 

[S,Y] pairs and Ig(x) is evaluated at each of the remaining points in the candidate set to 

determine the next design point, which is then evaluated and removed from the candidate set. 

In all 10 additional points were evaluated, the algorithm terminating due to the threshold 

condition Ig(x) < 10-3 (see (1)). The final DACE model predicted the optimal point to be at 

x1=0.989, x2=0.974 with a function value of *y


=-0.42 compared with an actual value of 

y*=0.0013. This result should be compared with the actual minimum of y=0 at x1=1, x2=1. 

Figure 1: 
Optimisation 

results for 

Rosenbrock 

function 
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Fig.1 shows the results of optimising the Rosenbrock function using Ig(x). 

The left-hand plot shows the contours of the original Rosenbrock function with the initial 

design points (asterisks), the added points (dots), the best design point evaluated so far (solid 

star) and the optimal emulator point (hollow star). The right-hand plot shows a surface plot of 

the final DACE emulator with all the design points superimposed as asterisks. 

5. DELAUNAY TESSELATION 

Assume that the search domain correspond to a d-dimensional box. In order to avoid the 

computational cost of a global (continuous) search in this space, and the clustering of the 

design points that may lead to problems in model fitting, the design space is divided into 

smaller cells such that the expected improvement criterion is unimodal (or even concave) in 

each cell. The cells are constructed by Delaunay tesselation [9], with vertices given by the 

design points. The optimisation algorithm is modified as follows: (ii-a) compute the Delaunay 

tesselation of the domain and perform a local maximisation of the expected improvement in 

each Delaunay cell Ci (each cell is a d-dimensional simplex). Let xi, the point that maximises 

the expected improvement in Ci, be considered as a possible new design point, (iv-a) refit an 

emulator to the current experimental data, update the Delaunay tesselation, perform a local 

maximisation of the expected improvement in each newly created or modified Delaunay cell, 

recompute the expected improvement at xi if Ci was already in the tesselation; return to (iv) 

with the best point. The fact that the uncertainty on the prediction increases with the distance 

to the design points usually makes the expected improvement unimodal in the cells, hence the 

possibility of using a fast local search method at the new steps. The number of local searches 

at step (iv-a) generally remains reasonably small since the optimisation is only performed in 

the new/modified cells. Fig. 2 presents an application of the method to the Rosenbrock 

function in the domain [-2,2]2 (normalized to [0,1]2). The dots correspond to the points xi  
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maximising the expected improvement in the cells constructed by the algorithm, the circles 

correspond to the design points. The star indicates the location of the next design point, where 

the function would have been evaluated if the algorithm had not been stooped due to a small 

value of the expected improvement at this point. The initial design corresponds to a LHS 

design with 7 points. The threshold used at step (v) is 10-3(ymax-ymin), with ymax and ymin the 

maximum and minimum values of y on the current design points. The algorithm stops after 

introducing 20 additional points, and suggests a minimum for y at x1=1.0948, x2=1.1870. The 

associated function value is *y


=0.0224.  

6. DISCUSSION 

Although only in 2 dimensions, the results show that expected improvement combined 

with lattice search, or Delaunay tesselation of the search domain, might be a suitable approach 

for optimisation problems involving functions computationally expensive to evaluate. The use 

of a lattice-based candidate set enabled the search to be conducted globally, while maintaining 

stability in the emulator building stages of the algorithm. One consequence of the lattice 

approach is that the ultimate step of the algorithm must allow the emulator to specify a final 

optimum value which is not constrained to be on the candidate set, as the true optimum point 

will probably not be contained within this set. A final local (continuous) optimisation of the 

response (or expected improvement) must therefore be made to confirm the result. Additional 

examples in higher dimensions with a simple quadratic function have also proved successful, 

and the results of this will be reported separately. However, in high dimensions this requires 

the evaluation of the expected improvement at a large number of sites (the points of the 

lattice). The use of Delaunay tesselation allows one to resort to local search when maximising 

the expected improvement, while maintaining a global search of the space. The combination 

of the two approaches is currently under study and should be beneficial. The tesselation may 

be used to search only in appropriate sub-regions, while searching on a lattice may help to 

maintain the design informative enough for a good exploration of the system response (note 

that the expected improvement approach is only one-step-ahead). 
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1. INTRODUCTION 

Investigating sensitivity of model output is particularly challenging when the model is 

expensive to run, and when model inputs must be determined from limited data on the real 

process. Both of these problems can sometimes be addressed by the creation of “fast 

simulators” that (hopefully) mimic the relevant features of the model in regards to inputs and 

resulting sensitivity.  

Such simulators can have a number of uses. The use that will be emphasised here is that of 

solving the inverse problem – i.e., determining needed model inputs based on data from the 

real process – as well as accounting for the associated uncertainty in inputs. The fast simulator 

can also prove useful in helping to adjust to situations of missing or incomplete data.  

We will investigate these issues in the context of a traffic microsimulator discussed in 

subsection 1.1. The fast simulator will be a probabilistic network that is exercised by Markov 

chain Monte Carlo methods. 

1.1. Traffic Simulation 

The microsimulator CORSIM [5] is a computer model of street and highway traffic. It 

represents individual vehicles, which enter the road network at random times, move according 

to local interaction rules describing governing phenomena, such as vehicle following and lane 

changing, and turn (or not) at intersections according to prescribed probabilities. There is 

inherent randomness in CORSIM: vehicles arrive at random and move randomly, albeit with 

rather simplified governing distributions.  For example, arrival time distributions are limited 

largely to Gamma distributions and vehicle turning movements are independent vehicle-to-

vehicle and link-to-link. 

CORSIM is currently in wide use as the platform for a variety of traffic management and 

research purposes. One of these [4] is measuring the performance of traffic signal timing 

plans (in cooperation with the Chicago Department of Transportation). The traffic network 

studied is depicted in Figure 1, and consists of a 52-intersection neighbourhood in Chicago. 

Of specific interest will be use of CORSIM to model and analyze traffic in this network 

during the “rush hour” period (on a normal day).  

Of interest in this paper are two of the most significant (unknown) inputs to CORSIM: (i) 

demand and (ii) turning probabilities. Demand, D, consists of parameters that determine the 

numbers of vehicles that enter the system from external streets, while the turning 

mailto:berger@stat.duke.edu
mailto:german@stat.duke.edu
mailto:bayarri@uv.es
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probabilities, P, refer to the probabilities that a vehicle turns right, turns left, or goes through 

a given intersection. Demand and turning probabilities are street and intersection specific, so 

that D is actually a vector of 16 numbers (for the studied system), while P is an 84-

dimensional vector of probabilities. These must be determined from observational data, 

consisting of counts, C, made on the real-world traffic network. The available data is further 

discussed in Section 2.1. 

 

 
 

Figure 1. The traffic network (a Chicago neighbourhood) under study. 

1.2. Inferential Focus 

The basic problem we consider is the statistical inverse problem of using the data, C, to 

determine the inputs, D and P, to the simulator. In practice, this is often done by an informal 

process of “tuning,” namely adjusting D and P until the output of the simulator seems similar 

to the observed data. The most serious deficiency of this approach is that the uncertainty in 

the tuning process is not accounted for. For the situation we consider (and for most complex 

computer models), there are very considerable uncertainties in the inputs to the model. 

Sources of uncertainty for CORSIM include quite large measurement errors in the data, C, 

and the uncertainty inherent in the simulator (since it produces random outputs, even given 

the inputs D and P). Determining these uncertainties, and doing so in such a way that they can 

be utilised for future predictions from the simulator, is thus our primary goal. 

In principle, the Bayesian approach allows accomplishment of this goal. One views the 

(random) simulator output as a probability distribution, given D and P, and relates this to the 

actual observations C through a measurement error model. Specifying a prior distribution for 

D and P then allows use of Bayes theorem to obtain their posterior distribution, given the data 

C, to be denoted by D,P|C). This distribution automatically incorporates all the uncertainty 

in the simulator inputs D and P. The challenge of determining D,P|C) is discussed in the 

next section. 
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Uncertainty in simulator predictions can then be assessed by treating D,P|C) as the 

“random input distribution” for the simulator, and making repeated runs of the simulator, 

initialised by draws from this distribution. This is not significantly more expensive than 

running the basic simulator in our situation; being a random simulator, its predictions can, in 

any case, only be ascertained through repeated runs, and starting each run with D and P 

chosen from D,P|C) is virtually as cheap as starting each run with D and P fixed. Note that 

we are not addressing possible simulator bias here; we are simply addressing the issue of 

inherent sensitivity of simulator output to uncertainty in the inputs. 

1.3. The Fast Simulator 

A single run of CORSIM, on a typical PC platform and in the setting discussed in Section 

1.1, typically takes 2 to 3 minutes. While much faster than many complex computer models, 

this is still too slow to use the simulator directly to obtain (D,P|C). The reason is that the 

only available method for direct determination of the posterior is the Markov chain Monte 

Carlo (MCMC) approach [1,3]. In our problem, however, there are upwards of 200 unknown 

and highly dependent parameters under analysis, and 2-3 minute simulator run-times will not 

allow an MCMC analysis in a situation of such complexity. 

We proceed, therefore, by creating a simpler stochastic network that mimics the traffic 

simulator, with respect to the key features D and P under study. Simulation from this network 

is fast enough that it can be used for determination of (D,P|C), where we use “*” to indicate 

that this is the posterior that would correspond to the simplified network. One then has a 

separate model validation problem of assessing whether the fast simulator is an adequate 

approximation to the original traffic simulator, in the sense that (D,P|C) is a good 

approximation to (D,P|C), but we do not consider this problem here. 

2. CONSTRUCTING THE FAST SIMULATOR 

2.1. The Data 

The data, C, is a vector of counts of vehicles. Let Cijk denote the count of vehicles at 

intersection i (any of the 52 intersections), arriving from direction j (either N-north; S-south; 

E-east; or W-west), and making movement k (either R-right turn; L-left turn; or T-through). 

Thus C21NT is the count of vehicles arriving at intersection 21 from the North, and continuing 

through the intersection. It is also convenient to define Cij = CijR + CijL + CijT; this represents 

the total observed number of vehicles entering intersection i from direction j. The counts fall 

into three classes of data 

Demand counts: These are counts, made over a two-hour period, by observers placed on 

the streets entering the traffic neighbourhood in Figure 1, and correspond to certain of the Cij 

above. Some of these counts are suspected of being quite inaccurate, with errors potentially as 

high as 50%. 

Turning counts: These are counts, made by observers over shorter time intervals (at most 

20 minutes), of the numbers of R, L and T vehicles at each intersection. Some of these counts 

are missing and even those that are present can be quite inaccurate. 

Camera counts: At the intersections in Figure 1 that lie within the central dashed rectangle, 

cameras were placed that recorded all vehicles passing through the intersection over the two-
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hour period. The recordings were later analysed to exactly determine the numbers of R, L and 

T vehicles at each of these intersections. These counts can be treated as exact. 

2.2. The Likelihood 

The basic elements of the stochastic network to be constructed are numbers Nijk that 

correspond to the true numbers of vehicles passing through the traffic network. Thus the Cijk 

are viewed as arising from the Nijk, but possibly with measurement error. The counts Cij 

arising from the streets entering the traffic neighbourhood are likewise viewed as arising from 

the true numbers Nij. The three different types of data are modelled probabilistically as 

follows. 

Demand counts: It is assumed that the Cij, arising from the streets entering the traffic 

neighbourhood, follow a discrete normal distribution with mean (1+b) Nij and variance  2 (Nij 

+1),  where b is an unknown “observer bias” and 2 is an unknown “variance inflation 

factor.” (By a discrete normal distribution, we mean the distribution on the non-negative 

integers that has density proportional to the normal density.) The assumed proportionality of 

the variances of the Cij to the true underlying counts, Nij, is based on the fact that either 

binomial or Poisson error models for the Cij have such proportional variances; while neither 

model can be used here (since incorporation of an unknown mean bias is also important), it is 

reasonable to follow this variance proportionality. (The addition of 1 to the Nij is simply to 

eliminate possible problems with zero counts.) Letting C1 denote the vector of these incoming 

Cij and N1 the corresponding vector of Nij, we have thus specified the density f(C1 | N1, b, 2). 

Turning counts: These are determined over much shorter intervals (at most twenty 

minutes) than the Cij, and are of a different nature than the demand counts. Hence we model 

them as arising from a discrete normal distribution with a different bias and variance inflation 

factor. Denote this density as f(C2 | N2
*, b*, *2), where C2 is the vector of observed turning 

counts and N2
* is the corresponding vector of true numbers of vehicles. We have 

distinguished N2
* here from N2, the vector of true numbers of vehicles over the longer two-

hour period. 

Camera counts: Again, the counts obtained from the camera recordings are viewed as 

exact. Thus we can view these counts as exactly specifying the corresponding values of  Nij. 

2.3. The Prior Distribution 

Section 2.2 specifies the density of the observed vector of vehicle counts (C) given the true 

vehicle numbers (N and N2
*), b, b*, 2, and *2. This is the “likelihood” corresponding to the 

data. 

The actual inputs that are needed for the CORSIM model are the turning probabilities Pijk 

(i.e., the probability that a vehicle arriving at intersection i from direction j makes movement 

k) and the vehicle interarrival times ij (which we earlier denoted generically by D), at the 

streets entering the neighbourhoods. The vehicle input distributions utilised in CORSIM are 

Erlang-2 distributions with rates ij (i.e., Gamma distributions with scale parameters ij and 

shape parameters 2). Thus we need to relate these actual parameters of interest to N. 

The Nij corresponding to the streets entering the neighbourhoods can simply be viewed as  

arising from the Erlang-2 distributions and we assume these to all be independent; thus we 
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have specified the density (N1 | ), where N1 refers to the vector of incoming Nij and is the 

vector of the ij. 

Next, vehicles arriving at an intersection from a given direction will be treated as 

independent, so that (NijR, NijL, NijT) follows a multinomial distribution with total sample size 

Nij = NijR + NijL + NijT, and probabilities (PijR, PijL, PijT). Assuming independence across 

intersections, this specifies the density (N2 | P), where N2 denotes the vector of all true 

turning numbers (over the two-hour period) and P the vector of all turning probabilities. 

It is important to realise that there are numerous constraints among the Nijk and Nij. For 

instance, the total number of vehicles entering an intersection must equal the number leaving 

the intersection. Furthermore (and of crucial effect), the camera counts lead to known values 

of some of the Nij, and these known values induce other constraints. For the neighbourhood of 

Figure 1, there are a total of 37 constraints that must be included. Let N denote the region 

implied by all these constraints, and 1N denote the indicator function on this region 

We also have to deal with N2
*, the vehicle numbers from the short time intervals 

corresponding to the actual observations C2. While N2
* and N2 are clearly somewhat 

dependent, the comparatively small time interval corresponding to the N2
* makes an 

assumption of independence at least reasonable as an approximation. 

Finally, we must specify the prior distribution (, P, b, b*, 2, *2). We (independently) 

utilise the standard noninformative prior distributions 1/ ij, 1/2, and1/*2 for the various 

scale parameters, choose a constant prior distribution for b and b* over their domains, and 

assign the turning probabilities for a given triplet the Jeffreys prior (PijR PijL PijT)-1/2. 

2.4. The Posterior Distribution 

By Bayes theorem, the posterior distribution, (N1, N2, N2
*, , P, b, b*, 2, *2| C),  of all 

unknowns given the data C, is simply proportional to the product of the likelihood and the 

prior, i.e. 

f(C1| N1, b, 2) f(C2| N2
*, b*, *2) (N1| )(N2| P)(N2

*| P) (, P, b, b*, 2, *2) 1N. 

Although (, P, b, b*, 2, *2) was improper, it can be shown that the posterior 

distribution is proper, even when (as is the case with the CORSIM data) some of the counts 

are missing. (The ability to deal with missing data is one of the strengths of the Bayesian 

approach.) 

We have completed specification of what is commonly called a Bayesian network [2]. The 

nodes of the network can be thought of as the ij pairs (an intersection number, together with 

the relevant directional input of vehicles). The numbers of vehicles going between nodes are 

sums of the Nijk, with the Nij being the vehicles arriving into the network from “external 

nodes” representing the Erlang-2 input distributions. Note that N1 and N2, while (mostly) 

unknown, are not of immediate interest; the goal is to obtain the posterior distribution of the 

inputs needed for the CORSIM model, which are  and P. As is common in Bayesian 

analysis, however, the Ni are introduced as “latent variables” for the purpose of simplifying 

the distributional structure of the Bayesian network and the ensuing computations. 
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3. MCMC COMPUTATION 

The chief difficulty in the analysis is dealing with the constraints specified by 1N. Indeed, 

the most important step in the computation is to effect a reparameterization of N1 and N2 so 

that unneeded variables are eliminated and the constraints take a simple form. Indeed, we 

were unsure that an effective MCMC analysis could be implemented here, until a scheme for 

carrying out this reparameterization was found. (In principle, one could simply numerically 

compute the constraint at each step of the MCMC procedure via linear programming, but this 

would be too time consuming because of the large number of iterations that are needed.)  

Space precludes a description of the reparameterization here. 

After the reparameterization, one can proceed by Gibbs sampling (see [1,3]). The full 

conditional distributions of  the ij, (PijR, PijL, PijT), (b, 2), and (b*, *2) are Gamma, 

Dirichlet, and (twice) Normal-Inverse-Gamma, respectively, with easily specified parameters. 

The full conditional distributions of the various N have no simple form, but are discrete 

distributions over specified ranges. Hence they can also be easily sampled. We are currently 

proceeding with a full implementation of this analysis. To date, however, it has been 

implemented only under the simplifying assumptions that 2 = 1 and *2 = 0. 

The output of the MCMC analysis is a large sample of (dependent) realisations from the 

posterior distribution. For use in CORSIM, one thus simply records this sample of (, P), and 

uses the sample directly as the input values for the exercise of CORSIM. In practice, only a 

few hundred values of the (, P) vectors will typically be utilised in a CORSIM prediction, 

whereas the MCMC runs will typically result in, say, 100,000 realisations of (, P). Hence, 

one need typically only save, say, every 500th realisation of (, P) from the MCMC run; the 

resulting 200 realisations will then also be much less dependent, desirable when used as the 

inputs for CORSIM. 

4. CONCLUSIONS 

To see the effects of the joint posterior analysis of the data, Figure 2 presents histograms of 

values of the Nij for two of the incoming streets of the neighbourhood, along with the 

corresponding observed counts, Cij (indicated by the vertical line). These histograms reveal 

two central points. First, the joint posterior analysis can cause marked shifts in the distribution 

of the actual numbers of vehicles, away from the observed counts. Second, the variability in 

the distribution of the actual numbers is quite significant, and will result in a very significant 

increase in the variability of CORSIM predictions. Neither of these could have been realised 

by “tuning” the model to fit the data or even by “univariate” statistical analyses of aspects of 

the data. 

It should also be emphasised that, in effect, we constructed a “fast simulator” that reflects 

certain features of the CORSIM model. The developed probabilistic network contains all 

intersections of the CORSIM model, and also reflects the vehicle counts and turning 

probabilities involved in passing between intersections. However, the vehicles are essentially 

viewed in this fast simulator as passing through the neighbourhood instantaneously; thus 

important details, such as queue times, are missing. The fast simulator is, therefore, not a 

replacement of the CORSIM model from the perspective of traffic management. But it does 

serve the central purpose of allowing for the observational data to appropriately influence the 

input distributions to CORSIM, leading to improved assessment of uncertainty in CORSIM 

prediction. 
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Figure 2. Histograms indicating the posterior distributions of two of the Nij. 
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SUMMARY 

A simple water quality model is fitted to continuous observations collected at the weir at 

Geesthacht on the Elbe river. A case study addresses the questions of a) what kind of 

information about the impact of external forcing on the temporal evolution of chlorophyll 

concentrations can be obtained from using a mechanistic model’s uncertain output and b) how 

this information  changes when the model’s structure is simplified. Model output is 

considered informative if its linear re-scaling based on linear multivariate least squares 

regression methods is efficient in reproducing the observed data. Canonical correlation 

analysis (CCA) is employed to analyse this post-calibration process in terms of pairs of 

correlated patterns in the spaces of data and model output, respectively. Using observed water 

temperature (which is model input) as an additional explanatory variable in the calibration 

scheme allows for the assessment of the incremental amount of information in model output 

when already knowing the time dependent model input. The sensitivity of the model’s 

information content  with respect to details of the model formulation is investigated.  

1. INTRODUCTION 

To be able to identify anthropogenic changes of observed water quality in a river, the 

proportion of observed variability that is due to internal dynamical variability or time 

dependent external meteorological forcing must be estimated. Normalisation of observed data 

may be attempted so as to facilitate the comparison of observed data from different places or 

periods with different meteorological conditions. Mechanistic modelling can be helpful for 

this task. 

Models for predicting water quality typically contain many input parameters the exact 

values of which are not well known. In fitting such models to observations, it is often the case 

that using significantly different parameter sets results in very similar model outputs, 

indicating that the model is overparameterised. Monte Carlo techniques can be used to 

identify that region in the space of model input parameters that implies good model 

performance [6]. Here, it is suggested that Bayesian network technology [2] might provide a 

convenient way to portray the shape of this region and thereby  allow for a systematic 

approach to tuning overparameterized models. 

Mechanistic models and their resultant mathematical structures portray processes that 

involve different variables at the same time. Thus, the temporal evolution of characteristic 

patterns may be traced. The main idea underlying this study is that even when a model is 
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badly calibrated, essential mechanistic processes may still be represented, although the shapes 

of the covariance patterns or their amplitudes may be wrong. If such deficiencies can be 

corrected by post-calibrating model output based on multivariate regression techniques, a 

mechanistic model may still be considered as being useful. It is investigated how the 

application of model output post-calibration affects parameter sensitivities. 

2. METHODOLOGY 

2.1.  Representation of Parameter Uncertainty by Bayesian Networks (BNs)   

BNs [2] use the language of conditional probabilities portrayed by directed links between 

nodes in a graphical network to represent associations between variables. The notation is 

intuitively conceivable and at the same time underpinned by strict probabilistic mathematics. 

To choose the network topology (which is not unique as a given joint probability distribution 

can be factored in different ways) means to impose a certain order on the set of variables. 

Thus, the language of directed Bayesian graphs can profitably be employed to support the 

perception of “causal” interactions between model parameters.  

2.2.  Model Post-Calibration 

The observations-predictions correlation is used as a measure to assess the amount of 

information that is available from the mechanistic model. CCA [1] is applied to concentrate 

information on the kind of association between the observed data vector (chlorophyll, 

phosphate, oxygen) and the corresponding vector of model output by identifying pairs of 

patterns whose time evolution is optimally correlated. This information about independent 

pairs of correlated patterns in the spaces of observations and model predictions, respectively, 

allows for the decomposition of the matrix of regression coefficients that is used for model 

calibration into additive components. 

3. RESULTS 

3.1.   Definition of the Case Study 

The theoretical concept will be illustrated in a case study of water quality data of the Elbe 

river. The main focus is on  simulating observed chlorophyll-a concentrations. 

3.1.1. Data 

Weir Geesthacht is located about 50 km upsteam of Hamburg on the Elbe river. Since 1996 

many relevant water quality parameters (pH, oxygen, nutrients) and external forcing 

parameters (water temperature, radiation) have been observed on a continuous basis [3]. For 

the present study a period of 120 days starting with the first of May 1997 has been selected. 

3.1.2. Model WAMPUM 

A zero-dimensional version of the water quality model WAMPUM [5] developed at GKSS 

has been used. The following compartments are represented in the model: oxygen, biomass of 

phytoplankton, carbon, nitrogen and phosphorus. No transport term has been activated. 
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3.2.   Sensitivities 

Five model input parameters have been selected for a sensitivity study. Four of theses 

parameters enter the formulation of the algae growth rate: 

 Water depth 

 Light intensity at which algae growth rate is 71% of the maximum growth rate 

 Non-algal light extinction coefficient (by mineral compounds) 

 Algal self-shading coefficient 

As a fifth parameter for experimental purposes (originally not contained in WAMPUM) a 

“tendency scale factor” has been introduced that allows to adjust the overall time scales of 

growth and depletion rates.  Monte-Carlo-experiments with 4000 realisations for the five-

dimensional vector of model input parameters have been performed. Results of the sensitivity 

study are reported in a companion paper [4]. Only few constraints for successful combinations 

of  model input parameters can be discerned in pairwise scatterplots. Analysing the 

constrained model parameters in terms of conditional probabilities, however, clearly reveals a 

multidimensional structure of parameter interaction.  

As to be expected, using linear post-calibration for correcting raw model output has a 

major impact on the classification of Monte-Carlo-runs in terms of  their success. 

Surprisingly, the overall connectivity between parameters in the subset of successful 

parameter combinations seems not to be weakened by allowing for post-calibration of model 

output. Further research is needed to decide whether this result can be confirmed in other 

applications. 

3.3.   Truncation of The Model Structure  

Four of the selected model parameters enter a formula that parameterizes the impact of 

radiative forcing on algae growth. One may ask whether, given the observed evolution of 

meteorological forcing, the specific formulation of this non-linear module of the mechanistic 

model is essential for explaining variability of algae populations.  

A very simple experiment consists of setting the light demand of algae in the model to zero 

so that light attenuation by mineral compounds and self-shading of the algae in the model 

become irrelevant. The performance of the truncated model’s output is extremely poor. Even 

re-calibrating the model output does not improve its quality to a significant degree. The 

situation becomes very different, however, when post-calibration of model output is based on 

raw model output variables plus the observed water temperature rather than on model output 

alone. In contrast, using observed temperature alone as a predictor for algae bio mass (when 

using linear least squares regression formulas), is again not successful. 

Individual canonical variates obtained by CCA mostly have characteristic scales of 

temporal variability. A striking result obtained for the present example is that time series of 

canonical variates in the space of observations are not changed much by the model truncation. 

Significant changes are observed only for the canonical variates in the space of  predictors 

(raw model output, eventually plus observed temperature). Similarly, including water 

temperature into the set of explanatory variables has no major effects on canonical variates in 

the space of data. 
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4. DISCUSSION 

Model predictions of water quality are associated with high degrees of uncertainty that 

may reside in parameter specifications but also in assumptions about the overall model 

structure. The representation of simple model overparameterization can be considerably 

facilitated by using BN-technology. Once a BN has been fitted, new samples of dependent 

model input factors can readily be drawn from the joint likelihood function represented by the 

BN.   

The main objective of this paper was to explore a theoretical concept to better assess the 

amount of information that can be obtained from uncertain output of a mechanistic water 

quality model. The basic idea was that linearly re-scaling model output should not change its 

information content. A least squares post-calibration scheme of multivariate model output 

(chlorophyll, phosphate, oxygen) has been subjected to CCA. Characteristic time series of 

canonical variates in space of observations were found to be independent of model details. 

Model post-calibration formulated in terms of correlated canonical variates might therefore be 

used to statistically relate observed natural processes and corresponding structures in the 

model output to each other.  

It is to be expected that mechanistic processes are correlated better with external forcing 

than with changes of individual variables. For this reason water temperature (being one aspect 

of external forcing that enters the mechanistic model as input) has been included into the data 

vectors that are subjected to CCA. The implications of including temperature are different for 

different pairs of correlated patterns which indicates a chance for statistically isolating the 

impact of temperature on individual processes. This would be an important contribution to the 

technique of data normalization with regard to external meteorological forcing. 
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1. INTRODUCTION 

Sampling-based (i.e., Monte Carlo) approaches to uncertainty and sensitivity analysis are 

popular and widely used [1].  The most commonly used sampling techniques are simple 

random sampling [2] and Latin hypercube sampling [3].  Both theory [3-5] and some 

empirical comparisons [3, 6] indicate that Latin hypercube sampling provides more robust 

results in sampling-based analyses than simple random sampling.  In this presentation, 

sensitivity analysis results obtained with both random and Latin hypercube sampling for a 

model of two-phase fluid flow are compared. 

2. ANALYSIS PROBLEM 

The model for two-phase flow under consideration [7] was used in the 1996 performance 

assessment (PA) for the Waste Isolation Pilot Plant (WIPP) [8,9].  The model, which is often 

referred to as BRAGFLO after the computer program that implements it, is based on a system 

of nonlinear partial differential equations and is evaluated numerically with finite difference 

procedures.  As a single evaluation requires approximately 1-4 hours of processing time on a 

Vax Alpha, the number of evaluations that can be performed in an uncertainty and sensitivity 

analysis is necessarily limited. 

The BRAGFLO program was used to model several different configurations of the 

repository in the 1996 WIPP PA (Table 6, [10]).  The configuration considered in this 

analysis involves a single drilling intrusion that passes through the repository and penetrates a 

region of pressurized brine beneath the repository (i.e., an E1 intrusion in the terminology of 

the 1996 WIPP PA).  The analysis of this configuration involved 31 uncertain variables 

(Table 1) that were sampled by Latin hypercube sampling in the 1996 WIPP PA.  In 

particular, three replicated samples of size 100 each were used [11], with the Iman and 

Conover restricted pairing technique [12] employed to control correlations within the 

individual replicates.  Uncertainty and sensitivity analysis results were found to be quite 

stable across replicates in this analysis [9]. 

This study compares regression-based sensitivity analysis results obtained with three 

replicated random samples of sizes 25, 50 and 100, respectively, and also with three 

replicated Latin hypercube samples (LHSs) of sizes 25, 50 and 100.  The LHSs of size 100 

are the three replicated samples used in the 1996 WIPP PA; the remaining samples were 

generated and analyzed specifically for this study. 
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Table 1.  Example Sampled Variables (see Table 1 [11] for additional information and 

definitions of the remaining 27 sampled variables:  ANHBCEXP, ANHBCVGP, ANHCOMP, 

ANHPRM, ANRBRSAT, ANRGSSAT, BPINTPRS, BPPRM, HALCOMP, HALPOR, HALPRM, 

SALPRES, SHBCEXP, SHPRMASP, SHPRMCLY, SHPRMCON, SHPRMDRZ, SHPRMHAL, 

SHRBSAT, SHRGSSAT, WASTWICK, WFBETCEL, WGRCOR, WGRMICI, WGRMICH, 

WRBSAT, WRGSSAT) 

BHPRM—Logarithm of intrinsic borehole permeability (m2).  Distribution:  Uniform.  

Range:  14 to 11 (i.e., permeability range is 1  1014 to 1  10 11 m2).  Mean, median:   

12.5. 

BPCOMP—Logarithm of bulk compressibility of brine pocket (Pa1).  Distribution:  

Triangular.  Range:  11.3 to 8.0 (i.e., bulk compressibility range is 1  1011.3 to 1  108 

Pa1).  Mean, mode:  9.80, 10.0.  Correlation:  0.75 rank correlation with BPPRM (brine 

pocket permeability). 

BPVOL—Brine pocket volume (m2).  Distribution:  Discrete, with 32,000, 64,000, 96,000, 

128,000 and 160,000 m3 having probabilities of approximately 0.19, 0.31, 0.31, 0.16 and 

0.03, respectively. 

WMICDFLG—Pointer variable for microbial degradation of cellulose.  Distribution:  

Discrete, with 0, 1, 2 having probabilities of 0.5, 0.25 and 0.25, respectively.  WMICDFLG = 

0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of only cellulose, 

and microbial degradation of cellulose, plastic and rubber, respectively. 

3. EXAMPLE RESULTS 

A typical comparison is given in Table 2.  As in this example, there is often little 

agreement on the variables identified as being important with samples of size 25, although the 

results with LHSs of size 25 tend to identify more physically significant variables than is the 

case with random samples of size 25. 

As the sample sizes increase, more physically significant variables are identified and the 

stability of the results increases.  Here, stability refers to the amount of variation in the 

important variables identified with different samples of the same size.  Often, there is little 

variation in the identification of the dominant variables with samples of size 100 (and 

sometimes even of size 50).  Thus, there is apparently little to be gained from the use of a 

sample size larger than 100 in regression-based sensitivity analyses of the problem under 

consideration. 

The results obtained with LHSs of size 50 and 100 tend to be somewhat more stable than 

those obtained with random samples of corresponding size.  However, on the whole, 

regression results with random and LHSs of sizes 50 and 100 tend to be surprisingly similar.  

This is probably due to the fact that the uncertainty in the outcomes of most analyses derive 

from the uncertainty in a small subset of the uncertain variables used as input.  Low R2 values 

in the regression models for samples of size 100 appear to be due more to the 

inappropriateness of the rank regression model in use than to an inadequate sample size.  

Specifically, there are relationships between sampled and predicted variables that cannot be 

captured with a rank regression model. 
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Table 2. Comparison of Stepwise Rank Regression Analyses with Replicated Random and 

Latin Hypercube Samples of Size 25, 50 and 100 for Cumulative Brine Flow over 10,000 yr 

from Brine Pocket into Bottom of Lower Disturbed Rock Zone (BNBHLDRZ) 

 Random Samples:  Analyses for BNBHLDRZ 

 Replicate 1 Replicate 2 Replicate 3 

Size Variablea R2b SRRCc Variablea R2b SRRCc Variablea R2b SRRCc 

25 SHRBRSAT 

HALPOR 

WRGSSAT 

0.41 

0.55 

0.65 

0.59 

0.47 

0.34 

WGRMICI 0.26 0.51 ANHPRM 

SHPRMDRZ 

0.26 

0.45 

0.51 

0.43 

50 BPCOMP 

BHPRM 

0.51 

0.59 

0.73 

0.28 

BPCOMP 

BPVOL 

WMICDFLG 

BHPRM 

BPINTPRS 

0.66 

0.72 

0.78 

0.82 

0.85 

0.89 

0.30 

0.24 

0.23 

0.16 

BPCOMP 

WMICDFLG 

WGRMICI 

SALPRES 

0.47 

0.57 

0.63 

0.67 

0.74 

0.41 

0.23 

0.22 

100 BPCOMP 

BHPRM 

BPVOL 

WMICDFLG 

BPINTPRS 

BPPRM 

0.55 

0.62 

0.67 

0.70 

0.72 

0.74 

0.61 

0.29 

0.24 

0.17 

0.14 

0.19 

BPCOMP 

WMICDFLG 

BHPRM 

BPVOL 

BPINTPRS 

ANHBCVGP 

SHPRMHAL 

0.56 

0.66 

0.72 

0.78 

0.81 

0.82 

0.83 

0.77 

0.30 

0.25 

0.25 

0.17 

0.11 

0.11 

BPCOMP 

WMICDFLG 

BHPRM 

WRGSSAT 

BPINTPRS 

BPVOL 

0.44 

0.56 

0.65 

0.69 

0.72 

0.75 

0.65 

0.34 

0.30 

0.17 

0.17 

0.16 

 

 Latin Hypercube Samples:  Analyses for BNBHLDRZ 

 Replicate 1 Replicate 2 Replicate 3 

Size Variablea R2b SRRCc Variablea R2b SRRCc Variablea R2b SRRCc 

25 BCOMP 

BPVOL 

0.81 

0.89 

0.92 

0.28 

BPCOMP 

ANHPRM 

0.53 

0.66 

0.69 

0.36 

WASTWICK 

BHPRM 

SHPRMCON 

0.23 

0.51 

0.68 

0.45 

0.58 

0.42 

50 BPCOMP 

BHPRM 

BPVOL 

WMICDFLG 

0.50 

0.62 

0.71 

0.77 

0.80 

0.27 

0.32 

0.25 

BPCOMP 

BPVOL 

WGRMICH 

BPPRM 

0.61 

0.67 

0.72 

0.75 

0.55 

0.23 

0.20 

0.28 

BPCOMP 

WMICDFLG 

BPINTPRS 

0.50 

0.60 

0.69 

0.56 

0.35 

0.29 

100 BPCOMP 

BHPRM 

WMICDFLG 

BPVOL 

BPPRM 

WGRCOR 

0.51 

0.63 

0.68 

0.71 

0.73 

0.75 

0.58 

0.34 

0.21 

0.17 

0.23 

0.13 

BPCOMP 

BHPRM 

WMICDFLG 

BPINTPRS 

BPVOL 

SHRBRSAT 

0.56 

0.64 

0.72 

0.77 

0.79 

0.80 

0.72 

0.31 

0.29 

0.20 

0.15 

0.12 

BPCOMP 

BHPRM 

WMICDFLG 

BPVOL 

SHRBRSAT 

0.49 

0.64 

0.74 

0.77 

0.29 

0.70 

0.36 

0.30 

0.17 

0.14 

a Variables listed in order of selection in regression analysis ( = 0.02 to enter,   = 0.05 to remain), with ANHCOMP and HALCOMP 

excluded from entry into regression model because of 0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, 

HALCOMP). 
b Cumulative R2 value with entry of each variable into regression model. 

c Standardized rank regression coefficients (SRRCs) in final regression model. 

4. FUTURE WORK 

This study compared a large number of sensitivity analyses of the form indicated in Table 

2 and briefly summarized in the preceding section.  Summarizing and then communicating the 

impressions gained in these comparisons is difficult due to the number and variety of 



 

Session 12 Applications II  208 

comparisons involved.  Future work will investigate the use of techniques based on 

coefficients of concordance calculated on Savage scores [13] as a means presenting concise 

comparisons of variable rankings obtained with different sample sizes, sampling techniques, 

and sensitivity analysis procedures. 
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1. INTRODUCTION 

Probabilistic Safety Assessment (PSA) computes the risk of complex technological 

systems.  The core damage frequency (CDF) and the large early release frequency (LERF) are 

usually the risk metrics of interest in nuclear power plants (NPP). Epistemic uncertainty 

affects the use of PSA model results.  In fact, because of the lack of knowledge in the 

parameter values, the risk metrics become uncertain and described by epistemic distributions 

(Apostolakis, 1995). 

In this paper, we discuss the use of Global Sensitivity Analysis (GSA) techniques for the 

determination of the parameters that contribute to the uncertainty in R the most.  This 

information cannot be gained through the use of traditional importance measures (IMs), since: 

(1) IMs are defined for components and basic events and not for parameters, (2) IMs assume 

the parameters at their nominal value, and are therefore Local Methods.  In Section 2 we 

discuss that, because of epistemic uncertainty, GSA must be performed through the PSA 

model parameters, and not at the basic event level.  In Section 3 we present the defnition of 

the PSA IMs and GSA techniques used in this work.  In Section 4 we present the approach to 

compare PSA IMs results to GSA results, to understand whether uncertainty driversare also 

important risk contributors.  Results will be discussed for the application of these techniques 

and the proposed approach to the PSA large loss of coolant accident (LOCA) sequence of a 

research reactor. 

2. EFFECT OF EPISTEMIC DEPENDENCE 

The generic risk metric R, is represented in standard PSA codes as: 

)q,f(hR jIEi
          (9) 

where: 
iIEf  = frequency of the generic initiating event i, and, jq p(BEj) probability of the 

generic basic event.  We refer to eq. (9) as the basic event representation or basic event level 

of the PSA model.  For a one-out-of-two system, where R is the system unavailability, eq. (9) 

becomes: 

21 qqR             (10) 
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where q1 and q2 are the unavailabilities of the two components. 

Suppose now that the two components are nominally identical.  Then the numerical values 

of q1 and q2 are equal because of epistemic dependence, i.e., q1=q2=q (Apostolakis, 1995; 

Apostolakis and Kaplan, 1981).  Thus, R as a function of the parameters is: 

2qR            (11) 

This equation enables the correct computation of the variance and expected value of R, as 

opposite to eq. (9) (Apostolakis and Kaplan, 1981).  More in general, we denote with: 

R=g(x1,x2,…,xn)          (12) 

the expression of the risk metric as a function of the PSA model parameters.  The presence 

of epistemic uncertainty requires that uncertainty and GSA are performed on eq. (12), the 

parameter level, as opposite to eq. (9), the basic event level. 

3. IMS AND GSA TECHNIQUE DEFINITIONS 

PSA IMs are used to identify parameters or basic events that are important to safety.  The 

following PSA IMs have been used in this work: the Differential Importance Measure (DIM) 

(Borgonovo and Apostolakis, 2000),  the Fussell-Vesely (FV) IM, and the Risk-Achievement 

Worth (RAW) IM (Cheok, Parry and Sherry, 1998).  DIM is defined for both parameters and 

basic events.  DIM(xi) is the fraction of the local change in R that is due to a change in 

parameter xi. In this case DIM is computed on eq.[12].  Similarly, for basic events, DIM(qi) is 

the fraction of the local change in R due to a change in probability qI, and is computed on 

eq.[9].  FV and RAW are defined for basic events, i.e. on eq.[9].  FV(BEj) is the fraction of 

the risk metric that is associated to basic event j.  RAW(BEj) is the ratio of the risk that is 

produced when basic event j happens over the nominal risk.  It can be proven that it is 

possible to extend the definition of FV to the parameter level [ eq. (12)].  In this case, FV(xi) 

is the fraction of the risk that is associated to parameter xi.   

 GSA techniques focus on the output uncertainty.  In this work, we analyzed the 

aplplication of the extended FAST (Saltelli, Tarantola and Chan, 1999) to a PSA model for 

the identification of the parameters that contribute to uncertainty the most.  We also compared 

the results of the extended FAST to the following techniques, applied to the same PSA model: 

- The Morris Screening Method (Morris, 1991) 

- The Pearson Correlation Coefficient (PEAR), the Standardized Linear Regression 

Coefficients (SRC), the Partial Correlation Coefficient (PCC) and the corresponding 

techniques based on rank transformation (SPEAR), (Saltelli and Marivoet, 1990) 

- The Smirnov test  

4. COMPARISON OF IMS AND GSA TECHNIQUES 

Suppose that R is of the form:  

R=q1+q2            (13) 

with q1 perfectly known, and equal to 0.1, and q2 with mean 0.0001 and variance 10-3.  The 

nominal value of R is: R0=0.10001.  Applying PSA IMs we get that q1 is the most important 

risk contributor, while the uncertainty in R is driven entirely by q2, which is the most 
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important uncertainty contributor according to any of the previously mentioned GSA 

techniques.  In this case, it is fairly easy to conclude that uncertainty in R is not driven by 

important risk contributors.   

However, to determine whether uncertainty contributors are also relevant to the risk is not 

straightforward when dealing with PSA models that are characterized by a large number of 

parameters and for which R is not known analytically.  Furthermore, standard PSA codes 

compute IMs at the basic event level, trhough eq. (9).  We showed that GSA is properly 

performed at the parameter level.  Thus some intermediate steps are necessary to connect the 

results of standard codes to the results of GSA.  We propose the following: 

1- Associate to each parameter the corresponding basic events 

2- Compute the corresponding average rankings and re-scale the rankings according to 

the number of parameters. 

3- Translate the IM and GSA rankings into Savage scores (Campolongo and Saltelli, 

1997) 

4- Compute the correlation coefficient on the scores 

We finally note that, when comparing GSA results to the results obtained with parameter 

DIM and FV steps 1 and 2 are not necessary. 

5. RESULTS 

The previously mentioned GSA techniques were applied to the PSA Large LOCA 

sequence of a research reactor.  The sequence consisted of 45 basic events, 31 parameters and 

289 Minimal Cut Sets.  The frequency of the initiating event, FLLOCA, was identified as the 

most important parameter with respect to the uncertainty in R by using the extended FAST 

technique.  Discrete agreement was found using non-parametric techniques based on rank 

transformation.  However, convergence was not obtained for non-parametric techniques based 

on raw data, due to the model non-linearity.  Poor performance of the Morris and the Smirnov 

test was registered.  The application of the steps illustrated in Section 4 showed that 

uncertainty is not driven by parameters related to PSA elements important to safety.  

However, FLLOCA ranked first using both GSA and IMs.  This means that, collecting data on 

FLLOCA, the analyst would be able to acquire information on an important risk contributor, 

while effectively reducing the uncertainty in the risk metric. 

6. CONCLUSIONS 

In this work, several GSA techniques were analyzed for application to PSA models. To 

understand whether the most important uncertainty contributors are important to safety, the 

comparison of PSA IM and GSA technique results was performed.  The application to the 

Large LOCA sequence of a research reactor showed that uncertainty drivers were not 

important to safety for this model, with the exception of the frequency of the initiating event. 
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SUMMARY 

The Risk Assessment applied to contaminated sites is a procedure to determine site 

specific cleanup goals. Three contaminated sites were the object of the stepwise risk 

assessment procedure undertaken according to the American Society for Testing and 

Materials. The second and third tiers were performed by applying an analytical and a 

numerical model respectively. With the numerical model either a deterministic or 

probabilistic risk analysis were performed. Sensitivity analysis was also undertaken to 

determine the input parameters uncertainty that exhibit most influence on probabilistic risk 

estimation and to identify each parameter which needs a deeper characterisation, such as, in 

our case the hydrogeological parameters.  

The probabilistic risk estimation confirmed its fundamental role in the risk assessment; the 

use of deterministic third tier only provided site specific cleanup goals that are not protective 

for the human health. 

1. INTRODUCTION 

Human health risk analysis of a contaminated site is a technical procedure based on the 

source-pathway-receptor scheme. It is composed of four phases: the site characterisation, the 

exposure analysis, the toxicological assessment, and the risk characterisation [1].  

The risk assessment applied to contaminated sites, besides risk characterisation, determines 

remediation site specific target levels (SSTLs), which are the acceptable soil contamination 

that produce an acceptable risk level [2].  

RBCA [2] is an internationally recognised risk assessment procedure. It is a three tiered 

approach moving from conservative assumptions and simple predictive models to more site 

specific parameter values and complex probabilistic models, which might provide less 

stringent SSTLs beside more expensive and time consuming analysis.  

In this work, the tiered analysis has been applied to three case studies to verify the 

dependence of risk-based clean-up goals upon site-specific characteristics and to outline 

advantages and limits of a more accurate probabilistic risk analysis.  

mailto:lanadal@yahoo.it
mailto:critto@unive.it
mailto:critto@unive.it
mailto:marcom@unive.it
mailto:pastres@unive.it
mailto:carlon@unive.it
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It has to be noticed that the risk analysis applied to contaminated sites is a quite new 

discipline. In fact, the contaminated sites started to be a problem when several industrial areas 

near the cities were dismissed. The deterministic risk estimation was the main goal for risk 

assessors till a few years ago. Recently, the US Environmental Protection Agency [3] focused 

the attention on probabilistic risk analysis in order to include the uncertainty estimation into 

the risk assessment. Probabilistic risk assessment is not a novel procedure. It was applied in 

different risk assessment fields as lakes acidification, nuclear and traffic accidents. However, 

there is a growing awareness among scientists and decision makers of the value of integrating 

these uncertainties into the human health risk analysis of contaminated sites. Although the use 

of probabilistic methods are strongly recommended [4], only some of the most used 

commercial software packages apply the probabilistic analysis.  

Finally, it is authors’ opinion that in the risk analysis of contaminated sites the third level 

models should need a sensitivity analysis (SA). In fact, SA is a tool to determine the areas of 

uncertainty (illustrated in methodology section) most affecting the probabilistic risk 

estimation. Moreover, it can identify the parameters of each area which need a deeper 

characterisation.  

The current software packages allow to estimate the uncertainty of the risk but they are not 

designed to perform a sensitivity analysis in respect to its sources. This appears to us as a 

limitation of this generation of software packages for risk assessment, which should be 

overcome by the next one. To this regard, the direct implementation of advanced tools for 

performing a quantitative SA or a more flexible approach to the generation of Monte Carlo 

samples of input factors, which would allow the user to carry out the SA using its own tools, 

would represent a step forward. However, in order to get a first idea of the importance of each 

factor, we carried out a global sensitivity based on linear methods of the risk predicted by an 

analytical model, which makes use of the same formulations but assumes steady-state 

conditions. Based on the results of this analysis, which we intend to repeat on the numerical 

model, only uncertainties of the hydrogeological parameters and of soil contaminants 

concentrations were considered in the following uncertainty analysis.  

2. METHODOLOGY 

The tiers two and three of risk assessment were performed by using the software RBCA 

Tool Kit [5] and API-DSS [6] respectively. The RBCA Tool Kit is implemented exclusively 

in a deterministic mode using conservative assumptions about exposure scenarios for 

simulating the contaminants fate and transport. It employs analytical algorithms to quantify 

the contaminant concentration at the exposure point in a steady state equilibrium with the 

concentration at the source. The API-DSS can be implemented in either a deterministic or a 

probabilistic approach (through a Monte Carlo simulation method). It employs numerical 

models to simulate the transport of pollutants in the environment. The third level of risk 

analysis requires a number of site specific parameters larger than second level.  

The probabilistic analysis, allowing the estimation of the risk uncertainty was performed 

according to US-EPA guidelines [3,7]. The following areas of uncertainty were identified: 

 uncertainty on hydrogeological parameters (permeability, porosity, etc.) and 

contamination levels. This uncertainty refers to site-specific data; 

 uncertainty on human exposure factors (frequency and duration of exposure, etc.). 

Since risk assessment refers to hypothetical future scenarios, conservative values for 
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these factors are indicated by the model or obtained by US-EPA Exposure Factors 

Handbook; 

 uncertainty on physico-chemical properties of the chemicals of concern. The properties 

of individual compounds were obtained by Oak Ridge National Laboratory database 

(http://risk.lsd.ornl.gov) and Mackay et al. [8]; 

 uncertainty on toxicological properties of contaminants. Toxicological properties have 

been obtained by US-EPA Integrated Information System (http://www.epa.gov/iris) and 

Oak Ridge National Laboratory databases. 

This work was focused on the site-specific uncertainty associated to the hydrogeological 

parameters and the soil contaminant concentrations. 

3. RESULTS 

The risk posed by most of substances (see Table 1) through the inhalation route and 

groundwater ingestion pathway were greater in the second tier than in the third. It is due to the 

different modelling methods employed by RBCA and API-DSS. The RBCA assumes a 

constant contaminant source for simulating steady state conditions, while API-DSS simulates 

the decreasing over the time of the contaminant source and the resulting variation of vapour 

and leachate emission. API-DSS estimated a contaminant intake and the related risk lower 

than RBCA. 

 

Table 1. Carcinogenic risks estimated for one of the three case studies 

 

 

Chemicals 

Second Tier  

RBCA 

Deterministic Third Tier 

API-DSS  

Probabilistic Third Tier  

API-DSS  

Soil 

ingestion, 
Dermal 

contact 

Inhalation  Ground 

water 
ingestion 

Soil 

ingestion, 
Dermal 

contact 

Inhalation  Ground 

water 
ingestion 

Soil ingestion,  

Dermal contact 

Inhalation  Groundwater 

ingestion 

Median 95% 
Perc. 

Median 95% 
Perc. 

Median 95% 
Perc. 

Benzo(a) 

Anthracene 

7.1E-07 2.5E-08 1.7E-06 2.0E-06 1.4E-08 0 8.9E-07 6.4E-06 2.6E-09 2.0E-08 1.6E-08 3.6E-07 

Benzo(a)pyrene 1.3E.05 1.1E-06 1.6E-05 3.6E-05 2.5E-07 0 1.4E-05 5.3E-05 8.5E-08 2.8E-07 1.4E-08 5.1E-07 

Benzo 
Fluorantheni 

7.1E-07 2.1E-07 1.2E-06 2.0E-06 1.4E-08 0 1.0E-06 4.3E-06 1.4E-08 2.9E-08 9.3E-07 3.6E-06 

Crysene 1.9E-06 9.5E-07 6.3E-05 4.2E-07 3.8E-08 0 1.6E-07 8.3E-07 9.4E-09 4.8E-08 6.4E-07 9.3E-07 

Dibenzo(a,h) 

Anthracene 
1.7E-06 4.9E-08 3.1E-07 4.7E-06 3.3E-08 0 2.6E-06 1.1E-05 9.1E-09 4.7E-08 0 4.4E-06 

Indeno 

(1,2,3,c,d)pyrene 
1.8E-06 1.7E-07 1.6E-06 5.0E-06 3.5E-08 0 2.4E-06 1.0E-05 8.4E-09 4.4E-08 3.7E-11 1.1E-08 

Arsenic 6.4E-05 2.5E-05 3.5E-06 1.3E-04 1.8E-05 0 5.2E-05 1.9E-04 6.1E-06 2.2E-05 0 0 

Cadmium NA 2.3E-06 NA NA 1.6E-06 NA NA NA 2.5E-07 1.6E-06 NA NA 

The non acceptable risks are in bold (>1.0E-06) 

NA = Non applicable because the toxicological parameters are not defined 

 

 

The groundwater ingestion pathway risk estimation outlined relevant differences between 

probabilistic and deterministic analysis performed at the third tier. As reported in Table 1, 

negligible risk from the deterministic analysis turned out to be not acceptable after 

undertaking the uncertainty analysis. The uncertainty associated to the hydrogeological and 

contamination input parameters, indicated by the difference between the median and the 95th 

http://risk.lsd.ornl.gov/
http://www.epa.gov/iris
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percentile of the probabilistic risk estimate, showed an uncertainty of about one order 

magnitude (i.e. factor ten).  

The SA conducted with the analytical model RBCA outlined the non effect of 

hydrogeological parameters, as groundwater rate, at the steady state. Analysing the 

contaminants transport over the time, it was pointed out the importance of groundwater rate 

when greater than 10-6 m/s. Under this condition, low contaminant soil-water distribution 

coefficients (Kd)(i.e. Kd = 15 l/kg for Cadmium) became important. 

The relative contribution of different exposure pathways to the total exposure can differ in 

tier two and three. For all three case studies, the greatest risk contribution in tier two came 

from the groundwater ingestion, the soil ingestion and the dermal contact with soil. At the 

third level, since most of the substances did not reach the well, the greatest risk contribution 

was posed by soil ingestion and dermal contact. Once the contaminants reached the well, for 

the most mobile substances (such as naphthalene and phenanthrene that are non carcinogens), 

the groundwater ingestion posed a relevant risk. It can be observed that SSTLs resulting from 

the second tier level show the necessity of a remediation intervention addressed to both soil 

and groundwater pathways. After conducting the third risk analysis level, a cleanup 

intervention is required for soil pathway only. 

The risk-based SSTLs derived from the risk analysis procedure were compared with the 

generic threshold values proposed by the Italian Regulation for the Remediation of 

Contaminated Sites [D.M. 471/99]. The application of regulatory threshold limits leads either 

to too restrictive clean up targets, or to not sufficiently protective targets. Generally the 

threshold limits were too restrictive for non-carcinogenic substances, and not enough 

protective for carcinogenic chemicals.  

4. DISCUSSION 

Risk assessment proved to be a very effective tool for setting up the experimental 

information and selecting the remediation strategies. Comparing the tiered approach results, it 

is shown that further investigation and a smaller number of conservative assumptions, 

produces less restrictive remediation targets compared with less site-specific risk analysis. 

The uncertainty analysis was very effective for the risk analysis based on site specific 

parameters and numerical models, especially for the groundwater ingestion pathway when the 

deterministic analysis estimated negligible risk values for most the contaminants. The 

regulatory agencies in charge of public health protection should be aware of both risk and 

uncertainty estimations.  

The application of global and quantitative SA methods to the problems outlined in this 

paper would be of great help for identifying the parameters responsible of the majority of the 

total uncertainty. 

It was proved that the application of general regulatory threshold limits can lead to over- or 

underestimation of the human health risk  
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1. INTRODUCTION 

The total system performance assessment (TSPA) model for predicting the behavior of the 

potential high-level radioactive waste repository at Yucca Mountain represents a complex 

system with hundreds of parameters.  Many of the parameters are uncertain and/or variable, 

and their interaction with one another can also be complex and/or highly nonlinear.  It is 

difficult to obtain an understanding of exactly how the model works and what the critical 

uncertainties and sensitivities are from a simple examination of model results.  Sensitivity 

analysis provides a structured framework for unraveling the results of probabilistic 

performance assessments by examining the sensitivity of the TSPA model results (and their 

uncertainties) to the uncertainties and assumptions in model inputs.  This paper describes the 

application of two sensitivity analysis techniques, regression analysis and classification tree 

analysis, to the recently concluded TSPA study for Yucca Mountain [1]. 

2. METHODOLOGY 

Regression analysis is a commonly used tool for identifying key contributors to the spread 

in probabilistic model results by fitting a stepwise linear rank regression model between 

model output and all randomly sampled inputs [2].  In this approach, a sequence of regression 

models is constructed starting with a single selected input parameter (usually the parameter 

that explains the largest amount of variance in the output), and including one additional input 

variable at each successive step (usually the parameter that explains the next-largest amount 

of variance).  This is repeated until all of the statistically significant input variables have been 

included in the model.  Relative importance ranking is accomplished using the partial rank 

correlation coefficient, which measures correlation between the output and the selected input 

variable after the linear influences of the other variables in regression have been eliminated 

[2].  Importance can also be quantified by ranking parameters on the basis of how their 

exclusion would degrade the explanatory power of the regression model [3].  The importance-

ranking metric used for in this study is the uncertainty importance factor, defined as the loss 

in explanatory power (R2-loss) divided by the coefficient of determination (R2) of the 

regression model. 

Classification tree analysis, a subset of classification and regression tree analysis (CART), 

is a method for determining what variables or interactions of variables control extreme 

outcomes in multivariate data sets [4].  CART can be used to generate decision rules that 

determine whether a given observation would produce a  “high” or “low” dose depending on 

mailto:sxmishra@dukeengineering.com
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the values of the most important variables.  A binary decision tree is at the heart of the CART 

analysis.  The decision tree is generated by recursively finding the variable splits that best 

separate the output into groups where a single category dominates.  The domination of a 

single category resulting from a split is called the “purity” of that split.  For each successive 

fork of the binary decision tree, the CART algorithm searches through the variables one by 

one to find the purest split within each variable.  The splits are then compared among all the 

variables to find the best split for that fork.  The process is repeated until all groups contain a 

single category.  In general, the variables that are chosen by the algorithm for the first several 

splits are the most important.  The application of CART for analyzing probabilistic model 

results has hitherto not been reported in the literature. 

3. YUCCA MOUNTAIN TSPA MODEL 

The total-system model for Yucca Mountain consists of detailed and/or abstracted process 

models addressing the following components of the disposal system: (1) water flow through 

the unsaturated zone, (2) waste package degradation, (3) waste form dissolution and 

radionuclide mobilization from the engineered barriers, (4) radionuclide transport through the 

geosphere and biosphere, and (5) potentially disruptive events and processes.  A probabilistic 

framework was used to account for uncertainty and/or variability in model parameters, with 

conservative/bounding values and/or models being utilized when data were deemed 

insufficient for a defensible stochastic characterization of uncertainty.  The TSPA model was 

executed with 300 Latin hypercube samples of the 240+ stochastic parameters, and the total 

dose rate history was computed separately for the nominal scenario (components 1-4) and 

disruptive scenario (component 5).  For reasons of brevity, only a few sensitivity analysis 

results for the nominal scenario are presented below. 

4. RESULTS AND DISCUSSION 

McNeish et al. (2000) have shown that there is a broad range in projected dose rates over the 

100,000 year simulation period, with most of the realizations producing negligible dose 

during the first few tens of thousands of years.  Regression analysis of such data is difficult 

because of the limited number of non-zero dose producing realizations, as well as the large 

number of stochastic inputs in the model.  Therefore, regression analysis was restricted to 

those time slices (at 10,000 year increments) for which at least 100 realizations produced dose 

in excess of 10-5 mrem/yr.  Stepwise rank regression models between total dose and a set of 

statistically significant input variables were built for each case, and the most important 

variables were identified based on the value of their uncertainty importance factor.  As an 

example, Figure 1 shows a bar chart of such results generated for the 70,000-year data, 

indicating that the most important variables are the stress corrosion cracking (SCC) outer and 

middle lid stress profile indexes and the Alloy-22 outer lid median general corrosion rate. 

These are variables that determine the rate at which the metallic barriers of the waste package 

(surrounding the waste canisters) degrade.  Figure 2 shows how uncertainty importance 

factors change with time for the key uncertain variables.  Note the slow but steady increase in 

importance for saturated zone groundwater flux with time – indicating the gradual importance 

of the natural system once the degradation of the engineered barriers has progressed.   

Next, we present an application of classification tree analysis to the same data set to 

determine which variables control extreme outcomes.  The multiple realizations of total dose, 



 

Session 12 Applications II  221 

at any given time slice, were first categorized as “high” if the values were in the top 10th 

percentile, or “low” if the values were in the bottom 10th percentile.  The CART algorithm 

then identified those variables most capable of explaining the separation of these realizations 

into the appropriate categories.  Figure 3 shows a decision tree summarizing the classification 

tree analysis in terms of the two most important variables for the 70,000-year data.  Here, the 

variables related to SCC middle and outer lid stress profile indexes provide the most 

explanatory power in the categorization problem.  High values for both the stress profiles 

indexes leads to high doses, and conversely, low values for both stress profile indexes leads to 

low doses.  This trend is also demonstrated in the partition plot shown in Figure 4, where 

high and low dose producing outcomes are separated into the top right and bottom left 

quadrants.  The partition plot is actually an input-input scatter plot which shows the 

occurrence of clusters in the bivariate parameter space of the two most important variables, 

with the dividing lines indicating where the split between the categories occurs.  

We also examined the variability in predicted waste package failure distributions to obtain 

further insights into the workings of the TSPA model.  A scatter plot of total dose and fraction 

waste packages failed at 100,000 years is shown in Figure 5, with a focus on those 

realizations where more than 80 percent of the packages have failed.  The two shaded regions 

in the figure demarcate “high” dose outcomes (dose greater than 100 mrem/yr) from “low” 

dose outcomes (dose less than 15 mrem/yr).  A CART analysis of this data, as depicted in 

Figure 6, indicates that infiltration scenario and saturated zone groundwater flux are the two 

most important parameters in explaining the categorization.  The important point to note here 

is that even when a large percentage of the waste packages have failed, certain combinations 

of natural system parameters can provide effective waste isolation.  This analysis 

demonstrates the power of the CART analysis in “mining” the data to provide insights into 

cause-effect relationships that are not readily apparent otherwise. 

5. ACKNOWLEDGMENTS 

This work was funded by the Yucca Mountain Site Characterization Project under contract 

number DE-AC01-91RW00134 

6. REFERENCES 

1. McNeish, J.A. et al., 2000.  Total System Performance Assessment – Site 

Recommendation.  Civilian Radioactive Waste Management System, Management and 

Operating Contractor, Yucca Mountain Project, Las Vegas, NV. 

2. Helton, J.C., 1993.  “Uncertainty and Sensitivity Analysis Techniques for Use in 

Performance Assessment for Radioactive Waste Disposal.”  Reliability Engineering & 

System Safety, 42 (2-3), 327-367. 

3. RamaRao, B.S., S. Mishra, S.D. Sevougian and R.W. Andrews, 1998.  “Uncertainty 

Importance of Correlated Variables in the Probabilistic Performance Assessment of a 

Nuclear Waste Repository.”  Proceedings of SAMO98, Second International Symposium 

on Sensitivity Analysis of Model Output, Venice, Italy, April 19-22. 

4. Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone, 1984.  Classification and 

Regression Trees.  Wadsworth and Brooks/Cole, Monterey, CA.  



 

Session 12 Applications II  222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction WP Failed @ 100k years

0.0 0.2 0.4 0.6 0.8 1.0

Dose @ 100k (m
REM/yr)

10-1

100

101

102

103

SCC Middle Lid Stress Profile Index

-3 -2 -1 0 1 2 3SCC Outer Lid S
tress Profile Ind

ex

-3

-2

-1

0

1

2

3

high 

low 

Time = 70,000 years

Uncertainty Importance Factor

0.0 0.1 0.2 0.3 0.4 0.5

X3

X2

X1

X1 = SCC Outer Lid Stress Profile Index
X2 = Alloy 22 Outer Lid Median General Corrosion Rate
X3 = Alloy 22 Middle Lid Median General Corrosion Rate

Time = 70,000 years

Time (years)

400005000060000700008000090000100000

Uncertainty Imp
ortance Factor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SCC Outer Lid Stress Profile Index

SCC Middle Lid Stress Profile Index

Alloy 22 Outer Lid Median General Corrosion Rate

Alloy 22 Middle Lid Median General Corrosion Rate

Saturated Zone Groundwater Flux

< 1.5

> 1.5

< 0.24

> 0.24

High

Low

Low

(37/39)

(09/27)

(15/27)

Fraction

Explained

Categorical

Outcome

Saturated Zone

Groundwater

Flux

Infiltration

Scenario

High = Highest 39 Doses

Low = Lowest 27 Doses

< 0.07

> 0.07

< -0.37

> -0.37

Low

High

High

(22/30)

(07/30)

(23/30)

Fraction

Explained

Categorical

Outcome

SCC Outer Lid

Stress Profile

Index

SCC Middle Lid

Stress Profile

Index

High = Highest 30 Doses

Low = Lowest 30 Doses

Figure 1.  Bar Chart of  Uncertainty 

Importance Factors for Key Variables at 

70,000 years. 

Figure 2.  Time-Varying Uncertainty 

Importance Factors for Key Variables. 

Figure 3.  Decision Tree Summarizing CART  

Analysis for Key Variables at 70,000 years. 

Figure 4. Partition Plot Showing Clusters of 

High- and Low-Dose Outcomes at 70,000 

years. 

Figure 5.  Scatter Plot of Total Dose and 

Fraction Waste Packages Failed at 100,000 

years. 

Figure 6.  Decision Tree Summarizing CART 

Analysis for the Clusters Shown in Figure 5.  
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SUMMARY 

High percentile estimations of the exposure to the mycotoxin Ochratoxin-A (OTA) in food, 

for the French population, were calculated in a previous study by a Monte Carlo type 

simulation method from real consumption and contamination data [1]. In this paper, from the 

same data (but only for the children class), we focus on sensitivity analysis (SA) of the high 

95th and 99th percentiles (the simulation outputs), relatively to the variation of the parameters 

of the fitted probability density functions (the simulation inputs), necessary for having a 

relevant and stable estimation of these percentiles. After some preliminary trials, we 

postulated a quadratic polynomial model and we used an experimental design approach 

depending on a resolution-V fractional factorial design of 6561 experiments to lead to an 

optimal estimation of the polynomial model parameters. The factors ranges were established 

by bootstrap sampling taking into account the consumption dependencies by the Iman & 

Conover method [2] and, eventually, taking into account the parameter correlation of the 

fitted probability densities. Finally, we have validated and useful parsimonious polynomial 

models for each desired percentile showing a major influence of the distribution parameters of 

the two foods « Cereals » and « Pork », and eventually three with « Fruit Juices », in the 

sensitivity of the percentiles. 

1. INTRODUCTION 

The mycotoxin Ochratoxin-A (OTA) is a contaminant of grain stored in poor conditions, 

and through the food chain also contaminates several other foodstuffs, typically pork and 

poultry meat. Several toxicological studies [3] have shown the carcinogenic effect of this 

mycotoxin, particularly for the kidney, in rats. In humans, epidemiological studies indicate 

that this mycotoxin could be involved in the endemic nephropathy of the Balkans and cancer 

of the urinary tract which is associated with it [4]. For these reasons, this mycotoxin remains 

under the close surveillance of the  « Conseil Supérieur d'Hygiène Publique » in France and 

thus evaluating human exposure to this mycotoxin  is an important public health question. A 

consumption survey (ASPCC-CREDOC, INCA survey) organised by the DGAl – a 

department of the French Minister of Agriculture –  has been conducted from June 1993 to 

June 1994 on 1161 individuals (children, women and men) to notably estimate risk 

assessment exposure to OTA in food. During seven days, the participants were questioned on 

their consumption of several types of food. For more detailed information on the origin of 

these data we refer the reader to Verger [5]. Our SA is restricted to the children class 

mailto:Isabelle.Albert@jouy.inra.fr
mailto:Jean-Pierre.Gauchi@jouy.inra.fr
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(individuals younger than 15) and to the eight types of food « Cereals », « Dried 

Raisins », « Other Dried Fruits », « Pork », « Poultry », « Fruits Juices », « Wines » and 

« Coffee », keeping in mind that certain cover several foods. The contamination data come 

from elements independent of the consumption survey: they originate from “SCOOP task 

3.2.2” reports (European Community) taking several member states into account. Descriptive 

statistics and histograms of these data can be found in Gauchi [1]. 

2. METHODOLOGY 

An elementary exposure to OTA is defined by the product of a food consumption 

(normalized by the individual weight) by the contamination level of this food. A global 

exposure is the sum of several elementary exposures. A Monte Carlo type simulation method 

(the MP-P method) was defined and used in [1] to evaluate the global exposure to OTA and 

notably the 95th and 99th percentiles of the OTA exposure distribution. As this MP-P method 

depends on the values of the parameters of the probability density functions (pdf) fitted to 

consumption and contamination data, it is crucial to quantify the sensitivity of these high 

percentiles (the model outputs) to the variation of these parameters (the model inputs). Our 

SA is based on the joint tools: a quadratic polynomial postulated for modelling the variation 

of those model outputs and a resolution-V fractional factorial simulation design of 6561 

experiments. The factors of this design are the fitted pdf parameters. We clarify the process in 

the following. 

2.1. Polynomial model 

After some preliminary trials, we assumed a full quadratic polynomial regression model 

for the model outputs studied . This regression model is based on 32 main factors, their 496 

two-factor interactions and their 32 quadratic terms. The 32 factors are the pdf parameters: 16 

parameters of the Gamma distributions relative to the eight consumed foods (each of these 

distributions is described by three parameters but the influence of the threshold parameter was 

not studied), and 16 parameters of the two-parameter Gamma distributions relative to the 

eight food OTA contaminations. The general form of the assumed model is: 

  
 

2
32

1

31

1

32

1

32

1

0 j

j

jjk

j jk

jjkj

j

j zzzzy ,                (1) 

where the   are unknown parameters, the factors z  are the consumption and 

contamination pdf parameters and  is an error term for which no particular probability 

distribution is assumed and we only suppose its expectation is zero. The model (1) is a second 

degree (quadratic) polynomial in z. In the following, the model (1) was successively applied 

to the 95th and 99th empirical percentiles . 

2.2. Simulation design 

In a view to estimate optimally the parameters  , an appropriate simulation design was 

chosen. As the three-factor interactions and over are assumed negligible, it is well-known that 

a full factorial design of 332 experiments is not necessary, especially as it should take a 

redhibitory time. Instead of this unfeasible design we built a resolution-V fractional factorial 

[6] simulation design of 6561 experiments. We remind that a resolution-V design allows us to 

estimate independently the parameters of the main effects of the factors (the jz ), of the 496 
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two-factor interactions (the kj zz ), and of the 32 quadratic effects (the 2

jz ). The factor levels 

were coded as -1 , 0 and +1.  

2.3. Factor ranges 

The factors z , i.e. the parameters of the consumption and contamination pdf, were the 

inputs of the SA. Thus, we had now to set their variation ranges. The aim was to make the 

inputs vary in a reasonable range but large enough to observe the response output varying. 

However we had only one data set for the consumptions and only one for the contaminations, 

and therefore no hypothesis of the factor variations could be made; no supplementary surveys 

or contamination analysis were available. Thus, with the aim to simulate a meaningful range 

for each factor we had the idea to determine it by a nonparametric bootstrap approach [7] 

achieved on the consumption and contamination samples. For each bootstrap sample the 

shape and scale parameters of a Gamma distribution were calculated. In a first approach, we 

didn’t take into account the correlation between the shape parameter and the scale parameter 

to explore a larger domain of variation.  In a second approach, we considered the correlation 

between the shape parameter and the scale parameter. In this approach, the parameters pairs 

were preserved: for each consumption and contamination sample, from 10,000 bootstrap 

samples, we obtained 10,000 parameter pairs. Their scatter plot showing an elliptical 

appearance, we determined a variation domain by calculating a 95%-concentration ellipse. In 

this ellipse, three squared variation domains were designed for the shape and scale 

parameters, the first one in the lower part of the ellipse (zone I), the second one in the middle 

part (zone II) and the third one in the upper part (zone III). So in this approach, three 

polynomial models were determined for each percentile. 

3. RESULTS 

We present here the results of the second approach which is more sophisticated. We fitted 

the model (1) to the 6561 experiments for the 95th and 99th percentiles in the three zones I, II 

and III. After a step of variable selection (depending on the sum of squares of each variable) 

and a validation step (examination of the residuals and simulation experiment tests), we 

obtained the reduced models given in Table 1, where the multiple correlation coefficient 2R  

is given for all the models also. 
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95%-concentration elliptical zone Percentile Final Model R2 

 

I 

(« LOW ») 

95th 4321 2.14.52.81.28 zzzzy 
  0.97 

99th 4321 2.27.23.71.185.61 zzzzy 
  0.96 

 

II 

(« MEDIUM ») 

95th 54321 5.07.06.26.21.31.20 zzzzzy 


 

0.97 

99th 54321 5.05.19.46.361.39 zzzzzy 
  0.94 

 

III 

(« HIGH ») 

95th 4321 5.07.03.17.17.16 zzzzy 
  0.94 

99th 4321 3.19.12.34.30 zzzzy 
  0.89 

Table 1 : Polynomial models of the 95th and 99th percentiles in the three zones of the 95%-concentration ellipse with 

1z = « Cereals » contamination scale parameter; 
2z = « Cereals » contamination shape parameter; 

3z = « Cereals » 

consumption shape parameter ; 
4z = « Cereals » consumption scale parameter ; 

5z = « Pork » consumption scale parameter  

4. DISCUSSION 

Finally, we have parsimonious polynomial models for each percentile studied. These models 

should be used to obtain percentile estimations easily. The results between the 95th and 99th 

percentile are very close, except that the percentage of explained variability is a little bit 

smaller for the 99th percentile. The results of the three zones are similar, except that the larger 

zone, the « MEDIUM » one, shows one more significant term, the « Pork » consumption 

scale parameter. Note that, in the first approach where we didn’t take into account the 

correlation between the shape parameter and the scale parameter, the domain of the factor 

variation was larger and the influence of the « Fruit Juices » food appeared.  

It is difficult to compare our results with others because it does not exist such a study 

achieved by other research groups for the contamination by OTA, to our knowledge. The 

others estimations of the OTA exposure percentiles were very empirical. But we can say that 

we find a major influence of the « Cereals », « Pork » foods which are known by the 

epidemiologists and toxicologists to play an important role in the health risks in connection to 

OTA. 
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TRANSPORT MODELS FOR TIDAL WATERS. APPLICATION TO 
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SUMMARY 

During the last decade we have been developing conceptual and numerical models to study 

the dispersion of radionuclides in marine and estuarine  environments. We are using 

approaches from the Computational Fluid Dynamics to solve the instantaneous water state 

and the dynamics of suspended solids and bottom sediments. This provides the physical 

scenario where the electrolytic reactions between dissolved radionuclides and the solid phase 

take place. The model structure is constructed so that each new sub-model is implemented 

over the previously established and validated basis. The final stage is a kinetic-reactive 

transport model for tidal waters.  In this work we illustrate the calibration procedure and the 

sensitivity analysis in a modelling study of the dispersion of radioactive material in the Suez 

Canal waters.  

1. INTRODUCTION 

The fate of dissolved pollutants in the aquatic ecosystem will be strongly dependent on 

their chemical affinity to particulate matter in suspended loads and bottom sediments. Their 

dispersion has to be studied at different spatial and temporal scales [1]. As shown in this 

reference, a complete study requires a sequence of independently calibrated models dealing 

with hydrodynamics, transport of dissolved pollutants, suspended loads, sediment dynamics, 

and electrolytic reactions in aqueous suspensions. The final stage is a kinetic-reactive 

transport model for tidal waters. 

A considerable amount of international trade is transported in Egypt through the Suez 

Canal including radioactive material. This results in increased public concern about hazardous 

safety in transport The hydrodynamics of the Suez Canal is complex and not jet well studied. 

During an IAEA Project, a relevant data set for hydrodynamics was prepared in collaboration  

with the Suez Canal Authority. Two field tracing experiments by using rhodamine B were 

carried out in the southern Suez Canal to study the dispersion of conservative pollutants. 

Some measurements of suspended loads concentrations served to adapt a submodel for 

suspended matter dynamics. Aquarium tracing experiments allowed us to find out suitable 

kinetic parameters to simulate the electrolytic reactions. Sensitivity analysis of the model 

predictions with respect to model parameters were done in connection with its calibration. 

                                                 
3 Work partially supported by the IAEA Co-operation Project with Egypt EGY/07/002 and by I+D 

contract with ENRESA. 
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2. METHODOLOGY 

In previous works we presented a detailed modelling study of the Suez Canal 

hydrodynamics using both 1D and 2D modelling approaches [2]. The continuity and 

momentum equations were numerically solved by using a finite-differences method.  Some 

100 hours of tidal elevations wee recorded and digitized at several stations within the canal. 

This served to provide suitable boundary conditions and for model calibration. The bed-

friction coefficient in the momentum equation is the only parameter to be calibrated. This 

coefficient can vary with the spatial coordinates, but it may be inside a realistic range of 

values. The model is run several times varying this coefficient and comparing the computed 

time series of water elevations and velocities against the recorded ones. This comparison 

applies for several locations within the spatial domain till get a reasonable agreement for all 

of them. 

Two tracing experiments were accomplished by using rhodamine [3]. The collected water 

samples were measured by luminescence spectrometry. Even within the narrow and regular 

canal, important two-dimensional effects appeared due to the asymmetry in the cross-

sectional area and thus, in the lateral velocity profile. The advective-diffusive equation for a 

conservative tracer is solved by using a 2D-mesh and the previously computed velocity field. 

Different formulations of the dispersion coefficients in the longitudinal and lateral directions 

were tested, comparing computed concentrations at the sampling time with the measured 

values. 

Most of the time, the suspended load concentrations and the instantaneous sedimentation 

rates show a dynamic equilibrium governed by the tidal changes in the settling and 

resuspension velocities [1]. The corresponding differential matter conservation equation can 

be solved coupled to the hydrodynamics and dispersion modules. The new parameters 

(settling and resuspension velocities) can be calibrated comparing computed time series of 

suspended loads against the recorded ones at several locations within the spatial domain [1]. 

The electrolytic reactions between the dissolved radionuclides and the suspended 

particulate matter can be formulated as a two-steps reaction with saturation [4]. Kinetic 

transfer coefficients can be found out from appropriate tracing aquarium experiments by using 

natural aqueous suspensions [5].  The top layer of the bottom sediments also uptakes 

dissolved radionuclides, from the water column and from the interstitial waters [1]. The 

penetration depth depends on the cohesiveness of the sediments and is a parameter to be 

calibrated. As the small grain size fraction on the top layer of bottom sediments can be 

resuspended by water currents, we distinguish two grain fractions in the sediments and we 

need an additional fitting parameter to adapt the kinetic coefficients to both grain size 

fractions, including the effect of the porosity. Granulometric, density and porosity analysis of 

bottom sediments are required. Sensitivity analysis of the model predictions with respect to 

model parameters can be performed prior to calibration, to investigate what parameters have a 

chance to be calibrated. 

3. RESULTS 

The calibration of our hydrodynamics model allowed us a reasonable description of water 

dynamics  in the whole Suez Canal.  Some examples of this are shown in Fig. 1. The 

dispersion model for conservative pollutants could be calibrated from the two field tracing 

experiments. Some details are given in Fig. 2. From some field measurements we adapted our 
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suspended matter submodel [1] to this new scenario. We used kinetics transfer coefficients 

derived from aquarium experiments carried out  by using estuarine waters [5]. 

We  applied our dispersion model to simulate the dispersion of hypothetical discharges 

(107 Bq each) of  239Pu (a highly particle-reactive radionuclide) and 137Cs (and almost 

conservative isotope) at Shallufa station. We stated the penetration depth for Pu in the top 

sediment layer as 5 mm, being this depth a parameter for calibration. 

Figure 1.- A) Comparison between computed and recorded water elevations  at Shallufa station, in 

the southern Suez Canal. B) Computed and measured path of the rhodamine cloud 

corresponding to the first field tracing experiment 

 

 

 

 

 

 

 

 

 

Figure 2.- A) Comparison between computed (at several longitudinal cross-sections) and measured 

concentrations of rhodamine. B) Computed spatial distribution of concentrations (in 

mg/m3) at the sampling time. C) Comparison between computed concentrations (in 

mg/m3) from two different formulations of the diffusion coefficient. 

Sensitivity tests were done for the case of Pu, where the uptake by sediments is most 

important. In a second run of the model we divided by 5 the two correction factors for the 

direct kinetics transfer coefficients for sediments. This reduced by a factor 5 the 

concentrations in sediments and the effects are also apparent in the spatial distribution and 

time series of concentrations (see Fig. 3 and 4). 
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4. DISCUSSION 

The kinetic-reactive transport model involves a set of independently calibrated and 

validated models. Hydrodynamics models are well established and they can be adapted and 

calibrated for each specific aquatic system. The study of the dispersion of mobile species 

requires further work, but ever more the literature data bank increases, and site specific field 

tracer experiment can be accomplished to calibrate the dispersion coefficients. The 

understanding and reliable modelling of the suspended loads and sediment dynamics is in 

progress. Appropriate laboratory experiments can provide the required kinetic parameters to 

reliably describe the electrolytic reactions in the aqueous suspension and bottom sediments. 

Sensitivity analysis is an useful technique  in model calibration. 

 

 

 

 

 

 

 

 

Figure 3.- Sensitivity test for the correction factors for the direct kinetic transfer coefficients in 

sediments. Comparison between the computed spatial concentrations of Pu in dissolved 

and suspended matter 4 hours after injection.  “Sensit.test” reduces by 5 the correction 

factors. 

Figure 4.- Computed time series of Pu and Cs concentrations in dissolved phase at 4.9 km south of 

the injection point. Label Pu(2) corresponds to the same reduction in the correction 

factors that in Fig. 3.  
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1. INTRODUCTION 

The objective of this paper is the dynamic characterization a posteriori of the building as 

thermal performance. It could be a complementary way to the traditional simulations in 

building design phase, which provides us the dynamic thermal evolution of a building that is 

being used. For this proposes, we need real measurements (monitorization) of the main 

variables that take part in this system. 

In the thermal behaviour of our building we 

must take account as input some external 

variables, like meteorological data, and the 

variation of internal conditions, indoor 

temperature and energy gains (heating-cooling 

systems and casual gains). In terms of block 

diagram we can imagine our system as a black 

box with an external input (weather conditions 

and adjacent areas temperature) which has a 

response that, with internal excitation added, 

feedback the system (Fig. 1). 

 

v(t)

internal excitation

external

conditions

u(t)

output

y(t)

feedback

 

Fig 1. Application Description. 

 

We could describe this system following the energy balance equation: 

intauxssiiee QQQA)TT(UA)TT(UA
dt

dT
Mc   

where: 

Mc refers to the thermal inertia of the building. 

T refers to the indoor temperature of the characterization area 

Te refers to the outdoor temperature 

Ti refers to the temperature of the indoors adjacent areas. 

UAe refers to the thermal looses coefficient respect to the outdoor. 

UAi refers to the thermal looses coefficient respects to the indoor adjacent areas. 

As refers to the solar area of the characterization zone. 

Qs refers to solar radiation energy gains. 

Qaux refers to mechanical comfort system thermal gains. 

Qint refers to casual internal thermal gains. 

mailto:mj.sanisidro@ciemat.es
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2. METHODOLOGY 

The used procedure, to reach our objective, is based on the linear Transfer functions 

between our output and the main important inputs. But, our system presents two problems that 

make impossible to use linear functions directly: inputs are correlated and each one of them 

have important seasonal contribution. 

In order to solve these aspects, it is necessary to carry out: 

 A principal component analysis on the set of input variables. This kind of analysis is 

concerned with explaining the variance-covariance structure through a few linear 

combination of the original variables. The advantages of the principal components of a 

system are based on: they represent the directions with maximum variability, provide a 

simpler and more parsimonious description of the covariance structure and the set of 

principal components builds an uncorrelated system {zi}. 

 To lead the System towards the stationarity. The input variables involve in our system 

(temperature, solar radiation) are clearly not stationary due to seasonal component. It 

makes to suppose that their principal components {zi} follow being not stationary. We can 

find, by spectral analysis, the contribution of the seasonal part of each {zi}. In this way, 

Fourier analysis on each {zi} guide us to know which are the most important frequencies 

{wi}. These frequencies are chosen taking account that they represent at least the 85% of 

the total periodogram. Without loosing generality it is possible to suppose that each new 

variable {xi}, that results from eliminating the seasonal part to {zi}  is stationary except to 

some degree of differentiation.  

            t

K

1i
iiiitt twsenBtwcosAZX  



 

But these important frequencies relatives to the z-variable produce a seasonal part on the 

indoor temperature  tT  that also is eliminated 

  t

K

1i
iiiitt twsen'Btwcos'ATY  



      

2.1. Identification of transfer function models by prewhitening the input 

Suppose the suitable differenced input process xt is stationary and is capable of 

representation by some member of the general linear class of autorregresive-moving average 

models. Then, given a set of data, we can carry out our usual identification and estimation 

methods to obtain a model ARMA for the xt process tt
1

xx x)B()B(   . Which, to a close 

approximation, transforms the correlated input series xt to the uncorrelated white noise series 

t. If we now apply this same transformation to yt to obtain tt
1

xx y)B()B(    

Then the model may be written ttt )B(v  .On multiplying on both sides by t-k and 

taking expectations, we obtain   2
kk       where    tktEk      is the cross covariance at 

lag +k between  and . 

In terms of the cross correlation,  
 

0,1,2,...k                   







  k
vk  
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Hence, after prewhitening the input, the cross correlation function between the 

prewhitened input and correspondingly transformed output is directly proportional to the 

impulse response function   Bvi . 

3. CASE STUDY 

Our real system is an office room placed in Ciemat building 42 (Madrid, latitude 40.45ºN, 

longitude 3.73ºW, altitude 670m.), this office is placed in the first plant of the building and it 

only has an external East facade, and it is shaded from outside by some trees.The dimensions 

are: 3.81x5.02x2.70 m. 

The monitorization period was carried out during September and October months of 1998. 

The variables measured were:  

- The office indoor temperature 

- The corridor temperature 

- External temperature 

- Solar global radiation 

Not cooling-heating system was used during this period. 

The inputs that take into account in the procedure are solar radiation  sQ , the difference 

between the office indoor and the external temperature  eT , and the difference between the 

office indoor and the corridor temperature  iT . The output corresponds to the office indoor 

temperature  T . 

3.1. Results 

The component principal analysis lead us to two components, the eigenvectors and their 

corresponding eigenvalues for each component are:  

 2205.0,6963.0,6830.0v1    9713.0,0927.0,2191.0v2   

6385.11   9723.02   

These two components produce 87.02% of the variability of the initial inputs. 

In this way the new variables will be:  

ies1 T*2205.0T*6963.0Q*6830.0z   ies2 T*9713.0T*0927.0Q*2191.0z   

The most important frequencies for each zi are: 

1z  5236.0,2743.0,2493.0  

2z  3241.0,1247.0,1496.0,2743.0,0997.0,0249.0,0748.0,0499.0  

The stationary part of z1 behavior as Autorregresive model of order 2. 

       t2tx*2469.01tx*0303.1tx 1111   

The stationary part of z2 behavior as Autorregresive model of order 4. 

           t4tx*1155.03tx*095.02tx*3574.01tx*8760.0tx 222222   

Where xi is the corresponding variable to zi when its seasonal part has been eliminated. 

Eliminating from the output variable Y each one of the important frequencies relatives to each 
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input, it is obtained two variables {y1,y2} relatives to the contribution of each input respect to 

the output. In this way, is calculated the i  

       2ty*2469.01ty*0303.1tyt 1111   

           4ty*1155.03ty*095.02ty*3574.01ty*8760.0tyt 222222   

In the Fig. 2 and 3, it is possible to see the cross-correlation function, for the first 40 lags, 

between each prewhitened input  i  and its corresponding transformed output  i . It makes 

to think in a possible parameterization of each one function. 

  

Fig 2: Cross-correlation between 1&1 Fig 3: Cross-correlation between 2&2 

 

In the first case, the transfer function behaviour as an Autorregresive of the first order, and 

its first important lag corresponds to k=0.      tx*1469.01ty*733.0ty 111   

In the second case, the transfer function behaviour as an Autorregresive of the second 

order, and the first important lag corresponds to k=0. 
       tx*1946.02ty*2980.01ty*1696.1ty 2222   

Taking into account the weight  i  for each principal component  ix , it is possible to say 

that         tnty*ty*
2

1
ty 2211     Where n(t) is the residual between the measurement and 

simulated output. In Fig.4 it is possible to see the fitting between the measurement and 

simulated indoor temperature, after undoing the changes made in all the process 

 

Fig.4: The measurement and simulated indoor temperature 
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ABSTRACT 

A  Leontief model  and a tool for its sensitivity analysis are presented. The main goal of  

building the model is to investigate interindustries processes in the Ukrainian economy. The 

model  was built on the base of the Ukrainian  national account date and interindustries Input-

Output tables.  The model is implemented as a program in the  Visual Basic for  Excel with 

using the GAMS(General Algebraic Modelling System) language and a GAMS solver.  The 

tool for the investigation of the model sensitivity analysis is a special  program that generates 

changes in input parameter values, solves  linear equations, and  calculates multipliers i.e. the 

changes in the endogenous variables in response to those in exogenous ones. Results of 

sensitivity analysis of the model are presented. 

1. INTRODUCTION 

The static input-output( I-O) model based on the linear structure of inter-industry 

production linkages pioneered by Wassily Leontief [1] marked the beginning of multi-sector 

planning. Leontief models are by far the most developed models that attempt to derive 

quantitative economy-wide implications of the interdependence of industries. These models 

have been successfully applied in many countries for economic policy making. I-O models 

describe a multi-sector economy where there are:  

i. Producing sectors. Many outputs generating industries form the supply side of the 

economy. Goods and services  produced by other sectors are used up as intermediate inputs 

by producing sectors to generate new products, which go into final consumption or used as 

intermediate inputs within the supply sector for further production.  

ii. Consuming sectors. The target of production is to satisfy final demand by consuming 

sectors. These are known as the final demand sectors (households or private consumption, 

government purchases, exports and building of inventory stocks or saving). Generally, 

represented by households as the owners of resource factors (labour, capital, land) which they 

sell to producing sectors for income (wages, interest, rent, etc.), they then use that income to 

purchase consumption or investment goods and services from producers.  

iii. Resource factors. Not produced within the system (e.g. labour and land). These 

resource factors typically do not explicitly appear as part of the I-O tables.  

iv. Intermediate inputs. These are goods and materials produced by other supply sectors 

and absorbed back into the system to generate other products. Examples are steel, cotton, 

fertilisers, wheat, etc. 

mailto:beilecki@wi.ps.pl
mailto:beilecki@wi.ps.pl
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In compact form  an I-O model can be written as  

X = AX + d  . (1) 

Where X is a vector of sectoral outputs(xi is gross output of sector i), A is the I-O 

coefficient matrix( aij is the amount of product i required to produce one unit of j)  and d is the 

vector of final demands(di is final demand for product i).  

I-O models are concerned with solving for sectoral output levels (X) that satisfy final 

demands for those outputs (d) given the inter-industry structure of production (A). In other 

words, model (1) can determine the production plan that is consistent with a desired final 

demand vector (d) given the inter-sectoral transaction matrix (A), i.e. also meets indirect 

intermediate demands necessary to generate the target net output (d). 

Depending on data availability and the desired degree of detailed sectoral analysis, I-O 

models can handle any level of disaggregation in the supply and demand sectors of the 

economy. Producing sectors can be disaggregated into several commodity sub-sectors, e.g. 

energy into petroleum, biomass, electric, and so forth.  

The I-O model built for the Ukrainian economy  includes the following sectors:  electro 

energy, gas and petroleum, coal, other fuel, black metallurgy, coloured metallurgy, chemical, 

machinery,  forest industry, other industry, building, agriculture, transport, trade, science, the 

other sectors. Imports and exports were added as well as division of final consumption 

between private households and government purchases.   

2. MODEL IMPLEMENTATION 

The implementation of  the I-O model illustrates figure 1. 

 

Statistical

subsystem

Program generator

Results display Computation

subsystem

 

Fig.1 

 

The statistical subsystem stores statistical date in the form of  Input-Output tables for 1993-

1998 years and calculates the matrix A coefficients. The program generator builds a GAMS 

program using the matrix A coefficients. This program describes an Input-Output model for a 

chosen year. GAMS (General Algebraic Modelling System) is a high-level computer 

language for the compact presentation of large and complex models, allowing changes to be 
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made in model specifications simply and safely, and permitting model descriptions that are 

independent of solution algorithms[2]. GAMS is available for use on personal computers, 

workstations, main-frames, and supercomputers. It  lets the user concentrate on modelling, 

eliminating the need to think about purely technical, machine-specific problems. The  

computation subsystem solves  linear equations of the I-O model. We use for this goal the 

MINOS solver. The solver  yields values for  the sixteen sectoral outputs.  

Calculating multipliers was chosen as a basic technique for carrying out sensitivity analysis 

of the model, i.e. calculating the changes in the endogenous variables in response to those in 

exogenous ones. A multiplier myi for an output variable yi is calculated by the formula:  

myi = ((yi(xi+xi) - yi(xi))/yi(xi))/(xi/xi), 

where xi - an input variable, xi - an increment of xi. The multiplier myi shows how yi 

changes (in percents) as a result of 1 percent change in xi . 

A user interface  permits to choose any coefficient of the matrix A and determine an 

interval in which the coefficient can be vary  [parmin, parmax]. Next the program forms (n+1) 

values of the coefficient: parmin, parmin+h, parmin+2h,..., parmax;  where h=(parmax-

parmin)/n and solves linear equations of the model for each coefficient value. The results 

display subsystem  stores all the  values of sectoral outputs and builds diagrams to 

demonstrate the  dependence of outputs on a chosen coefficient. 

The program was designed in Excel environment using the MINOS solver as the 

computation subsystem. The statistical subsystem, the program generator and the data display 

subsystem were realised in an Excel workbook as  sheets and Visual Basic modules. All parts 

of the program are integrated by   a user interface. A user  can view  all the sectors of the 

model,  choose an investigated coefficient,  set an interval in which the coefficient can be vary  

and start  computation. After finishing all the  computation loops, the results of calculation are 

written down  into a special Excel sheet where the automatic diagram drawing is performed.  

3. RESULTS 

The goal  of sensitivity  analysis was to investigate how increasing/decreasing basic energy 

products (electro, gas and petroleum, and coal) required to produce  one unit of  a sector 

product  at the same demands influences  the Ukrainian economy. With this purpose a family 

of tables and diagrams was built on the date of  1997.  Each diagram represents the 

dependence of a multiplier of  gross output of sector i  on increasing/decreasing  a coefficient 

aij, were j corresponds to one of the energy sectors. 

On the base of these results, the sectors that have the most  influence on the energy sectors 

were detected, i. e. the sectors decreasing/increasing in which the amount of electro energy 

required to produce one unit of sectors production at the same demands yields the most 

change at the electro energy sector. The results are as follows. The coal sector  has the  most 

influence on the electro energy sector. The other sectors effect  on the electro energy sector in 

the following  decreasing order: gas and petroleum, coloured metallurgy, chemical, electro 

energy, science, other industry, machinery, black metallurgy, forest industry, transport, the 

other sectors, building, agriculture, trade, other fuel.  

The ordered  decreasing influence of the sectors on the gas i petroleum sector is as follows: 

gas and petroleum, transport, trade, chemical, electro energy, machinery, other industry, 
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science, coloured metallurgy, black metallurgy, forest industry, building, the other sectors, 

agriculture, coal, other fuel. 

On the coal sector we have received the following ordered decreasing influence  of the 

sectors: coal, electro energy, forest industry, machinery, black metallurgy, transport, 

chemical, other industry, trade, coloured metallurgy, gas and petroleum, the other sectors, 

science,  agriculture, building, other fuel. 

The results were passed to the Ukrainian Economy Ministry and  Energy Sectors 

Ministries. Currently authors are carrying out research to handle impacts of structure 

adjusting in the Ukrainian economy by means of  sensitivity analysis of the Leontief  model.    

4. CONCLUSION 

Authors intend to extend the model  to handle income distribution issues, trade policy, 

impacts of structural adjustment and industrial growth. Such extensions required relaxing the 

assumptions of linearity (to allow for substitution possibilities in production and 

consumption) and exogeneity of final demand and prices (to capture policy instruments 

present in decentralised economies with functioning markets). Those modifications led to the 

emergence of the family of non-linear programming and Walrasian computable general 

equilibrium models[3, 4] that we will  describe and investigate  by means of GAMS. 

5. REFERENCES  

[1] Leontief, W. Studies in the structure of the American economy. New York: Oxford 

University Press, 1953. 

[2] Brook A., Kendrick D., Meeraus A.: GAMS, RELEASE 2.25. A USER’s GUIDE, GAMS 

Development Corporation, 1996. 

[3] Don H., van de Klundert T., van Sinderen J. (red): Applied General Equilibrium 

Modeling, Kluwer Academic Publishers, Dordrecht, 1991. 

[4] Ballard C.L., Fullerton D., Shoven J., Whalley J.: A General Equilibrium Model for Tax 

Policy Evaluation. Chicago etc.: University of Chicago Press., 1985.  

 

 



 

Poster  Session  245 

SENSITIVITY OF MONTE CARLO SIMULATIONS 
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SUMMARY 

The sensitivity of the results of a Monte Carlo simulation to the shapes and moments of the 

probability distributions of the input variables is studied.  An economical computational 

scheme is presented as an alternative to the replicate Monte Carlo simulations and is 

explained with an illustrative example. 

1. INTRODUCTION 

The post-Monte Carlo sensitivity analysis techniques used in performance assessment of 

nuclear waste repositories are directed towards identifying the important parameters based on 

their contribution to the uncertainty (variance) of the performance measure (e.g., dose). The 

United States Nuclear Regulatory Commission's revised regulatory criteria emphasize the 

“probability-weighted mean dose” as a performance measure. Also, the analysts are uncertain 

about the shapes and moments of the probability density functions (PDFs) of the input 

variables. This study focuses on methods to evaluate and display the sensitivities of the 

regulatory criterion, the mean dose, to the shapes and moments of the probability density 

functions of the input variables. Replicate Monte Carlo simulations can resolve this 

sensitivity, but are impractical for the complex models with a large number of inputs, as in the 

Yucca Mountain modeling studies. An alternative computational scheme, without recourse to 

additional Monte Carlo runs, is available [1,2] and is proposed for use in this study. This 

method belongs to a “re-weighting” scheme, and involves simple post-processing of the 

inputs and outputs of the Monte Carlo simulations.  This numerical method is particularly 

suited to the Latin Hypercube Sampling scheme (LHS) used in the uncertainty modeling 

studies. The method is briefly described here and an example application is presented and the 

applicability of the proposed method is discussed. 

2. METHODOLOGY 

In a Latin Hypercube sampling scheme, the PDFs of each input variable are divided into N 

equi-probable intervals, where N is the number of samples and one sample is drawn from each 

interval randomly. When the PDF of a specific input variable is altered, the same intervals 

and the same samples are retained as in the original LHS; but the probabilities of those 

intervals change from their values of 1/ N in LHS to different values in the new PDF. This 

procedure is illustrated in Figure.1. The modified probabilities (qm) are used to compute the 
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unbiased estimates of different moments of the output variable (Eq.1), and the cumulative 

distribution function, F (Eq. 2). 

   r

i

N

i

r YqYE 
1

 (1) 

 
      

N

ii YzUqzYPzF
1  (2) 

where,     0;0t Uand 0;1  tttU .  Here, Yi  denotes the value of the output variable Y for 

the i th sample, and E(.) denotes the expected value. 

    This procedure can be extended to cases of two or more variables with new PDFs, where qi 

is obtained as the product of the modified probabilities in each of the new PDFs. In this case 

care needs to be exercised to normalize the resulting weights. The algebraic details are 

provided in [1] and a code to implement this scheme, named PDFSENS is developed and 

documented [3]. 
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3. APPLICATION: RESULTS AND DISCUSSION 

The methodology is illustrated using an analytical “screening” model of health risk arising 

from water-borne radionuclide migration [4].  This simple model contains components 

representing source release, geosphere transport and biosphere transport for a single member 

radionuclide chain.  The source term is described by an initial containment time followed by 

radionuclide release at a rate specified as a fraction of the current nuclide inventory, with 

radioactive decay occurring all along.  The geosphere term includes one-dimensional 

transport with advection, dispersion, equilibrium sorption and decay.  The biosphere term is 

based on a stream being the principal groundwater pathway, and includes the rate of drinking 

water intake by an individual, the stream flow rate, the activity-to-dose factor, and the risk 

factor for radiation induced cancer fatality.  As described in the original reference, 

intermediate expressions for the source term, the geosphere term and the biosphere term can 

be combined using the Laplace transformation technique to yield a time-dependent 

consequence, C(t), given by: 
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where (z) = exp(z2)erfc(z), and the other symbols are as defined later. Note also that the 

consequence, C(t), is a risk term which expresses the probability of deaths per year beyond 

the initial containment period (i.e., for t >To). 

This simple model is used to compute human health risk (and its associated uncertainty) 

after 20 000 y of waste emplacement due to the migration of a single radionuclide from a 

hypothetical repository.  The uncertain parameters in the model are taken to be:  (1) fractional 

release rate, k; (2) groundwater velocity, v; (3) retardation R; and (4) the path length L.  The 

other parameters are taken to be fixed.  Table 1 provides the list of stochastic parameters and 

their ranges used for the alternative PDFs.  In respect of the truncated normal distributions, 

these ranges, i.e., the minimum and the maximum correspond to the 0.1 and 99.9 percentiles 

respectively.  For generating the Monte Carlo simulations of the output variable C, all the 

stochastic variables are assigned truncated normal distributions.  The parameters k, R, , and L 

are selected for studying the effects of modified distributions on the output mean.  The other 

parameters are held constant in these simulations: initial Inventory MO= 1.0E+16 Bq, 

containment time TO= 0 years, decay constant  =3.25E-6/year, dispersivity d =20 m, and 

biosphere conversion factor BO = 1.0E-18 deaths/Bq.  More details of this and other examples 

are provided [3]. 

Table 1.  Ranges of Stochastic Variables 

Variable Minimum Maximum 

Release Rate  k (
1y ) 1.0E-06 1.0E-05 

Retardation R 3.16 31.6 

Groundwater Velocity   (m y-1) 0.0316 0.316 

Geosphere Path L (m) 168.7 561.7 
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In this case, the normal distributions are replaced by triangular distributions with the same 

range (with the mid-point as the mode), for one variable at one time, without re-simulation, 

based on the re-weighting scheme described here.  The results from the re-weighting scheme 

are compared with the re-simulation scheme using the modified distribution.  Table 2 shows 

the results. 

Table 2. Results from Re-Weighting and Re-Simulation Schemes (100 Samples) 

Variable Ymean 

 Re-Weighting Scheme. Re-Simulation Scheme 

K 0.0414 0.0423 

R 0.0507 0.0516 

 0.0436 0.0463 

L 0.0437 0.0464 

 

The results show that re-weighting scheme produces results in reasonable agreement with 

re-simulation.  The deviations range from 2% to 8%.  This may be treated as a validation of 

this methodology.  Accuracy of similar order is noted in respect of higher order moments and 

for the cumulative distribution function but are not included here. 

4. CONCLUSION 

The examples presented here suggest that re-weighting scheme offers a computationally 

efficient scheme for computing the expected value of a simulated result under revised 

probability distributions.  However, the method may not provide good results, if the revised 

probability distributions entail ranges far different from that of the original distribution.  Also, 

the method may fail for the case of very small sample size and for the case of highly skewed 

probability distributions. 
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1. INTRODUCTION 

One of the most powerful tools used for environmental radioactivity measurements is a 

gamma spectrometer, which usually includes a HP Ge detector. The detector should be 

calibrated in efficiency for each considered geometry. Simulation of the calibration procedure 

with a validated computer program becomes an important auxiliary tool for an environmental 

radioactivity laboratory being that it permits one to optimise calibration procedures and 

reduce the amount of radioactive wastes produced. The Monte Carlo method is applied to 

simulate the detection process and obtain spectrum peaks for each modelled geometry [1, 2]. 

An accurate detector model should be developed in order to obtain a good accuracy in the 

output of the calibration simulation [3]. An important parameter in the detector model is the 

thickness of any absorber layer surrounding the Ge crystal, particularly the inactive Ge layer. 

In this paper, a sensitivity analysis on the inactive Ge layer thickness is performed using 

MCNP 4B code [4]. Results are compared with experimental measured efficiency. A 

sensitivity analysis is also performed on the aluminium cap thickness. 

2. METHODOLOGY 

One of the major problems to perform any detector calibration simulation is the lack of 

accurate data about Ge crystal. In other words, many details of the detector geometry are not 

well known. Calculated efficiency is very sensitive to the germanium dead layer, a layer of 

inactive germanium, not useful for detection, but strongly attenuating photons [3]. 

When data provided by detector manufacturers are used in the simulation, some strong 

discrepancies appear between calculated and measured efficiencies. They can be attributed to 

the existence of a transition zone between the inactive layer and active Ge in the crystal [5]. 

Photons absorbed in the transition zone will not contribute to the full energy peak count rate. 

Thus, concerning detector efficiency, the transition zone behaves as an inactive layer. 

Therefore, a sensitivity analysis on the inactive Ge layer thickness is performed varying 

this thickness in our detector model. Calculations have been performed for all of the 

radionuclides included in a calibration gamma cocktail solution for each thickness of the 

inactive Ge layer. Results have been compared with experimental measurements. A Marinelli 

mailto:jrodenas@iqn.upv.es
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beaker has been considered for this analysis as it is one of the most commonly used recipients 

for this type of measurements. 

Fig. 1 Variation of efficiency with energy. 

3. RESULTS 

To develop the sensitivity analysis proposed, four values for the inactive Ge layer 

thickness have been considered besides the value (0.7 mm) provided by the manufacturer. 

Calculated efficiencies for each considered inactive Ge layer thickness as well as 

experimental values are plotted in terms of energy in Fig. 1. The MCNP to experimental 

efficiency ratios are listed in Table 1. 

Table 1 Ratio of calculated to experimental efficiency. 

Nuclide Energy 

(MeV) 

Inactive germanium layer thickness (mm) 

0.7  1.35  1.5  1.95  2.45  

Am-241 0.060 2.56 1.02 0.84 0.47 0.24 

Cd-109 0.088 1.66 1.12 1.03 0.80 0.60 

Co-57 0.122 1.37 1.10 1.04 0.90 0.76 

Ce-139 0.166 1.30 1.12 1.08 0.97 0.87 

Hg-203 0.279 1.25 1.11 1.08 0.99 0.90 

Sn-113 0.392 1.22 1.08 1.05 0.96 0.87 

Sr-85 0.514 1.24 1.10 1.06 0.98 0.89 

Cs-137 0.662 1.22 1.08 1.05 0.96 0.87 

Y-88  0.898 1.30 1.16 1.13 1.03 0.94 

Co-60  1.173 1.37 1.22 1.18 1.08 0.98 

Co-60  1.333 1.37 1.21 1.18 1.08 0.98 

Y-88  1.836 1.42 1.25 1.21 1.12 1.02 
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4. DISCUSSION 

When the dead layer thickness is increased, an additional shielding as well as a smaller 

detector active volume, are introduced into the model, hence efficiency decreases. However, 

this effect is not the same for all energies. For the lowest energies (Am-241 to Ce-139), the 

best agreement with experimental data is shown for a 1.35 mm dead layer. This agreement is 

improved (except for Am-241) when a 1.5 mm layer is considered. For this value the 

behaviour is acceptable except for the extreme values. Increasing the inactive layer thickness 

up to 1.95 mm we obtain a better agreement for higher energies. However, the discrepancy for 

the lowest one is strongly increased. Finally, a thicker layer (2.45 mm) is modelled to obtain 

the best agreement for the highest energy, but deviations for medium and lower energies 

make this value unacceptable.  

TABLE 2 CALCULATED TO EXPERIMENTAL EFFICIENCY RATIO FOR 

DIFFERENT ACTIVE VOLUMES. 

Nuclide Energy 

(MeV) 

 Active germanium volume (cm3)  

124.435 123.961 122.791 122.091 121.310 

Am-241 0.060 0.8367 0.8367 0.8369 0.8370 0.8372 

Cd-109 0.088 1.0298 1.0299 1.0300 1.0300 1.0297 

Co-57 0.122 1.0440 1.0438 1.0433 1.0430 1.0427 

Ce-139 0.166 1.0837 1.0836 1.0824 1.0812 1.0799 

Hg-203 0.279 1.0945 1.0888 1.0761 1.0691 1.0603 
Sn-113 

0.392 1.0746 1.0655 1.0476 1.0370 1.0244 

Sr-85 0.514 1.1021 1.0910 1.0637 1.0513 1.0369 

Cs-137 0.662 1.0927 1.0790 1.0508 1.0353 1.0187 

Y-88  0.898 1.1805 1.1657 1.1284 1.1086 1.0911 

Co-60  1.173 1.2355 1.2197 1.1822 1.1575 1.1326 

Co-60  1.333 1.2403 1.2222 1.1798 1.1580 1.1321 

Y-88  1.836 1.2814 1.2594 1.2142 1.1863 1.1662 

 

TABLE 3 EFFICIENCY AND RATIO OBTAINED FROM VARYING ALUMINIUM 

LAYER THICKNESS. 

Nuclide 
Energy 

(MeV) 

ALUMINIUM LAYER THICKNESS 

0.77 mm 1.27 mm 1.77 mm 2.27 mm 

Efficiency C/E Ratio Efficiency C/E Ratio Efficiency C/E Ratio Efficiency C/E Ratio 

Am-241 0.060 5.80E-03 0.87 5.59E-03 0.84 5.38E-03 1.04 5.18E-03 0.78 

Cd-109 0.088 2.18E-02 1.06 2.12E-02 1.03 2.07E-02 1.03 1.95E-02 0.95 

Co-57 0.122 2.99E-02 1.07 2.91E-02 1.04 2.84E-02 1.03 2.77E-02 0.99 

Ce-139 0.166 3.18E-02 1.11 3.11E-02 1.08 3.04E-02 1.02 2.98E-02 1.04 

Hg-203 0.279 2.29E-02 1.09 2.26E-02 1.08 2.21E-02 1.02 2.17E-02 1.03 

Sn-113 0.392 1.68E-02 1.06 1.66E-02 1.05 1.63E-02 1.02 1.60E-02 1.01 

Sr-85 0.514 1.35E-02 1.08 1.33E-02 1.06 1.31E-02 1.01 1.29E-02 1.03 

Cs-137 0.662 1.09E-02 1.06 1.08E-02 1.05 1.06E-02 1.01 1.05E-02 1.02 

Y-88  0.898 8.69E-03 1.14 8.60E-03 1.13 8.50E-03 1.01 8.42E-03 1.11 

Co-60  1.173 7.25E-03 1.19 7.18E-03 1.18 7.11E-03 1.01 7.04E-03 1.16 

Co-60  1.333 6.56E-03 1.19 6.50E-03 1.18 6.44E-03 1.01 6.39E-03 1.16 

Y-88  1.836 5.17E-03 1.22 5.13E-03 1.21 5.08E-03 1.01 5.04E-03 1.19 
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The effects on the efficiency of shielding and detection active volume and especially its 

dependence on energy, have been confirmed by varying the Ge active volume but maintaining 

the same inactive layer. When the active volume is decreased, efficiency decreases for all 

energies except for the lowest one for which it slowly increases. Furthermore for E<200 keV 

efficiency decreases very slowly. These results are shown in Table 2 by listing the MCNP to 

experimental efficiency ratio for different values of Ge active volume. The original volume 

considered in previous calculations (Fig. 1 and Table 1) is 122.791 cm3. 

Finally, a sensitivity analysis on the aluminium cap thickness was performed using the 1.5 

mm inactive Ge layer model. Results are listed in Table 3. It can be seen that the influence of 

this parameter is less important. Still, it can be noted that an increasing absorber layer 

produces a better agreement with experimental efficiencies for higher energies but a strong 

deviation for the lower ones. 

5. CONCLUSIONS 

The sensitivity analysis performed shows that an increasing value of absorber layers causes 

a decreasing calculated efficiency. However, this behaviour is different for lower and higher 

energies. It is also different for Al and Ge as when the inactive Ge layer is increased, not only 

a thicker shielding but also a lower detection volume is included in the model. 

A better agreement between calculated and measured efficiencies is obtained using, in the 

detector model, a value for the inactive Ge layer thickness greater than that provided by the 

detector manufacturer (at least twice this value). 

Small increments on this value of inactive Ge layer thickness show less discrepancies from 

experimental measured efficiency for lower source energies, while a thicker layer seems to be 

necessary to match experimental efficiency for higher energies. This can be attributed to the 

fact that the shielding effect is greater for lower energies, while the effect of decreasing the 

active volume is similar for all the energy range with less influence for lower energies.  
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SUMMARY 

We study the situation where collective risk model in credibility theory has two types of 

risks that can be modelled by two structure functions (prior distributions). This model can be 

used in two ways. First is the good/bad risks models. In this case, two kinds of risks are 

present in the population: 1 % with low probability of a claim or loss amount, and the other 

2 % are bad risks with high claim or loss amount probability. Second way can be useful if 

we have a bimodal prior distribution for the population. A bayesian sensitivity analysis for 

this model is presented and we provide a result for calculating variation range of bayesian 

premium in this situation. A Numerical example is provided. 

Keywords and phrases: Credibility theory, net premium principle, bimodal structure 

function, Bayesian robustness, classes of priors. 

1. INTRODUCTION 

In this paper, bayesian approach is applied to estimate net premiums. Let   be a random 

variable, and tiX i ,...,2,1  ,   , the claims or loss amount in subsequent years. We 

assume that given   the sX i´  are conditionally independent and identically distributed 

random variables. 

One goal of credibility theory is to estimate the conditional mean  XE , which is known 

as the net premium principle. The loss distribution of a given risk is characterized by its 

conditional mean, but that mean is generally unknown. Therefore, assume that the value   is 

fixed for a given risk, althought it is generally unknown. The probability density function of 

  is given by )( ; this is the prior distribution in bayesian analysis, also called structure 

function, the distribution that represents one's uncertainty about the parameter   before 

observing claim data for a given risk. 

In this paper we study the situation where the collective has two types of risks; 1 % are 

good risks with a low probability of a claim or loss amount, and the other 2 % are bad risks 

with a high claim or loss amount probability that can be modelled by two structure functions 

(prior distributions) )(1   and )(2  . Therefore our prior distributions of   is given by 





2

1

0 )()(
i

ii  , with .1 ,, 2121   R  Bayesian analysis requires two models; 
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the sampling density )|( xf  and the prior )(0  , which is given in our model by a convex 

sum of probability distributions. Since prior specification is typically imprecise, recent 

attention focuses towards local sensitivity which measures the effect of perturbations of the 

inputs to the final answer. 

2. CALCULATION OF PREMIUM IN A CLASSICAL BAYESIAN ANALYSIS 

A premium calculation principle assigns to any risk X (with probability function )|( xf , 

where x takes values in the sample space X and   considered a realization of a parameter 

space  ) a real number, which is the premium. In the case of the net premium principle the 

premium (Heilmann, 1989) is given by       .  ,   
XX dxxxfXEP  

In experience ratemaking the actuary takes a claim experience M=m from the random 

variables tXXX ,...,, 21  and uses this information to estimate the unknown fair premium 

).(P  Now, let 



2

1

0 )()(
i

ii   denote the prior density function of  , which is given by 

a convex sum of two prior distributions; the good and bad risks distributions. The posterior 

distribution of   given the likelihood m is given by 
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and   dmfπp ii )()|()(m  is the marginal distribution of M with respect to prior 

iπ . Using net premium principle, bayesian net premium (Heilmann, 1989; Eichenauer et al., 

1988) is given now by        .,
2

1

*
0 




Θ

i

i i
d mPmm  PP

*

0

 Assume now that the 

number of claims generated annually depends upon chance, while the amount of the 

individual claim is taken as fixed. Suppose that the number of claims follows a Poisson 

distribution with parameter   and the prior distribution of this parameter is a convex sum of 
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Now we consider claims amounts instead claims and suppose that the likelihood is the 

exponential distribution, this is ,θef(x) x-θ  and prior distribution is the same that the other 

example above. In this case, bayesian net premium is given by   .
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distributions} and iii qq :)({2 Q  is unimodal with the same mode ,i  as that of i }, 

where i  is the modal value for the distribution of expected value of claims (or loss amount), 

).( i  Using 1
 , if similar conclusions are obtained, no additional information is required; 

however, if conclusions differ markedly, we must obtain more information. In this case we 

could acquire partial information about the prior (for example, the bimodality) and consider 

all prior distributions that are compatible with this information, using .2
  Before presenting 

the results a preliminary is required which is given in the following theorem. 

Theorem. Suppose B>0 and 2,1  ),(),( ixgxf iiii  are continuous functions with 

,0)( ii xg  then 
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The same result holds with sup replaced by inf. 
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3. ILUSTRATIONS 

We conclude the paper by including an example which serve to illustrate the ideas, 

theorems and corollaries exposed above. We shall use same weights as prior distribution for 

contaminations, i.e. .2,1,  iii   
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EXAMPLE. Specifically, let 1X  has a Poisson distribution with parameter   and 

),30,3(2.0)4,2(8.0)(0 GaGa   and 2X  has an exponential distribution with parameter 

  and ).6,10(4.0)11,60(6.0)(0 GaGa   Standard bayesian premium appears in Table 1 

and 2 for each sample mean under consideration (m=4, m=7 and m=12). 

 

Table 1: Poisson-gamma case. 

m  mP *

1
  mP *

2
 '

1  '
2     




2

1

*'*

i

i m
i  PmP  

4 3.666 5.384 0.998 0.002 3.670 

7 6.166 7.692 0.07 0.93 7.585 

12 10.333 11.538 0.001 0.999 11.538 

 

Table 2: Exponential-gamma case. 

m  mP *

1
  mP *

2
 '

1  '
2     




2

1

*'*

i

i m
i  PmP  

2 2 4 0.864 0.136 2.270 

4 3.333 5 0.164 0.836 4.727 

5 4 5.5 0.073 0.927 5.391 

 

This particular situation corresponds to the case in which ,0  i.e. no errors in the 

process of elicitation. Furthemore, if 022    we are in the unimodality setting (see 

Gómez et al., 2000 and Sivaganesan et al., 1989). In both cases, most robusted situation 

occurs when the difference between bayesian net premiums for good and bad risks are higher 

(m=12 in the Poisson case and m=5 in the exponential case). In the other hand, less robusted 

situation appears in the case m=4 and m=2 for the two cases considered when there is the 

higher difference between bayesian net premiums for both good and bad risks. 

4. SUMMARY AND CONCLUSIONS 

A basic assumption of credibility theory is that the values of the parameters of the 

probability distribution of loss are unknown. In such case premium that company charges is 

the bayesian premium. This premium requires that the actuary can define a probability 

distribution for the values of unknown parameters of this loss process, prior distribution. In 

our model, prior distribution, 0 , is given by a convex sum of two prior distributions 1  and 

2 . This leads to the question of bayesian robustness which has been treated in this paper 

using the  -contamination class. We have seen that bimodality effects are very important in 

modelling subjective beliefs about risk parameter when is necessary. We have used gamma 

density for the prior distribution because it is very flexible and conjugated with Poisson and 

Exponential distributions. If we use another distributions that are not conjugated we can use 

recent development in Markov chain Monte Carlo (MCMC) methods to facilitate exploration 

of posteriori magnitudes. A slight modification of the section 3 unimodal class would be to 
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consider all symmetric bimodal distributions as contamination of prior distribution. This is 

possible by replacing 



z

dz
0

0

)()/1(



  by .)())2/(1(

0

0







z

z
dz




  

Finally, all results and theorem treated here can be used for another premium calculation 

principles (Heilmann, 1989) as Exponential, Esscher and Variance, among others. 
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1. INTRODUCTION 

A major advantage of Bayesian data analysis is that provides a characterisation of the 

uncertainty in the model parameters estimated from a given set of measurements in the form 

of a posterior probability distribution [1].  When the analysis involves a complicated physical 

phenomenon, the posterior may not be available in analytic form, but only calculable by 

means of a simulation code.  In such cases, the uncertainty in inferred model parameters 

requires characterisation of a calculated functional.  An appealing way to explore the 

posterior, and hence characterise the uncertainty, is to employ the Markov Chain Monte Carlo 

technique.  The goal of MCMC is to generate a sequence random of parameter x samples 

from a target pdf (probability density function), (x).  In Bayesian analysis, this sequence 

corresponds to a set of model realisations that follow the posterior distribution [2]. 

There are two basic MCMC techniques.  In Gibbs sampling, typically one parameter is 

drawn from the conditional pdf at a time, holding all others fixed.  In the Metropolis 

algorithm, all the parameters can be varied at once.  The parameter vector is perturbed from 

the current sequence point by adding a trial step drawn randomly from a symmetric pdf.  The 

trial position is either accepted or rejected on the basis of the probability at the trial position 

relative to the current one.  The Metropolis algorithm is often employed because of its 

simplicity. 

The aim of this work is to develop MCMC methods that are useful for large numbers of 

parameters, n, say hundreds or more.  In this regime the Metropolis algorithm can be 

unsuitable, because its efficiency drops as 0.3/n [3]. The efficiency is defined as the reciprocal 

of the number of steps in the sequence needed to effectively provide a statistically 

independent sample from . 

2. METHODOLOGY 

An alternative MCMC technique is what I will call the Hamiltonian method.  It is often 

referred to as the hybrid method because it alternates between Gibbs and Metropolis steps, but 

that name is not distinctive.  For each parameter xi, another parameter pi is introduced, which 

represents the parameter's conjugate momentum variable [4].  A Hamiltonian is constructed as 

a potential term  = -log((x)), plus a kinetic energy term: 


i

i

m

p
xH

2
)(

2

         (1) 
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where mi is a fictitious mass.  The goal is to draw random samples from the new pdf that is 

proportional to exp(-H).  Each iteration of the algorithm starts with a Gibbs sampling to pick a 

new momentum vector from the uncorrelated Gaussian in the momenta corresponding to the 

second term in H.  Then a trajectory in (x,p) space is followed such that H is constant using 

the leapfrog technique, which consists of the following three substeps: 

p t p t
x

ti i

i

( ) ( ) ( )  




  

2 2
x      (2) 

x t x t
p t

m
i i

i

i

( ) ( )
( )

   


  



2      (3) 

p t p t
x

ti i

i

( ) ( ) ( )   





  


2 2
x   .   (4) 

The parameter  represents an increment in time.  After m leapfrog steps corresponding to 

a total trajectory time of T = m, a Metropolis acceptance/rejection decision is made to 

guarantee that the sequence is in statistical equilibrium with the target pdf.  Clearly large steps 

in the parameter space are possible with only a few evaluations of  and the gradient of .  

Note that the gradient of  can often be done in a time comparable to the (forward) 

calculation of  by applying adjoint differentiation to the computer code used to calculate  

[5].  In practice, the length of the Hamiltonian trajectories must be randomised to realise 

adequate sampling of (x).  Once an MCMC sequence has been generated, the properties of 

(x) may be characterised by considering just the x samples.  The momentum aspects of the 

extended pdf, exp(-H), are marginalised out because they are independent of the x 

dependence. 

3. RESULTS 

Figure 1 shows typical paths followed by the Hamiltonian MCMC algorithm for a one-

dimensional target pdf, which is a Gaussian with unit standard deviation.  The vertical jumps 

correspond to the Gibbs sampling of momentum from the Gaussian pdf, exp(-p2), for unity 

mass.  The circular arcs correspond to the trajectories of constant H followed in five steps of 

the leapfrog method using  = 0.4, yielding a total trajectory length of T = 5 = 2. 

 

Figure 1.  Example of several 

trajectories in the momentum-

parameter space for the Hamiltonian 

method for a 1D Gaussian 

distribution.  For each trajectory, the 

momentum is drawn from the 

assumed Gaussian momentum 

distribution (vertical jumps), which 

is followed by several steps along a 

trajectory of constant Hamiltonian 

value (circular paths).  
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Figure 2 shows the behaviour of the Hamiltonian method for an asymmetric two-

dimensional Gaussian distribution with a standard deviation of four in one direction and unity 

in the other.  For this example, the maximum value for  is 0.4.  The total length of each 

Hamiltonian trajectory is randomly chosen from a distribution that is uniform from 0 to Tmax = 

5 and  is adjusted for a minimum number of number of leapfrog steps.  The important aspect 

of this example is that the full width of the target pdf is easily reached in relatively few (15) 

trajectories consisting of 91 leapfrog steps.  This kind of distribution causes difficulty for the 

Metropolis algorithm with an isotropic trial distribution because it essentially follows a 

random walk. 

             

 

 

 

 

 

The motivation here is to handle pdfs of high dimensionality.  Figure 3 shows how the 

Hamiltonian method copes with a 16D Gaussian distribution with a fair degree of correlation 

among the variables.  The covariance matrix of the target pdf is a circulant matrix with rows 

whose elements are –0.2, 0.0, 0.4, 1.2, 2.5, 4.0, 5.0, 4.0, 2.5, 1.2, 0.4, 0.0, -0.2, with the 

maximum value on the diagonal [6].  The figure shows that the Hamiltonian method does a 

good job of sampling this pdf with only 15 trajectories, or 61 function and gradient 

evaluations.  The maximum Hamiltonian length is 3 for this example.   

The efficiency of Hamiltonian method is found to be optimised for  = 0.4 and Tmax = 8.  

The MCMC algorithm is tested by running the algorithm 1000 times with 50 Hamiltonian 

trajectories in each run.  The efficiency of the algorithm is calculated as the ratio of the mean 

square deviation from the mean of the parameter variance expected for ideal independent 

sampling method to that observed for the 1000 runs.  The efficiency of the Hamiltonian 

method under these conditions is 45% per Hamiltonian trajectory or 2.1% per function 

evaluation.  The latter number assumes that the computation time for gradient computation of 

 is the same as for  itself, which is often possible when the gradient is calculated using a 

code that represents the adjoint differentiation of the simulation code [5].  In the examples 

shown in Figs. 1 and 2, the Hamiltonian trajectories maintain constant H so that the 

Figure 2.  Hamiltonian trajectories for a 

two-dimensional asymmetric uncorre-lated 

Gaussian pdf, demonstrating the ability of 

the Hamiltonian trajectories to readily 

transverse the length of the target pdf. 

Figure 3.  Trajectories in a 2D 

subspace from a 16-dimensional 

correlated Gaussian pdf.  The contour 

shown is at the two-standard-deviation 

level for the marginalised distribution. 
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Metropolis rejection rate is nearly zero.  However, in this example, about 8% of the 

trajectories are rejected. 

4. DISCUSSION 

The previous problem involving a target distribution with modest correlations was treated 

in [6]. Using an isotropic trial distribution in the Metropolis algorithm, the efficiency was 

determined to be 0.11%. When the trial distribution is adaptively modified to have a 

covariance structure similar to that of the target pdf, the efficiency improved to 1.6%.  This 

latter efficiency is close to the upper limit on efficiency of the simple Metropolis algorithm 

for a 16D isotropic pdf, 1.9%.   

Comparison of these results with those for the Hamiltonian method indicates that the 

Hamiltonian method has the advantage of providing good efficiency without the need to 

supply an estimate of the covariance method.  Furthermore, as the number of dimensions 

increases, the efficiency of the simple Metropolis algorithm will drop as 0.3/n.  On the other 

hand, for pdfs in 64 dimensions with the same pdf, the efficiency of the Hamiltonian method 

is 1.9% per function evaluation and for 128 dimensions, it is 1.7%.  Thus, the Hamiltonian 

MCMC method appears to be well suited for sampling pdfs of high dimension. 

Almost the entire drop in efficiency comes from the Metropolis rejection of the 

Hamiltonian trajectories, which is the deterministic part of the algorithm.  The implication is 

that improvements in the Hamiltonian method can be achieved through improvement in 

calculating the deterministic Hamiltonian trajectories.  As with it any MCMC method, it is 

also possible to improve the performance of the Hamiltonian method for correlated and 

asymmetric pdfs through the usual means of adapting the algorithm to include estimates of the 

covariance structure of the target pdf [2].   
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ABSTRACT 

Tsunamis are normally generated by underwater earthquakes. The earthquakes are 

normally easily detected by seismographs. However, the earthquake may not always generate 

a tsunami. Further, the severity of the earthquake is not linearly related to the severity of the 

tsunami. The tsunami may be detected by a deep-sea pressure transducer communicating 

through a surface rider buoy, through satellites to a tsunami warning centre. The detectors are 

expensive to build and maintain, need to be placed near surface-rider buoys, and the 

placement of these detectors needs to be optimal. The provision of adequate warnings from 

the network of detectors, called the tsunami warning potential, depends on the network of the 

deployed detectors, the number of detectors used, and the response times of the detectors, 

warning centre, and of the emergency services which need to convey the warning. The 

warning potential is also a function of the number in the population at risk. The sensitivity of 

the warning potential is analysed for first-order effects, particularly with respect to time 

delays arising from detection and operation of the emergency services to deliver the warning 

to the population. The sensitivity of the warning potential to population shifts is also 

considered. Areas for improvement are identified, together with suggestions of how the 

system can be optimised. 

1.  INTRODUCTION 

In the past, tsunamis have caused considerable loss of life and destruction of property in 

coastal areas [5]. Various tsunami warning systems have been designed and used to detect the 

generation of a tsunami, and to warn of its approach to coastal regions [2]. Currently, seismic 

observations are used to detect the occurrence of earthquakes, act ‘at a distance’, and 

communications are rapid. 

The real-time detection of a tsunami is usually through direct observation. This is a 

hazardous operation, as the observer needs to be near the destructive zone, and the means of 

communication are often destroyed, disrupted or utilised by non-essential traffic. Fortunately, 

tsunamis are far less damaging in the open ocean and may be detected by suitable sea-floor-

mounted detectors [1]. These detectors use acoustic coupling to communicate to the surface, 

to wave-rider buoys which can then communicate via satellite [1]. 

The detectors and wave-rider buoys are expensive to make and are currently limited in 

number. Some six possible sites have been selected, after consideration of regular NOAA ship 

passages and other maintenance and cost factors (Tsunami Hazard Mitigation Federal/State 

Working Group, 1996 [THM]). The problem is to locate a small number of detectors at a 

mailto:r.braddock@mailbox.gu.edu.au
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selection of the possible communication-buoy locations, so as to give the maximum warning 

of the generation of a tsunami, i.e. the maximise the warning potential function. This problem 

has been formulated and solved; it leads to an integer programming problem which can be 

solved using standard enumeration techniques [6]. 

The solution for the optimal warning potential function depends on parameters such as 

population numbers at risk, and response times for detection of the tsunami and for conveying 

the warning to the population. These parameters can be considered to vary continuously in 

their ranges. The maximum warning potential function also depends on the number of buoys 

which are deployed, and this is a discrete variable with up to six buoy locations. 

The aim of this paper is to investigate the sensitivity properties of the maximum warning 

potential function to its input parameters. This will assist in determining the subset of more 

influential parameters with respect to sensitivity. The results will provide valuable feedback 

to the operation of a tsunami warning system. 

2. METHODOLOGY 

2.1. Model 

The locations of the six wave-rider buoys are denoted by bw, w = 1, ..., 6. The latitudes and 

longitudes for these positions are given in [1, 3] and the data will not be repeated here. The 

representative locations of the generation points are denoted by gu, u = 1, ..., 18 [3]. Major 

representative population centres were selected to provide a general estimate of the population 

at risk in the Pacific Ocean. These are located at points denoted by pv, v = 1, ..., 27 (see [3] for 

data). The population at each point pv is denoted by v, v = 1, ..., 27. 

Let    w
w

w

0, if buoy location b  is not occupied by a detector
y

1, if buoy location b  is occupied by a detector
  

The total number of detectors, Y, may be limited by capital costs or by maintenance costs. 

The vector y  of 0’s and 1’s then represents a particular deployment of detectors. 

Now consider the generation of a tsunami at time t = 0 at the generation point gu. Let 

                     *
u,v u d v u,vT t (y) t r t ,     (1) 

where 

 *
ut (y)  is the travel time of the tsunami from gu to the nearest occupied wave-rider 

buoy, 

 td is the detection time for processing, detecting and signalling to confirm the 

generation of the tsunami, 

 rv is the reaction time of the emergency services and population to move to safety, 

 tu,v is the travel time of the tsunami from the generation point to the population. 
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Note that *
ut (y)  and u,vt  can be calculated from travel time charts [2,3]. Also let 

                    u,v
u,v

v u,v

0, T 0
e (y)

, T 0


  
 (2) 

The total warning potential is then defined as 

                 
18 27 27

u,v v

u 1 v 1 v 1

E(y) e 18
  

   
   
   
    (3) 

Then the problem can be formalised as 

                 Max E(y)
y

  

subject to 

                 
6

w

w 1

y Y.


  (4) 

The optimal solution may be found using curtailed enumeration [6]. 

2.2. Sensitivity analysis 

The function  depends on *
ut (y),  td, rv and tu,v, all of which are continuous, and on Y, 

which is discrete. The travel times *
ut (y)  and tu,v are generally accurate to within  5%. The 

detection time td varies between 20 minutes to 50 minutes [1]. The reaction time for the 

general population varies between 1 to 5 hours, depending on time of day, and on the 

education and training of the emergency services and general population. 

The population at risk, v are technically discrete but sufficiently large to be taken as 

continuous. The population numbers are only estimates and will be assumed to be variable by 

 50% on the data in [3]. The number of buoys is definitely discrete, and  varies 

discontinuously on Y. 

A first-order-effects sensitivity analysis was performed on the function  using the One-at-

a-Time (OAT) Morris method [4]. The parameters used in the analysis are shown in Table 1 

and the ranges used are given above. It was found that the results were very similar with 

respect to variations in the travel times, *
u uvt and t .  The travel time t* is used to represent a 

generic travel time factor with a value range of  5%. The response times, rv, were assumed to 

be independent of location, and were replaced with a uniform response time r*. 

3.  RESULTS 

The results of the OAT analysis are given in Table 1, where the means (), standard 

deviations () and Morris ranking are given. The Morris ranking is calculated as the Euclidean 

distance in the (, ) plane, and the ranking is ordered according to this distance. The results 

are also summarised on the (, ) plot shown in Figure 1. 
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Table 1. Sensitivity analysis of the tsunami warning potential 

Factor Number Factor 
 

(Morris Mean) 
 

(Morris standard deviation) 

Morris 

rank 

1 td  0.009  0.005  11 

2 t*  0.011  0.042  4 

3 r*  0.105  0.331  2 

4 Y  0.092  0.347  1 

5 1  0.001  0.002  16 

6 2  0.004  0.003  14 

7 3  0.001  0.000  25 

8 4  0.013  0.009  7 

9 5  0.003  0.006  13 

10 6  0.019  0.010  6 

11 7  0.000  0.000   NR 

12 8  0.001  0.000  16 

13 9  0.001  0.002  20 

14 10  0.001  0.001  20 

15 11  0.000  0.000  NR 

16 12  0.002  0.001  16 

17 13  0.054  0.037  3 

18 14  0.002  0.001  16 

19 15  0.001  0.000  25 

20 16  0.001  0.000  25 

21 17  0.001  0.000  25 

22 18  0.000  0.000  NR 

23 19  0.010  0.008  9 

24 20  0.001  0.001  20 

25 21  0.001  0.001  20 

26 22  0.011  0.010  8 

27 23  0.001  0.001  20 

28 24  0.002  0.003  15 

29 25  0.024  0.013  5 

30 26  0.011  0.005  10 

31 27  0.003  0.008  12 

 

The results show that Factors 3 and 4 are ranked highest with respect to the sensitivity of 

the tsunami warning potential. Factor 3 is the response time of the emergency services, and 

whilst ranked second on the Morris ranking, it is almost equivalent to Factor 4. Factor 4 

relates to the number of warning buoys in the system, and this is a discrete variable. The 

warning potential increases rapidly when Y is small, but then displays the economic law of 

diminishing return. Thus, when most wave buoy sites are occupied, little increase in warning 

potential is obtained by adding another buoy. 

The third most important factor, Factor 17, corresponds to the population at risk in Tokyo, 

Japan. This is also the largest population centre in the data used to construct the warning 

potential. The Euclidean, or Morris, distance measure is much smaller than for the factors 
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ranked at 1 and 2, and it is much less important in the sensitivity analysis. All of the other 

population centres have a lower Morris distance, and the warning potential is relatively 

insensitive to variations in the estimated population. Some have not been ranked in Table 1 

due to the very small values of  and  obtained in the analysis. 

 

 

 

Figure 1. Sensitivity plane (, ) for the tsunami warning potential 

The calculation of the population at risk was only an approximation. It was used to 

illustrate the optimisation calculations to determine the optimum number of detectors [B and 

C]. This sensitivity analysis indicates that the use of population estimates is justified in 

calculating the tsunami warning potential. 

The factor t* is ranked fourth in importance by the Morris ranking system. This term 

represents the sensitivity of the warning potential to errors in the calculation of travel times of 

the tsunami. Note that the Euclidean or Morris distance between Factor 13 (ranked at 3) and 

t* (ranked 4) is considerable. Errors in the bathymetry and in calculating travel times will 

have little effect on the estimated values of the tsunami warning potential. 

4. DISCUSSION 

The tsunami warning potential is sensitive to the number of detectors used and to the 

response times of the emergency services in warning and moving the population at risk. 
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Increasing the number of operational detectors is mainly an economic problem; the 

technology exists and has been proven in use. 

Conveying warnings to populations at risk is a problem in many areas, particularly for 

natural disasters. For tsunamis, there is a need for the population at risk to be educated as to 

the nature of tsunamis and in the evasive action to be taken. There also need to be effective 

means of alerting the population. 
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SOLAR RADIATION AND RELATIONSHIP WITH OTHER 

METEOROLOGICAL VARIABLES 

 Zarzalejo L. F. & San Isidro, M. J  

Solar Energy in Buildings Project. CIEMAT.  

Avda. Complutense 22, 28040 Madrid. SPAIN 

Email: lf.zarzalejo@ciemat.es; mj.sanisidro@ciemat.es 

ABSTRACT 

The main goal of this paper is to be able to performance the solar radiation as a function of 

another meteorological variables: temperature, relative humidity and zenithal angle. To obtain 

this objective the linear Transfer function models will be used to represent these dynamic 

systems, where the output is solar radiation variable and the inputs are temperature, relative 

humidity and zenithal angle.  

1. INTRODUCTION. 

Meteorological information is critical to the assessment of the energy performance of many 

different types of system, especially those systems where indoor environmental control is 

important like buildings. 

Thermal capacity associated with buildings, climatic conditions, environmental factors, 

etc. are very important in determining the internal dynamic thermal response to the varying 

external conditions. Then the assessment of dynamic thermal storage effect forms a key 

aspect of the design of thermal energy systems, and performance is closely linked with 

weather variations. Such problems can only be handled by examining the dynamic 

characteristics of the natural energy supply system in relation to the dynamics of the external 

natural environmental factors creating the various internal demands, impacting on the 

dynamic thermal response characteristics of the basic system, be it a building, or other. 

Data of different complexity are needed at different stages of the design process. 

Bioclimatic analysis is an important tool used in the early stages of indoor environmental 

design to establish climatic priorities in design. Monthly mean climatic data on maximum and 

minimum dry bulb temperature, and associated humidity are plotted onto suitable charts 

related to human comfort, so the building design solution space can be more clearly identified 

in terms of principle. The implications are that external data are needed at the hourly level 

rather than at the monthly level, if dynamic implications described are to be properly studied. 

The higher level of complexity is the supply of full hourly data series for simulation [1, 2, 3] 

(containing hourly values of a wide range of relevant observed variables). Due to is very 

difficult to obtain some of these variables simultaneously, we propose in this paper a method 

to reproduce global solar radiation from temperature and humidity. 

mailto:mj.sanisidro@ciemat.es
file:///E:/Disco%20de%20PC-Toshiba/AAA-MIO/Disk_J/curriculum1/CV-LINKS/Proyectos/SAMO/01/2nd/mj.sanisidro@CIEMAT.es
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2. THE THEORETIC PROCEDURE 

We will study a system defined by temperature, relative humidity and zenithal angle as 

input variables and solar global radiation as output. Due to this system is not lineal (inputs are 

correlated and each one of them have important seasonal contribution) and it makes 

impossible to use linear Transfer functions directly, it is necessary to generate a new system 

of input variables [4, 5]. 

In order to solve these aspects, it is necessary to carry out: 

 A principal component analysis on the set of input variables. This kind of analysis is 

concerned with explaining the variance-covariance structure through a few linear 

combination of the original variables. The advantages of the principal components of a 

system are based on: they represent the directions with maximum variability, provide a 

simpler and more parsimonious description of the covariance structure and the set of 

principal components builds an uncorrelated system {zi}.  

 To lead the System towards the stationarity. The input variables involve in our system 

(temperature, relative humidity and Zenithal angle) are clearly not stationary due to 

seasonal component. It makes to suppose that their principal components {zi} follow 

being not stationary. We can find, by spectral analysis, the contribution of the seasonal 

part of each {zi}. In this way, Fourier analysis on each {zi} guide us to know which are 

the most important frequencies {wi}. These frequencies are chosen taking account that 

they represent at least the 85% of the total periodogram. Without loosing generality it is 

possible to suppose that each new variable {xi}, that results from eliminating the seasonal 

part to {zi} is stationary except to some degree of differentiation [4].  
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But these important frequencies relatives to the z-variable produce a seasonal part on the solar 

radiation {Rt} 
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2.1. Identification of transfer function models by prewhitening the input 

Suppose the suitable differenced input process xt is stationary and is capable of 

representation by some member of the general linear class of autorregresive-moving average 

models [4, 5]. Then, given a set of data, we can carry out our usual identification and 

estimation methods to obtain a model ARMA for the xt process tt
1

xx x)B()B(   . Then, to a 

close approximation, we can transform the correlated input series xt to the uncorrelated white 

noise series t. If we now apply this same transformation to yt to obtain tt
1

xx y)B()B(    

Then the model may be written ttt )B(v  . On multiplying on both sides by t-k and 

taking expectations, we obtain   2
kk     where    tktEk     is the cross covariance at 

lag +k between  and . 

In terms of the cross correlations, 
 

0,1,2,...k                   







  k
vk  



 

Poster  Session  271 

Hence, after prewhitening the input, the cross correlation function between the 

prewhitened input and correspondingly transformed output is directly proportional to the 

impulse response function. 

3. CASE STUDY 

During September and October months of 1998 solar global radiation, dry bulb 

temperature and relative humidity were measured in the DER-CIEMAT building (Madrid, 

40.45ºN - 3.73ºW - 667m.). From ten days of these measurements we have applied the 

previous theoretical procedure. 
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Fig. 1.- Dry bulb temperature. Fig. 2.- Relative humidity. 

A previous analysis of temperature and humidity provide us both of them are behaviour as 

normal distribution and they could be described by an order two autorregresive model: 

T(t)=0.6626*T(t-1)-0.2353T(t-2) H(t)=1.4208*H(t-1)-0.4285*H(t-2) 

as it shows Figs. 1 & 2. 

3.1. Results 

The principal component analysis provide us two principal components ; the eigenvectors 

and their corresponding eigenvalues for each component are: 

 1604.0,6919.0,7040.0v1    9811.0,1897.0,0370.0v2   

8646.11   9872.02   

These two components produce 95.06% of the variability of the initial inputs. 

In this way the new variables will be: 

Az1604.0Hr6919.0T7040.0z1   Az9811.0Hr1897.0T0370.0z2   

Where: 

T refers to dry bulb temperature 

Hr  refers to relative humidity 

Az  refers to zenithal angle of sun 
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The most important frequencies for each zi are 

1z  0244.0,1496.0,0249.0,0499.0,3241.0,5236.0,1995.0,2743.0,2493.0  

2z  3740.0,3491.0,3241.0,1995.0,2244.0,2992.0,2743.0,2493.0  

The stationary part of z1 behaviour as Autorregresive model of order 2. 

)t()2t(x2469.0)1t(x7418.0)t(x 1111   )t()2t(x1658.0)1t(x9226.0)t(x 2222   

Where xi is the corresponding variable to zi when its seasonal part has been eliminated. 

Eliminating from the output variable Y each one of the important frequencies relatives to each 

input, it is obtained two variables {y1,y2} relatives to the contribution of each input respect to 

the output. In this way, is calculated the i  

)2t(y2469.0)1t(y7418.0)t(y)t( 1111   )2t(y1658.0)1t(y9226.0)t(y)t( 2222   

In the Fig. 3 and 4, it is possible to see the cross-correlation function, for the first 40 lags, 

for each prewhitened input  i  and its corresponding transformed output  i . Note that the 

most important lags of the impulse response function between 1 and 1 are:{0, 11,19,35} and 

the corresponding between 2 and 2 is {12}. 

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

lag

c
ro

s
s
-c

o
rr

e
la

ti
o

n

error bands 

 
0 5 10 15 20 25 30 35 40

-0.2

-0.1

0

0.1

0.2

0.3

0.4

lag

c
ro

s
s
-c

o
rr

e
la

ti
o

n

error bands 

 
 

Fig. 3.- Cross-correlation between 1&1 

 

Fig. 4.- Cross-correlation between 2&2 

 

These above results lead us to say that: 

)12t(x7341.0)35t(x1932.0)19t(x1986.0)11t(x2418.0)t(x4961.0)t(y 21111   

except to some error (that can be due to random or some variable not considered). 
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The last stage consists to recover the 

physical initial variables coming back the 

previous steps. In the Fig. 5 you could see 

measured and simulated values of solar global 

radiation. We can consider this methodology 

as a start point to forecast, to fulfil, to 

resample, etc. some physical measurement. 
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Fig. 5.- Global solar radiation. 
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1. INTRODUCTION 

In this paper we review important concepts of sensitivity of the optimal decision in a 

decision problem with respect to the underlying utility function, the prior model and the 

sampling model. The discussion is based on Martín and Ríos Insua (1996) and Martín et al 

(2001). To address sensitivity with respect to the model we introduce an extension of the 

results in Martín and Ríos Insua (1996). We show how these concepts are applied to medical 

decision problems. While the concepts are general, particular implementations need to always 

be problem specific. Using the structure of a given problem the analyst has to decide which 

sensitivity measures are relevant and efficiently computed. In the context of two medical 

decision problems, which we argue are representative for a wide range of important 

applications, we discuss some general principles and common computational strategies. 

Bayesian decision theory and inference describes a decision problem by a set of possible 

alternatives a, a set of states, or parameters, , a prior distribution (), a model, or 

likelihood l(x|), for the observed data x, and a utility function u(a,,x). For illustration, in 

Example 1, a will describe on which days between pre-treatment and chemotherapy to collect 

stem cells from a new patient;  parameterizes a model l(x|) for the profile of a patient's 

CD34 count over the days before chemotherapy; x = (x1,...,xI) are observations from previous 

patients; and u(a,,x) = -c1 na - c2 Pr(A|a,), where na is the number of scheduled stem cell 

collections under design a, and A is the event of collecting a certain target number of stem 

cells. In this example, the utility function does not directly depend on the data x. In such cases 

we will sometimes write u(a,). The optimal decision a* is the action which maximizes the 

posterior expected utility. 

Among the many fine reviews of Bayesian decision theory are, for example, Berger 

(1994), French and Xie (1995), Ríos Insua and Ruggeri (2000) and references therein. 

Practical implementation of utility maximization is hindered by the fact that a* could 

possibly be very sensitive to the chosen prior (·), model l(·|·) and utility function u(·). A 

skeptical decision maker will require in addition to the optimal solution some description of 

the sensitivity of a* with respect to reasonable changes and uncertainties in the specification 

of prior, utility and model. Berger (1994) provides an excellent summary of some recent 

Bayesian literature in this area. Most authors, e.g. Wasserman (1992) and Ruggeri (1993), 

focus on prior sensitivity. Sivaganesan (1993) and Dey et al. (1996) study the sensitivity with 

respect to prior and likelihood. Greenhouse and Wasserman (1996) and Carlin and Pérez 

(2000) discuss applications to medical problems. 

mailto:pm@isds.duke.edu
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In Section 2 we introduce the application examples. In Section 3 we review basic concepts 

of Bayesian sensitivity analysis. In Section 4.1 we summarize the practically relevant parts 

concerning prior robustness of the optimal decision. In Section 4.2 we extend the results about 

prior robustness to model robustness. Section 4.3 considers sensitivity with respect to the 

chosen utility function. We conclude with a brief discussion section. 

2. EXAMPLES 

We apply the proposed sensitivity measures to two examples of medical decision making.  

Example 1: Optimal apheresis schedules: Palmer and Müller (1998) consider optimal 

apheresis designs for cancer patients undergoing high-dose chemotherapy. Between a pre-

treatment and start of the chemotherapy stem cells are collected to allow later reconstitution 

of white blood cell components. Depending on the chosen pre-treatment the first stem cell 

collection process (apheresis) is scheduled on the fifth or seventh day after pretreatment, 

respectively. The design problem is to decide for which of the remaining days further 

aphereses should be scheduled. Clearly the optimal solution should propose stem cell 

collections on days with high-predicted stem cell concentrations. The prediction is based on 

observations of stem cell levels (represented by CD34 antigen levels) from past patients. 

Palmer and Müller (1998) solved the problem for a particular model based on a rescaled 

gamma curve for the mean profile of each patient and a hierarchical prior probability model.  

Example 1 has some key features of a wide class of problems in medical decision making: 

(i) A parametric, hierarchical model to fit data from previous patients; (ii) The model is 

estimated by Markov chain Monte Carlo posterior simulation; (iii) The loss function contains 

one term relating to sampling cost and another term relating to the posterior (predictive) 

probability of some event of interest.  

Example 2: Optimal screening schedules for breast cancer: Parmigiani (1993) 

considers the problem of optimal screening schedules for a chronic disease, for example 

breast cancer. Design parameters are the age at which to begin regular screening and the 

frequency of screenings. Parmigiani (1993) define a four-state semi Markov process to 

describe the history of a chronic disease. The four states are “disease is absent or present but 

not detectable” (A), “detectable pre-clinical” (B), “clinical” (C) and “death“ (D). Deciding on 

an optimal screening schedule requires specifying in the utility function a tradeoff between 

the cost of screening and the probability of early detection of breast cancer. The 

recommended optimal screening schedule is very sensitive to the choice of these trade off 

parameters. Therefore a full sensitivity analysis, for example in the framework introduced in 

this paper, is crucial. 

3. BAYESIAN SENSITIVITY ANALYSIS 

In Bayesian Decision Theory and Inference, actions are ranked by expected utility/loss. 

The optimal decision a* is the action which maximize in a expected posterior utility, 

T(a;u,,l). However, T might be sensitive to changes in specification of prior, model and 

utility. The assessment of (u,,l) is far from simple, and the decision maker might demand 

ways of checking the impact of the given choices on the conclusion, i.e. a study of the 

sensitivity of T with respect to changes in (u,,l). 

We consider two distinct aspects of sensitivity in the decision problem:  
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The change of expected utility at a* as a function of the triple (u,,l), i.e. the operator 

(u,,l)T(a*; u,,l). Many recent papers in Bayesian robustness studied this problem 

focusing on changes in the prior  only, allowing  to range in various classes  of 

probability distributions, see e.g. Ríos Insua and Ruggeri (2000). In the full version of the 

paper we summarize some results from Martín and Ríos Insua (1996) concerning robustness 

with respect to changes in . We extend their results to apply to changes in the model l(·|·). 

Changes in expected utility when we replace the optimal decision a* by a suboptimal 

alternative b. If there is a triple (u,,l) such that (T(a*; u,,l) - T(b; u,,l))<0, then under these 

inputs the action b is preferred to the current optimal act a*. We study the operator  

(u,,l) T(a*; u,,l)-T(b; u,,l) when the utility function ranges over a parametric class. 

We shall study prior and model sensitivity, i.e. the first operator, from a local point of 

view. To quantify local sensitivity with respect to prior changes, Martín and Ríos Insua 

(1996) propose to consider the derivative T’ of T(a*; u,,l) with respect to  defined by: 

T(a; u,+h,l) - T(a; u,,l) = T’ (h) + (||h||), 

where the norm ||h|| is defined as bounded variation norm: ||h||=sup |h(A)|. For the 

remaining discussion it suffices to think of T’(·) as a rate of change in expected utility if we 

change the prior probability measure from  to +h. The use of such derivatives in Robust 

Bayesian Analysis was introduced by Diaconis and Freedman (1986) and developed, among 

others, by Ruggeri and Wasserman (1993) and Gustafson (2000).  

4. RESULTS 

We sketch briefly the results: 

4.1. Prior sensitivity 

We shall study changes in expected utility when varying the prior probability model : 

decision a* utility u and the model l remain fixed. The practical impact of the computed prior 

sensitivity measures is that large values tell the decision maker that any conclusion should be 

strictly viewed as applicable to the particular prior assumptions. Some more careful prior 

elicitation might be in order. On the other hand, low values imply that the conclusions can be 

considered reasonably robust against changes in the prior probability model. 

We assume that the information about the probability distribution allows us to constrain it 

to a convex class  and applied some results from Martín and Ríos (1996) to Example 2. 

4.2. Model sensitivity 

We now change perspective and consider the change in expected utility when both, prior  

and model l, vary over a certain class. From a decision theoretic point of view model l and 

prior  are indistinguishable in the sense that the optimal decision depends on either only 

through the product l(x|)(). In other words, the appropriate way to define a class of 

changes in prior and model jointly is to consider a class within which the posterior p(|x)  

l(x|)() can vary. This implicitly defines uncertainty on prior and model. 
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As in the last section, we will define a measure of sensitivity by the supremum over a 

certain class of a derivative with respect to a change in the posterior distribution. We obtain 

some results for problem with a structure similar to Example 1.  

4.3. Sensitivity with respect to the utility function 

In this section we study the change in T(a*; u,,l) - T(b; u,,l) as we vary the loss function 

and b. We focus on utility functions of the form  

Tr (d)=-rnd -f(d) 

which include a tradeoff between one term related to sampling cost and another term 

containing the posterior (predictive) probability of some event of interest. Our interest in this 

section is to know how much can vary the term related to sampling cost without change the 

optimal decision. We use a parametric class of loss functions with parameter r. We illustrate 

the ideas with Example 1. 

5. CONCLUSIONS 

We adapt Bayesian sensitivity analysis techniques to medical decicision problems. In this 

class of problems it is particularly important that uncertainty in the inputs should not 

drastically affect the optimal decision, and to understand the nature of the impact if it does. 

The utility (or loss) funciton in such problems typically include components related to the 

different points of view of the involved decision makers (patients, doctors, administrators, 

etc). The proposed sensitivity analysis helps to study the impact of different believes and 

choices on the final conclusion. 
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ABSTRACT 

Catalyst emissions from Fluidizing Catalytic Cracking Units have the potential to impact 

significantly on the environmental compliance of oil refineries.  Traditionally it has been 

assumed that gas velocity and fine particles significantly impact on emission levels.  Through 

the use of a simple fluidized bed model, sensitivity analysis was conducted to identify the key 

operating parameters that influence emission rates.   It was found that it is actually the coarse 

size fractions and particle characteristics such as size and density that are the most influential 

factors for emission rates. Further work is needed to identify how these parameters can be 

altered during normal operations to reduce catalyst emissions. 

1. INTRODUCTION 

The petroleum industry currently employs Fluidizing Catalytic Cracking Units (FCCU's) 

as the major tool in producing the gasoline needs from crude oil.  FCCU’s typically consist of 

a rising main where the chemical reactions between catalyst and hydrocarbon occurs, a 

reactor to separate the product and catalyst and a regenerator to re-charge the used catalyst. 

The regenerator is a fluidized bed used to combust coke from the used catalyst, with cyclones 

to remove particles from the flue gas stream before venting to the atmosphere.  The recharged 

catalyst then re-circulates through the rising main and the process is continued.  Refer to [1] 

for details on fluidization engineering. 

In recent years, fine particle emissions from industry have been identified as important 

contributors to poor environmental and health standards across the United States [2].  With 

increasing demands for cleaner air, catalyst emissions from FCCU's have the potential to 

impact significantly on the environmental efficiency of the overall refining operation [3]. 

Currently, FCCU's are designed and operated in such a way as to maximise output and 

profitability of the refinery [4].  Thus there is a need for the relationships between current 

operational strategies and air pollution to be better understood.  

2. METHODOLOGY 

Matlab was used to develop a model to predict catalyst emissions from the fluidized bed, 

through the use of operating parameters of the system.  The objective of the model was to 

produce qualitative trends, rather than to be a tool for representative emission estimates. 
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2.1. Model Background 

Fluidization is an extremely large area of research, in which a wide number of different 

approximations and models are used to predict all aspects of the system. However, 

fluidization is still to a large extent not fully understood [5].  The complexity and accuracy of 

each model is dependent on the conditions and underlying assumptions used to develop and 

construct each model.  To overcome this, a detailed literature review was completed to 

identify the key areas important to fluidization. From here a simple model was developed to 

link a large number of individual equations, dealing with such phenomena as entrainment, 

elutriation, cyclone efficiency, and bed effects, in order to develop a basic emission model for 

an FCCU fluidized bed.  Further detail can be found in [6].  Worked examples from the 

literature were used to validate the model and test the accuracy of the output.  Once the model 

was operating correctly, real life FCCU operating conditions were used to track emission 

trends.   

2.2. Sensitivity Analysis 

The New Morris Method, as developed by Campolongo [7], was used to test the model's 

input parameters for sensitivity.  Campolongo's [7] New Morris Method is an extension of the 

original Morris method extended to identify second order interactions between input 

parameters.   

The software developed by Campolongo [7] allows a Mu () and standard deviation from 

the Morris Method, as well as a new parameter, Lambda (), to be determined for the input 

factors of the model. Mu () allows the overall influence of the factors to be determined, 

while the standard deviation identifies factors with possible interactive effects.  The new term, 

lambda, provides a global sensitivity measurement for 2-factor interactions [7].  The software 

requires the identification of the input factor, and the range of values to be set for these factors 

(text files), number of sample runs, the discretisation of the parameter space, and the output 

file (text file) 

Input factors were determined as those input parameters, which could be physical changed 

in an FCCU.  Table 1 below lists the 12 parameters and their boundary conditions.  In 

addition to those boundary conditions, a sample run of 10 with a parameter space dicretisation 

of 0.01 was used for the analysis. 

Table 1: Boundary conditions for each parameter for the FCCU model 

Factor Parameter Lower bound Upper bound 
1 Bed Velocity (m/s) 0.1 1.5 

2 300m size fraction (% mass) 0.001 0.20 

3 200m size fraction (% mass) 0.001 0.40 

4 100m size fraction (% mass) 0.05 0.60 

5 80m size fraction (% mass) 0.1 0.90 

6 60m size fraction (% mass) 0.1 0.90 

7 40m size fraction (% mass) 0.05 0.60 

8 20m size fraction (% mass) 0.001 0.40 

9 1m size fraction (% mass) 0.001 0.20 

10 Feed rate (kg/s) 1 350 

11 Catalyst density (kg/m3) 1197 1323 

12 Shape factor (perfect sphere = 1) 0.70 1 
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3. RESULTS 

The following results were obtained from the New Morris Method software written by 

Campolongo [7].  

As seen in Fig. 1 there appears to be a a wide spread between all parameters.  In general all 

parameters have a high mu and standard deviation, impling some sensitvity towards the 

output, with factors 12 and 10 being the most sensitive. 

   Mu

Standard Deviation

20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

40

45

50

1
2

3

4

5

6

78

9

10

11

12

 

Figure 1: Plot of the Standard Deviation vs mu from using the Morris Method 

3.1. New Morris Method 

 

Table 2: Output from the New Morris Method 

Pair lambda Pair lambda Pair lambda Pair lambda Pair lambda 

1,2 3428 2,6 2508 3,11 28414 5,10 20246 8,9 6884 

1,3 15794 2,7 2841 3,12 9499 5,11 12833 8,10 20028 

1,4 14366 2,8 23382 4,5 4689 5,12 5416 8,11 16037 

1,5 1863 2,9 24240 4,6 21862 6,7 4723 8,12 7820 

1,6 16381 2,10 10933 4,7 22257 6,8 23529 9,10 17066 

1,7 8253 2,11 12479 4,8 2676 6,9 22324 9,11 12652 

1,8 3479 2,12 31550 4,9 2991 6,10 3902 9,12 9184 

1,9 28207 3,4 4981 4,10 23353 6,11 4147 10,11 8888 

1,10 9222 3,5 2702 4,11 24453 6,12 17377 10,12 31257 

1,11 14631 3,6 2741 4,12 11766 7,8 21941 11,12 3452 

1,12 12132 3,7 27127 5,6 20570 7,9 3917   

2,3 13429 3,8 19996 5,7 2804 7,10 3971   

2,4 20545 3,9 11418 5,8 2855 7,11 23312   

2,5 8163 3,10 3725 5,9 28919 7,12 12887   

 

The lambda values seem to be very high for all factor pairs.  There are however, several pairs 

that are much higher than the others, these can be found in bold in Table 2. 
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4. DISCUSSION 

The overall sensitivity analysis (Morris Method) indicates that the shape factor of the 

particle and feed rate of catalyst into the fluidized bed are the most sensitive parameters for 

air emissions.  Surprisingly, coarse particles (300 and 200m), which are not very prevalent 

in catalyst make up, appear to have a relatively high sensitivity, higher than that of the 

smallest fines.  Conventional wisdom states that larger particles do not influence emissions 

rates, as they are captured by the cyclones and returned to the bed.  However, from the 

sensitivity analysis it appears that coarse particles do influence emission rates dramatically.  

Velocity, which is believed to be the most important factor when dealing with air pollution, 

is not very sensitive.  This may be due to the relationship between cyclone removal rates and 

inlet velocity.  As velocity in the bed increases, more particles are carried up into the gas 

stream, leading to high loading rates in the cyclone and high velocities, which in turn increase 

the removal efficiencies, causing less emissions to occur [8].  This is supported by the 

relatively low lambda value for all 2-factor interactions with velocity, except with fine 

particles, which are not captured by the cyclone due to their size. 

The New Morris Method indicates that the coarse particles have several key interactions in 

the bed.  In general, the larger particles interact largely with the finest particle sizes and 

particle density.  The presence of coarse particles may alter the availability of fines, which in 

turn would alter emission rates.  Due to their size, it is reasonable to assume that density 

would impact on their interactions in the bed, yet how this occurs is unknown.  It is possible 

that using catalyst with a larger percentage of coarse material may help to control emission 

levels better.  Further work is needed to study coarse particle interactions. 

The majority of the catalyst particles are in the 100 to 60m range, therefore interactions in 

this size range are very important.  These size fractions appear to have a generally high value 

for most 2-factor interactions.  In particular, their interactions with the finer fractions, feed 

rate and density are the most important.  These interactions can in part be explained by the 

sheer volume of this fraction in the bed - a slight change in density of this fraction would lead 

to an overall shift in the bed composition.  Flow patterns and other phenomena will also be 

changed by a small change in the characteristics of this, the most dominant species in the bed.  

Interestingly, the fines appear to only interact with the 80 and 60m size fraction, with very 

low interactions with the 100 and 40m fraction.  As yet no explanation can be given for this 

behaviour. 

As expected with a fluidized bed, the finer size fractions interact with other parameters, 

however these interactions are not as prevalent as commonly believed.  As expected, velocity 

and fines interact significantly, but this is due in part to the low removal efficiencies of 

cyclones for fine particle sizes.   

5. CONCLUSION 

The common belief that only fines and velocity affect emission rates from FCCUs is not 

supported by this work. The interactions of other parameters such as catalyst shape and 

density along with the concentration of large coarse particles are significant.  Further work is 

needed to identify exactly how and why these parameters are so influential. It is hoped that oil 

refineries can use this information to alter operational conditions in such a way as to lower 

particle emissions without expensive end of pipe control measures being utilized. 
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1. INTRODUCTION 

1.1. Neonatal jaundice and IctNeo system 

Neonatal jaundice is a common medical problem which arises in a healthy newborn 

because of the breakdown of excess red blood cells in his system. Bilirubin accumulates when 

the liver does not excrete it at a normal rate. Pathological jaundice may cause potentially 

serious central nervous system damages. Current recommendations try to balance out the risks 

of undertreatment and overtreatment [5], but the current protocol does not delimit clearly 

when it is best to start each treatment and which treatment to administer. As a consequence of 

this difficulty among others, the Neonatology Service of  Gregorio Marañón Hospital in 

Madrid suggested the development of a decision support system IctNeo to provide the doctors 

with an automated problem-solving tool as an aid for improving jaundice management. 

The development of the system has been very complex and time consuming, both the 

structuring of the diagram [2] and the elicitation of probabilities and utilities [4]. IctNeo finds 

a maximum expected utility treatment strategy based on an influence diagram (ID). Due to the 

computational intractability of its large ID, IctNeo incorporates some procedures to the 

standard evaluation algorithm [2]. A user-friendly interface allows for data entry of a patient 

already treated by the doctor. Then, we can compare the system recommendations and the 

doctor decisions in order to draw conclusions. 

1.2. The need for SA in IctNeo 

Once with prototype IctNeo, it is convenient to check the robustness to many elements 

embedded in it. SA facilitates answers to many questions: influence and importance of each 

variable and its domain, suitability of probability and utility assignments, whether the 

hypothesis of the functional form of the utility function is held, etc. It shows the extent to 

which the model represents the knowledge and where we must intervene to correct inaccurate 

features.  

In this paper we show how IctNeo conducts sensitivity analysis (SA). We start from the 

situation in which the doctor has provided the most appropriate value for each parameter 

(both probabilities and utilities), but has imprecision leading to upper and lower values of the 

parameter. Since we are interested in identifying a treatment strategy, we must distinguish 

between value sensitivity and decision sensitivity. 
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1.3. Difficulties of IctNeo ID 

The jaundice problem presents a lot of difficulties to conducting usual SAs: too many 

parameter candidates to be examined due to the size of the ID, many probabilistic 

dependencies, big domains of the variables, 6 attributes of the multiplicative utility function 

[1, 4]. The complicated structure of the diagram implies a hard definition of a strategy itself 

and the existence of many strategies. For those reasons and for explanation purposes, in this 

paper we reduce our initial ID to have only two decision nodes (see Fig. 1). 

 

Figure 1.1. ID of the jaundice problem. 

2.  METHODOLOGY 

2.1. Selection of parameters 

We interviewed the doctors to find out the most important factors of the jaundice problem 

and the assignments they felt more uncomfortable with. Basically, they are probabilities of 

some pathologies, probabilities of the utility function attributes, and some weights of the 

utility function [1]. Each of these 19 parameters for which the doctors desired to perform SA 

requires a range along which the parameter will be varied. For probabilities, we take the 
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interval centred at the baseline value with radius 0.15. For the weights, we take the intervals 

obtained in [4] where imprecise assignments when providing tradeoffs were allowed as a way 

of SA. These are narrower, the widest having a length of 0.18. 

2.2. Basic sensitivity analyses 

First, there is a kind of qualitative SA for every decision-making problem. It refers to the 

fact of whether we are solving the right problem. The problem identification is essential and 

for that, we perform SA with respect to the ID structure by careful thought, introspection and 

many dialogues with the experts. 

As far as quantitative SA is concerned, we often find the standard methods but applied in 

simple IDs, many from the robust Bayesian literature (threshold proximity measures, 

probability of a threshold crossing, entropy, identifying nondominated alternatives, etc). A 

detailed SA is difficult in big IDs as ours with a lot of parameters to be examined. In fact, 

most papers in the literature deal with rather simple problems, with few nodes (especially few 

decision nodes, leading to almost non-sequential models) and not very complicated utility 

function structures. 

We start with a one-way SA. For that, we solve the problem when one specified parameter 

is varied from the minimum value of its range to the maximum, with all other parameters held 

at their baseline values. The results are arranged in a graph called tornado diagram. The 

results show the sensitivity of the problem especially to parameters related to the risk of being 

admitted to hospital, social cost, perinatal asphyxia, and all weights of the utility function. All 

these parameters would need to be considered more closely (see [1] for details). 

2.3. Sensitivity based on expected value of perfect information (EVPI) 

One-way SA limits us to observe what happens only when one parameter changes at a 

time. Typically, we will want to explore the impact of several parameters at a time, finding 

out possible relationships among them. It is not rare, e.g., to find a problem sensitive to its 

entire parameter set but not to any individual parameter. Moreover, the procedures are 

focused either on value sensitivity, or on the probability of a decision change (without 

considering the associated expected utility changes), which can lead to overstate problem 

sensitivity.  

Felli and Hazen [3] introduce a new SA indicator based upon the EVPI that takes 

simultaneously into account the changes in the optimal value and in the preferred alternative. 

Also, it allows for studying multiple parameters simultaneously. Methodologically, EVPI 

represents a natural extension of probabilistic SA and, unlike the measures mentioned above, 

its calculation is consistent with the maximisation of expected value. 

Consider parameter set . The decision maker first solves the problem using 0, the value 

he feels most likely, obtaining the alternative a0 that maximises expected utility given that 

=0. But  is uncertain and there is some risk in using only that value to determine the 

optimal alternative. With others value of , some alternative other than a0 could yield a higher 

expected utility. The difference is maxaE(Va|)- E(Va0|). Averaging over all possible values 

of  we obtain the EVPI on : EVPI()=E [maxaE(Va|)- E(Va0|)]. 
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3. RESULTS 

This measure is approximated via Monte Carlo simulation generating N of  and averaging 

the resulting differences in expected utility [1]. For the 7 most outstanding parameters of the 

tornado diagram, the results are shown in Table 3.1, with N=100. We performed the analyses 

using a 200-MHz Pentium PC and the C++ random number generator. They were run within 

our system IctNeo. Expected utilities vary from 0 to 1000. The computation of each row 

meant 12 hours processing [1] 

Table 3.1. EVPI analysis of the jaundice problem. 

Parameter  Description EVPI() 

k1 Weight for economic cost  0.059 

8 Probability of a low social cost  0.085 

k2 Weight for risk of being admitted 7.725 

k3 Weight for injures due to treatment 8.267 

4 Probability of perinatal asphyxia 32.94 

k4 Weight for injures due to hyperbilir.  67.57 

9 Probability of a low risk of being admitted  139.684 

9, k3 These parameters jointly 127.529 

8, k2 These parameters jointly 157.413 

9, 8, 4 These parameters jointly 192.875 

k1, k2, k3, k4 These parameters jointly 347.284 

All parameters jointly  392.187 

 

The higher EVPI(), the more sensitivity to , the comparisons of values being made in the 

same units as the problem payoffs (as opposed to the other measures mentioned above). In our 

case, the jaundice problem is sensitive to its entire parameter set and to some joint variations 

of certain parameters, but it is not sensitive to most individual parameters. We might conclude 

that parameter interactions are important. Also, it may indeed be worthwhile to put 

considerable effort in modelling the uncertainty related to those parameters. 

4.  DISCUSSION 

We have tried to show how to undertake SA in a big problem by means of several tools. 

Most decision analysis software packages have built-in SA routines but they are too basic. For 

that reason we have implemented the SA method described based mainly on the EVPI. 

Remember that we are accounting for expected utility changes accompanying decision 

changes. EVPI is easily computed via simulation, being tractable even for large parameter 

sets.  
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1. SUMMARY 

CORSIM is a large simulator for vehicular traffic, and is being studied with respect to its 

ability to successfully model and predict behavior of traffic in a 36 block section of Chicago. 

Inputs to the simulator include information about street configuration, driver behavior, traffic 

light timing, turning probabilities at each corner and distributions of traffic ingress into the 

system.  

Data is available concerning the turning proportions in the actual neighbourhood, as well 

as counts as to vehicular input into the system, and internal system counts, during a typical 

day in May, 2000. Some of the data is accurate (video recordings), but some is quite 

inaccurate (observer counts of vehicles). The first goal of the research is to incorporate both 

types of data so as to derive the posterior distribution of turning probabilities and of the 

parameters of the CORSIM input distribution. These are useful in helping to adjust to 

situations of missing or incomplete data.  

The vehicles passing through an intersection are modelled with a product multinomial 

distribution, with turning probabilities specific to each intersection. The accurate data is 

introduced as restrictions on the model, reducing the actual number of latent variables. 

Analysis requires MCMC sampling, from both the turning probabilities at every intersection 

and from latent counts of vehicles at different locations. Prior information on turning 

probabilities is also used, when the data for an intersection is too limited.  

This posterior distribution on model inputs will then be used to study sensitivity of the 

computer model. Studying the uncertainty in model predictions is complicated by the fact that 

the CORSIM model operates close to feasibility constraints, and these constraints must be 

built into the uncertainty propagation through the model. 

This work is described in more detail in the article “Fast Simulators for Assessment and 

Propagation of Model Uncertainty,” also in these proceedings. The focus of this conference 

poster is on the computational aspects of this problem. In particular, we address: (i) the 

description of the full conditional distributions needed for implementation of the MCMC 

algorithm and, in particular, how the constraints can be incorporated; (ii) details concerning 

the run time and convergence of the MCMC algorithm; and (iii) utilisation of the MCMC 

output for prediction and uncertainty analysis concerning the CORSIM computer model. As 

this last is the ultimate goal, it is worth emphasising that the incorporation of all uncertainty 

concerning inputs can significantly affect the model predictions. 
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1. INTRODUCTION 

Temporal trends and spatial patterns in the state of the environment are often obscured by 

large year-to-year variation in climate conditions. This makes tools aimed at extracting 

anthropogenic signals from more or less noisy data highly relevant for environmental 

assessment and policy making. Aim of this paper is to investigate how sensitivity analysis 

(SA) methods can be employed to achieve model reductions that facilitate the interpretation 

of temporal changes in the state of the environment. In addition, it is investigated how 

sampling frequency and temporal resolution of the mechanistic model influences the analysis. 

The SA approach is here applied to a mechanistic model of runoff and nitrogen turnover. The 

SA methods employed include Principal component analysis (PCA) and Regression based SA 

methods [1]. 

2. THE MODEL 

The present case study considers a nitrogen turnover model (SOIL/SOILN). SOIL/SOILN 

are a chain of models to be implemented in series. SOIL is a hydrological model, which 

solves the mass and energy conservation balances at different layers of a soil with given 

characteristics (clay-sand ratio, soil depth, etc.) [2]. The inputs to the SOIL model are time 

series of daily meteorological data (precipitation, temperature, cloudiness, wind, etc.), given a 

geographical region and the soil physico-chemical properties. Outputs are daily time series of 

water content, water fluxes and temperature in the different layers of the soil. The SOILN 

model simulates major C and N-flows in agricultural and forest soils and plants [3] and 

provides, as a main output, the total nitrogen leached. The model is a point-scale model; it has 

a daily time step and simulates flow and state variables. Input variables are time series of 

daily meteorological data as in SOIL, management data and variables on soil heat and water 

conditions simulated by model SOIL. 

3. UNCERTAINTY AND SENSITIVITY ANALYSIS 

The main objective is the study of the SOILN module. The reference output is the total 

nitrogen loss averaged in a period of several years. So, from a very huge quantity of input 

data only a few global output values are of interest. Hence SA is applied to determine the 

hydrological data requirements with respect to the long-term average of nitrogen losses. This 

information will be useful for the lumping of SOIL model (the most computationally 
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expensive). Furthermore, the knowledge of the minimum quantity of data really necessary to 

implement SOILN model will also allow the use of measured hydrological data, instead of 

hydrological model simulations, as the input to SOILN. 

Input data representation 

A sensitivity analysis is performed with a single output variable (the average nitrogen 

leached) and time series of daily data for many years as the inputs. A total of 20 time series of 

daily data are fed from SOIL to SOILN: 5 time series respectively for water flow (WF), water 

content (WC) and temperature; transpiration from soil (transp); water flow in deep percolation 

(4 series), runoff (2 series), water flow in surface pools. To simplify, the hydrological time 

series in the different layers have been characterised by a limited set of parameters: firstly 

only the global averages over the period under consideration were considered. Subsequently, 

a more detailed representation of water content has been identified. The water content in 

different soil layers are summarised in frequency tables where the water content (%) is 

divided in 50 equally large classes and the number of days within each class is counted, with 

one table for each layer and month. 

Sampling methodology 

Since the hydrological time series have to fulfil the mass and heat conservation laws, the 

characteristic parameters of the series cannot be sampled in a purely random way. Instead, the 

SOIL model has to be applied to sample different replications of the hydrological time series. 

Such replications can be obtained using artificially generated 30-years meteorological data. 

Fixed soil conditions (sandy soil) and a fixed class of climate properties (climate of the 

southern part of Sweden) have been considered. A total of 1000 time series of meteorological 

data were simulated. Then 96 of them were selected, by choosing sample series that was 

spread out regarding mean value and coefficient of variation for precipitation. From these, a 

total of 96 realisations of hydrological time series have been generated with SOIL. 

SA methodology 

Regression/correlation based SA 

methodologies were used. In Figure 1 the SA 

scheme is represented by means of a flow 

sheet. The average nitrogen loss is used as 

response variable and regression models 

(stepwise regression analysis) are fitted to the 

simulation results. This kind of analysis 

allows studying sensitivity of nitrogen loss 

with respect to a variation in the properties of 

the hydrological time series. At the same 

time, regression models are reduced models 

mapping the main properties of the 

hydrological time series to the total average 

nitrogen loss. 

3.1. UA of the average nitrogen leached over 30 years 

The total average N-loss from the soil layer has been analysed. The distribution revealed a 

smooth behaviour [4]. The main statistical properties of the N-loss are shown in Table 1. The 

standard deviation is about 5% of the mean of the distribution. When the effect of reducing 
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Figure 1: SA scheme for the SOILN model. 
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time resolution in the 

input is analysed, the 

prediction of the N loss is 

affected by a systematic 

error in excess, 

significant already for the 2 days averaging (see Table 4 in section 3.3). This means that 

accurate predictions require high time resolution in the input data. On the other hand, the 

relative error of the N loss prediction with averaged input data is bounded at the 5% even for 

the 32 days averaging. This may be acceptable remembering that the prediction with coarse 

time resolution in the input time series is conservative and that the standard deviation of the 

prediction itself is of the order 5%, too. 

3.2. SA of SOILN to the hydrological time series 

With the average water flow at the surface AVWFsurf as the only explanatory variable, the 

regression model explains 68 % of the variation in the response variable. When the average 

water transpiration AVtrans is added to the model, the R-square increases to 76 % (Table 2). 

In Table 2 Standardised regression coefficients (SRC) are also shown. A reduced 

SOIL/SOILN model for the prediction of long term nitrogen leaching is represented by a 

linear model with SRC as coefficients and where inputs are the factors selected by the 

stepwise regression procedure. 

Next, the water content frequency tables from the first layer only were added to the list of 

explanatory variables. In order to synthesise the analysis, principal component analysis was 

applied. Principal component transformation has been done separately for each monthly 

frequency tables. Only components having eigenvalues larger than 1 have been considered. 

From the initial tables of 50 equally large frequency classes (600 frequencies as a whole), a 

reduced set of principal variables is obtained consisting of 72 elements. The residual 

correlation structure is much weaker: correlation coefficients rarely exceed 0.25 and never get 

over 0.4. On the contrary, in the unmodified input data set correlation coefficients larger than 

0.9 were present. Stepwise regression analysis (Table 3) has subsequently been performed for 

the principal components and the two 

factors highlighted in Table 2. The R-

square is now improved. Regression 

analysis results, i.e. the significance of 

the reduced model based on of the SCRs, 

can also be quite effectively interpreted 

in light of the mineralisation process 

occurring in soil. Mineralisation process 

is responsible of the transformation of N 

from ammonia (insoluble) to nitrate 

(soluble). The more effective 

mineralisation, the higher N-availability 

is and the higher N-leaching. 

Mineralisation has an optimal efficiency 

for water content in the interval 16-23%, 

and drops to zero for water content 

smaller than 7% and higher than 80%. 

Each principal component of the water 

# Entered R^2 Part. R^2 SRC Sound 

1 AVWFSURF 0.685 0.685 0.596 Y 

2 MAY_PC2 0.795 0.110 0.269 Y 

3 AVTRANSP 0.837 0.041 0.273 Y 

4 FEB_PC1 0.848 0.012 0.111 N 

5 SEP_PC2 0.860 0.012 -0.127 ? 

6 MAY_PC1 0.872 0.011 -0.106 N 

7 JUN_PC6 0.880 0.008 0.091 Y 

8 JUN_PC4 0.887 0.007 0.086 N 

9 OCT_PC3 0.893 0.005 -0.077 Y 

Table 3: Stepwise regression analysis for 

principal components of WC frequency tables. 

 Min Max Mean Std.dev 

N-loss [g (m2 day)-1] 0.0102 0.0135 1.144E-02 5.230E-04 

Table 1. UA of the total average N-loss. 

# Entered R**2 Part. R^2 SRC 

1 AVWFSURF 0.685 0.685 0.657 

2 AVTRANSP 0.759 0.073 0.32 

Table 2: Stepwise regression analysis using 

the global averages as explanatory variables. 
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content frequency table used for the regression analysis represents particular combinations of 

water content values, e.g. groups of water content smaller than 10% (small mineralisation), 

groups in the optimal range for mineralisation, etc. We would expect that principal 

components representing water content in the optimal range for mineralisation have a positive 

SRC and vice versa. In the last column of Table 3 the results of this 'soundness' test is shown 

(more details can be found in [4]). For many elements in the regression this test is positive, 

implying that mineralisation offers a quite good qualitative interpretation key of the effect of 

fluctuations in the water content on the N-loss. This also implies that the reduced model 

provided by SRC can be considered acceptable for the evaluation of long term leaching from 

soils. 

3.3. SA: Effect of time resolution of input data 

Model runs have been made by averaging the daily data obtained with the SOIL model at 

increasing time periods: 2, 4, 8, 16, 32 days averaging. The SA has been performed 

considering 4 input factors: the first three parameters identified in Table 3 to characterise the 

climatic-hydrological scenario and an additional parameter (Resol) representing time 

resolution, having the values: Resol=1, 1/2, 1/4, 1/8, 1/16, 1/32. The runs with averaged input 

data introduce a systematic error in excess for the prediction of the nitrogen loss (Table 4). In 

Figure 2 the standardised regression coefficients of the 4 factors are shown for the 

input/output data obtained by combining daily data runs with runs of increasing averaging. 

The SA has been performed by considering separately the runs with different averaging, in 

order to appreciate the increasing importance of averaging in modifying predictions. The SRC 

for Resol is negative: in fact, as the time resolution increases, the systematic error in excess 

tends to vanish, implying smaller values for the N-loss. Data averaging begins to be 

significant at the 4 days averaging and is prevailing starting from 8 days averaging. On the 

other hand, if the percentage change in the mean and standard deviation is considered, we can 

see that it does not exceed 5% even for the 32 days averaging. Moreover, the deviation of data 

is conservative. 

4. CONCLUSIONS 

In the present paper, a SA based approach is applied for the reduction of a nitrogen 

turnover model. Scope of the analysis was the assessment of hydrological data requirement 

for the prediction of long term nitrogen leaching from a soil. Starting from hydrological time 

series of daily data in the input, regression analysis allowed the identification of few synthetic 

parameters (global averages) allowing an explanation of more than 80% of the total model 
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Figure 2. SRC for the runs of daily data 

combined with increasing averaging. 

 Average St. dev. 

Daily data 1.14E-02 5.23E-04 

AVE_2 1.15E-02 5.26E-04 

AVE_4 1.15E-02 5.31E-04 

AVE_8 1.16E-02 5.28E-04 

AVE_16 1.17E-02 5.42E-04 

AVE_32 1.20E-02 5.49E-04 

Table 4: properties of the predicted N-loss. 
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output variation. At the same time regression models provided by SRCs can be taken as 

reduced models for long term nitrogen leaching. 
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ABSTRACT 

In many application researchers have to fight against uncertainties that arise from different 

sources and affect the output results. Among many methods implemented, sensitivity and 

uncertainty analysis (UA/SA) techniques are useful to address these problems. UA and SA 

could be performed through SimLab software that works in a Monte Carlo framework and 

supports the analyst in model output uncertainty assessment.  

1. INTRODUCTION 

Models are commonly used to analyse the outcome of impossible experiments, to 

investigate possible consequences of selected courses of action and to optimise choices. Many 

course of uncertainty affect all those activities and it is crucial for the analyst quantify the 

level of uncertainty as rigorously as possible. Furthermore, this quantification has to be 

supported by information on the relevant input factors responsible for a particular fraction of 

the overall uncertainty in the outcome. This information may be obtained via sensitivity 

analysis.  

Simlab 1.1 (Simulation Laboratory for Uncertainty and Sensitivity Analysis) is a useful 

tool capable of perform global quantitative analysis. This software is designed for Monte 

Carlo (MC) analysis and it is based on performing multiple model evaluations with 

probabilistically selected model input. The results of these evaluations are used to determine 

both the uncertainty in model predictions and the input variables that drive this uncertainty. It 

is also highly recommended as part of model validation, even where the models are used for 

diagnostic purposes, as an element of sound model building. SimLab allows an exploration of 

the space of possible alternative model assumptions and structure on the prediction of the 

model, thereby testing both the quality of the model and the robustness of the model based 

inference (see Giglioli et al. 2001). 

This software is an update and user-friendly version of PREP and SPOP implemented at 

JRC during last years. SimLab is currently used by institutions and research centres in applied 

business and environmental statistics test cases. This software allows the definition of the 

input factors distribution and the sample generation according to a specific method (variance-

based, regression or screening). This choice (see also Campolongo et al. 2000a) depends on 

the objectives of the analysis and on the characteristics of the input data. SimLab can execute 
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an internal model or could be linked to an external application that represents the environment 

of the model. Finally, it performes uncertainty and sensitivity analysis.  

For more information about the methods implemented and the applications examples see 

Saltelli et al. 2000.  

Follows a description of the software and its capabilities. 

2. DESCRIPTION OF THE SOFTWARE 

SimLab runs under Windows/NT, and the memory required is at least 32 Mb. Its user-

friendly menu allows different UA and SA strategies to be selected. An on-line help is also 

available to the user. 

The examples included in SimLab as demo are: a linear model, the Ishigami function, 

Sobol G function, the Level E model. The first three are simple analytic formulae, while the 

fourth is a model of medium complexity (solves a system of Partial Differential Equation). 

For other examples about SimLab applications see SimLab 2000. 

SimLab is designed for computing Monte Carlo Analysis that consists of five steps: 

1. selection of ranges and distributions for each input factors; 

2. generation of a sample from the ranges and distributions according to a specific method 

(i.e. random, FAST, Morris…) 

3. evaluation of the model for each element of the sample; this phase could require high 

computational cost, depend on the complexity of the model; 

4. uncertainty analysis (i.e. confidence bounds, mean, standard error and histograms); 

5.  sensitivity analysis. 

These steps are implemented through three modules: Pre-processor, Model specification 

and Post-processor modules (see Figure 1) that are analysed in the following sections (see 

also SimLab 2000). 

 

Figure 1: SimLab. The three vertical panels correspond to the three modules 
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2.1. Prep Panel 

The Pre-Processor module allows the user to define the list of factors that represents the 

input of the model, to specify the distribution/parameter assumptions on each factor and the 

correlation structure (see Figure 2).  

A wide range of distributions is available (Normal, Log-normal, piecewise (includes 

uniform), Log-uniform, Weibull, Exponential, Gamma, Beta, and Triangular) as well two 

types of correlation structures: rank-correlation based (Iman and Conover (1982)) and "Tree 

correlation with copula" (Meeuwissen and Cooke (1994)).  

 

Figure 2: Prep-processor module, list of factor and methods 

The next step is the sample generation according to the type of methodology the analyst 

wants to use. Different choices are available: random sampling, quasi-random LP, Replicated 

Latin Hypercube, Latin Hypercube, classic and extended FAST (Fourier Amplitude 

Sensitivity Test), Morris and fixed sample. The last one is useful in the testing phase to run 

the system with known inputs.   

When the sample is generated, for each factor, descriptive statistics and information related 

to correlation characteristics are estimated. The sampling distribution of each factor and the 

correlation characteristics amongst the factors can be visualised, by using histograms, cobweb 

plots (Cooke et al. 2000) or scatter plots respectively. 

2.2. Model specification module 

This module manages the link between the software and the external program (for example 

Excel, Matlab or a user built executable) that processes the samples. There are two 

possibilities of simulation here: 

1. the user can link SimLab to his/her external model via executable files or statistical and 

mathematical packages; 

2. the user can define a model within SimLab by using a simple equation editor (formula 

parser).  

When the model is complex the first possibility is clearly the only one available. SimLab 

strives to facilitate as much as possible the troublesome task of interfacing a given model. 

The external model performs model evaluation at each sample point, and yields a set of 

model outputs. 
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2.3. Spop Panel 

The Post-processor module performs the final steps of the MC analysis, UA (see Figure 3) 

and SA (see Figure 4).  

For the UA, this module provides statistics, confidence bounds, percentiles, histograms and 

cumulative plots of the model outputs.  Non-parametric techniques are also implemented (i.e. 

Tchebycheff and Kolmogorov confidence bounds).  

SA techniques implemented in this section are variance-based (see Chan et al. 2000), 

regression based (see Helton et al. 2000) or screening based (see Campolongo et al 2000b). 

For the extended FAST, the Post-processor module also incorporates the computation of 

sensitivity indices by groups; that is, factors are partitioned into groups according to (known) 

similar characteristics. When the inputs are correlated special indices are performed (see 

McKay, 1995 and Bedford, 1998).   

 

Figure 3: Post processor module: an example of UA 

 

Figure 4: Post processor module: an example of SA with FAST method 

3. CONCLUSION 

Simlab 1.1 (Simulation Laboratory for Uncertainty and Sensitivity Analysis) is a user 

friendly and flexible tool capable of performing global quantitative analysis in a Monte Carlo 

framework. The results obtained from uncertainty and sensitivity analysis are used to 

determine both the uncertainty in model predictions and the input variables that drive this 

uncertainty. This methodology is also highly recommended as part of model validation, even 

where the models are used for diagnostic purposes, as an element of sound model building. 
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ABSTRACT 

During the last years a software tool has been developed at the Universidad Politécnica de 

Madrid (CTN-UPM) to perform Uncertainty and Sensitivity Analysis (UA-SA) of complex 

computer model simulations, in the framework of a probabilistic approach to Performance 

Assessment of Nuclear Waste Repositories. Nevertheless, this tool is intended to be useful for 

any kind of computer model that tackles a problem from a probabilistic point of view. 

MayDay implements the most common and well-known UA and SA techniques in a user-

friendly environment. This paper summarises the statistical, computational and graphical tools 

implemented in the code and their application in the context of a Probabilistic Safety Study. 

1. INTRODUCTION 

In the past, it was usually complicate and tedious to perform UA and SA since the common 

tools to perform it were spread over several commercial and non-commercial programs. The 

intention pursued when developing the first version of MayDay (MayDay1.0) [1] was to 

collect in a single interactive program a good selection of those tools, in order to help the 

analyst of probabilistic simulation computer code output to study the results of his code. The 

evolution of the main software trends during the last years has forced us to move from a 

UNIX based development platform to a Microsoft WINDOWS development platform. In 

what follows we will show the main features of the code.  

2. MAYDAY AS A WINDOWS PROGRAM 

MayDay3.0 [2] is a 32 bit application that inherits, and improves in some cases, the 

capabilities of MayDay2.0, the previous version of the code developed under Digital UNIX. 

One of the main tools inherited from the previous versions of the code is the binary file that 

contains the results of the probabilistic simulations to be studied. The code is totally 

developed in C++ according to the technology OOP (Object Oriented Programming). It runs 

under Windows 9X, NT and 2000 platforms.  

MayDay3.0 is a multiple document interface application. This feature allows the user to 

open and analyse simultaneously several data files, and to compare the results of the same 

statistics when applied to the data in those different files. Additionally, dialog boxes are non-
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modal, what allows the user to compute simultaneously different statistics on the data of one 

or several data files. 

 

Figure 1.- MayDay´s main window and the variable selector accessing two different data files 

3. PERFORMING UNCERTAINTY ANALYSIS WITH MAYDAY 

An UA should provide the user the most precise numerical and graphical information 

about the output variables, conditioned essentially by the sample size. That information will 

be used to check the compliance of the facility with the safety criteria. So, it is necessary to 

provide appropriate statistics and graphics to be able to perform that checking. The statistics 

and graphics implemented in MayDay to perform UA are: 

 General or population statistics (the mean, the Tchebychev, Guttman and normal 

confidence intervals for the mean, the variance, the geometric mean, the skewness 

coefficient, the kurtosis, the median, the geometric standard deviation,...). 

 Order statistics and their 95% confidence intervals. 

 The histogram. 

 The empirical distribution function, its complementary curve, and their Kolmogorov 

confidence bands for different confidence levels. 

The code lists the values of any input parameter or output variable. Those values may be 

ordered according to the run number or from the smallest to the largest. All these tools are 

included in the 0-Var model. In addition to all these tools, the Kolmogorov, Chi-square and 

Lilliefors goodness of fit tests are also available in the code. The purpose of including these 



 

Software Demonstration  311 

tests in MayDay is twofold. They may be used to check if input parameters have been 

properly sampled (the sampled values fit properly their theoretical distributions), and they 

may be used to check if the output variable samples fit any common distribution (normal, log-

normal, exponential,...). The last tool included in the 0-Var model is the Shapiro-Wilk test. 

this test is used to check the normality of the sample mean in order to decide if the confidence 

interval under the condition of asymptotic normality of the sample mean may or may not be 

used. 

 

Figure 2.- Plot of the evolution of the mean versus increasing sample size. 

Many times, as is the case of the Performance Assessment of a Nuclear Waste Repository, 

most of the outputs to be studied are dynamic. This fact forces the user to perform the UA on 

those dynamic variables. MayDay3.0 implements tools to show graphically the evolution of 

the uncertainty versus time. As an example, the user may plot the evolution versus time of the 

95% of a dynamic output variable as much as its 1- confidence interval, provided that the 

sample size is large enough to get that information. 

4. PERFORMING SENSITIVITY ANALYSIS WITH MAYDAY 

An important problem related to the concept 'Sensitivity Analysis' is its interpretation. 

There is no unique interpretation of sensitivity. Intuitively, sensitivity is related to the concept 

of the partial derivative of an output variable with respect to an input parameter in a specific 

point, nevertheless this interpretation is not suitable to tackle the problem of sensitivity in a 

probabilistic environment. In what follows there is a series of different interpretations of 

sensitivity and the statistics and additional tools implemented in MayDay to cope with those 

different interpretations of sensitivity. 

From a probabilistic point of view the most straightforward interpretation of sensitivity is 

correlation. Correlation is strongly related to linear regressions and measures the strength of 

the linear behaviour of one variable vs. another one. MayDay includes the Pearson correlation 

coefficient to measure correlation (1-Var model). The non-parametric version of correlation 
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measures the strength of the monotonic behaviour of one variable vs. another one; the 

Spearman rank correlation coefficient is implemented with that purpose (1-Var model). An 

extension of this interpretation of sensitivity is the multiple regression model. In this case an 

output variable is assumed to be explained through a linear combination of several input 

parameters. The main difference with simple correlations between one input parameter and an 

output variable is that possible correlations among the input parameters may dramatically 

affect sensitivity. The Partial Correlation Coefficients (PCC's) and Standardized Regression 

Coefficients (SRC's) related to Standardized Regressions are implemented in MayDay to 

tackle this interpretation of uncertainty (N-Var model). The extension to monotonic models is 

also considered with the Partial Rank Correlation Coefficients (PRCC's) and the Standardized 

Rank Regression Coefficients (SRRC's) in the N-Var model. A check on the importance of 

different input parameters is given by appropriate hypothesis tests in the case of the 

correlation statistics and by the coefficient of determination (R2) in the case of the statistics 

related to the Standardized Regressions.  

The techniques mentioned in the previous paragraph fail when they are used to analyse 

non-linear or non-monotonic models. Several parametric and non-parametric statistics are 

incorporated to the MayDay 1-Var model to measure sensitivity in these cases, some of them 

are: The Wilcoxon statistic, the two sample Smirnov statistic, the t statistic, the Kruskal-

Wallis and Smirnov k-sample statistics and the Cramer-von Mises statistic. These statistics 

are suitable to identify relationships between specific regions of an input parameter and an 

output variable, which is not necessarily associated to a linear or monotonic relationship. 

An additional interpretation of sensitivity is related to the influence of an input parameter 

on the final variance of an output variable. In this case an input parameter is important if it 

may be demonstrated that the uncertainty it is affected by is responsible of a large fraction of 

the output variable variance. The tool implemented in MayDay N-Var model to detect this 

type of sensitivity is the Fourier Amplitude Sensitivity Test (FAST). The last type of 

sensitivity considered in the SA that MayDay is able to perform is related to the change in the 

output variable mean and variance that may be induced by changes in the distribution of the 

input parameters. The latter interpretation is strongly related to the expected benefits of 

getting new information about the input parameters. Most of the input parameters involved in 

a Performance Assessment of a Nuclear Waste Repository are affected by knowledge 

Uncertainty; they are not random in a classical sense, but there is lack of knowledge about 

them. Additional research could improve the knowledge about them, so that their associated 

uncertainty could be reduced. In this case further research should be devoted to parameters 

that could induce a larger decrease in the output uncertainty or in the overall risk associated to 

the Repository. The estimators of impact in the mean and in the variance, are included in the 

MayDay N-Var model to deal with this interpretation of sensitivity.  

Finally, MayDay implements two graphical ancillary tools to perform sensitivity analysis 

the scatterplot and the contribution to the mean plot. 

4.1. References 
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