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TECHNICAL REPORT 
Use of Sobol's Quasirandom Sequence Generator 

for Integration of Modified Uncertainty 
Importance Measure 

Toshimitsu HOMMAt , 
Tokai Research Establishment, Japan Atomic Energy Research Institute" 

Andrea SALTELLI 

Environment Institute, Joint Research Centre, European Commission" 

(Received April 20, 1995) 

Sensitivity analysis of model output is relevant to a number of practices, including verifica- 
tion of models and computer code quality assurance. It deals with the identification of influential 
model parameters, especially in complex models implemented in computer programs with many 
uncertain input variables. In a recent article a new method for sensitivity analysis, named HIM' 
based on a rank transformation of the uncertainty importance measure suggested by Hora and 
Iman was proved very powerful for performing automated sensitivity analysis of model output, 
even in presence of model non-monotonicity. The same was not true of other widely used non- 
parametric techniques such as standardized rank regression coefficients. A drawback of the HIM* 
method was the large dimension of the stochastic sample needed for its estimation, which made 
HIM' impracticable for systems with large number of uncertain parameters. In the present 
note a more effective sampling algorithm, based on Sobol's quasirandom generator is coupled 
with HIM*, thereby greatly reducing the sample size needed for an effective identification of 
influential variables. The performances of the new technique are investigated for two different 
benchmarks. 

KEY WORDS: sensitivity analysis, nonlinear models, non-monotonic models, quasirandom 
sequences, uncertainty importance measure, nonparametric estimators, Latin hypercube 
sampling, benchmarks, experimental data, performance, parametric analysis 

I .  INTRODUCTION 
In recent analysis of model performance 

the use of sensitivity analysis (SA) is becom- 
ing customary. SA of model output investi- 
gates the relationship between the predictions 
of a model and its input parameters. This 
analysis is relevant to the quality assurance 
of models and computer codes, in what it en- 
sures that the relation between output and 
input parameters is physically meaningful. It 
also assists in the identification of crucial 
regions in the parameters space, thus indi- 
cating, in the case of experimentally deter- 
minable parameters, where research effort is 
mostly needed. Finally SA allows the total 
uncertainty in model prediction to be appor- 

tioned to the uncertainty in the model input 
parameters. In this respect SA complements 
Uncertainty analysis (UA) , which quantifies 
-for instance using confidence bounds-the 
degree of uncertainty in model prediction. 

Several SA techniques are described in the 
literature; a recent review is given in Helton 
et uZ.('), where the relative merits of differ- 
ential analysis(2), Fourier amplitude sensitiv- 
ity test (FAST)(3) and Monte Carlo methods 
are discussed. A recent original work in the 
field of "global" SA is that of Welch et ~ 1 . ( ~ ) ,  

" Tokai-mum, Ibaraki-ken 319-11. 
1-21020 Ispra (VA), ITALY. ' Present address: Institute of Nuclear Safety, Nuclear 
Power Engineering Corporation, Toranomon. Minato- 
ku, Tokyo 105. 
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where an efficient parameter screening based 
on data adaptive modeling is performed to 
build a computationally cheaper predictor to 
substitute for the original model. Another ap- 
proach to SA not included in Helton et al.(’) is 
the work of Cawlfield and W U ( ~ ) ,  where prob- 
abilistic SA is performed within the frame of 
first order reliability analysis (FORM). 

Inter-comparison has been made of the 
performances of different SA techniques@). 
More specifically in the field of Monte Carlo 
based global SA techniques some quantitative 
comparison is available(7)-(10). An excellent 
theoretical discussion of global sensitivity es- 
timates is given for nonlinear models‘”). 

In most of the literature quoted above and 
in the present note model is considered as a 
black box, i.e. the analysis of the sensitivities 
is done weighting model output against model 
input, without assuming knowledge of model 
structure. This knowledge can hence be con- 
fronted critically with the results of the anal- 
ysis. The analysis is also automated, in the 
sense that the order of importance of the rel- 
evant input parameters is done automatically 
based on the values of an estimator. As an 
example of non-automated SA visual inspec- 
tion of rank scatter plot of input ‘us. output 
variables coupled with expert judgment could 
be effectively used for SA of models with few 
input and output variab1es(l2). Rank scatter 
plot can also be used when SA predictions 
from different estimators seem to contradict 
each ~ t h e r ( ~ ) ( ’ ~ ) .  Automated SA is essential 
for systems with many input parameters and 
complex time dependent or spatially depen- 
dent outputs . 

This paper presents a new SA method 
based on modified versions of the Hora and 
Iman “uncertainty importance measure”(’3); 
two versions of this method, named HIM and 
HIM’ were already discussed(g). HIM was a 
version of the estimator based on the raw val- 
ues of the input and output vectors, while 
HIM’ was the rank version of the method. 
The reason for introducing a new estimator 
was the poor performance of normally reliable 
and robust nonparametric techniques such as 
standardized rank regression coefficients (SR- 

RCs) and the Spearman test in presence of 
model non-monotonicity@). In those previous 
studies it was pointed out that the new HIM* 
technique was superior to many other SA esti- 
mators as far as “reproducibility” and “accu- 
racy” were concerned. There reproducibility 
was defined as a measure of how well SA pre- 
dictions were replicated when repeating the 
analysis on different samples taken from the 
same input parameters space. Accuracy dealt 
with the physical correctness of the SA re- 
sults. In discussing their version of the uncer- 
tainty importance measure Iman and H ~ r a ( ’ ~ )  
also recognize its lack of robustness; being 
based on the conditional and unconditional 
variance of the output the measure is highly 
influenced by outliers associated with long 
tailed input distributions. Those authors sug- 
gest an alternative regression-based measure. 

The increased performance of HIM and 
HIM’ for the test cases considered had the 
drawback of being computationally expen- 
sive due to the dimension of the sample size 
needed to compute HIM and HIM*. Here a 
new sampling scheme, using Sobol’s quasir- 
andom sequence generat~r(’~)-(’~)  has been at- 
tempted, which allows a drastic reduction 
in the saniple size, thus upgrading the per- 
formance of these estimators. The perfor- 
mance of HIM and HIM‘ with the new sam- 
pling scheme is tested against two bench- 
marks; the first one is a case where an ana- 
lytical (and hence exact) evaluation of HIM 
is possible; the second one is a more com- 
plex test case where the integration of HIM’ 
can only be done numerically. Crude Monte 
Carlo (CMC) sampling and Latin hypercube 
sampling (LHS) have been compared with the 
approach based on Sobol’s LP, sequences. 
The similarities between HIM and a sensitiv- 
ity measure Sj proposed by Sobol’(”) are also 
highlighted. 

II. METHODS 
The importance measure discussed in this 

article was initially proposed as a sensitivity 
analysis method by Hora and Iman(13). It was 
then made computationally more effective by 
Ishigami and H ~ m m a ( ’ ~ ) ( ~ ~ )  and further mod- 
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ified by Saltelli et al.(’) 
The uncertainty importance measure 

given by Hora and Iman(13) focuses on the 
contribution to  the variance of the model out- 
put attributable to the uncertainty in each 
of the model input variables. Let the output 
variable Y be a function of K variables 

y = h ( X l r X 2 , .  . . , X K ) ,  (1) 
The variance of Y ,  Var ( Y )  can be reduced if 
the value of an input variable, X j  is known 
with certainty. The conditional variance of 
Y ,  Var ( Y I X j )  is the reduced variance and 
thus Var (Y)-Var ( Y I X j )  is the conditional 
reduction in the variance of Y attributable 
to ascertaining the ‘(fixing” of the input X j .  
The dependence of the conditional variance 
Var ( Y I X j )  upon the specific value Z j  can be 
eliminated by averaging over the possible val- 
ues of the fixed variable. Thus they defined 
the measure of uncertainty importance as the 
square root of the expected reduction in the 
variance of Y attributable to ascertaining the 
value of Xj(13):  

I~ = Jvar ( Y )  - E [var ( Y I X ~ ) ] .  (2) 

This can be also written as(”) 

Ij = .\/uj - (Y)2, (3) 

where (Y) is the mean of the output and 

uj = 1 (h  ( ”  z j ) ) 2 f j  ( Z j )  d?j, (4) 

(h  ( Z j ) )  is the mean of Y when the variable 
X j  is fixed to the value Z j ,  and fj ( Z j )  is 
the probability density function of variable 
X j .  X j  (j=l, 2 , .  . . , K )  is considered to be 
distributed in a pre-determined range. All 
variables X I , .  . . , X K  are assumed to be in- 
dependent. 

If now Ij is used to rank the influence of 
each input parameter X j  on the output vari- 
able Y ,  the variable ranking will in fact be 
based on the values of U j ,  i.e. variable k will 
be more important than variable j if Uk > Uj.  

The problem of estimating Uj through 
Monte Carlo computations has been ad- 
dressed in Ishigami and Hornma(”), where a 

modified version of the estimator was defined 
as the scalar product 

1 1 N  
HIM(Xj) -Ye.%= ~ ~ g ~ ~ i $ .  (5) N 

In this formula the two output vectors Ye- 
(y l , .  . . , y ~ )  and Yj-(yi,. . . , y k )  contain the 
outcome of two independent sets of Monte 
Carlo simulations of size N. The yi, yi values 
are computed based on two independent input 
data matrices, one denominated “base” and 
one “new”, both of the same size N. Only one 
base vector YE is computed for all the vari- 
ables from “base”; for each variable X j  then 
the Yj vector is computed from an input ma- 
trix whose columns are all from “new” but for 
column j ,  from “base”(g). In this way the in- 
put matrices for two generic variables X j  and 
XI, now only differ for columns “ j”  and “k”. 
Beside minimizing the noise associated to the 
measure this technique reduces the number of 
model evaluations to Nx(K+l). 

The above scheme for SA was tested for 
accuracy and reproducibility against a num- 
ber of other sensitivity analysis estimators 
including Spearman and SRRC(g). Repro- 
ducibility was investigated by repeating the 
SA on different input samples from the same 
distributions and computing the variance in 
the methods prediction. The reproducibility 
of HIM was found to be poor; the summation 
in Eq.(5) is very sensitive to distribution out- 
liers, especially when the values of the output 
function Y range over several orders of mag- 
nitude. The analysis was then repeated by 
replacing the yi,  yi values in Eq.(5) by their 
ranks: 

For non-influential variables HIM’ will tend 
to 

(7) 

for influential variables (perfectly correlated 
R(yi), R(yi)) HIM* will tend to 

. (8 )  
1 N (N+1)(2N+l) 
Ni=1 6 

(HIM)Lax = - C i2 = 

A convenient scaling for HIM* which has been 
adopted in the present work is then: 
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whereby HIM’ is bound between 0 (loosely) 
and 1 (tightly). The new estimator, indi- 
cated as HIM’ was both accurate and re- 
producible, yielding correct ranking of model 
sensitivities even in presence of model non- 
monotonicities, a feature which affected neg- 
atively other robust SA estimators such as 
the SRRCs, the partial rank correlation co- 
efficients (PRCC), the Spearman test and the 
like. It must be noted that in this formulation 
the HIM* estimator coincides (even computa- 
tionally) with a sensitivity measure Sj sug- 
gested by Sobol’(”). 

where 
1 N  

0 - - c yi. N i=i 
f 2  I 

If we replace in Eqs. 

(11) 

10) and (11) the raw data 
with the rank-transformed data we obtain our 
Eq.(9) after some algebra. 

One shortcoming of the importance mea- 
sures HIM, HIM* (and S j )  when compared 
with the regression/correlation based estima- 
tors such as SRRC, PRCC is that the for- 
mer still requires Nx (K+l) model evaluations 
as compared to the N needed to compute ei- 
ther PRCC or SRRC. This makes the pos- 
sibility of using HIM and HIM’ very much 
dependent on the number of variables in the 
model. In order to further reduce the sam- 
ple size needed to compute HIM and HIM* 
in the present note an alternative sampling 
scheme is attempted, replacing CMC used in 
the previous analyses with quasirandom se- 
quences generated according to an algorithm 
proposed by Sobo1’(21). 

Quasi-Monte Carlo methods, the deter- 
ministic versions of Monte Carlo techniques, 
have the widest applications in numerical 
integration. Let us consider the Monte 
Carlo approximation of integrals over a s- 
dimensional unit cube Is=[O, 11”. 

where a set of points Pn (n  = 1,. . . , N )  be- 
longs to P .  The idea of a quasi-Monte Carlo 
method is that one may use uniformly dis- 
tributed sequences in place of random points 
in order to improve the expected integration 
error 0 (N-’ l2) .  

The concept of “discrepancy” must be de- 
fined here. For a set of N points in I” can be 
defined as(”): 

where the supremun is extended over the rect- 
angular s-dimensional region: 

J = [ O , Z ~ )  x [ O , Z ~ )  x . . .  x [O,Z,) (14) 
with volume 1~1x2 . . . 2,.  A ( J ;  N )  is defined 
as the number of points in J and Vol ( J )  is 
volume of J .  Estimates for integration errors 
can be established in terms of the following 
Koksma-Hlawka inequality: 

where V ( f ) ,  which is called a function of 
bounded variation in the sense of Hardy 
and Krause, indicates the regularity of the 
integrand(”). It is known that there exists 
a finite sequence of N points in I‘ such that: 

D$) = O((1og N)’- l /N) .  (16) 
Thus quasi-Monte Carlo integration with de- 
terminate low-discrepancy sequence involves 
effective error bounds that are consider- 
ably smaller than the Monte Carlo bound 
O(N-’/’). Sequences that aim for low dis- 
crepancy are called quasirandom. 

Several ways of generating such sequences 
are kno~n( ’~ ) ( ’~ ) .  A description of how those 
sequences are generated is given in Bratley 
and Fox(18), where the performances of two 
quasirandom sequence generators for a set 
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of numerical integrations at different sample 
sizes are compared. For the present work 
Sobol’s FORTRAN code LPTAU(21) was used. 
All LP, sequences suggested by Sobol’ satisfy 
the following conditions: 

(a) the uniformity of the distribution 
should be asymptotically optimal, 

(b) uniformity of the points should be ob- 
served not only as N + m ,  but also for 
fairly small N(for n<16) and 

(c) the algorithm for computing the points 
should be fairly simple (for n 551) .  

LPTAU was coupled with the PREP 
PREP also generates the CMC 

sample and Latin hypercube sample (LHS) 
needed for the comparison and converts those 
unit cube values to the values needed in the 
actual input distributions. The first testing 
of Sobol’ sampling was done on the numeri- 
cal integration of a function in Ishigami and 
Hornma(”) where an analytical expression is 
also available for HIM. The second test is done 
directly on HIM* using a model already used 
in Saltelli et aZ.(’) This latter was computed 
using the LISA code(26). 

m. APPLICATIONS 
1. Application of Quasirandom 

In order to examine the accuracy and 
reproducibility of Sobol’ quasirandom se- 
quences in computing an estimate of the inte- 
gral in Eq. (4), the following analytical func- 
tion is used: 

Sequences to HIM Estimator 

h(X1 , x2 I x3) 

= sin X1 + a sin2 X2 + bXi sin XI. (17) 
If the probability distribution functions (pdf) 
for each variable Xj are given by 

, when -7r<Xi<7r 

0, when Xi < -7r, Xi >7r 

for i =  1 ,2 ,3 ,  (18) 
then the exact value of Uj (j=l, 2 ,3 )  in Eq.(4) 
can be obtained analytically as: 

3a2 
8 

u2= -, 

a’ u3= 4’ 
As HIM(Xi) is an estimator of Uj (j=1,2,3), 
the evaluation of Eq.(5) using quasiran- 
dom sequences can now be compared with 
those exact values. The function used here 
has characteristics of strong non-linearity 
and non-monotonicity. Parametric and 
nonparametric techniques based on regres- 
sion/correlation measures (e.g. Superman, 
SRRC) were proven ineffective in ranking the 
relative importance of the input parameters 
for this 

In order to compute HIM(Xj), a unit 
cube in the 2K dimensional space is assumed, 
where K, number of independent variables, 
is three in this case. N points are selected 
in this cube by the Sobol’ algorithm, thereby 
generating a matrix of size (N, 2K).  The first 
K columns of this matrix are used to produce 
the “base” matrix and the remaining columns 
are used as the “new” matrix (see Chapter 
11). Table 1 shows the comparison of HIM 
(Xj) values calculated by the Sobol’ sampling 
scheme for different sample sizes with the ex- 
act values. The constants in Eqs.(lS) to (21) 
are given the values a=7 and b=0.1. Table 1 
also provides an estimate for the mean square 
error in the estimator HIM(Xj) of Eq.(5). As 
can be seen from Table 1, this scheme yields 
the precise estimates for large enough sample 
sizes, and also provides a good performance 
even at  the smaller sample sizes. 

The good performance of Sobol’ method 
is confirmed by comparing the variability of 
HIM(Xj) integrated by Sobol’ method with 
that integrated via CMC or LHS at different 
sample sizes. This is done as follows: 

For each sample sizes N ranging be- 
tween 16 (=24) and 1024 (=21°) the CMC 
and LHS calculations of HIM(Xj) are re- 
peated one hundred times, changing each 
time the seed for the random number 
generation. For Sobol’ method, 100 in- 
dependent groups of N sample sizes are 

1) 
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Sample size HIM(X1) MSE 
16 12.174 4.782 
32 20.302 5.445 
64 17.885 3.707 

128 16.446 2.341 
256 16.649 1.581 
512 16.756 1.127 

1024 16.678 0.789 
2048 16.652 0.562 
4096 16.590 0.397 
Exact 16.596 

1169 

HIM(X2) MSE HIM(X3) MSE 
16.222 4.726 11.446 4.288 
17.480 3.267 12.017 4.115 
19.065 2.285 13.340 2.508 
18.548 2.101 13.527 2.390 
17.761 1.451 12.184 1.685 
17.982 1.078 12.437 1.172 
18.275 0.770 12.315 0.830 
18.315 0.568 12.313 0.577 
18.314 0.402 12.254 0.409 
18.375 12.250 

selected from LP, sequences. For each 
sample size, 100 different evaluations of 
HIM(X1), HIM(X2) and HIM(X3) are 
produced. 

2) The difference between each HIM(Xj) 
evaluation and the analytical value is 
computed. 

3) For each sample size sir sampling 
scheme (scheme=CMC, LHS and Sobol’) 
and variable Xj the estimate of the mean 
square error MSE of the differences over 
the 100 samples is computed: 

AEtFm,(Xj, si), scheme = CMC, LHS, 

Sobol’, j = 1 ,2 ,3 ,  si = 2 4 , .  . . , 21° 

= MSE of [HIM,(Xj, si) 

-HIManalyt, ( X j ) ]  over 100 evaluations. (22) 

Those MSE’s are given in Table 2. It 
can be seen that the mean square errors as- 
sociated with the evaluation done via Sobol’ 
are almost always lower than those associated 
with both CMC and LHS. For instance, the 
evaluation by Sobol’ method at sample size, 
256 already provides better performance than 
those with both CMC and LHS at sample size, 
1024. The performances of CMC and LHS 
are very similar over the entire sample sizes. 
As pointed out by McKay et u Z . ( ’ ~ )  the su- 
periority of LHS with respect to CMC can 
only be proved for monotonic functions. For 
the strong non-monotonic test function used 
here there appears to be no benefit in us- 
ing LHS rather than CMC. Stein(28) proves 
LHS’s asymptotic superiority even for non- 

Table 2 Comparison of HIM(Xl), HIM(X2) 
and HIM(X3) values by three sampl- 
ing schemes 

Sample size 

16 
32 
64 

256 
512 

1024 

HIM(X1) 128 

Mean square error based 
on 100 batches 

CMC LHS Sobol’ 
4.438 4.397 5.982 
3.111 3.012 2.422 
1.595 2.030 1.654 
1.363 1.295 0.463 
0.974 0.920 0.153 
0.678 0.757 0.069 
0.455 0.500 0.055 

16 4.384 4.422 5.166 
32 2.980 2.899 3.033 
64 2.183 2.026 1.090 

256 1.007 0.953 0.400 
512 0.643 0.722 0.375 

1024 0.399 0.481 0.092 

HIM(X2) 128 1.341 1.413 0.795 

16 5.984 6.715 5.133 
32 3.870 3.733 3.346 
64 2.739 2.554 1.601 

256 1.320 1.254 0.292 
512 0.884 0.857 0.090 

1024 0.654 0.611 0.072 

HIM(X3) 128 1.852 1.714 1.416 

monotonic models. Far from the asymptote, 
and for the strong non-monotonic test func- 
tion used here, Sobol’ method gives the great 
reduction of the sample size needed for the 
estimates of HIM(Xj). 

2. Application of Quasirandom 
Sequences to HIM* Estimator 

As pointed out in Saltelli et al.(’) HIM* 
is characterized by an enhanced reproducibil- 
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ity with respect to HIM and hence is to be 
preferred when performing SA on samples 
of limited size for computationally expensive 
models. 

The test case employed here was already 
discussed in the above article. The detailed 
description of the model, named Level E, 
was given there and also in the OECD/NEA 

only its essential features are re- 
peated here. The test model involves the 
computation of the dose to man resulting 
from migration of four radionuclides: '''1 and 
the 237Np-233U-229Th chain through a multi- 
barrier system (waste form, geosphere, bio- 
sphere). The resulting doses are obtained 
by convoluting the source terms with the re- 
sponses of the geosphere and multiplying by a 
biosphere dilution term and by the radiolog- 
ical exposure factors. The geosphere model 
includes a two layer path length where dis- 
persion, advection, chemical retention and ra- 
dioactive decay have to be modeled. Only 
uniform type distributions on both linear and 
logarithmic scale are considered for the twelve 
input distributed parameters. 

The mean output (dose rate) from a sim- 
ulation of size 1024 is shown as a function of 
time in Fig.1, where the first peak of the to- 
tal dose is due to the '*'I contribution and 
the second one due to the 237Np chain. In 

Fig.2 the model coefficients of determination 
Ri are given for the total dose summed over 
all the radionuclides. Those coefficients are 
computed from the regression models based 
on the raw values and the ranks. This co- 
efficient provides a measure of how well the 
linear regression model based on either the 
standardized regression coefficients (SRC's) 
or SRRC's can reproduce the actual output 
vector. As can be seen in Fig.2, Ri based on 
the raw values are always low. The large dif- 
ference between the values of these two coef- 
ficients demonstrates the non-lineality of the 
model. This indicates that a SA based on lin- 
ear estimators like SRC and the Pearson test 
is inadequate. As shown in Saltelli et C L ~ . ( ~ ) ,  

the multi-modal shape of the Ri curve based 
on the ranks suggests that - close to the lo- 
cal minima of the curve - even the nonpara- 
metric estimators may fail to identify the in- 
fluential parameters. In effect inspection of 
rank scatter plots revealed that those min- 
ima corresponded to region where the dose 
and input parameter relationship was non- 
monotonic. Among the nonparametric esti- 
mators only HIM' could correctly identify the 
most influential parameter, which is the wa- 
ter velocity in the first layer of the geosphere 
(FLOWVl, Fig.3). 

In order to compare the performance of 

1E-6 f 

+ U-233 

+ Th-229 

C nr 
1E-10 
I t 

t 
1E-11 ' 

1 E3 1 E4 1 E5 1 E6 1 E7 

time (yr) 
Fig.1 Mean annual dose (Sv) for the radionuclides considered in Level E test case as function 

of time 
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1 E3 1 E4 1 E5 1 E6 1 E7 
time (yr) 

Fig.2 Model coefficients of determination (l$) on raw values and ranks for Level E test case 

sampling schemes in computing HIM* an al- 
ternative must be found to  the use of the ex- 
act analytical solutions, which are not avail- 
able for this test case. As a replacement two 
“large” samples of size 1024 are produced via 
CMC and Sobol’ to be used as a reference. 
Figure 3 shows HIM*(Xj, t )  as computed 
from a sample of size 1024 via Sobol’ for all 
the input parameters Xj. Figure 3 shows that 

FLOWV1 (flow velocity in the first tract of 
the geosphere path) is by far the most im- 
portant variable, apart from some early time 
points where PATHLl (length of the same 
tract) predominates. At late time points some 
influence is evident of the variable RETFlC, 
linked to the chemical retention of the ra- 
dionuclides in the 237Np chain. 

The performances of Sobol’ and CMC 

0 

t- CONTIM 

0- RELRI 

+ RELRC 

+ FLOW1 

+ PATHLl 

Jt RETFll 

(1 RETFlC 

-4 FLOW2 

- PATHL2 

-C RETFPI 

+ RETF2C 

* STFLOW 

1 E3 1 E4 1 E5 1 E6 1 E7 

time (yr) 
Fig.3 HIM* curve for Level E variables as function of time 
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Sample FLOW1 
size CMC Sobol’ 

32 0.140 0.113 
64 0.098 0.065 

128 0.065 0.037 
256 0.046 0.027 

(T. Homma, A. Saltelli) J. Nucl. Sci. Technol., 

PATHLl RETFlC 
CMC Sobol’ CMC Sobol’ 
0.169 0.139 0.169 0.136 
0.126 0.074 0.123 0.076 
0.066 0.051 0.075 0.046 
0.037 0.029 0.059 0.028 

methods for those three influential variables 
are compared at various sample size. First 
the difference: 

ACMC(Xj,si,ti) = HIM&IC(xj?si’h)  

-HIM:Mc(Xj, 1024, ti) (23) 
and the analogous Asobo1 (Xj  , si, ti) for Sobol’ 
sampling are calculated as a function of time. 
Due to the computational cost of this test case 
smaller batches are used for the various sam- 
ple sizes, i.e. 

4 batches of size 256; 
8 batches of size 128; 

16 batches of size 64; 
32 batches of size 32. 

Those batches allow AEEc(Xj, sir t i )  to be 
computed. For economy of plots the time 
dimension is eliminated by averaging the SA 
results over all the different time points ti to 
yield AcMc(Xj, s i ) ,  where the bar stands for 
average. A similar averaging is done for the 
Sobol’ batch samples, to yield ASobol(Xj, si). 
The results are presented in Table 3 for the 
three most influential variables. The advan- 
tage of using Sobol’ is evident. 

-MSE 

-MSE 

IV. CONCLUSIONS 
The starting point of the present in- 

vestigation was the proven inadequacy of 
rank based nonparametric techniques (PRCC, 
SRRC, ...) to provide a measure for auto- 
mated SA of complex models. Complexity 
in this context does not refer particularly to 
the number of equations involved, but rather 
to the existence of non-linearity and non- 
monotonicity in the output functions depen- 
dent from the input variables (a frequent oc- 
currence in modelling). The HIM’ method, 
resulting from an upgrade of existing tech- 

niques, was proved to be adequate for the 
purpose of automated SA. HIM’ was proved 
to be very reproducible and accurate, even in 
presence of model complexity. One drawback 
of this estimator is the dependence of the to- 
tal number of model evaluations to be used in 
the investigation upon the number of uncer- 
tain variables, i.e. 

NTOT = N x ( K  + 1)’ (24) 

where N is the sample size needed to com- 
pute HIM’ for any variable and K the num- 
ber of variables. For computationally expen- 
sive models then the possibility of using HIM* 
for SA is limited by the number of variables 
in the model. The present article has shown 
that the use of Sobol’ quasirandom sequences 
results in a great reduction of the sample size 
N needed to  compute HIM’ without loss of 
accuracy, thereby enlarging the class of mod- 
els for which the HIM’ approach is applicable. 

For the extreme case of complex models 
with large number of uncertain parameters, a 
detailed SA with HIM’ could still be worth 
being pursued once a preliminary screening 
of the parameters is done. A screening tech- 
nique which was proven very effective is the 
iterated fractional factorial design (IFFD), 
capable identifying few influential parame- 
ters in models with several hundreds of input 
variables(lO). 
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