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The present paper deals with a new method of global sensitivity analysis of 
nonlinear models. This is based on a measure of importance to calculate the 
fractional contribution of the input parameters to the variance of the model 
prediction. Measures of importance in sensitivity analysis have been suggested 
by several authors, whose work is reviewed in this article. More emphasis is 
given to the developments of sensitivity indices by the Russian mathematician 
I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the 
most general, his formalism is employed throughout this paper where 
conceptual and computational improvements of the method are presented. 
The computational novelty of this study is the introduction of the 'total effect' 
parameter index. This index provides a measure of the total effect of a given 
parameter, including all the possible synergetic terms between that parameter 
and all the others. Rank transformation of the data is also introduced in order 
to increase the reproducibility of the method. These methods are tested on a 
few analytical and computer models. The main conclusion of this work is the 
identification of a sensitivity analysis methodology which is both flexible, 
accurate and informative, and which can be achieved at reasonable computa- 
tional cost. © 1996 Elsevier Science Limited. 

1 INTRODUCTION 

Sensitivity analysis (SA) of a model  output  aims to 
quantify the relative importance of each input model  
pa ramete r  in determining the value of an assigned 
output  variable. Many different methods  have been 
developed for SA, this discipline being very much 
application driven. The various techniques can be 
classified in two main branches, depending on the 
problem setting. 

Global SA focuses on the output  uncertainty over  
the entire range of values of  the input parameters .  
Within this setting uncertainty ranges, different in 
principle for each parameter ,  are the input for the 
analysis. These ranges are valuable, they represent  our 
knowledge or lack of it. SA can then help to identify 
key parameters  whose uncertainty affects most  the 
output.  This in turn can be used to establish 
experimental  (or field) research priorities, eventually 
leading to a bet ter  definition of the unknown 
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pa ramete r  and hence to a reduction of its uncertainty 
range. The process can be i terated until an acceptable 
uncertainty range of the output  is achieved. ~ "3 

In the opposite problem setting the emphasis  is on 
elucidating the key parameters  in a complex system, 
not with respect to the output  uncertainty, but with 
respect to the output  itself. In this context, for 
instance, one may wish to investigate the inter- 
relationships between system description and different 
scales. In Rabitz,  4 the sensitivities of macroscopic 
quantities of a chemical system such as activation 
energies are investigated with respect to microscopic 
scale variables, such as the transition probabilities 
between quantum states for the same system. In this 
problem setting (local SA) one is interested in some 
kind of derivative (or Jacobian) of the model output  
with respect to the model input, possibly normalized 
by the means or standard deviations of the 
input /output  variables themselves. In this context, 
aiming at the evaluation of the derivatives, model 
input parameters  may be changed by a generally small 
fraction of their nominal  value, the fraction being the 
same for all the parameters .  The input paramete r  
interval thus explored does not represent  our 
uncertainty about  that parameter .  
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A review of global SA methods, including the 
Monte Carlo based regression-correlation measures, 
the Fourier amplitude sensitivity test (FAST) and 
various forms of differential analysis can be found in 
Helton, 5 which is also a good pointer to further 
references. A recent original work in the field of 
global sensitivity analysis is that of Welch et al. ~ where 
an efficient parameter  screening, based on data 
adaptive modelling, is performed in order to build a 
computationally cheaper  predictor to substitute for 
the original model. Recent  progresses have been made 
in parameter  screening by Andres & Hajas v (see also 
Saltelli et al.S). Those authors use an iterated 
fractional factorial design (IFFD), which appears 
capable of identifying a few active factors in systems 
with thousands of variable parameters.  Another  
approach to SA not included in Hel ton 5 is the recent 
work of Cawlfield & Wu, 9 where global SA is 
performed within the frame of first order  reliability 
analysis (FORM). SA for stochastic differential 
equations is discussed in Koda. m A comparison of 
different SA methods can be found in Iman & 
Helton, t~ Saltelli & Homma j2 and Saltelli et al.~3 

In the present work, a particular class of global 
sensitivity analysis techniques is explored. The 
'measures of importance'  addressed here are relatively 
recent in the SA literature, and are based on the 
partial or conditional variance of the model output, 
i.e., on a reduction in the variance of the model 
output corresponding to the 'fixing' of (set of) 
parameter(s).  These conditional variances are usually 
obtained by averaging over the possible values of the 
fixed parameter(s).  In Hora  & Iman, ~4 the 'uncertainty 
importance'  of a variable Xy is defined as the expected 
reduction in the variance of output Y attributable to 
ascertaining the value of Xj. 

lj = ~/Var[Y] - E[Var(Y]Xj ) ] .  (1) 

For numerical robustness reasons a new statistic is 
proposed in Iman & Hora,  ~5 which is based on 
estimating the quantity: 

Varx,[E(log Y[Xj)] /Var[log Y] (2) 

where Varx~ stands for variance over all the possible 
values of X i and E[logY]Xj] is estimated using linear 
regression. This solution has the advantage of 
robustness, bu t - -as  observed by the authors- - the  
conclusions drawn on log Y are not easily converted 
back to Y. Similar considerations apply to the rank 
transformation suggested in this note. A rank 
transformed version of the importance measure is also 
discussed in McKay & Beckman. ~6 

Other  authors j3'~7 ~9 have suggested computational 
improvements to the importance measure using the 
Monte Carlo approach. It will be shown that all those 
measures can be assimilated to Sobol' sensitivity 
indices of the first order, z° In turn, Sobol' indices have 

a strong conceptual similarity with the FAST 
method.21 23 The FAST procedure uses a search curve 
through the parameter  space for evaluating the 
multi-dimensional integral instead of the Monte Carlo 
technique. Both using FAST and Sobol' series 
developments,  the total variance D of the model 
output can be written as a sum of terms of increasing 
dimensionality, the first order  terms describing the 
contribution to the total variance due to each 
parameter  alone, the second order ones describing the 
contribution due to the two-ways parameter  interac- 
tions and so on, i.e.: 

i I i l /  I 
j ~ i  

Somehow different, but still based on the same type 
of decomposition, is the technique suggested by Sacks 
et al. 24 and Welch el al. 6 

It may be worth mentioning that in the FAST 
applications mentioned above only the first order 
terms are usually explored, corresponding to that part 
of the total variance accounted for by each parameter  
when the output is averaged over the uncertainties in 
all other parameters (i.e., the Di terms). The higher 
order terms are not often computed when using 
FAST. This is apparently justified when the sum of the 
first order  terms Di is close enough to the total 
variance D. 25 More generally, it can be said that 
higher order terms are very often neglected in SA (see 
Welch et al. ~ for an interesting exception). 

In this article much emphasis is placed on the 
computation of the higher order terms; an ameliora- 
tion is suggested to the existing version of the Sobol' 
sensitivity indices, that is based on computing for each 
parameter  the total effect index. This index accounts 
for all the possible synergetic terms between the given 
parameters and all the others. Sobol' approach and 
formalism are described first. Then the global indices 
are introduced. Those are tested on a number of 
different test cases, using, in some instances, rank 
transformation of the input data. The computation of 
the indices is done by Monte Carlo, and accelerated 
convergence rates are obtained using quasirandom 
numbers.2,, 2~ Finally, the advantages and limitations 
of this technique are discussed. 

2 METHODS 

2.1 Mathematical description 

A derivation of Sobol'  global sensitivity estimates is 
given in Sobol'. TM Its essential features are repeated 
here for the reader 's  convenience and also because 
they are needed to discuss the adaptations which have 
been made for the present work. 



Global sensitivity analysis 3 

Assumption. The function f(x)~- f(xl, . . . ,x,) under 
investigation is defined in the n-dimensional unit cube: 

K" = {xl0-< x~-< 1;i = 1 ..... n}. (4) 

Definition. Let ~ T,,.~, define the sum over all the 
combinations of indices in K" 

~ T,.,...,, ~- ~ Ti + Y , 2  T~, + ... + T,2 ...... (5) 
i = I 1 ~ i  ~ j  ~ n  

Definition. The representation of f (x)  as a sum 
/ x  

f (x ,  ..... x,,) =f ,  + ~ fii,.i,(xi ..... x,,) (6) 

is called a decomposition into summands of different 
dimensions if 

f ,  = constant (7) 

and the integral of every summand f,~,(x~,,...&,) over 
any of its independent variables is zero, i.e., 

L~f,...~, (x~,,...x~,)dx~, = 0, 1 -< k -< s. (8) if 

Additional properties of the decomposition eqn (6) 
which descends from the definitions eqns (6)-(8) are: 

Property. The sum in eqn (6) contains a number of 
summands equal to 

Property. 
j = l  

f 
f) = JK, f(x)dx. (10) 

Property (orthogonality). For any two different 
summands fii, i, and fj, ~ : 

ft.,f,...,,(x, ..... x,,)f,.,..4,(x j ....... ,,)dx (11) 0 

because of the definition eqn (8), since at least one of 
the indices i~,...,i~, jl .... 4, will not be repeated twice. 

Theorem. The decomposition eqn (6) is unique 
whenever f (x)  is integrable over K". The terms in the 
decomposition can be also derived, f) is given by eqn 
(10). The one-indexed terms fg (xi) can be obtained by 
integrating eqn (6) over all the indices but xi, and 
using the definition eqn (8) to obtain: 

for fo' ... f(x){dx/dx,} =f,  + f (&)  (12) 

where dx/d& indicates integration over all the 
variables except xi. Analogously for the two-indexed 
summands f i  (xi, xj): 

L L ... f (x ){dx /dx ,dx ,}  -- f ,  + f,(x,) + ~(x,)  + ~j(x,,x,) 

(13) 

and so on for the higher dimension terms. The 
computation of any summand f,.i,(x, ..... ,x~,) is thus 
reduced to the integration of a multi-dimensional 
integral within K ". It is important to stress here that in 
order to use Sobor sensitivity indices one does not 
need to evaluate any of the f,.~,(& ...... &,), nor has one 
to know the form of f(x) ,  which may well be 
represented by a 'Computational model',  29 i.e., a 
function whose value is only obtained as the output of 
a computer programme. 

The sensitivity estimates Si,...~ are: 

where 

and 

Di'i~ (14) 
Si,...i- D 

D = fK,,f2(x)dx - f(2 (15) 

fo'£' Di...i, = ... f2 i ,_ idx i t . . .dx i .  (16) 

Squaring eqn (6) and using the orthogonality property 
eqn (11) it can be proved that 

D = ~ Di, i, (17) 

using again notation eqn (5) for the sum over the 
combinations of indices. From eqns (14)-(17): 

~ Si>..i, : 1. (18) 

It can be observed that D and Di,...i, are the 
variances of f ( x )  and f>.i,, respectively. Hence the 
&,...i, can be considered as true global sensitivity 
estimates, since they give the fraction of the total 
variance of f ( x )  which is given by the individual 
summands in eqn (6). If one of the S~,...~, is nil, then the 
corresponding function f,...i, is zero; if all the &,...~, with 
s -> 2 are nil then f ( x )  can be expressed as 

f ( x  I ..... X,,) = f ) +  k f ( x i )  ( 1 9 )  
i-I 

i.e., it is independent from all the cross-products of 
variables. If f ( x )  is independent from variable x~ then 
all the S~,i, terms that contain the index i will be nil 
and so on. 

In the preceeding development, the variables &, 
i =  1 ..... n, have been independent, meaning that no 
dependency or correlation exists among them for the 
system being modeled. The relation of Sobol' indices 
to FAST is evident. Even using FAST one may obtain 
eqn (17) above. The Fourier development is in fact 
also based on an orthogonal set of functions of 
increasing dimensionality as in eqn (6) (see also 
discussion in Sobol'2°). 

A similar series development for SA purposes was 
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also suggested by Sacks et al. 24 Those authors suggest 
the use of the functions f,. ~ themselves as sensitivity 
' indicators ' .  For the first order  terms (i.e., the f. (x~)'s) 
this implies visual inspection of the f (xi) vs xi plots. 
For the second order  terms (i.e., the .~i (x~, Xi)'s) a 
three-dimensional  plot must be investigated. The 
method becomes impractical for higher order terms. 

2.2 M o n t e  C a r l o  c o m p u t a t i o n  

The applicability of the sensitivity estimates S~,..,, to a 
large class of functions f (x )  is linked to the possibility 
of evaluating the multidimensional integral associated 
with these estimates via Monte Carlo methods.  For a 
given sample size N tending to zc the following 
estimates are straightforward: 

1 N 

~,--~ E f(x,,,) (20) 
m = l 

where x,,, is a sampled point in the space K",  and the 
hat is meant  to distinguish between a quantity and its 
estimate.  Another  natural estimate is: 

1 N 
b + J.2 ± ~ /E  f2(Xm)' (21) 

i i 1 = 1  

For the one-indexed terms S~, an evaluation for D~ is 
needed from eqn (16): 

D , =  f , ( x j d x i =  ... f ( x ) { d x l d x , } -  f ,  dx, 
I ) 

2 Jr( J~olIf , folf( = . / , ,- 2f, x)dx + ... x){dx/dx/} 

= _ f 2 +  ... u,xi)f(v,xi)dxidudv (22) 

where both u and v denote  projections of x on 
K " - 1  = K" minus the variable &. The integral has 
dimension 2(n - 1) + 1 = 2n - 1, and can be estimated 
via Monte  Carlo so that 

1 N 
D, + f ,~-~l  ~ f(Um,X,,,)f(Vm,X,,,). (23) 

I l l  ~ ] 

In Monte  Carlo terms D~ is thus generated by 
summing products of two function values: one with all 
the variables sampled and the other  with all the 
variables re-sampled except the variable x~. 

In this form the Sobol '  sensitivity estimate is very 
close to the importance measures  discussed by other 
investigators.J.~,w ~v In other words, the importance 
measures  discussed by those authors are partial 
variances corresponding to a single pa ramete r  effect, 
i.e., they can be assimilated to sensitivity indices of the 
first order. The modified importance measure HIM* 

discussed in Saltelli et al. 13 and H o m m a  & Saltelli 1~ is 
a rank based measure  of importance which can be 
written as 

HIM* 

N2-I t 
 K-J 

(24) 

where R(f(Xm)) is the rank of f(xm). In this 
formulation HIM* is identical to Sobol 's  one indexed 
Si for the function f * = ' R a n k  of f (x)', as for this 
function 

( U  + 1 ) a n d D = ( N  2 -  1) (25) 
i f = \  2 / \ 12 / 

The coincidence in the formulation reached by 
different investigators, albeit the difference in the use 
of ranks, is remarkable .  

An expression for the Monte Carlo evaluation of 
the second order terms Dq was not given in Sobol ' ,  TM 

but can be obtained using both definition eqn (8) and 
property eqn (11) to yield: 

1 N 

lf)ii + 1~ i + t~), + .~, "-- ~] E f(rm,Xim,Xi,,,) 
m = 1 

X f(Sm,Xi,, ,Xi,,, ) (26) 

where now r .... s,,, e K" 2. This type of equation lends 
itself to an intuitive interpretation: the sum Dq + D, + 
Di, i.e., the total variance due to variables xi and x i 
(including the cross product  term),  can be estimated 
by function values in which all the variables but x~ and 
x i are re-sampled. If x~, x i are important  variables, 
then high function values will be multiplied by high 
function values in eqn (26), resulting in large values of 
the sensitivity estimates. 

Expressions analogous to eqn (23) and eqn (26) can 
be derived for the higher order terms. One important  
computat ional  aspect linked to the Monte Carlo 
evaluation of the Di~...i, is that they must be derived 
from the summantions  as eqn (23) and eqn (26). In 
order to describe the approach taken in the present  
work let the following notation be introduced: 

1 x 
Di,...i, - ~ ~ f(u.,,Xm)f(v,,,,Xm) (27) 

m = 1 

where the vector Xm contains the variables x~,,x~ ...... x~' 
it is easy to see that 

/5,. = D, - j~2 (28) 
- -  9 D 0 D # -  D,-  D~ -f'6 

_ + * 2  = D# D , -  D i .fo (29) 

and 

/Sij, = D , k - D  0 - D i k - D i k + D i + D  i + D * - . [ ~ .  (30) 
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Those relations can be generalized to 

Di,...i, = Dil...i, - ~ Dit...i, 1 

+ D,,..a, ~...( - 1 ) ~ - ' ~  D,, i...( - 1)~f,~ (31) 

where ~ D~,i~ indicates the sum over  all the permu- 
tations (of size r) of the indices contained in i~, i2... (,. 
Equat ion (31) allows the D ' s  to be computed  from 
the O's .  

In the calculation of the various terms /3~,...i ' in the 
Monte  Carlo scheme it is important  that the 
re-sampled variables are always generated using the 
same random numbers.  For instance, when comparing 
first order  terms like /5~/3j it is essential that the 
respective function values in eqn (23) only differ for 
the sample values of xg, x i, i.e., for each m,  m = 1 ..... n, 
the terms x,,k, k # i,j must be identical in the two 
sums for /3~,/3 i, otherwise the difference between 

^ ^ 

D ,  Dj could be blurred by the noise associated with 
the different sampling of the x,,,k, k # i,j. Similar 
considerations apply for the sums for the higher order  
terms (e.g., eqn (26)). In Sobol 's  terminology 2°'2~ the 
constructive dimension of the Monte  Carlo algorithm 
needed to compute  a complete  set of/3i,  a, is equal to 
2 × n, where the constructive dimension equals the 
total number  of random numbers  which must be 
generated to evaluate all the random variables needed 
for a single trial. This is easily implemented,  in 
practice, by generating a random numbers  matrix of 
size (N, 2 × n). Then when computing,  for instance, 
eqn (23) and eqn (26), the u .... r .... x~ .... x~,,, terms are 
generated using the first n columns of the random 
matrix; the v .... s,,, terms (the variables to be 
re-sampled) are computed  using the last n columns of 
the same matrix. If a reduced set of Di,...g, are to be 
computed,  then the constructive dimension is equal to 
2 × n minus the total number  of variables which are 
never  re-sampled in any of the requested D~,...~. 

2.3 Random points generation 

The random data matrix can either be generated using 
crude Monte  Carlo or some form of stratified 
sampling, such as for example the Latin hypercube 
sampling (LHS) in McKay et al. 3° Whenever  possible, 
Sobol '  LP~ number  sequences have been used in this 
work. 26"27 The performances  of various sampling 
strategies for computing importance measures was 
investigated in a previous article, ~v where LP~ 
sequences were found to per form bet ter  than both 
crude random sampling and LHS. It should be 
ment ioned that LHS needed for computing the 
measures  is per turbed,  as two LHS matrices of row 
dimension n are used, and the partial variances are 
computed  from columns of both matrices as outlined 

in Section 2.2. The estimates of the sensitivity indices 
are in fact multi-dimensional integrals, and the good 
performance of quasi random sequences for this kind 
of numerical integration is known. 3~ 

As discussed in Sobol '28 quasi random numbers  are 
characterized by an enhanced convergence,  i.e., the 
N -1/2 statistic convergence rate of the crude Monte 
Carlo can- - in  some cases and depending on the 
nature of the function under inves t iga t ion--become as 
large as N ~+" with an arbitrary small E > 0. 
Subroutines to generate LP~ sequences are 
available. 32"33 Unfortunately,  convenient computa-  
tional formulae are only available if the row 
dimension of the matrix to be generated is -< 51.e° As 
discussed in the previous section the constructive 
dimension needed to compute  the D~,~, is usually 
2 × n ,  and this may limit the application of LP~ 
algorithms when the number  of independent  variables 
is large. In the results section both crude Monte Carlo 
and Sobol '  quasi random numbers  have been used, 
depending on the number  of variables in the test case. 

2.4 Error estimates 

The quantities involved in the evaluation of the S~,...~, 
can be regarded as 'means '  of a given function; f~ is 

+ 2 the mean of f (x )  in eqn (20), D fo  is the mean of 
f2(xm) in eqn (21) and so on. Consequently 

S T D ( f ( x ) )  
S T D ( f , )  = X/N 

1 ~ ,  2 x 2 
= --  f ( , , , ) - f 0  (32) 

v ~  ~ / N  ... .  , 

where STD stands for standard error. Sobol '  suggests 
the use of the probable  error  8 corresponding to the 
crude Monte  Carlo method computed  as 

8fo = 0.6745 × S T D ( f , )  (33) 

with the population f~ having a 50% chance of falling 
in the interval f~ + 8 f~.28 Analogously,  the probable  

error  on D~,...i, in eqn (27) is est imated as: 

0.6745 X/-ff - 12 (34) 
8Di,...i, "- V ~  

where 

1 N 

1--' ~ E f(Um,Xm)f(Vm,Xm) (35) 
iv l l i ~ l  

F - ~ [f(Um ,Xm)f(Vm,Xm)] 2. (36) 
m ~ 1 

As shown previously, Di,...i, can be expressed as a 

linear combination of terms Di,...~, and f~. Thus the 
probable  error  on the Si,..~, can be determined.  In the 
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results section we have approximately computed  the 
probable  error  as: 

ab~ b~a/3 
6S,--~ /3 + /3-----7 (37) 

where the first order  term has been taken as example 
and the errors on/3~ a n d / 3  are the probable  errors. In 
this formula 3~c 2 and its error were neglected. This is 
justified since the problem is usually scaled before 
computing the variances, so that f~  is small. The 
probable  error  for the higher order terms can be also 
est imated from eqn (37) applying the maximum error 
propagat ion formula. The actual error, however,  is 
likely to be much lower due to the opposite sign of the 

terms in eqn (31). Hence 6D~,...~, in eqn (34) will be 
used as a yardstick for our computat ions instead of 
using 6/3i, ~ in the results section. 

By testing S~,...i, computat ions on a set of analytical 
functions given in Sobol '2" it was seen that the results 
were affected by a systematic error which could be 
compensated  for. Let x~ be a non influential variable 
and S~ be its first order sensitivity. According to the 
theory it should be & = 0. In fact 

- -  1 N 

~ f(nm,Xim)f(Vm,Xi,,, ) -- f,~. (38) b i : D, _ f 2  = N ,  =, 

If the two function values are completely uncorre- 
late& as should be the case for non influential 
parameters ,  then the summation in eqn (38) can be 
rewritten as 

1 x 1 
N f ' , ~ l  f(Vm,Xi,,,) = ~l f ,Nf ,  = fo (391 

so that D~ vanishes. In practice this does not happen,  
due to the finite sample size employed in the 
estimation. The residual value of D~ can never be 
lower than 

1 N 

,.~-I f(Um)f(Vm) -- f'~ (40) 

where a constructive dimension equal to 2 × n has 
been assumed, and f(Um), f(v,,,) indicate evaluation of 
function values for the two sets of n columns of the 
input sample matrix. The summation in eqn (40) 
corresponds to the case in which all the variables are 
re-sampled. The correction term of eqn (40) applies to 
all the terms D~, ~. 

This is bet ter  illustrated by an example.  The 
product  of linear functions: e" 

(2x~ + 1)...(2x,, + 1) 
f = 2" (41) 

has variances 

Di, ~, = (12) - '  and D = (13/12)" - 1. (42) 

Results for the evaluation of the S ~ ,  for n = 5 and 

N (sample size) equal to 1024 are given in Table 1. 
Paramete r  number  6 is a dummy,  with no influence on 
the output. The left hand side values were obtained 
using eqn (31), while the correction term eqn (40) was 
used for the right hand side values. Those results can 
be compared  with the theoretical values 

D~ = 0.083, D~j = 0.0069, D~ik = 0.00058, 

D o k l = 4 . 8 1 0  5 .... D - 0 . 4 9 2  (43) 

St = 0.17, &i = .014, Sok = 0.0012, S~jkl = 9.8 10 5 .... 

As can be seen from the left hand side column in 
Table 1, a systematic error of about  -0 .004 is 
subtracted from the first order terms, added to the 
second order ones, subtracted from the third order 
ones and so on. This is due to the fact that each Di , , ,  

is equal to the sum of an odd number  of Di,.~, terms 
with alternate signs in eqn (31), and that the error is 

the same for each D i ~ .  The right hand side in Table 
1 was obtained correcting each term with eqn (40) 
multiplied by ( - 1)' +'. 

2.5 A new statistics: the global sensitivity indices 

As mentioned in the introduction, the emphasis of the 
present  note is on the computat ion of the higher order 
sensitivity indices, because of their relevance to 
nonlinear models. Unfortunately,  one separate sample 
(of size N) is needed to compute  each of the Si, i. 
Given that the number  of terms in the development  of 
eqn (6) and in eqn (17) as well is 2" - 1, and that one 
sample is needed for f~, then Nx(2") model 
evaluations are to be computed.  In applications with a 
large number  of variables this number  would be 
prohibitive. 

For this reason all the variables have been 
parti t ioned into two subsets, one containing a given 
variable Xi alone, and the complementary  set X,s 
containing all the Xj with j ¢ i .  In this case the 
decomposit ion of f ( x )  will turn into: 

f ( x )  = f ,  + f ( X , )  + f.,(X,.,) + f,.,~(Xi,X,.,). (44) 

Therefore,  using the definitions eqn (15) and eqn (16) 
the total variance D can be given as: 

D = D~ + D,,i + Di. , .  (45) 

At this point the new statistics Srl~ can be introduced: 

S.~, =- S~ + &.,, - 1 - S ,  (46) 

where S,~ equals the sum of all the S~, .~ terms where 
the index i is excluded. Consequently,  S-z~ denotes the 
' total '  effect of variable X~, which includes the fraction 
of variance accounted for by variable Xi alone and the 
fraction accounted for by any combination of X~ with 
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Table 1. Values of  S;,..., for the function eqn(41) without (left) and with (right) the 
correction term eqn(40), n = 5 and sample size N = 1024. Parameter 6 is a dummy 

Si,...i, without correction term Si,...i, with correction term 

1 0.170579 
2 0.169207 
3 0.160731 
4 0.160707 
5 0.166913 

average of 1-5 = 0•1656 
6 -0.004167 
12 0.017214 
13 0.016702 
14 0.019198 
15 0.016804 
16 0.004167 
23 0.020892 

1 0.174747 
2 0.173375 
3 0.164899 
4 0.164875 
5 0.171080 

average of 1-5 = 0.1698 
6 0.000000 
12 0•013046 
13 0•012534 
14 0.015030 
15 0•012636 
16 -0.000000 
23 0•016724• 

average ofsecond order te rms  notincluding average ofsecond order te rms  notincluding 
6 = 0.0187 6 = 0.0142 

1 2 3 -0.003855 123 0.000312 
1 2 4 -0.003037 124 0.001130 
1 2 5 -0.003589 125 0.000578 
1 2 6 -0.004167 126 0.000000. 

average of third order terms not including average of th i rd  order terms not including 
6 = -0.00339 6 = 0.00078 

1234 0.005261 1234 0.001093 
1235 0.005228 1235 0.001060 
1236 0.004167 1236 -0.000000 
1245 0.004203 1245 0.000036. 

average offour th  order terms not including average of fourth order terms not including 
6 = 0.00251 6 = 0.00085 

12345 -0.003429 12345 0.000738 
12346 -0.004167 12346 0.000000 
12356 -0.004167 12356 0.000000 
12456 -0.004167 12456 0.000000. 

the  r e m a i n i n g  var iab les .  S,.i can be  e s t i m a t e d  with jus t  
one  M o n t e  Ca r lo  in tegra l  as: 

1 1 u 
S,i - D N ,  =,~ f(Xim,Um)f(x'i, , , ,Um) -- f,] (47) 

w h e r e  u is the  vec to r  of  all the  va r iab les  but  x~ and  the 
p r i m e  ind ica tes  r e - sampl ing .  This  a p p r o a c h  reduces  
the  n u m b e r  of  m o d e l  eva lua t ions  to N × (n + 1) i.e., 
one  s a m p l e  for  f~ plus one  s a m p l e  for  each  var iab le .  

In the  s ta t is t ica l  l i t e r a tu re  this k ind  of  p a r a m e t e r  
sc reen ing  p r o c e d u r e ,  w h e r e  the  n u m b e r  of  m o d e l  
s imula t ions  to be  p e r f o r m e d  grows with the  n u m b e r  of  
p a r a m e t e r s ,  is c o m m o n l y  i nd i ca t ed  as a O A T  m e t h o d ,  
f rom one - f ac to r - a t - a - t ime .  A t e x t b o o k  on  e x p e r i m e n -  
tal  des ign  34 con t ra s t s  O A T  with fac to r ia l  des ign,  the  
l a t t e r  be ing  ind i ca t ed  as a m o r e  a p p r o p r i a t e  t echn ique  
to uncove r  two or  th ree  way  effects (i .e. ,  h igher  o r d e r  

t e rms) .  This  k ind  of  cr i t ic ism does  not  ho ld  for  the  
a p p r o a c h  p r e s e n t e d  in this note .  A n  in te res t ing  
e x a m p l e  of  an O A T  m e t h o d  con t r a s t ed  to L H S  is 
given in Morr i s .  2~ This  au tho r  suggests  an O A T  
fac tor ia l  s ampl ing  p lan  to be used for  p r e l i m i n a r y  
p a r a m e t e r  sc reen ing  in local SA.  The  sc reen ing  is 
a i m e d  at  d i s t inguish ing  b e t w e e n  (a) non inf luent ial  
p a r a m e t e r ,  (b) p a r a m e t e r s  inf luencing the ou tpu t  
l inear ly  and  (c) p a r a m e t e r s  inf luencing the ou tpu t  non 
l inear ly  or  via h igher  o r d e r  effect (assoc ia t ion  with 
o t h e r  pa rame te r s ) •  In a w o r k e d  e x a m p l e  with a 
n o n l i n e a r  m o d e l  and  n = 20 input  p a r a m e t e r s  Morr i s  
ach ieves  the  sc reen ing  with jus t  84 runs. 

A n o t h e r  e x a m p l e  of  O A T  is given in Co t t e r ,  35 using 
a two level fac tor ia l  design• In C o t t e r ' s  a p p r o a c h ,  as in 
the  p r e se n t  no te ,  the  to ta l  effect of  a p a r a m e t e r  is 
c ons ide r e d  to be due  to a sum of  t e rms  of  increas ing  
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dimensionality, including a first order effect, a sum of 
second order terms, a sum of third order ones and so 
on. Using (2n + 2) runs, Cotter  can estimate for each 
parameter ,  the total algebraic sum of the 'even order '  
effects and the total algebraic sum of the 'odd order" 
effects. Parameters  are ranked based on these sums. A 
shortcoming of this approach is a possible cancellation 
within the sums of terms of opposite sign. 

Both Morris '  and Cot ter ' s  approach can be 
considered as screening tests conducted at small 
sample size. The total sensitivity indices Sj~ suggested 
here are indeed 'large sample '  methods.  It may be 
worth stressing that this may render  the approach non 
viable for applications with large numbers  of 
parameters  and computat ionally expensive models 
(with the ' too expensive '  boundary moving at each 
new generation of workstations).  On the other hand, 
S r~ provides an information qualitatively superior to 
that of other global methods.  A regression based SA, 
for instance, provides coefficients which may be used 
for assessing the importance of a given parameter ,  
conditionally upon the efficiency of the regression 
model (i.e., on R2,). Those coefficients can be 
considered as clues of paramete r  influence. The 
sensitivity indices provide the actual fraction of 
variance accounted by each (combination of) 
parameter(s) .  S~ gives the total fraction of such a 
variance due to interactions of any order. This kind of 
information is more precise from the mathematical  
point of view and more informative of the model 
behaviour.  

2.6 Rank based version of  importance measures 

In the results section data are presented for S~ and S~, 
and for the rank based versions of the statistics, 
indicated by S*~ and S*. Rank transformation is a 
fairly common procedure in sensitivity analysis of a 
nonlinear model.  For example,  the standardized 
regression coefficients (SRC) are often replaced by 
their rank equivalent (the standardized rank regres- 
sion coefficients SRRC)  ~6 when the regression based 
on the SRC's  is poor. Nevertheless,  the use of rank 
with the importance measure  discussed here is 
conceptually different from the use of rank in a 
regression based sensitivity analysis technique. 

As far as the regression technique (i.e., the SRRC)  
is concerned, the rank transformation is essential to 
the analysis, in that it allows the detection of 
parameters  non linearly correlated with the output  
and which could otherwise be overlooked.  In other 
words a sensitivity analysis based on the linear version 
of the technique (i.e., on the SRC) would be regarded 
with suspicion, unless the model under analysis were 
proven to be almost linear. 

In the same spirit the use of the importance 
measure finds its justification in its ability to detect 

nonlinear and nonmonotonic  relationships, which 
could escape detection even using the SRRC's .  12"~3 
Nevertheless,  the importance measure could, in 
principle, yield the same result even without the rank 
transformation.  The reason of the transformation lies, 
in this case, in the scarce robustness of the raw values 
version of the statistics. 13 Robustness means here the 
ability of the method to replicate its results with 
different input samples taken from the same 
population. This happens because, normally, the error 
associated with $I~ is much larger than that associated 
with S*i. This implies that in order to achieve a given 
(target) probable  error,  a larger sample is needed for 
St, than for S~i (the error in both cases decreases as 

1 
x/~).  As mentioned in the introduction the scarce 

robustness of the raw value-based measure is 
discussed in Iman & Hora,  15 who note that the 
measure is highly influenced by outliers associated 
with long tailed input distributions. 

3 RESULTS 

3.1 First test case: analytical functions 

To demonstra te  the performance of the importance 
measures introduced, an artificial analytical model 
with 3 input variables is considered, after Ishigami & 
Hommal~: 

f (XI ,Xz ,X~)  = sin X~ + a sin 2 X2 + bX 4 sin X~ (48) 

where its input probabili ty density functions (pdf) are 
assumed as follows: 

I 1 pi(Xi)= ~ , w h e n - : r - < X , ~ : r  f o r i = l , 2 , 3 .  (49) 

[ 0 ,  when Xi < - :r,X~ > :r 

From eqn (15) and eqn (16) the total variance D and 
partial variances D~,...~, can be obtained analytically as: 

a 2 b K  4 b2n s 1 
D = - - +  + + - (50) 

8 5 18 2 

bg  4 b2~ ~ 1 
D j -  + - - +  - (51) 

5 50 2 

(12 
Dz = - -  (52) 

8 

D~ = 0 (53) 

Di2 = 0 (54) 

b2ir s b21~ ~ 
Di3 - (55) 

18 50 

D2) = 0 (56) 

D123 = 0. (57) 
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The same functions were also used to investigate the 
effect of the sampling strategy. 19 

The primarY purpose of this test case is to examine 
how the Monte Carlo computation of the sensitivity 
estimates works with the comparison to the exact 
values. A Sobol' quasirandom input sequence of 
constructive dimension equal to 2 × 3  has been 
generated for the 3 input parameters.  A base sample 
of size 1024 was used. The Di2 3 term was estimated as 

O12 3 = D - ]~ Oi2. The results of Sil...i,, Sil...i ' and 
S*i~...i, are given in Table 2. The error terms in Table 
2 were estimated with eqn (37). The constants in eqns 
(50)-(57) are given the values a = 7 and b = 0.1 in the 
present exercise. 

The following remarks can be made: 

• The values of S ~ ,  show good agreements with 
the exact values. 

• The effect of the rank is to decrease the relative 
influence of the higher order  term (~.3 < $1.3). 

In particular, it is interesting that the sensitivity 
estimate related to combination of the variables X~ 
and X3 is non negligible, although the partial variance 
D3 is negligible. This is an example of how the ranking 
of input parameters based on first order  terms could 
give unreliable results. 

For comparison the results of SRC and the SRRC 
are also presented in Table 3 with the model 
coefficients of determination R~. As can be expected 
from the analytical form of eqn (48), strong nonlinear 
and nonmonotonic  relationships between the input 
variables and the output result in a poor  performance 
of the regression method,  both using raw values and 
rank-transformed data. The resulting model 
coefficients of determination R~ are very low. Hence 
the SRC and SRRC cannot provide a reliable ranking 
of input variables. The results from the SRRC 
contrast sharply with the predictions from $7~ in Table 
4. According to the SRRC's  XI is ten times more 

Table 2. $I ~,S~ ~,andS~ ~ values with error terms for 
I-.-~ I---s I---s 

the first test case 

Variables S ....... , 3,, ..... S ' i ,  
exact (error term) (error term) 

calculated 

X, 0.3138 0.3230(0.032) 0.3115(0.026) 
X2 0.4424 0.4390(0.034) 0.5106(0.029) 
X~ 0.0 0.0078(0.029) 0.0077(0.023) 

XLX2 0.0 0.(0.048) 0.0034(0.034) 
X~X3 0.2436 0.2354(0.049) 0.1311(0.030) 
X2X3 0.0 0.(0.043) 0.0190(0.031) 

XIX2X3 0.0 

Table 3. Standardized regression coefficients (SRC) 
and standardized rank regression coefficients (SRRC) 

with model coefficients of determination (R 2) 

Variable SRC SRRC 

X 1 0.44 0.43 
X2 -0.03 -0.03 
X3 0.02 0.04 
R~ 0.20 0.18 

important than either X2 or X3. This is not to be 
believed, due to the combined evidence of the $7; and 
the low R, 2, associated with the SRRC. The computed 
and analytical values of $7~ are in good agreement 
with the exact values. 

3.2 Second  test  case: K I M  

KIM is a chemical kinetics model for the O H initiated 
oxidation of dimethylsulphide (DMS), a sulphur 
bearing compound which is naturally produced by 
oceanic biota over remote areas (see scheme in Fig. 
1). The reactions considered are given in Table 5. 
KIM solves a system of 37 differential equations. 
Switches in KIM allow the non irreversible reactions, 
e.g., 

k7 

CH3S + 02 ~ ) CH3SOO 
k 7 

to be considered either kinetically (the results depend 
on both k 7 and k v) or at the equilibrium (the results 
only depend on the ratio k7/k-7). In the present 
analysis the equations involving kl4 and k19 a re  

considered at the equilibrium. The integration of the 
system equations is performed using Gear 's  method. 37 
KIM has 37 input parameters (constructive 
dimension = 2 × 37) which are either kinetic constants, 
activation energies, or initial values for species 
concentration. Parameter  distributions are given in 
Saltelli & Hjorth. 3~ 

A thorough sensitivity analysis Of this model is 
reported elsewhere 3s and only a selected subset of 
results is discussed here. Models similar to KIM have 
often been the object of sensitivity analysis. The large 

Table 4. Comparison of calculated Sr~ values to the 
exact values Sr~ for each variable 

Variable St, exact S~, calculated 
(error term) 

X, 0.5574 0.5532 (0.043) 
X, 0.4442 0.4338 (0.049) 
X3 0.2410 0.2380 (0.048) 
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CH3SCH3 _y 
( DMS) 

SO2 SO2 

CH3S* _.~ CH3SO. .) CHaSO2t~ SO2 

$ $ 
CH3SOOo CH3S03~._~ SO3 

$ $ 
S02 CH3S03~ 

(MSA) 

Fig. 1. Simplified flow diagram for the oxidation of DMS. 

number  of variables of this model has two important 
consequences: 

• The constructive dimension is too high to use 
Sobor  quasirandom numbers; a crude Monte 
Carlo sampling is used instead. 

• The cost of computing all the higher order  terms 
is prohibitive. For this reason only the ~g, ~* 
(first order)  and ~ri, S*~ (total effect) terms are 
computed. 

A base sample of size N = 1,000 was used. Results are 
given for two output variables: the concentration of 
methane sulphonic acid (MSA) and the 
[MSA]/([H2SO4]+[SO2]) ratio. MSA, SO2 and 
H2504 are all possible e n d  products of the oxidation 
of DMS. Results for S~, Sr~ are given in Fig. 2 for 
[MSA] and Fig. 3 for [MSA]/([H2SO4] + [SO2]). Only 
those variables are given whose Sri value is in general 
greater than its 6ST~ in eqn (37). 

The main purpose of this test case is to illustrate the 
difference between the first order  terms and the total 
effect ones. We intend to show that using the former 

Total effect (full symbol) and first order effect (empty) 
for selected parameters and output=MSA 

r 
~Ok3 

j Difference between H k 3  
/ STOT(kl0) and S(kl0) evidenced B---~ k~0 

~t~ ~ A k 1 8  

~ k 1 9  

@ ~ k l g  

o I, 

¥ I ~ v--v.z6 

1000 2000 
time (s) 

Fig. 2. S~ (empty symbols) and Sr~ (full symbols) for selected 
parameters for MSA. 

Total effect (full symbol) and first order effect (empty) 
for selected parameters and output=MSA 

Difference between STOT(k(10) and 
H k 3  

l S(kl0) evidenced ~ ~  ~ u k l o  
0.4 H k l O  

~ &k18 

~z~Tkzs 
~ l l L - ~  k26 

0.2 

o , 

CO 

o.o ~ o 
1000 2000 

time (s) 

Fig. 3. S* (empty symbols) and -¢*i (full symbols) for 
selected parameters for MSA. 

can be misleading. The difference between Si and Sri is 
a measure of the nonlinearity of the model. In fact the 
nonlinearity of a model also depends on which output 
variable is considered. It is intuitive that the model for 
[MSA] is more linear than the model for 
[MSA]/([H2SO4] + [SO2]) ratio. This is reflected in 
the differences between the estimates ~i and $7~ (Figs 2 
and 3). It should be noted that, in Fig. 2, in spite of 
the differences between the first order indices and the 
total ones, the ranking of the parameters is 
substantially preserved. This is not the case for the 
more nonlinear model (Fig. 3), where the relative 
importance of k26 and k3t is reversed. This result is not 
due to the limited sample size, but to the relevance of 
higher order terms in this model (which--  
incidentally--is not dramatically nonlinear). This 
behaviour points to an intrinsic weakness of the 
importance measures, and of the use of first order 
indices alone. 

The results for the rank based models are given in 
Fig. 4 for [MSA] and Fig. 5 for [MSA]/([HeSO4] + 
[SO2]). As in all the other  test cases the effect of the 
rank transformation is to 'flatten' the model, 
increasing the model linearity. This is reflected in an 
increase in the first order terms at the expenses of the 
higher order ones. The S*, S*~ curves are, in general, 
much closer to each other than the Si, ST, ones. 
Inspection of Tables 6 and 7 reveals what a serious 
problem the estimation of the sensitivity indices is. In 
spite o f  t h e  large base sample the error associated 
with Si, $7; is still large. According to our experience 
this is mainly due to the large scale of variation of the 
output (and less to the model nonlinearity). As 
expected, the error  on the ranked measures is much 
lower, which makes ranks, in spite of their limitations, 
a popular alternative. 
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Total effect (full symbol) and first order effect (empty) 
for selected parameters and output=MSA/(SO2+H2SO4) 

0.4 

q 

The difference [STOT(klO)-S(klO)] " - o  

is a measure of the importance of the 

higher order terms, 

) - - ) k 1 0  

H k l 0  

4-  k26  

• ~ k26  

~ , a  k31 

• ~ k k 3 1  

O0 

*q41 

t000 2000 
time (S) 

Fill. 4. S~ (empty symbols) and S~ (full symbols) for selected 
parameters for MSA/(SO~ + H2804 ). 

3.3 Third test case: s implif ied Level  E 

The test case employed  here is a simplified vers ion of 
the exercise a l ready discussed in Saltelli et al. 13 The 

deta i led  descr ip t ion of that exercise, n a m e d  Level E, 
is given in the O E C D / N E A  report .  3~ It involves the 
c o m p u t a t i o n  of the dose to man  resul t ing from 
migra t ion  of radionucl ides .  The  release takes place 
from a nuc lea r  waste reposi tory in an idealized 
geological  format ion .  The  source term model  consists 
of a delay for an init ial  c o n t a i n m e n t  t ime, T, followed 
by leaching at a cons tan t  fract ion rate k. The  
govern ing  equa t ions  for the inven to ry  of rad ionucl ides  

0 .4o  

g 

o 
¥ 

Total effect (full symbol) and first order effect (empty) 
for selected parameters and output=MSA/(SO2+H2SO4) 

1 

_ • - -  , -- • ° t 

H k 1 0  

n ~ b 1 4  
3 

i 1 ~  b 1 4  

z ~ ,  k 2 6  

t - ~ 4 k 4 ,  k26  
4_, 

Difference between STOT(kl0) and 

S(k(10) evidenced 

oz 0 . 2  "-----.. 

ii 
0.0 

1000 2000 
time (s) 

Fig. 5. ,~,~: (empty symbols) and S*~ (full symbols) for 
selected parameters for MSA/(SO_, + H2804). 

Table 6. Sensitivity indices (first order and total effect) for 
]VISA for the same variables selected as in Figs 2 and 3, on 

raw values and ranks 

Variable Time (s) ,~, 6S, S~ 6S~, 

k, 676.9 0.0555 0.0273 0.1117 0.0777 
1427.(/ 0.0870 (I.0268 0.1482 0.0676 
2275.0 0.0884 0.0283 0.1494 0.0611 
3475.0 0.1157 ( I .0285 (/.1437 0.0531 
3600.0 0.112(/ 0.0285 (/.1410 0.(/539 

k ,, 676.9 0.1766 0.0310 0.2997 0.0668 
1427.0 0.2364 0.0306 0.3590 0.0577 
2275.0 0.2610 0.0320 (/.3989 0.0512 
3475.(/ 02897 0.0313 0.3823 0.0468 
360(/.0 0.2874 0.0316 0.3803 0.0481 

k is 676.9 0.0237 (/.0242 0.1858 0.0688 
1427.(/ 0.0313 ( / .0225 0.1475 0.0661 
2275.0 0.0075 0.0227 0.1201 0.0617 
3475.0 0.0100 0.0227 0.0769 0.0576 
3600.0 0.0097 0.0230 0.0776 0.0588 

k t,~ 676.9 -0.0197 0.0209 0.1866 0.0708 
1427.0 -0.0041 0.0213 0.1560 0.0654 
2275.0 -0.0114 0.0227 0.1377 (/.0619 
3475.0 0.0128 0.0231 0.0975 0.0572 
3600.0 0.0124 0.0231 0.0912 0.0589 

k~,, 676.9 0.2202 0.0372 (/.3512 0.0661 
1427.0 0.1988 0.0308 0.3153 0.0599 
2275.0 0.1277 0.0279 0.2550 0.0577 
3475.0 0.1199 0.0270 0.1651 0.0540 
3600.0 0.1175 0.0268 0.1622 0.0549 

Variable Time (s) S,* 6S* S*, 6S*i 

k, 676.9 0.0365 0.0228 0.0898 0.0366 
1427.0 (I.0674 0.0228 0.I 172 0.0361 
2275.0 0.0667 0.0232 0.1448 0.0358 
3475.0 0 . ( /905 0 . 0 2 3 8  I).1336 0.0359 
3600.(/ 0.0885 0.0238 0.1323 0.0360 

k m 676.9 0.2174 0.0255 0.3236 0.0338 
1427.0 0.2777 (I.(1264 0.3873 (I.0328 
2275.0 0.2888 0.0272 0.41(/5 0.0325 
3475.0 0.3092 0.0276 0.4178 0.0325 
3600.0 0.3076 0.0276 0.4190 0.0325 

k ~s 676.9 0.0238 0.0227 0.1332 0.0364 
1427.0 0.0364 0.0225 0.1144 0.0366 
2275.0 0.0178 0.0228 0.1059 /).0366 
3475.(/ 0.0167 0.0226 0.0737 0.0370 
3600.0 0.0174 0.0226 0.0730 0.0370 

k ~,~ 676.9 -0.0209 ( I .0216 0.1492 0.0357 
1427.0 -0.0058 0.0214 0.1167 0.0363 
2275.(/ -0.0076 0 .0221  0.13(/6 0.0361 
3475.0 0.0192 0.0224 0.0976 0.0367 
3600.0 0.0198 (I.(1224 0.0959 0.0367 

k2, 676.9 (/.2372 (/ .(/266 0.3724 0.0332 
1427.0 0.2038 0.0255 (/ .298(/  0.0342 
2275.0 0.1357 0.0250 (/.2408 0.0349 
3475.0 0.1147 0.0245 0.1514 0.0363 
3600.0 0.1149 0.0245 0.1494 (/.(1362 

at t ime t, M(t)  are 

dM 
= - A M ,  

dt 
t < T (58)  
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Table 7. Sensitivity indices (first order and total effect) for 
the ratio MSA/(SO2 + H2SO4) for the same variables sel- 
ected as in Figs 4 and 5, on raw values and ranks, bl4 is the 
exponential term in the Arrhenius equation for k_t4, i.e.: 

/ bl4 \ 
k_14 =exp(a,4)exp[~) 

Variable Time (s) S, 6S, STy 6S,~ 

k,,, 676.9 0.1096 0.0534 0.4695 0.1297 
1427.0 0.0857 0.0612 0.4278 0.1509 
2275.0 0.0824 0.0646 0.4027 0.1623 
3475.0 0.0873 0 .0641  0.3815 0.1635 
3600.0 0.0865 0.0640 0.3799 0.1670 

k2~ 676.9 0.1020 0.0815 0.2017 0.2769 
1427.0 0.0704 0.1089 0.1560 0.2428 
2275.0 0.0478 0.1138 0.1032 0.2387 
3475.0 0.0292 0.1068 0.0526 0.2394 
3600.0 0.0286 0.1064 0.0553 0.2403 

k31 676.9 -0.0377 0.0299 0.2242 0.1869 
1427.0 -0.0569 0 .0391  0.2084 0.1852 
2275.0 -0.0582 0.0433 0.1955 0.1915 
3475.0 -0.0453 0.0466 0.1792 0.1917 
3600.0 -0.0452 0.0464 0.1793 0.1949 

Variable Time (s) $7 8SF S~ 8S~ 

k,. 676.9 0.3117 0.0270 0.3996 0.0329 
1427.0 0.3440 0.0276 0.4314 0.0322 
2275.0 0.3518 0.0280 0.4395 0.0321 
3475.0 0.3516 0.0282 0.4453 0.0321 
3600.0 0.3513 0.0282 0.4453 0.0321 

bl4 676.9 0.0152 0 .0221  0.0817 0.0370 
1427.0 0 .0231  0.0222 0.1049 0.0369 
2275.0 0.0276 0.0224 0.1208 0.0368 
3475.0 0.0304 0.0226 0.1303 0.0367 
3600.0 0.0302 0.0226 0.1304 0.0367 

k2, 676.9 0.1848 0.0254 0.2624 0.0346 
1427.0 0.1339 0.0243 0.1767 0.0358 
2275.0 0.0968 0.0238 0.1243 0.0365 
3475.0 0.0680 0.0233 0.0825 0.0370 
3600.0 0.0673 0.0233 0.0815 0.0370 

dM 
- A M + k M ,  t > - T  (59) 

dt 

with the initial condition M(0) = Mo. The flux f rom the 
source term is then given by 

S ( t )  = k M ( t ) ,  t >- T (60) 

The geosphere model includes advection, lon- 
gitudinal dispersion, equilibrium sorption and radio- 
active decay. The governing equation for the flux 
F ( x , t )  is 

OF OF O 2 F  
R - - + v - - - d v - - =  - A R F  (61) 

at Ox OX 2 

where R, v and d are retardat ion factor, flow velocity 
and dispersion length, respectively. The initial 
condition is 

F(x ,O)  = 0 (62) 

and the boundary conditions are 

F(O,t)  = 6 ( 0  (63) 

F(vc , t )  = O. (64) 

In the biosphere model  the geosphere flux is 
assumed to enter a s t ream which is used for drinking 
water  at the end of the geosphere layer whose length 
is l. The resultant dose D ( t )  can be obtained 
a n a l y t i c a l l y  a s  4° 

1 W 
D ( T + t) - - a - -  k M e - ~ ( r+,)e ~/2'le - RF-/4'tV'e - ~,/4,1R 

- 2 r ' W  o 

× [&(y) + &(7')] ,  (65) 

where /3  is an ingestion dose factor and 

( Rl2~ I/2 vt ~1/2 
Y = \ ~ /  + ( ~ f f ~ -  k t )  , (66) 

( hi2 ] ( )"~ ~/2 vt  _ k t  
Y k 4 d v t /  4 d R  (67) 

49(z ) = eZ:erfe(z  ). (68) 

The isotope 1-129 is considered in this test case. Six 
parameters  are t reated as uncertain variables with the 
form of probabili ty distributions in Table 8. 

For this exercise the full range of sensitivity indices 
is computed.  A base sample size of 1024 was 
generated using Sobol '  quasi random sequences. Then 
sensitivity estimates were computed  for all the 
26 - 1 -- 63 combinations (see eqn (9)). S~,i, values for 
the dose output  at three time points are given in Table 
9. At  all time points the variance of the output is 
accounted for by two or three higher order terms plus 
one first order. The sum of the terms gives roughly 
80% (or more)  of the total variance. The pre- 
dominance of the higher order terms is evident. 

Although the simplified version of the test case used 
here considers only 1-129 and one geosphere layer, 
rather  than the nuclide chain plus multi-layered 
geosphere of the full test case, this model still has an 
interesting nonmonotonic  feature. Figure 6 shows the 
model  coefficients of determination R2,  for the 
regression models based on the raw values and on the 
ranks. This coefficient provides a measure of how well 
the linear regression model based on either SRC's  or 
SRRC' s  can reproduce the actual output vector. The 
large difference between the values of these two 
coefficients demonstra tes  the nonlineality of the 
model.  This test model also has an interesting 
nonmonotonic  feature which peaks at t = 8 > 104 y. 
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Table 8. Input parameter for the simplified Level E test case 

Notation Definition Distribution Range Units 

v water velocity in geosphere layer log-uniform /10 -3, 10 ~/ m/a 
W stream flow rate log-uniform /10 ~, 107/ m3/a 
R retardation factor for Iodine uniform /1, 5/ 
1 length of geosphere layer uniform /100, 500/ m 
T containment time uniform /100, 1,000/ a 
k leach rate for Iodine log-uniform /10 3 10-2/ a ~ 

The SRRC' s  as a function of t ime for all six variables 
are given in Fig. 7. The SRRCs in Fig. 7 show the 
changing pat tern of importance over time. The 
absolute values of the SRRCs can be used to 
determine variable importance and the sign of a 
SRRC indicates the input and output  correlation. 
Although Fig. 7 gives us information that the variables 
which govern the transit time in the geosphere have a 
positive correlation with the output at early time, 
which becomes negative at a later time, the SRRC' s  
fail to yield proper  ranking of uncertain input 
parameters  at the presence of model 
nonmonotonici ty.  

STg instead finds a proper  ranking of input 
parameters  even at the nonmonotonic  point, t =  
8 × 104 year as shown in Fig. 8. Results for S*i as a 
function of t ime have also been plotted in Fig. 9. 
There  are remarkable  differences between S r~ and S*~ 
for the s t ream flow rate, W. This difference highlights 
an interesting 'pa thology '  linked to the use of rank 
transformation.  As seen from Fig. 9, variable W is 
never  important  when using rank t ransformed indices. 
This stems from eqn (65), but this is not what 
concerns us here. The fact that W is only relevant in 
association with other variables makes W an ideal 
victim of the rank transformation which, as observed 
in the second test case, kills the higher order terms at 
the expense of the first order ones. 

4 C O N C L U S I O N S  

This work is mainly devoted to the study of Sobol '  
sensitivity indices, to their performances,  and to the 

introduction of a new global index. This is also a 
sequel to earlier investigations of the performances of 
the measure of importance,  originally developed by 
Hora  & Iman. TM In Saltelli et al. ,  ~3 in particular, we 
have suggested a ranked version of the measure of 
importance,  and in H o m m a  & Saltelli, ~9 we have 
tested different sampling strategies (crude MC, LHS, 
quasirandom) for its estimate. In this paper  we show 
how this ranked measure exactly coincides with S*, a 
Sobol '  sensitivity index of the first order computed on 
the ranks. 

Our  finding highlights the value of the sensitivity 
indices. The Si~ ..... i, are informative as they yield the 
exact fraction of the output variance accounted for by 
any input paramete r  or combination of parameters.  
This variance analysis is indeed a rigorous form of 
sensitivity analysis. In this respect the sensitivity 
indices resembles the FAST approach.  The computa-  
tion of the Si~,...,i~ seems more straightforward than 
that of the FAST coefficients, especially as far as the 
higher order terms are concerned. There  is no 
difference, f rom the computat ional  point of view, 
between a first order term, Si, and a higher order Si, i, 

or STi term. 
Our  experience with the test case KIM is that the 

paramete r  ranking can be affected by the higher order 
terms, even when the sum of the first order terms is 
not far from unity. Even in the first test case, the sum 
of the first order terms was higher than 0.7, and yet 
this did not capture an interesting second order term. 
A sensitivity analysis based on the importance 
measure,  or on Sobol '  or FAST sensitivity indices of 
the first order,  may thus be misleading. In this respect 
we would tend to disagree with a 'rule of the thumb'  

Table 9. Sensitivity estimates $6---~ for dose in decreasing order at three time 
points 

t~104(y)  t = 8 x  10 z(y) t = 7 x  105(y) 

v W  
v W R I  

1 
vR 
vR1 

R 
U 

0.203(0.126) vWR 0.286(0.166) v 0.281(0.125) 
0.197(0.249) vWl  I)231(0.133) vWR 0.154(0.187) 
0.131(0.093) v 0.119(0.048) vWl  0.129(0.146) 
0.111(0.141) W 0.109(0.044) vR1 0.119(0.180) 
0.109(0.164) v W  0.102(0.101) RI 0.109(0.074) 
0.104(0.078) 
O.lOOlO.O32) 
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Fig. 6. Model coefficients of determination R2,, for the 
simplified Level E test case. 

that says that a FAST based sensitivity analysis is 
good enough when the sum of the first order terms is 
greater than 0.6. 25 

The flexibility of the S~,...~ derives from the 
possibility of adapting the computation's  strategy to 
the model at hand, depending mostly on the number  
of input parameters involved. If the number of 
parameters is low and the model not too expensive to 
run, then all the Si,...g, can be computed (test cases 1 
and 3) achieving a complete variance analysis. This 
corresponds to a complete 'killing' of the problem. 
For systems with a large number  of parameters the $7~ 
coefficients, derived in this article, can be computed 
(test case 2). In this latter case the amount  of 
information collected is reduced, but the parameters 
are still accurately ranked. The Sg,...~ are also reliable 
and accurate in the sense discussed in Saltelli et alJ 3 
They can rank the input parameters when other tests 
(such as the PRCC, SRRC) fail due to model 
nonmonotonici ty (test cases 1 and 3). 

The main drawback in the use of the S~,...~, is the 
large sample size needed for their evaluation. This is 
due on one hand to the difficulty of estimating a 

.8 

.6 

"6 

o 

o'J 
1000 10000 100000 1000000 

Time (y) 

Fig. 8. Sr~ for selected parameters for the simplified Level E 
test case. 

variance (scarce robustness of the estimate), and on 
the other hand to the fact that the base sample has to 
be replicated at least as many times as the number of 
variables. The scarce robustness of the importance 
measures, also discussed by Iman & Hora,  ~5 is 
particularly acute when, in the order, (a) there is a 
large range of variability in the output variables, (b) 
there are many input variables and (c) the model is 
strongly nonlinear. Our experience with the indices 
seems to indicate that (c) has a moderate impact on 
the robustness of S~,...~. When the error on the S~,...~ is 
excessive, the ranked version of the test can be used, 
which usually provides more stable results. This comes 
to the expenses of an alteration of the original model. 
The S* . forcefully linearizes the model, artificially II,.,I ~ 

increasing the fraction of the total variance accounted 
for by the first order terms (test case 3, in particular). 
Yet in the absence of computationally viable 
alternatives the S*~ seems to offer a workable solution 
(maybe the only solution) to the problem. 

Finally it can be worth stressing that the method 
presented in this article is not a screening test. It 
works better  when the model allows a good thousand 
simulations per variable. Computational constraints 
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Time (y) 

Fig. 7. Standardised rank regression coefficients for the 
simplified Level E test case. 
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Fig. 9. S*i for selected parameters for the simplified Level E 
test case. 
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can make this impossible for many problems. Yet, 
once the model has been screened, and the variable 
parameters reduced to a manageable size, here the 
sensitivity indices can come into play, and yield an 
information as accurate as that which one could 
achieve using FAST, and as straightforward to 
compute as a standard deviation. 
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