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Abstract

This paper deals with computations of sensitivity indices in sensitivity analysis. Given a mathematical or computational
modely = f(xq, x2, ..., xx), Wwhere the input factors;’s are uncorrelated with one another, one canysag the realization of
a stochastic process obtained by sampling each of;tfrem its marginal distribution. The sensitivity indices are related to the
decomposition of the variance ofinto terms either due to eaafy taken singularly (first order indices), as well as into terms
due to the cooperative effects of more than epeln this paper we assume that one has computed the full set of first order
sensitivity indices as well as the full set of total-order sensitivity indices (a fairly common strategy in sensitivity analysis), and
show that in this case the same set of model evaluations can be used to compute double estimates of:

o the total effect of two factors taken together, for all Sl@mouples, wheré is the dimensionality of the model;
o the total effect ok — 2 factors taken together, for a(g) such(k — 2) ples.

We further introduce a new strategy for the computation of the full sets of first plus total order sensitivity indices that is about
50% cheaper in terms of model evaluations with respect to previously published works.

We discuss separately the case where the input fagt@sre not independent from each other2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Global sensitivity analysis aims to quantify the relative importance of input variables or factors in determining
the value of an assigned output variablé\ recent review of applications of this discipline can be found in [14,17].
If the input to the mode) = f(x1, x2, ..., xx) is composed of independent random variables, the joint probability
density function of the input is:
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I
P(x1,x2,..., Xi) = l—[ pi(xi). (1)
i=1

Mean and variance of can be computed as:

k
E(y)=//~~/f(x1,xz,---,xk)l_[pi(xi)dm, (2)
i=1
) k
V(y)=//~-/(f(x1,xz,...,xk)—E(y)) [ [ i) dx;
i=1

k
=//'~/f2(x1,xz,...,xk)l_[pi(xi)dxi—Ez(y)~ ®3)
i=1

If one of the input factors ; is fixed to a generic valug; , the resulting variance of will be equal to:

k
V(ylxj=1%j) = //"'/(f(xl,xz,...,)?j...,xk)—E(yIxj=fj))21_[l?i(xz')dxz'

i;l.
7]
k
= //"'/(fz(n,xz,...,)?j...,Xk)) 1_[ pi(x) dy; — E%(y | x; = &;). (4)
i=1
i#]

For the purpose of sensitivity analysis one is interested in eliminating the dependence upon thg; \ajue
integratingV (y | x; = x;) over the probability density function &f;, obtaining

k
E(V(y|xj)) = //.../fz(x,-,xz,...,xj'...,xk)l_[pi(xi)dxi
i=1

—/Ez(y|Xj=f./)P./(f./)dfj~ (5)

Note that we have dropped the dependenc&om the left-hand side, as it disappears due to the integration.
Subtracting Eq. (5) from Eq. (3) one obtains:

V) —E(V(|x)) =/E2(y |x; =X;)pj (&) dF; — E%(y). (6)

The left-hand side of Eq. (6) is also equal WqE(y | x;)), and is a good measure of the sensitivityyotith
respect to factox ;. If one divides it by the unconditional variance, one obtains the so-called first order sensitivity
indexS; = V(E(y | x;))/V(y). TheS;'s are nicely scaled ifi0, 1]. Eq. (6) is computationally impractical. In a
Monte Carlo frame, it implies a double loop: the inner one to compifi@ | xj = X;), and the outer to compute

the integral over ;. For this reason the integral in (6) has been rewritten by Ishigami and Homma [7] as:

/Ez(y |xj=X;)pj (%)) di;

k 2
:/{ff.../f(X1,x2,...,fj,...,xk)Hpi(xi)dxi} pj(ij)d)zj'
i=1

i#)
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=

k
://--~ff(xl,xz,...,ij...,xk)f(xi,xé,...,)?j...,x,’() (p,'(x,')dx,') H(p,'(xi')dxi’)pj(ij)d)?j
= =
k k
=//o~/f(x1,x2,...,xj...,xk)f(x/l,xé,...,xj...,x,/c)l_[(p,-(x,-)dx,-) H(p,-(x,{)dx;). @)

1

N

1
[N

The expedient of using the additional integration variable primed, allows us to realize that the integral in (7) is the
expectation value of the functiah of a set of(2k — 1) factors:
F(X1,X2, 000y Xjy oo Xh X1, X o, X g, X g0 o)
= f(x1,x2,...x0) f(x7, x5, .. .,x;fl,xj,x;grl, CXE). (8)

The integral (7) can be hence computed using a single Monte Carlo loop. The Monte Carlo procedure that follows
was proposed by Saltelli et al. [13].
Two input sample matriceld 1 andM; are generated:

X11 X12 ... XLk X1y X ... XY
/ / /
X21 X22 ... X2 X X L.X
Mi = CoMp= |2 T2 | ©)
/ ’ /
Xnl Xn2 ... Xnk X1 Xpo o oo X

wheren is the sample size used for the Monte Carlo estimate. In order to estimate the sensitivity measure for a
generic facton, i.e.

o _ VEQIx)) _ U - E*y)
j= -

’

V(y) V(y) (10)
Uj= f E*(y|x; =%))p;(&)) di;
we need an estimate for bofiXy) andU;. The former can be either obtained from valueg @omputed on the

sample inM1 or M. U; can be obtained from values efcomputed on matricedl; andN;, the latter being
defined as:

xill x:12 cee X1j ... xilk
N; = Xy Xy .. X2j ... Xy 7 (11)
Xig KXo oo Xnj o ... X
i.e. by:
~ 1 <&
Uj= o1 Zf(xrl»erv . ~~7xrk)f(x;17x;2’ . "x;(j—l)’ij’x;(j-i-l)’ . ..,x;k). (12)
r=1

If one thinks of matrixM as the “sample” matrix, and d¥l, as the “re-sample” matrix, theﬁ; is obtained
from products of values of computed from the sample matrix times valueg‘afomputed fromN;, i.e. a matrix
where all factors except; are re-sampled. In this way the computational cost associated with a full set of first
order indicess; is n(k + 1). One set of: evaluations off is needed to computg(y), andk sets ofn evaluations
of f are needed for the second term in the product (12).
The very same procedure for the computation of sensitivity indices was proposed by Sobol’[19]. The problem
setting of Sobol’ was that of identifying a subset of théactors that could account for most of the variance
of y. Imagine that the factors have been partitioned into a trialset(x;,, x;,, ..., x;,,) and the remaining set
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V= (x1. x5, ..., X;,_,,)- Then according to Sobol’ an idea of the overall effect of the subset the variance of
the output can be estimated from:

U,,=/f-.-/f(u,v)f(u/,v)dudu’dv, (13)
V(E(y V) =Uy— E(y), (14)
VIEG W)+ V(EQ|uv)=V(y) —V(EQ]|V). (15)

In Eq. (15),V(E(y | u)) is the first order effect of the sat while V(E(y | u, v)) is the interaction term between the

setsu andv. If V(y) = V(E(y | Vv)), thenu is non-influent, and all factors imcan be fixed in a subsequent analysis

of the model. Formula (13) shows the same expedient of the additional integration variables already described. The
Monte Carlo estimate dfly is:

1 n
. . ) ’ ’ /
f(xrtl’ Xrigs ooy Xrip s Xrlys Xrlpy -+« s xrlkf,,,)f(xr,‘la Kpigs + o oo Xpjps Xrlys Xrlps -+ xrlk,m)a
r=1

U, =
Vo1

(16)

i.e. to estimate the total effect of 3ebne must now re-sample the variables in theus@ne can easily see that (12)
is a particular case of (16). Error estimateslfAL;rs are discussed in the original reference of Sobol'. A bootstrap
based alternative is discussed in [1].

Eq. (15) is a particular case of a general variance decomposition scheme proposed by Sobol’, whereby the total
unconditional variance can be decomposed as:

VY=Y Vit D Y Vij+e+ Vi (17)

i j>i
where

Vi =V(EY | xi)),
Vij= V(E(Y |xl~,xj)) -Vi-V;

and so on. The development in (17) contaireerms of the first orde¥;, k(k — 1)/2 terms of the second order

V;; and so on, till the last term of ordér, for a total of 2 — 1 terms. TheV;; terms are the second order (or
two-way) terms, analogous to the second order effects described in experimental design textbooks (see, e.g., [2]).
TheV;; terms capture that part of the effectgfandx ; that is not described by the first order terms. Formula (17)

has a long history, and various authors have proposed different versions of it. A discussion can be found in [1], as
well as in [10]. Sobol’s version of formula (17) is based on a decomposition of the fungtitself into terms of
increasing dimensionality, i.e.:

flxa,x2, ..., x0) =fo+Zfi +ZZfij +-- 4 f12.x, (18)
i 1 J>i
where each term is function only of the factors in its index, ife= fi(x;), fij = fij(xi,x;) and so on.
Decompositions (17), (18) are unique provided that the input factors are independent and that the individual terms
firin...i; IN (18) are square integrable and have zero mean over the domain of existence.
One important aspect of Sobol’ development is that similar decompositions can be written by taking the factors
into subsets, as shown by Eq. (15). This prompted Homma and Saltelli [S] to introduce the new eStimate

0=

1 n
n— lzf(xrlax}”Za -~-’xrj, -~-’xrk)f(xrl,xr2’ -~-’xr(jfl)’x;j,xr(j+l)’ -~-’xrk)~
r=1

As before:
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V(E( I%-)=0_; — E%(y), (19)

whereV (E(y | X)) is the total contribution to the variance pfdue to nonx ;. This implies that the difference
V(y) — V(E(y | X—)) is equal to the sum of all terms in the variance decomposition (15) that ingludé/e
illustrate this for the caske= 3:

o VO = VEEIX) BV |x-1)
1 V() V()

where, e.g9.51 = V(E(y | x1))/ V (y). Analogous expressions can be written $gr, ST . We have called th67's
“total effect” terms. The total effects are useful for the purpose of sensitivity analysis, as discussed in [/18], as they
give information on the non additive part of the model. It may be useful to observe here that for a purely additive
model,zf?=1 S; = 1, while for a given factox; an important difference betwe&d andS; flags an important role
of interactions for that factor iry. The same information could be obtained éy computing all terms in (17), but
these are as many a§-2 1. This problem has been referred to by Rabitz et al. [11] as “the curse of dimensionality”.
The computational cost of estimating all effects in (17) is in fact as higt4swhere agaim is the sample size
used to estimate one individual effédeor these reasons we customarily tend to compute the set§fjallis the
set of aIISl.T, that gives a fairly good description of the model sensitivities.

This would normally entail a computational costxg®k + 1) model evaluations, i.ewk for the first order terms,
againnk for the total effect terms, plus for E(y). In fact we have found in Homma and Saltelli [5], that better
estimates for the first order terms are obtained iffl¢y) term in (10) is estimated as

=81+ S12+ S13+ S123, (20)

~ 1¢
E2 = ; Z f(.xr]_, Xr2y ooy xrk)f(.x;l, x,/.z, ey x;k) (21)
r=1

rather than from

2
N 1
E2:{;Zf(xrlvxr27-~-7x7'k)} ) (22)
r=1

i.e. using sample estimates from bathh and M, matrices rather than frol; alone. Eq. (21) is a legitimate
estimate of the squared sample mean given the independence of the two sample vectors. It is clear from (10) and
(12) that the estimate df; goes more naturally to zero for a non-influential factpmwhen (21) is used, as can be

seen from:

N N 1 n
Uj—E*(y) = —1 D @ Xr2e oo Xek) £ (K10 X o X1y X Xy ys -0 X1)
r=1

1 “ / / /
_ ; Z f(xrl, Xr2y ooy xrk)f(xrl, xrz, ey xrk). (23)
r=1

On the same ground one can see that the computation of the total effect sensitivity indices is better achieved using
(22).V (y) is computed fronM 1 for all indices. In conclusion, the standard computational strategy so far employed
to compute the full set of total and first order indices entailed a tota{2¥f + 2) model evaluations, two samples
being used to estimaté2.

Many applications of this strategy to different models can be found in various chapters of Saltelli et al. [14].

An important economy in model evaluation, that is described in [18], is thanhand S; terms can also
be estimated using an extended version of the Fourier Amplitude Sensitivity Test (FAST). When using extended
FAST, the same set af model evaluations that was used to estimate a gﬁjfenan also be used to compuie,

1 n(2k — 1) would be needed to compute all effects, anehore to computef(y), V(y).
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that makes the entire analysis feasible at the costkafodel evaluations. For this reason the extended FAST
method has been considered so far as the most efficient way to compute the fulbseamd S; indices. In the
present work we introduce an extended version of Sobol’ method that out-performs FAST.

2. Extension of the method

We imagine that a model has been characterised using the Sobol’ method, compl.ﬁfm;;alhdsj 's estimates
at the cost of (2k 4+ 2) model evaluations. Can the same coefficient be estimated with a smaller cost? Can additional
estimates be obtained with the same sets used to compu@ﬁbe&nd §j 's? Before we proceed we need to
introduce some new notation.

Let us callv‘i iy @ sensitivity measure that is closed within a subset of factorsvfe is the sum of all

s

Visio...i; t€rmsin (17) that is closed in the indicasio, . . ., st Vi=V,Vi=Vi+V;+ VZJ, ‘and so on. Likewise
Vclm 4, Will indicate the sum of all indices that are cIosed within the complementary satof ..., i, ie.
71112 0= Vﬁlzmlk_s ,wherei, #1[,forall pe[1,2,...,5],q€[1,2,...,k—s].

Let a;,;,..;; denote the vector of length containing model evaluations corresponding to the rows of the input
factor matrixN;,;,. ;.. As in Eq. (11) above, the matriX;,;, ;, is obtained from matriM 1 by substituting all
columns excepty, i, ..., is by the corresponding columns of matti,. ap will hence denote a set of model
evaluations corresponding entirely to mathko, while a;,;,. ;, will indicate the vector of model evaluations
corresponding entirely to matriM 1.

A few equalities are repeated below for reader’s convenience:

Viiio =V(EY | xipxiy . ..x1,)) = Uni..iy — E2(9). (24)
~ 1 <
Uiliz...l's = nTl Z f(xrla xr2’ L] xrk)f(xril’ -xri27 MR xris ’ xll‘ll’ x;/‘127 MR x;lk—.r)’ (25)
r=1
~ 1 <
U*l‘liz...l.s = m Z f(-xr17 Xr2, .- xrk)f( ”1’ rlz’ i) x;isv xrlla xr127 LR} ‘xrlk—‘y) (26)
r=1

with the special cases

~  (Uj—E%y)

Sj= Ty) (27)
N U_—E2
ST=1- (JT”(”) (28)

We are now ready to submit the following theorem:

Theorem 1. Given a modely = f(x1,x2,...,xx), it is possible to compute at the cost ofk + 2) model
evaluations

(1) One estimate for each of titeindices of the first ordeS
(2) One estimate for each of tletotal effect |nd|ce§ ST,

(3) One estimate for each of tr(é Vfl.j closed effect indices.
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Table 1
Tgll’)n?s that can be estimated given the corresponding vectors of model evaluatiobs,
3 a a ag 3 as 32345 @345 31245  @1235 31234 812345
2o 40
a sy V()
a o Ve V(y)
ag §3T V_C13 ‘7_623 V()
a 5§ Vi V% V% VO
a5 5 Vis Vs Vs V&% VO
22345 51 E%(y) VS VS VG Vi V(y)
81345 S V5 E2y) Vg Vs Vss Ve, V)
a1245 S Vi Vs E2y) VS, Vis Vi V% VO
81235 Sa Vi Vs, Vi, E2y) Vg Vi V% V% VO
a3 | S Vis Vss Vis Vis E2) Vi Vs Vs Vs VO
ajpas | E%() S 52 S Sa Ss K ¥ L V()

An additional theorem is the following:

Theorem 2. If we modify the setting of Theorehby allowing forn(2k + 2) model evaluation§.e. as many as in
the procedure of Sectidl), we can obtain

(1) Double rather than single estimates for each of §ifes and S s indices.
(2) Double estimates for each of tl@ VC terms.
(3) Double rather than single est|mates for each of (@)ev . terms.

Theorems 1, 2 constitute the promised extension of Sobol’ method. Let us illustrate the new procedures for the
casek = 5. We have to use this value as lower values afe special cases and will be treated afterwards. Table 1
gives for each cell what term can be computed by the correspording, vectors.

Note that:

(1) Table 1 can be interpreted by referring to Egs. (24) (28) above. E.g., we have labelled the entry corresponding
to the intersectiomg anda; asS/ , asap - a1 yieldsU_; that in turn can be used to compuitﬁ (Eq. (28)) and
so on for the other terms.

(2) The diagonal has been labelled as providing an estima?e{p)‘, as this is what can be obtained by the scalar
productalzll2 i . In fact each of the 2+ 2 vectorsa;,;,..;; can yield an estimate of(y). Known E(y) each
aj,i,..i; Can again be used to estima?ey).

(3) The row labelleda;zssillustrates the same procedure as in Section 1 for the computation of the first order
indices and total order indices, .6, is obtained fromV (y) and V/J, this latter being computed from
a12345 A1235

(4) Looking at the columag, one sees that the same set of indices (first order plus total) can be computeg,from
a12345 and either of the sefsy, ap, as, a4, as} or{a_1, a_», a3, a_4, a_5} = {@2345 A1345 Q1245 A1235 A1234},
bringing the computational cost fron{2k + 2) down ton(k + 2), with a reduction in computational cost that
tends to 50% at increasirigvalues.
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(5) Allindicesinrows otherthaa;234sand columns other thaap are novel, in the sense that they were overlooked
in the procedure of Section 1. The alternative arranging ofihg ;, terms shows the additional terms that
can be computed.

(6) The intersection of vectors andayzss has been labelled as an estimatefd’f(y), as all columns in the two
sampling matrices are different and the scalar prodyct ;;, a;, j,...;, provides an estimate of the square of
E(y),asin Eqg. (21) above.

(7) The two vectorsy andazsssallow the computation 0 % as columns 1 and 2 are identical in the two sampling
matrices.

(8) The two vectorspsss andagzas allow the computation 0f7§45= Vflz as columns 3,4,5 are identical in the
two sampling matrices.

Looking at this table, for the setting of Theorem 1 (grey cells in Table 1), it is easy to see that we have produced
theST’s and§,~ indices, withj € [1, 2, 3, 4, 5] at the reduced cost af(k + 2) = 7n model evaluations, instead of
n(2k + 2) = 12n, with a reduction of 42% in computational cost. Furthermore, we have produced one estimate for
each of the(g) = 10 indices complementary to the second order ones, that£ob happen to be closed indices
of the third order. Note that for, e.gc,= 6 we would have obtained one estimate for each of(ﬁljle: 15 closed

indices of the fourth order and so on for larger valuek,@&hd so on based on the known property Q‘i;atz )
fork > j.
For the setting of Theorem 2, it is easy to see that double, rather than single, estimates for eaéffdzf,the

§j andV<;; have been produced. We have additionally obtained double estimates for eact{)f0 closed

indices of the second order. Additional estimatef??&ty) are also available as discussed.

The reader might wonderwhich among the various eStimaté\Sz(Jj) V(y) should be used in Eqgs. (24)—(28)
to obtain, e.g., th&¢, . from theU,l,2 ;- In[5] we suggest that the esUmateE?(y) in (21) obtained fronay,
a12345should be used for the first order indices and that from (22) basegd alone for the total effect ones.

In the context of the extended procedures (Theorems 1 and 2) presented here, the following approach was taken:

(1) Theorem 1 setting. Eq. (21) is used for the first order indices. This means that for computing, any,of the
ap andajosasvectors are used to estlmaEe?(y) andajozssto computev (y). Eq. (22) is used for the total
effect, i.e. for any of théf, ap alone is used to estlmaféz(y). V (y) is also computed frorag for the total
effect indices. For the closed effects of order 2 Eq. (22) is used foEz(y), and the vector to be used in
(22) is selected as one of the two that concur in the estimation of the effect. E.@j{g(in the grey table
area), computed from, andas, the E2(y) is computed frona; alone (or identically fromas alone).V(y) is
computed from the same vector used E?r(y) (eitheray or as).

(2) Theorem 2 setting. Same procedure as Theorem 1 for all double estimates of (i) first order, (ii) total order
indices and (iii) ordek — 2 closed indices. For the closed indices of the second order Eq. (21) is used, where
Ez(y) is computed using one of the vector that concur in the estimation of the index. E.qg., for that estimate
of \71“2, that is computed frona;345 and ay, Ez(y) is computed fromay34s andaz (or identically fromay
and ap34s). The variance is correspondingly computed fragaas or a;. These arrangements can be easily
understood by inspecting equations like (23) above.

As we saidk = 4 is a special case (Table 2). For this valué @fe obtain for the setting of Theorem 2:

(1) Double estimates for each of th&;4nd each of the 8" .
(2) Quadruple estimates of tr@) = 6 second order temféu‘.‘.

All 4 estimates of each termij. are independent.
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gll’)rlr?szthat can be estimated given the corresponding vectors of model evaluatiods,
ap a a as 2 34 134 aizq a123 1234
a V(y)
a st V(y)
a s Vs V()
a3 5§ V5 7 V()
& 57 V33 Vi3 Vi V)
a234 51 E2(y) Vo Vi Ve V()
a134 S V5 E2(y) Vs A A V(y)
aze | S Vi Vs B2 Vg, Ve o Vo T
2123 | 54 Vi V31 Vi E2y) Vg Vi3 Vi V()
a1234 E?(y) 51 S2 S3 Sa §1T §2T §g,T §4T V()
Table 3
Terms that can be estimated given the corresponding vectors of model evaluatioBs,
ao a a ag a3 a3 a2 a123
a V(y)
a | S5 V(y)
ap §2T S3 V(y)
ag §3,T S S1 V()
a3 | 51 E2y) VS VS V(y)
a3 | S 2 E2y) VS S V(y)
a2 | 53 Vi Vs E2y) 5 51 V(y)
a3 | E2(0) S S S st sT §3aT V(y)

Fork = 3 we obtain (Table 3):

(1) Double estimates for each of th&;3nd each of the § .
(2) Double estimates of th) = 3 second order termi.
(3) Two more estimates for each of ths 3

The casé = 2 is non-relevant, ag, = V(y).

3. Discussion of the methodological advantages

What benefit does the new computational procedure offer? The main advantage of the new method is that, given
the computational effort already made to compute a full sef; pﬁT estimates, one can also obtain additional
estimates.

Imagine, for the case @&f> 5, that the reduced procedure of Theorem 1 has been adopted, aagl tHat,, .. ;, ,
and either of the setfay, ap,...,a} or{a_1,a »,...,a,} has been computed (at the costngk + 2) model
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evaluations). Besids;, §T we now also dispose of thﬁc ij indices. These can be very usefuIS1f ;&L it
means that neither; norx; contribute appreciably to the varianceygfneither by themselves nor in cooperat|0n
with other factors. These factors could hence be fixed in a subsequent analysis. Note that the (ﬁfqpmdms
equivalent taS;” ~ 0, SJT ~ 0.

If we use instead the extended procedure of Theorem 2, at the co&kof 2) model evaluations, we obtain
double estimates of;, 5,7, double estimates of th&",; indices and finally double estimates6f for the closed
effects of couples of factors, i. é’c Vi +V; 4+ V;;. These can be used as such or converted into second order

sensitivity coeff|C|ent§,j = (V - V V )/V(y) A full set of second order coefficients is likely to tell us much

of what we need to know about a model sensitivity, also because interaction of higher orders should in general be
less frequent, as discussed in [10]. We know from the valu dfa factor is influent at the first order, and frofﬁ

whether it has important interactions. If this is the case, inspection df;fHfer all i # j will allow us to |dent|fy

which factorx; interacts with.

4. The case of the correlated input

Sensitivity analysis for correlated input is discussed in [8,16]. For this setting, the important computational
simplifications described in Section 1 are not applicable, and Eq. (17) loses its uniqueness. In these cases there is
no alternative to the computation of the double loop needed to estimate conditional variancesisUetydst ;)),

Eq. (6). For the purpose of Monte Carlo simulations, correlated input can be generated using Markov Chain Monte
Carlo (MCMC), or procedures based on Cholesky decompositions (see, e.g., [6]) or on Latin Hypercube Sampling
(LHS, [8]). The problem with correlated sample, in brief, is that the reduction in variance that can be achieved by
fixing one factor depends on whether or not other factors have been fixed, and the incremental reduction in variance
for each factor depends on the order in which factors are fixed.

We have discussed in [16] two general settings for sensitivity analysis. Each setting is based on a bet posed on
the modely = f(x1,x2, ..., xx), for the general case where the input can be correlated. In the first bet, one has
to make a rational guess on which parameter would induce the largest reduction in variance if it were fixed to its
“true” value. Because such true value is in general unknown, the bet can be rationally placed by computing the
estimates)7(E(y | x;)), whether or not the input is correlated.

For the second setting, of relevance in risk analysis and control theory, the bet is on the identification of the
smallest subset of capable of inducing a target reduction in the unconditional variafige, as in the work of
Sobol' [19], discussed in Section 1. For tliecorrelatedcase, a rational selection strategy for the subset of interest
is based on the computation of the full set§phndST This strategy is meant to fight the curse of dimensionality,
as attempting all combinations of factors, in a brute force search for the smallest subsiediogives the desired
reduction inV (y), would be computationally prohibitive; one would have to compute’alt 2 terms in Eq. (17)
to start with. As described in [16], an iterative procedure can be adopted for the uncorrelated case, that includes as
a step the computation of the full set.®f ande.

For the correlated case, one might still engage in a brute force search computing all possible closed terms
Vii,..i.- Note that for the correlated case th¢, ; can no longer be decomposed meaningfully into a sum
of Iower dimensionality terms, but would still aliow a perfectly informed choice, as wouldvihg ;, in the
uncorrelated case. Also for the correlated case, we suggest in [16] a cheaper, albeit approximate, alternative that
involves the computation of thg; andS? for the non-correlated problem.

Hence, in the context covered by these problem settings, the procedure proposed in Section 2 can still be usefully
applied.
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5. Test cases

We illustrate the algorithm on non-correlated test cases. We have selected an analytic function due to Sobol’
and known as “Sobolg function”, and a more complex numeric calculus test case originating from modelling of
petroleum generation in sedimentary basins. The cost of computing the former can be assumed as zero, while the
computation of a single output time series for the latter takes about 0.05 s on a 8-nodes Linux cluster, 16 CPU’s
with a Pentium 3 processor running under Linux RedHat.

The g function is a strongly non-monotonic, non-additive functionkofactorsx;, assumed identically and
uniformly distributed in the unit cubg = {x |0<x; <1;i=1,2,...,k}.

k
gxe, x2, ..., x) =] [ &i(x) (29)
i=1
with
|4xi — 2| +ai
i) =——". 30
8i(xi) Tra (30)

For each of they; (x;) functionsfo1 gi(x;)dx; =1, and forx; € [0, 1] the function’s variation is

1
— <gixp) <1 . 31
1+a 8i(xj) +l+a,- ( )
The importance of each factaf is driven by its associated coefficiemt Fora; = 0, the factor is important
(0 < gi(x;) < 2). For, e.g.a; =9 the factor in non-importan®©.9 < g; (x;) < 1.1), while for ¢; = 99 the factor
can be considered as non-influgfo9 < g; (x;) < 1.01). Analytical expressions are available for the sensitivity
indices ([1,15]):

/f(xl,xz,...,xk) dxidxs ... dxp =1, (32)

1k

Vidi..is = ViyVip ... Vi, (33)
1

Vi= /[gi(xi) - 1]2 dvi = $(1+a) "2 (34)

0

In Figs. 1-3 we have computed the sensitivity indices for a 6-dimensgehaiction witha = {0, 0.5, 3, 9, 99,

99} using first the standard procedure of Section 1, at the cos(2if + 2) model evaluations, then with the
restricted procedure of Theorem 1 at the cost:@f + 2) model evaluations. Finally we have used the setting

of Theorem 2, at the cost af(2k + 2) model evaluations. For all experiments= 1024, and the standard error
associated with the computation of the sensitivity indices was computed using bootstrap, as described in [1], with
a bootstrap sample dimension of 10,000.

Comparing Figs. 1(a)-1(b¥¢ andeT by the standard procedure) with 2(a)-2(5) endeT by the procedure
of Theorem 1), we can see that the quality of the estimates is the same. Fig. 2(c) shows the advantage brought by
the term of the 4th order, especially to identify couples of non-influent facfors{45, 46, 56}.

Moving to the procedure of Theorem 2, Figs. 3(a)-3(b), we see that the confidence bound of the estimates is
lower (each estimate is the average of 2). Similarly for Fig. 3(c), to be compared with 2(c). Additional insight into
the structure of the model is offered by the new Fig. 3(d), with the second order indices.

The PMOD model computes the generation and expulsion of hydrocarbons from a host rock, and is part of a suite
of computer models used to estimate the oil potential of sedimentary basins. PMOD has been originally developed
at Lawrence Livermore Laboratory ([3]) and adapted at ENI-AGIP for its basin modelling environment ([12]).
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Table 4
List of the uncertain input factors and their stochastic properties
Factor’s Factor’s Type Range of PDF
name number values
“KEM/FIZ” files 1 Discrete 1....8 Uniform
“phi-stress” curves 2 Discrete ,2,3 Uniform
TOC 3 Continuous 0.005-0.05 Uniform
Porosity 4 Continuous Mie= 0.04 Triangular
Mode=0.05
Max = 0.09
Permeability 5 Continuous l.e-9-1l.e-6 Log-uniform
Source thickness 6 Continuous Min907 Triangular
Mode= 1814
Max = 2721
Time-series 7 Discrete ,P2,...,32 Uniform

Some of the uncertain input factors in PMOD are time-dependent physical quantities: the rock’s total organic
carbon content (TOC), the rock’s porosity, permeability and thickness. In the analysis, the values at the initial
time point, that corresponds to 30 million years before present (mybp), have been considered, neglecting the time
dependency.

One of the inputs, the PHI stress variable, describes the mechanic behaviour of the rock. Due to lack of data on
the specific site, three different curves relative to similar sedimentary basins for other areas have been used, and
the model selects randomly which of the three to use at runtime. Similarly for the so-called “KEM/FIZ” files, that
describe the stoichiometrics and kinetics of the chemical system considered. Eight alternative such descriptions
were generated by the experts, so that sampling from these might be considered as representative of the system
chemistry’s variability. Also in this case the model selects at runtime one of the eight files. Finally the model
needs as input 4 highly correlated time series (temperature, pressure, effective stress and hydrostatic pressure).
Thirty-two such multivariate series have been generated by the experts and the model selects one set at random for
each execution of the PMOD model. A summary of the 7 input factors is given in Table 4. All these factors are
considered independent from each other.

A sensitivity analysis for this model had already been performed before the algorithms presented in the present
paper were developed ([20]), where all coefficients of the first and total order had been computed. We have hence
repeated the analysis using the setting of Theorem 2. The model output is composed of cumulative expelled
amounts of oil, gas (CH4) and wet gas (CHXx) at selected time points (i.e. at 30, 11.5, 8.5, 4.8, 1.9, 0 mybp).
Figs. 4(a)—4(c) show the first order sensitivity indices obtained with the two approaches at different time points for
the ouput CH4, as almost identical results hold for CHx and oil. Similarly for the total order indices, Figs. 5(a)-5(c).

In Figs. 6(a)-6(c) the coefficients of the second orders have been also computed using the set of Theorem 2,
and compared with estimates obtained previously using an independent samplenofasizach index (i.e. 24
additional runs, from [20]).

For all these Figs. 56 there is a general agreement between the two methods, and the confidence bounds,
computed exactly as in the previous case study, are lower for the estimate from Theorem 2, as expected.

Finally the closed indices of order 5 are given in Fig. 7, as computed with Theorem 2. The results for Theorem 1
are very similar, as expected, and not shown here.

With the new procedures, we have been able to compute at no extra (or at a reduced) computational cost the
coefficients of orde¢k — 2), that allow us to identify the non influential factors. Given the highly non linear and non
additive nature of PMOD, there are time points, such &as8.5 mybp, where none of the factors is non-influent,
apart from source thickness and porosity (Fig. 7(b)). At tiree0 mybp the coefficients of ord€k — 2) help us
to rule out as non-influent all factors except TOC.
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6. Conclusions

The present paper has suggested some efficient procedures for numerical experiments aimed at sensitivity
analysis of model output. We have focused here on the computation of sensitivity indices that are based on
decomposing the variance of the target function in a quantitative fashion. The approach presented here opens a
road to fight the so-called “curse of dimensionality”, that hinders the use of quantitative sensitivity analysis for
computationally expensive models. The analyst willing to use such methods disposes now of two approaches to
tackle the system. One is a parsimonious procedure (Theorem 1) that gives all effects of the first and total order,
plus all those of ordek — 2, at the cost ofi(k + 2) simulations. We have thus both reduced the computational cost
for the standard procedure of some 50% and extended it to compute the indices df-erder

A second possible approach is the more expensive procedure (Theorem=2,¢@%t+ 2)) that gives more
robust estimates of the index of the first and total orders, plus estimates of all indices of order 2 and

Even assuming for n the value of 1000, the two procedures appear affordable for models whose cost per run is
in the range from milliseconds or lower to some minutes. For models whose execution is in the tenths of minutes
to a day range, quantitative methods are not applicable and efficient qualitative methods such as that of Morris [9]
should be used (see [4] for a review).
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