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Introduction

The knowledge base available for decision-making on contemporary environmental and 
sustainability issues is often characterised by an imperfect understanding of the complex systems 
involved. Decisions will need to be made before conclusive scientific evidence is available, 
while at the same time the potential error costs of wrong decisions can be huge. This societal 
context of knowledge production and use for decision-making and risk management implies an 
urgent need for explicit appraisal and consideration of all dimensions of scientific uncertainty 
(Funtwicz and Ravetz, 1990, 1993; Van der Sluijs, 2002; Van der Sluijs et al., 2008, Saltelli et 
al., 2013); [see also Chapters 26–28].

The transdisciplinary nature of science for sustainability poses additional requirements with 
regard to the systematic analysis, documentation and communication of uncertainty. When 
quantitative information is produced in one disciplinary context and used in another, we often 
see that important caveats tend to be ignored, uncertainties compressed and numbers used at 
face value (Wynne, 1992). Knowledge utilisation for sustainability issues requires a full and 
public awareness of the various sorts of uncertainty and underlying assumptions. Knowledge 
needs to be robust both technically and socially (Nowotny, 1999).

The past record of science for policy has shown that omitting uncertainty assessment and 
communication can undermine public trust in the science (e.g. Keepin and Wynne, 1984). An 
example concerns the Netherlands National Institute for Public Health and the Environment 
(RIVM). In early 1999, De Kwaadsteniet, a senior statistician, accused the RIVM of “lies and 
deceit” in their State of the Environment Reports and Environmental Outlooks. In a quality 
newspaper (Trouw) he criticised RIVM for basing their studies on the ‘virtual reality’ of poorly 
validated computer models, while RIVM presented these results as point values with unwarranted 
significant digits and without elaborating the uncertainties. A vehement public debate was triggered 
on the credibility and reliability of environmental numbers and models. The case got front page and 
prime time coverage in the mass media and led to a debate in the Netherlands parliament (Van der 
Sluijs, 2002). The RIVM went through a learning process that led to the development of guidance 
for uncertainty management in the institute (Van der Sluijs et al., 2008; Petersen et al., 2011).

In this chapter I will explain how such incidents have led to a revision of the approach to 
uncertainty. The next section outlines how the understanding of uncertainty has changed and the 
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implications this has for policy. This background explains why new transdisciplinary methods for 
evaluating uncertainty have been developed. The chapter then focuses on the Numeral, Unit, 
Spread, Assessment and Pedigree (NUSAP) framework and explains its key features. Pedigree is 
given particular attention as the innovative aspect of this post-normal science system [see Chapter 28].

Understanding uncertainty

In the early phase of its development, the field of uncertainty analysis mainly evolved around 
mathematical statistical methods such as sensitivity analysis and Monte Carlo techniques for the 
assessment of error propagation in model calculations. These tools address quantitative 
dimensions of uncertainty using sophisticated algorithms (Saltelli et al., 2000, 2008). Although 
these quantitative techniques are essential in any uncertainty analysis, they provide only a partial 
insight into what usually is a very complex mass of uncertainties involving technical, 
methodological, epistemological and societal dimensions. Quantitative methods can however 
be complemented with new qualitative approaches addressing aspects of uncertainty that are 
hard to quantify and were therefore largely under addressed in the past. In their combination, 
the quantitative and qualitative methods provide a richer diagnosis of uncertainty than each of 
these methods alone.

Over the past decades, an increasing body of conceptual and theoretical work in the field of 
uncertainty management has been compiled. Key insights from the field include:

•	 Uncertainty is partly socially constructed and its assessment always involves subjective 
judgement;

•	 More research does not necessarily reduce uncertainty, it often reveals unforeseen complexities;
•	 Some uncertainty is irreducible (intrinsic or practically);
•	 High quality scientific knowledge for policy making does not require low uncertainty;
•	 Uncertainty is a multi-dimensional concept involving quantitative (technical inexactness) 

and qualitative dimensions (i.e., methodological unreliability, epistemological ignorance 
and societally limited robustness), and it can manifest itself at different locations (e.g., 
context, indicator choice, model structure, parameters and data).

•	 In problems that are characterised by high systems uncertainties, ignorance, and high 
decision stakes the qualitative dimensions of uncertainty may well dominate the quantitative 
dimensions.

Most of present day methodologies and practices for addressing uncertainty focus exclusively on 
quantitative uncertainty in model parameters and input data. Methods to address qualitative and 
societal dimensions of uncertainty are absent or in their early stage of development. Uncertainties 
relating to model structure, model assumptions and model context are largely ignored.

Scientists, policymakers and stakeholders now widely hold that uncertainty management in 
environmental assessment is essential. However, in the practice of uncertainty management there 
is little appreciation for the fact that uncertainty is more than a number. There are many different 
dimensions of uncertainty and there is a lack of understanding about their different characteristics, 
relevance and relative importance. Even within the different fields of decision support (such as 
integrated assessment, environmental risk assessment, environmental impact assessment, policy 
analysis, engineering risk analysis and cost-benefit analysis), there is neither a commonly shared 
terminology nor agreement on a generic typology of uncertainties (Walker et al., 2003).

A better understanding of the various dimensions of uncertainty is needed in order to 
provide an improved theoretical foundation for uncertainty assessment. Improved 
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conceptualisation of uncertainty is desirable for a number of reasons. First, it will aid better 
communication amongst the many disciplines involved. In the current situation, different 
analysts use different terms for the same kinds of uncertainty, and some use the same term to 
refer to different kinds. This makes it difficult for those who have not participated in the actual 
work to understand what has been done. Improved conceptualisation of uncertainty will further 
provide for better communication among scientists, policymakers and stakeholders. A common 
belief is that policymakers expect scientists to provide certainties and hence dislike uncertainty 
in the scientific knowledge base. However, uncertainty is a fact of life and a better understanding 
of its key dimensions and their implications for policy choices would be likely to lead to more 
trust in the scientists providing decision support, and ultimately to better policies. Finally, a 
better understanding of the different dimensions of uncertainty and their potential impact on 
the relevant policy issues at hand would help in identifying and prioritising effective and efficient 
research and development activities for improving the knowledge base.

Van der Sluijs (1997) concludes that in the practice of uncertainty management in integrated 
modelling of climate change, major gaps exist in the systematic analysis of unreliability of the 
knowledge about input data, model parameters and model assumptions, and also in the analysis 
of uncertainty about model structure. A major obstacle is that tools for assessing these types of 
uncertainty and how these might affect the outcomes of assessments, are either not available or 
in their early stage of development. Only recently have new tools been developed that focus on 
the qualitative (methodological and epistemological) dimensions of uncertainty using methods 
of expert elicitation, quality assistance checklists (Risbey et al., 2005), Pedigree analysis (using 
multiple criteria [Chapter 30]) assessing the strength of various underpinning components of the 
knowledge base by self-review, peer review or extended peer review (Funtowicz and Ravetz, 
1990; Van der Sluijs et al., 2005a, 2005b, 2005c), and methods for the systematic identification 
and characterisation of critical assumptions in models (Kloprogge et al., 2011).

Addressing the multiple dimensions of uncertainty

Whereas quantitative methods are well developed, standardised and supported by handbooks 
(Morgan and Henrion, 1990, Saltelli et al., 2000, 2008) and software (@Risk, Crystal ball, 
Simlab, Analytica), qualitative and multi-dimensional methods have been demonstrated and 
tested but have not yet been widely disseminated and adopted. Multi-dimensional methods are 
those that address qualitative and quantitative aspects in a coherent way. They do so by assessing 
the technical (inexactness), methodological (unreliability), societal (social robustness), and 
epistemological (border with ignorance) dimensions of uncertainty, as shown in Table 29.1.

Numeral, Unit, Spread, Assessment, Pedigree (NUSAP)

NUSAP is a notational system, proposed in the context of post-normal science by Funtowicz 
and Ravetz (1990), which aims to provide an analysis and diagnosis of uncertainty in science for 
policy. The NUSAP system structures the systematic appraisal and communication of the 
various dimensions of uncertainty. It provides an heuristic for good practice addressing 
uncertainty in quantitative information. NUSAP has extended the statistical approach to 
uncertainty with methodological and epistemological dimensions by adding expert judgement 
of reliability (Assessment) and systematic multi-criteria evaluation of the underpinning of 
numbers (Pedigree). Examples of Pedigree criteria are empirical basis, methodological rigour, 
theoretical understanding, degree of validation and peer acceptance.
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Table 29.1  Dimensions of uncertainty

Dimension Type Can stem from or can be produced by

Technical Inexactness Intrinsic uncertainty: Variability; stochasticity; heterogeneity
Technical limitations: Error bars, ranges, variance; Resolution error 
(spatial, temporal); Aggregation error; Linguistic imprecision, 
unclear definitions

Methodological Unreliability Limited internal strength of the knowledge base in: Use of proxies; 
Empirical basis; Theoretical understanding; Methodological rigour 
(including management of anomalies); Validation

Epistemological Ignorance Limited theoretical understanding
System indeterminacy: Open-endedness of system under study; 
Chaotic behaviour
Intrinsic unknowability with active ignorance: Model fixes for reasons 
understood; Limited domain of validity of assumptions; Limited 
domains of applicability of functional relations; Numerical error; 
Surprises type A (some awareness of possibility exists) 
Intrinsic unknowability with passive ignorance: Bugs (software error, 
hardware error, typos); Model fixes for reasons not understood; 
Surprises type B (no awareness of possibility)

Societal Limited social 
robustness

Limited external strength of the knowledgebase in: Completeness of set 
of relevant aspects; Exploration of rival problem framings; 
Management of dissent; Extended peer acceptance/stakeholder 
involvement; Transparency; Accessibility
Bias/Value ladenness: Value laden assumptions; Motivational bias 
(interests, incentives); Disciplinary bias; Cultural bias; Choice of 
(modelling) approach (e.g. bottom up, top down); Subjective 
judgement

The NUSAP framework provides a means for synthesis and integration of findings on each of 
these dimensions, combining formal Monte Carlo and mathematical sensitivity analysis 
techniques with systematic qualitative uncertainty assessment. NUSAP enables providers and 
users of knowledge to be clear and transparent about its various uncertainties. This promotes 
critical reflection on the strengths and weaknesses of the underlying knowledge base by users of 
all sorts (e.g., experts, lay public) and thereby supports an extended peer review process. It aims 
to provide those who produce, use and are affected by policy-relevant knowledge with a set of 
diagnostic tools for a critical self-awareness of their engagement with that knowledge.

NUSAP extends the statistical approach to uncertainty (inexactness) by incorporating the 
methodological (unreliability) and epistemological (ignorance) dimensions using expert judgement 
of reliability (Assessment) and systematic multi-criteria evaluation of the process by which numbers 
are produced (Pedigree). Numbers are provided with a separate qualification for each dimension 
of uncertainty, allowing nuances of meaning about quantities to be conveyed concisely and 
clearly, to a degree that is quite impossible with reliance on statistical methods alone. NUSAP 
captures both quantitative and qualitative dimensions of uncertainty and enables one to display 
these in a standardised and self-explanatory way. The basic idea is to qualify quantities using the 
five aspects of the NUSAP system: (i) Numeral, (ii) Unit, (iii) Spread, (iv) Assessment and 
(v) Pedigree. Each of these dimension, or numeric qualifiers, is discussed in turn.

First is the Numeral, which is normally an ordinary number, but, when appropriate, can be 
a more general quantity, such as the expression “a million” (which is not the same as the 
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number lying between 999,999 and 1,000,001). Second is the Unit, which may be of the 
conventional sort, but which may also contain extra information, such as the date on which  
the Unit is evaluated (e.g. a common qualification for monetary values subject to inflation). 
The third category is Spread, which is a generalisation from the ‘random error’ of experiments 
or the variance of statistics. Although Spread is usually conveyed by a number (either +, % or 
‘factor of’) it is not an ordinary quantity, because its own inexactness is of a different sort from 
that of measurements. Methods to address Spread can be statistical data analysis, sensitivity 
analysis or Monte Carlo analysis, possibly in combination with expert consultation.

The remaining two qualifiers constitute the more qualitative side of the NUSAP framework. 
‘Assessment’ expresses qualitative judgements about the information. In the case of statistical 
tests, this might be the significance level; in the case of numerical estimates for policy purposes, 
it might be the qualities of optimism or pessimism. In some experimental fields, information is 
supplied qualified by two + terms, of which the first is the Spread, or random error, and the 
second is the systematic error which must be estimated on the basis of the history of the 
measurement, and which corresponds to the use of Assessment in NUSAP. A frequently 
observed pitfall is to wrongly think that systematic error must always be less than any experimental 
error, or else a stated error bar would be meaningless or misleading. However, in many real life 
cases systematic error can be well estimated only in retrospect, and then it can produce surprising 
results that are far outside the error bar of the previously published number(s).

The fifth and final aspect of NUSAP is the Pedigree. This conveys an evaluative account of 
the production process of information, and indicates different aspects of the underpinning of the 
numbers and scientific status of the knowledge used. Pedigree is expressed as a set of criteria and 
assessed using qualitative expert judgement. Risbey et al. (2001) document a method to draft 
Pedigree scores by means of expert elicitation, on which Knol et al. (2010) provide guidance as 
to good practice. Arbitrariness and subjectivity in measuring strength are minimised by using a 
Pedigree matrix to code qualitative expert judgements for each criterion into a discrete Numeral 
scale from 0 (weak) to 4 (strong) accompanied by linguistic descriptors or modes.

Pedigree and its assessment

Each special sort of information has its own aspects that are key to its Pedigree, so different 
Pedigree matrices using different criteria can be used to qualify different sorts of information. 
An overview of the literature on Pedigree matrices and examples of questionnaires for eliciting 
Pedigree scores is available online at http://www.nusap.net. Ellis et al. (2000) have developed 
a Pedigree calculator to assess propagation of Pedigree in a calculation in order to establish 
Pedigree scores for quantities calculated from other quantities. Table 29.2 gives an example of 
a Pedigree matrix for emission monitoring data. Next I will briefly elaborate the four criteria 
employed.

Proxy

Sometimes measuring the thing we are interested in directly, or representing it by a parameter, 
is impossible, so some form of proxy measure is used. Proxy refers to how good or close a 
measure of the quantity that we measure or model is to the actual quantity we seek or represent. 
Examples are first order approximations, over simplifications, idealisations, gaps in aggregation 
levels, differences in definitions, non-representativeness and incompleteness issues.
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Table 29.2  Example pedigree matrix for emission monitoring data

Score Proxy Empirical basis Methodological rigour Validation

4 An exact 
measure of the 
desired quantity

Controlled experiments 
and large sample direct 
measurements

Best available practice in 
well-established 
discipline

Compared with 
independent 
measurements of the same 
variable over long domain

3 Good fit or 
measure

Historical/field data 
uncontrolled experiments 
small sample direct 
measurements

Reliable method 
common within est. 
discipline 
Best available practice in 
immature discipline

Compared with 
independent 
measurements of closely 
related variable over 
shorter period

2 Well correlated 
but not 
measuring the 
same thing

Modelled/derived data 
Indirect measurements

Acceptable method but 
limited consensus on 
reliability

Measurements not 
independent proxy 
variable limited domain

1 Weak 
correlation but 
commonalities 
in measure

Educated guesses indirect 
approx. rule of thumb 
est.

Preliminary methods 
unknown reliability

Weak and very indirect 
validation

0 Not correlated 
and not clearly 
related

Crude speculation No discernible rigour No validation performed

Source: Risbey et al. (2001) adapted from Ellis et al. (2000a, 2000b).

Empirical basis

This typically refers to the degree to which direct observations, measurements and statistics are 
used to estimate a parameter. Sometimes directly observed data are unavailable, and the 
parameter or variable is estimated based on partial measurements or calculated from other 
quantities. Parameters or variables determined by such indirect methods have a weaker empirical 
basis and will generally score lower than those based on direct observations.

Methodological rigour

Parameter or variable estimates employ a method to collect, check, and revise the data. 
Methodological quality refers to the norms for methodological rigour in this process, as applied 
by peers in relevant disciplines. Well-established and respected methods for measuring and 
processing data would score high on this metric, while untested or unreliable methods would 
tend to score low.

Validation

This metric refers to the degree to which the analyst has been able to cross-check the data and 
assumptions used to produce the Numeral of the parameter against independent sources. In 
many cases, independent data for the same parameter over the same time period are unavailable 
and other data sets must be used for validation. This may require a compromise in the length or 
overlap of the data sets, or may require use of a related, but different, proxy variable for indirect 
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validation, or perhaps use of data that has been aggregated on different scales. The more indirect 
or incomplete the validation, the lower it will score on this metric.

Visualising Pedigree analysis

In general, Pedigree scores will be established using expert judgements from more than one 
expert. Two ways of visualising results of a Pedigree analysis are discussed here: radar diagrams 
and kite diagrams (Risbey et al., 2001; Van der Sluijs et al., 2002), as exemplified in Figure 29.1. 
Both representations use polygons with one axis for each criterion, having 0 in the centre and 
4 on each corner point. In the radar diagrams a coloured line connecting the scores represents 
the scoring of each expert, whereas a black line represents the average scores.

The kite diagrams follow a traffic light analogy. The minimum scores by a group of experts 
for each Pedigree criterion span the green kite; the maximum scores span the amber kite. The 
remaining area is red. The width of the amber band represents expert disagreement on the 
Pedigree scores. In some cases the size of the green area can be strongly influenced by a single 
deviating low score given by one of the experts. In those cases the light green kite shows what 
the green kite would look like if that outlier had been omitted. Note that the algorithm for 
calculating the light green kite is such that outliers are evaluated per Pedigree criterion, so that 
outliers defining the light green area need not be from the same expert. A web-tool to produce 
kite diagrams is available from http://www.nusap.net.

The kite diagrams can be interpreted as follows: the green coloured area reflects the (apparent 
minimal consensus) strength of the underpinning of each parameter. The more green, the 
stronger is the underpinning. The orange coloured zone shows the range of expert disagreement 
on that underpinning. The remaining area is red. The more red, the weaker is the underpinning 
(all according to the assessment by a group of experts). A kite diagram captures the information 
from all experts in the group without the need to average expert opinion. Averaging expert 
opinion is a controversial issue in elicitation methodologies (Knol et al., 2010). Another 
advantage is that it provides a fast and intuitive overview of parameter strength, preserving the 
underlying information. However, kite diagrams can be misleading because the amount of red 
and green surface area can be sensitive to the order of the criteria in the diagram. As an 
alternative, bar charts can be used with error-bars to reflect the range of expert opinion; see 
Kloprogge et al. (2007) and Wardekker et al., (2008) for further guidance.

Figure 29.1  Graphic representation of pedigree scoring.
Notes: Example of representations of same pedigree results as scored by six different experts by radar 
diagram (left) and kite diagram (right) G=green, L=light green, A=amber, R=red.
Source: Van der Sluijs et al (2002).
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Diagnostic Diagrams

There are two independent metrics that can be used for diagnostic purposes. First is the method 
chosen to address the Spread qualifier (typically sensitivity analysis or Monte Carlo analysis) which 
provides, for each input quantity, a quantitative metric of uncertainty contribution, or sensitivity 
(e.g., the relative contribution to the variance in a given model output). Second are the Pedigree 
scores that can be aggregated (by dividing the sum of the scores of the Pedigree criteria by the sum 
of the maximum attainable scores) to produce a metric for parameter strength. These two 
independent metrics can be combined in a NUSAP Diagnostic Diagram (see Figure 29.2).

The Diagnostic Diagram is based on the notion that neither Spread nor strength can alone 
provide a sufficient measure of quality. Robustness of model output to parameter strength 
could be good even if parameter strength is low, provided that the model outcome is not 
critically influenced by the Spread in that parameter. In this situation our ignorance of the ‘true 
value’ of a parameter has no immediate consequences because it has a negligible effect on 
calculated model outputs. Alternatively, model outputs can be robust against parameter 
Spread—even if its relative contribution to the total Spread in a model is high—provided that 
parameter strength is high. In the latter case, the uncertainty in the model outcome adequately 
reflects the inherent irreducible uncertainty in the system represented by the model. In other 
words, the uncertainty then is a property of the modelled system and does not stem from 
imperfect knowledge about that system. Mapping model parameters in the Assessment diagram 
thus reveals the weakest critical links in the knowledge base of the model with respect to the 
model outcome assessed, and helps in setting the priorities for model improvement.

Most of the Pedigree assessments in the literature have addressed uncertainties located in 
inputs and parameters, thereby focussing on the internal strength of the knowledge base. 
Kloprogge et al. (2011) extended Pedigree analysis to assess assumptions in models. Examples of 
putting the approach into practice include Laes et al. (2011) for evaluating the external costs of 
nuclear energy, De Jong et al. (2012) for quantified health risks of overhead power lines, and 
Boone et al. (2009) and Bouwknegt et al. (2014) for quantitative microbial risk assessment. Van 
der Sluijs et al. (2015) have further extended the application of NUSAP to assess modelling 
assumptions in a chain of integrated models in the context of decisions concerning local 
adaptation to climate change impacts.

Sensitivity
to spread

Strength
weakstrong

low

high
Danger
zone

Safe
zone

Figure 29.2  NUSAP diagnostic diagram.
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Corral (2000), in his Ph.D. thesis, extended the Pedigree scheme to address uncertainties 
located in the socio-political context, focussing on the external strength of the knowledge base 
(i.e., its relationship to the world outside of science). The criteria that Corral used to assess the 
Pedigree of the processes of knowledge utilisation and institutional context of the analysts were 
inter alia: accessibility, terminology, completeness, source of information, verification, colleague 
consensus, extended peer acceptance, legitimation, experience, and flexibility.

Future directions

The NUSAP approach has a great potential to systematise the appraisal and consideration of 
uncertainty at the science–governance interface. Further tailoring and standardisation of 
Pedigree matrices and procedures for the elicitation of Pedigree scores is desirable but the main 
challenge is in dissemination. Successful pilots with inclusion of NUSAP in M.Sc. and Ph.D. 
teaching curricula at the universities of Utrecht, Bergen and Versailles Saint-Quentin-en-
Yvelines can be scaled up. An open access course in knowledge quality assessment is also now 
available online (https://proxy.eplanete.net/galleries/broceliande7/KQA).

Concluding remarks

Overall, NUSAP has a strong foundation in the theory of knowledge and the philosophy of science 
connecting to post-normal science [see Chapter 28]. It provides a framework to systematically and 
coherently address and communicate three of the dimensions of uncertainty, namely: technical 
(inexactness), methodological (unreliability) and epistemological (bordering with ignorance). It 
provides a framework for synthesising qualitative and quantitative assessments of uncertainty and can 
act as a bridge between the quantitative mathematical disciplines/traditions and the qualitative 
discursive and participatory disciplines/traditions in the field of uncertainty management.
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