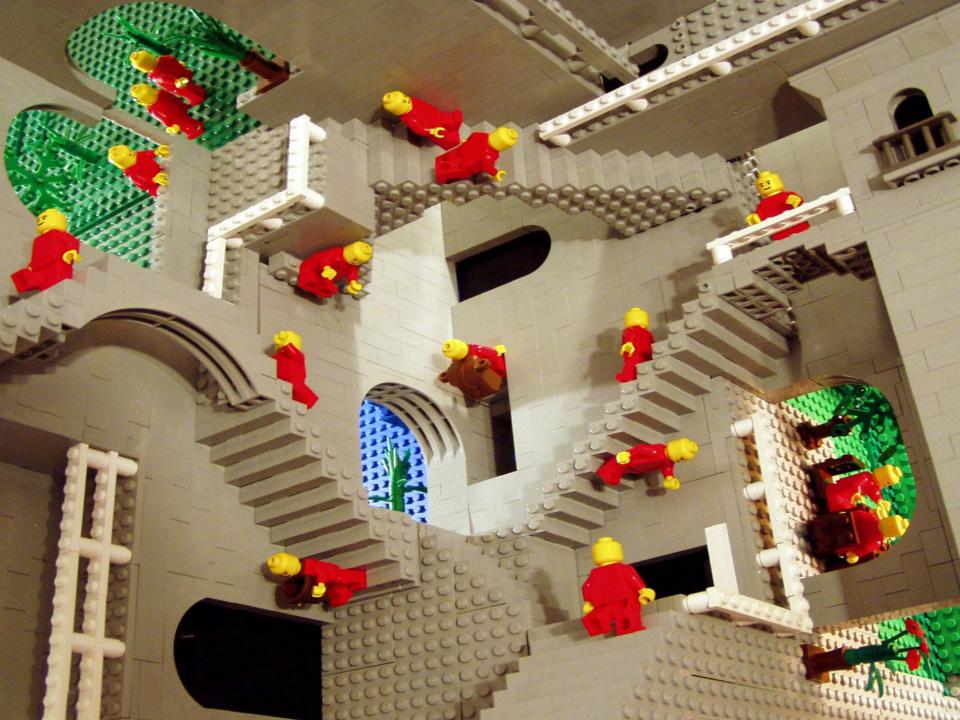


ICREA Research Professor


Institute of Environmental Science and Technology • UAB Research Group on Integrated Assessment

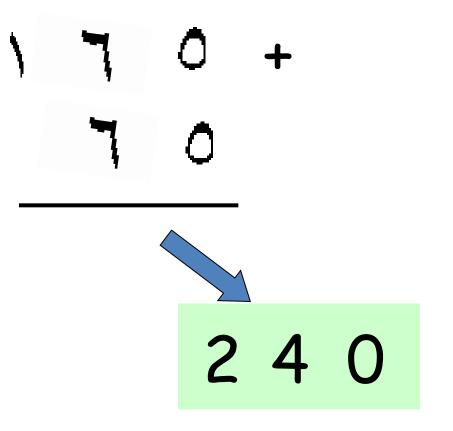
Quantitative story telling as a therapy for hypocognition

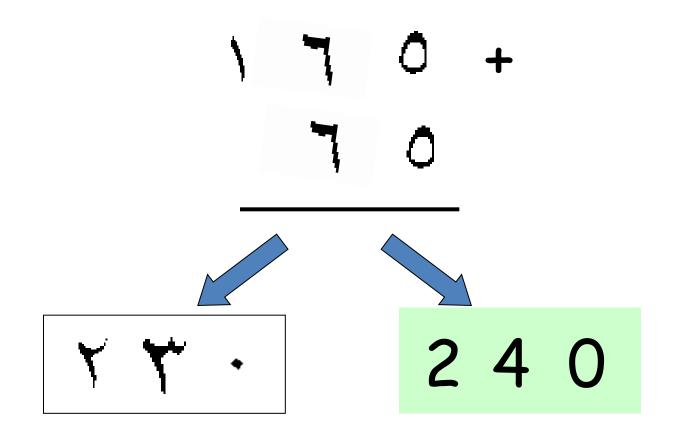
Significant Digits Responsible use of quantitative information JRC - Econometrics and Applied Statistics Unit - IPSC June 9th and 10th FONDATION UNIVERSITAIRE Rue d'Egmont, 11 BRUSSELS

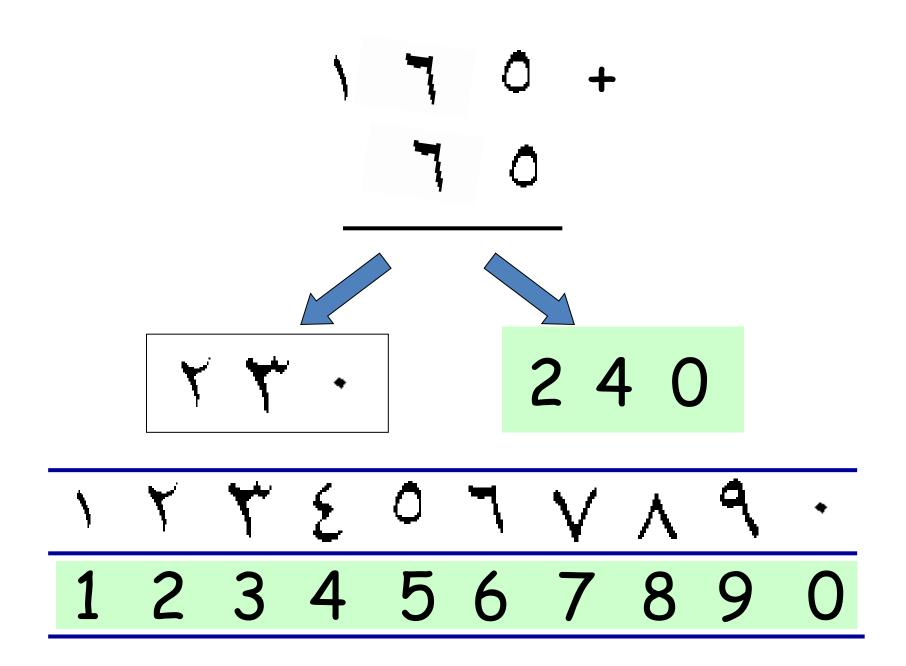
2. Quantitative analysis across multiple-scales requires "scaling": knowing how to change the definitions of external referent

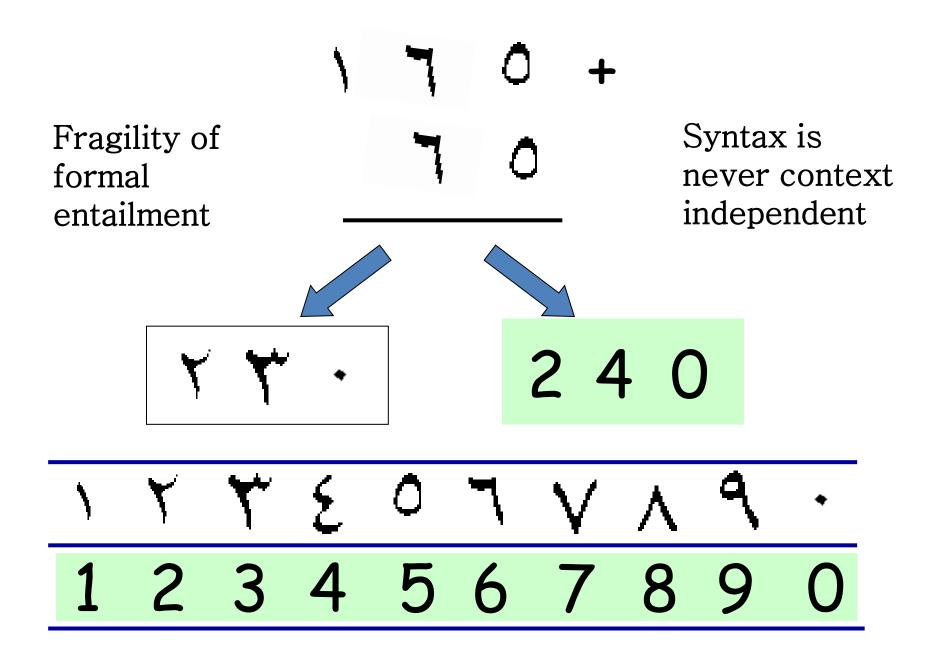
2. Quantitative analysis across multiple-scales requires "scaling": knowing how to change the definitions of external referent

3. Moving away from numbers and models toward a quantitative analysis based on patterns and grammars


2. Quantitative analysis across multiple-scales requires "scaling": knowing how to change the definitions of external referent


3. Moving away from numbers and models toward a quantitative analysis based on patterns and grammars

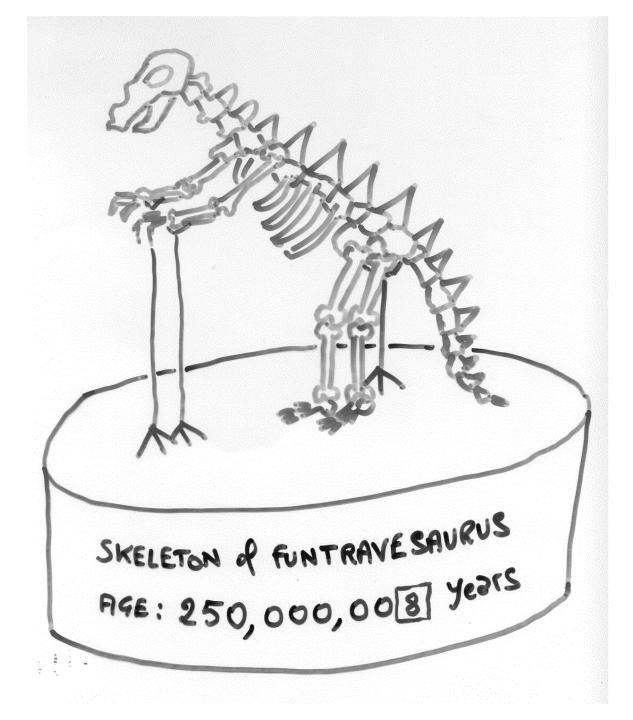

4. Quantitative Story-Telling as a remedy against hypocognition (reducing the damages of socially constructed ignorance)


You cannot handle numbers if you are not able first to give a proper meaning to them

170+ 70

You cannot handle numbers if you are not able first to specify the relation between variable $\leftarrow \rightarrow$ inferential system

Recording the changes occurring to the population of a city after a wedding of two "singles"


Recording the changes occurring to the population of a city after a wedding of two "singles"

Using the variable "number of households" 1 + 1 = 1

You cannot handle numbers if you are not able first to specify the relation between data $\leftarrow \rightarrow$ measurement scheme

It is not sure that it is always possible to perform the sum A + B = C

It is not sure that it is always possible to perform the sum A + B = C

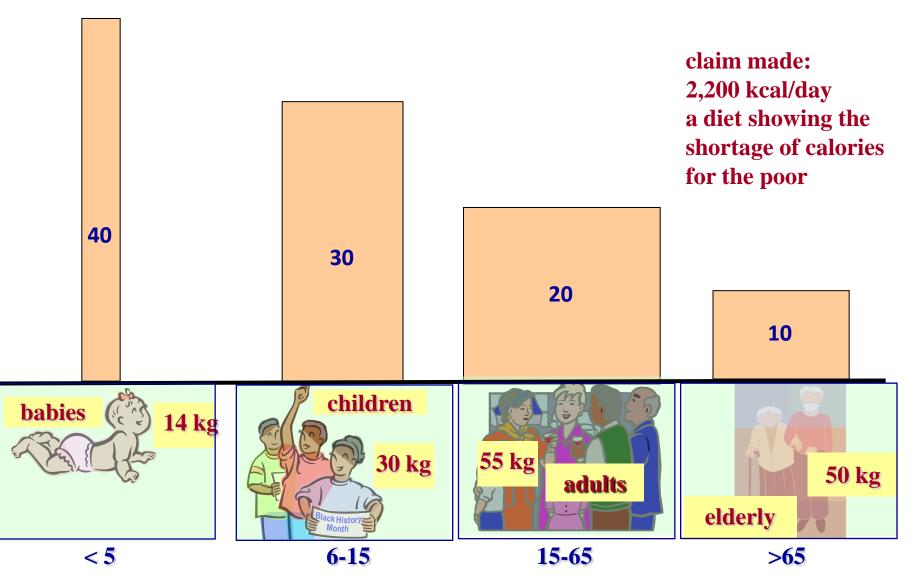
It is not sure that it is always possible to perform the sum A + B = C

Examples of MISLEADING INDICATORS (1)

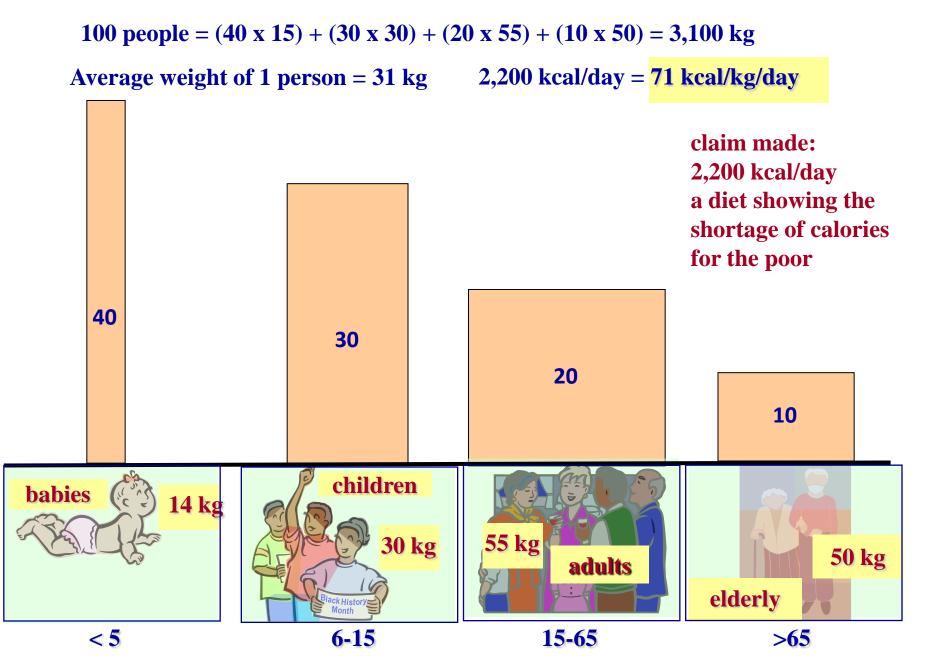
"The excessive food consumption of the rich"

The standard narrative used to introduce the issue of world injustice in relation to food supply

PNAS Vol. 96, Issue 11, 5908-5914, May 25, 1999 :

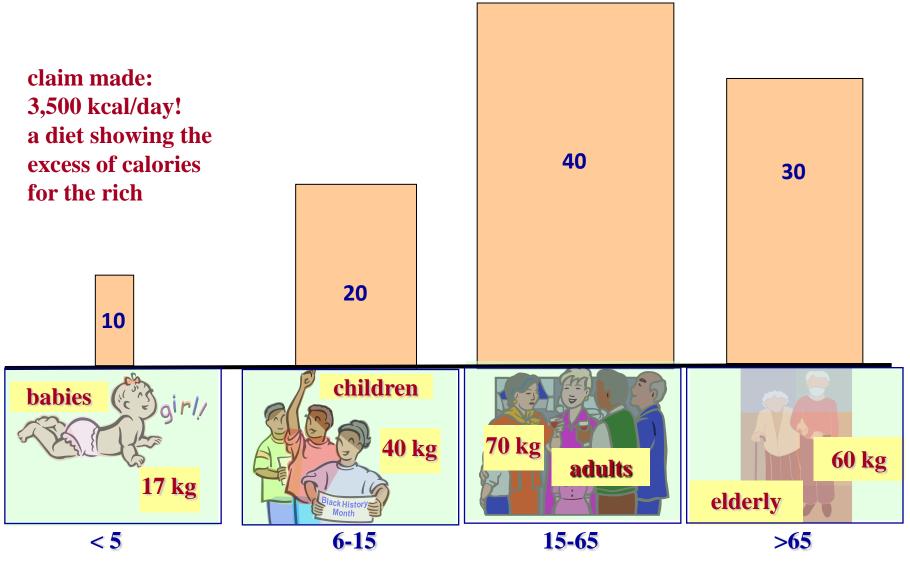

World food and agriculture: Outlook for the medium and longer term

Nikos Alexandratos *Head Global Perspective Studies Unit, Food and Agriculture Organization*

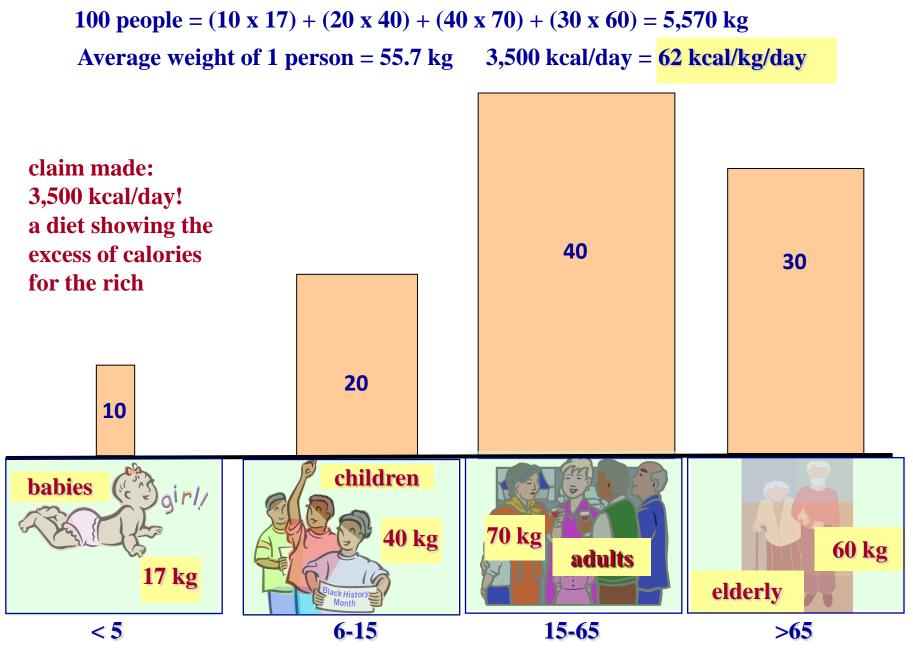

* the part of world population living in countries where per person food supplies are still very low - under 2,200 kcal/day

* the very high levels of food availability generally found in the statistics of many high-income countries, often over **3,500** kcal/person/day

100 people = $(40 \times 15) + (30 \times 30) + (20 \times 55) + (10 \times 50) = 3,100 \text{ kg}$



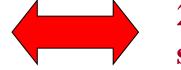
Limits defining age classes



Limits defining age classes

100 people = $(10 \times 17) + (20 \times 40) + (40 \times 70) + (30 \times 60) = 5,570 \text{ kg}$

Limits defining age classes



Limits defining age classes

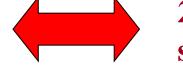
In developed countries an "average person" weights 50 kg . . .

In developing countries an "average person" weights 30 kg . . .

3,500 kcal/day! excess of the rich

2,200 kcal/day! shortage of the poor

70 kcal/kg/day

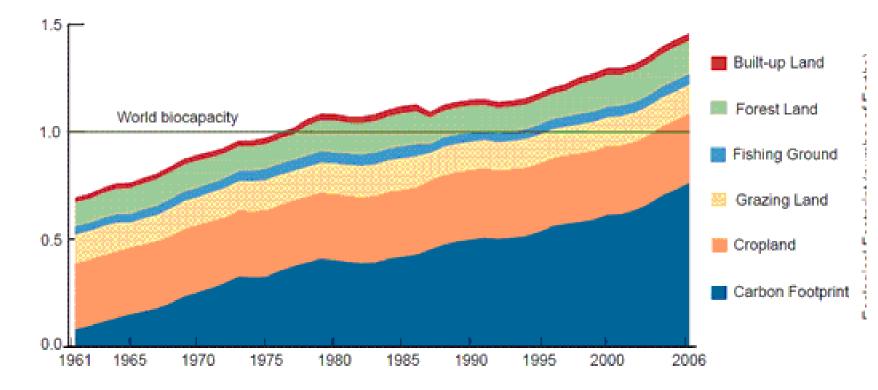

<

73 kcal/kg/day

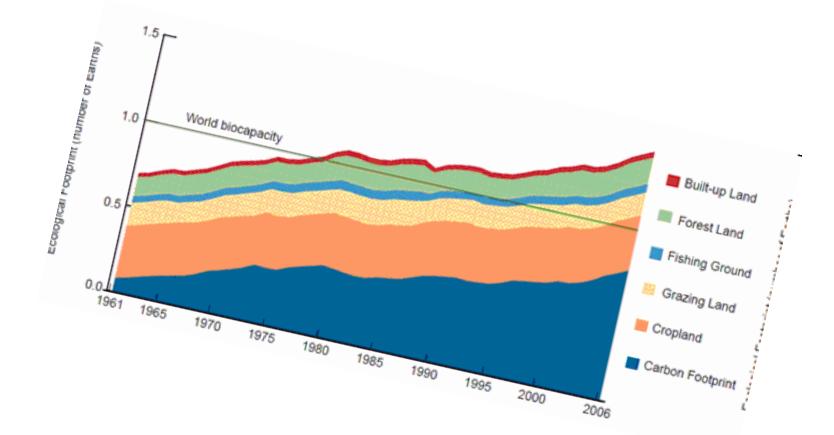
In developed countries an "average person" weights 50 kg . . .

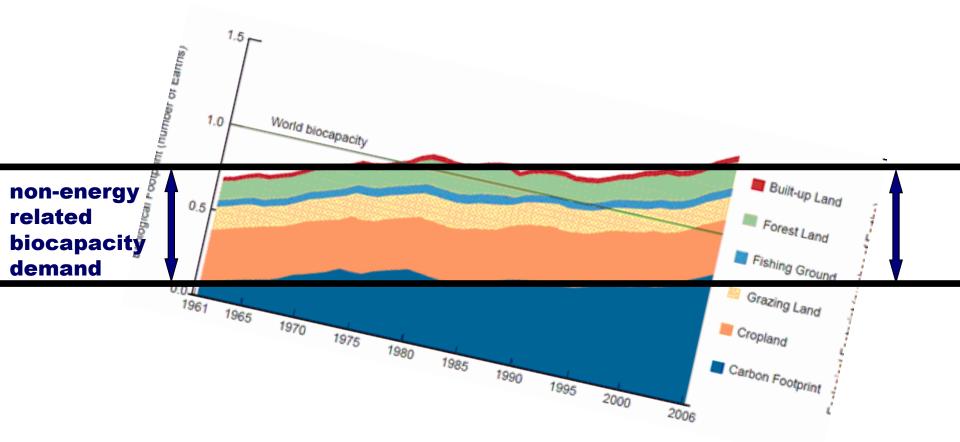
In developing countries an "average person" weights 30 kg . . .

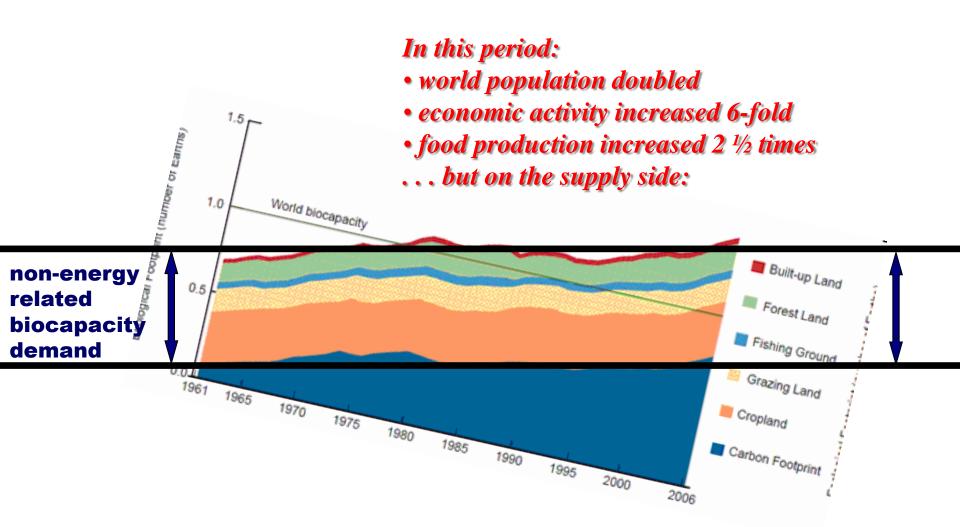
3,500 kcal/day! excess of the rich

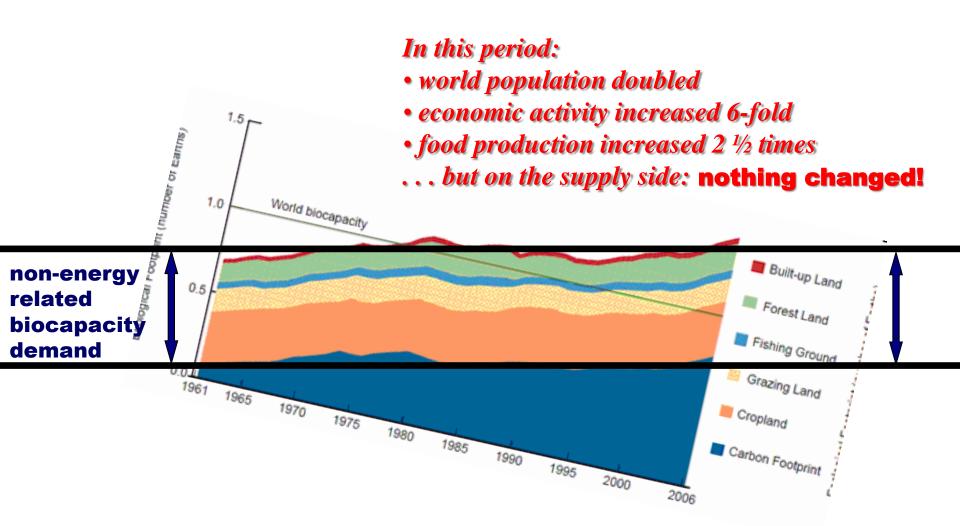

2,200 kcal/day! shortage of the poor

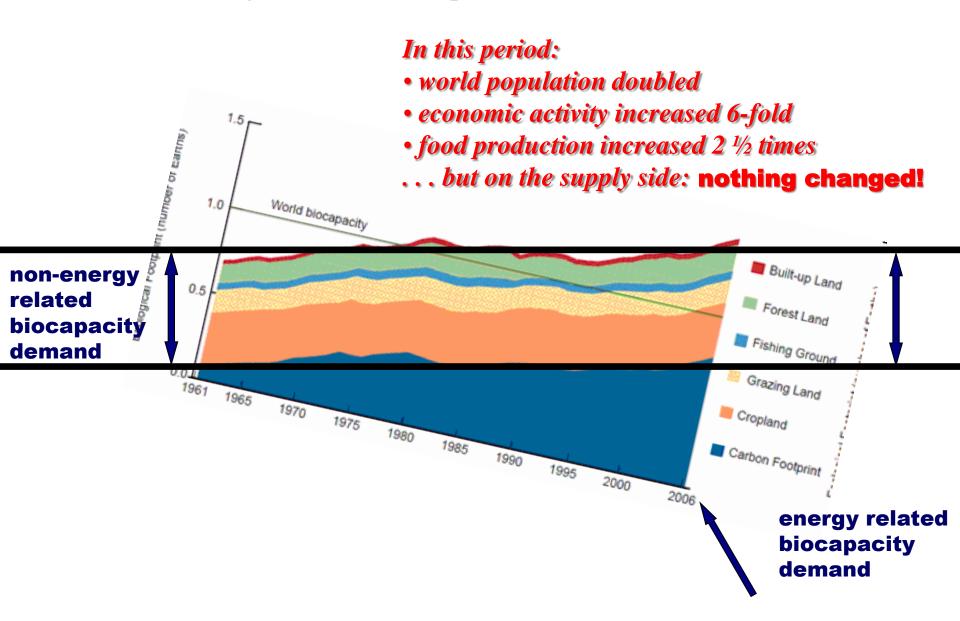
70 kcal/kg/day< 73 kcal/kg/day</th>

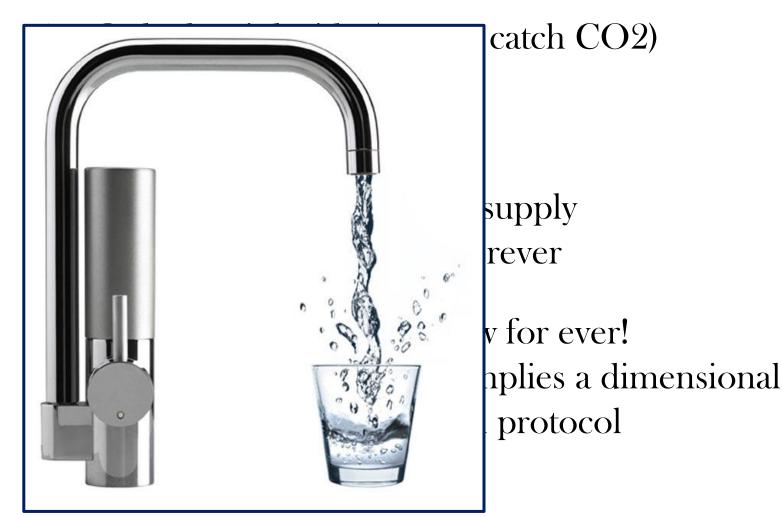

THE "EXPERTS" COULD DO BETTER!

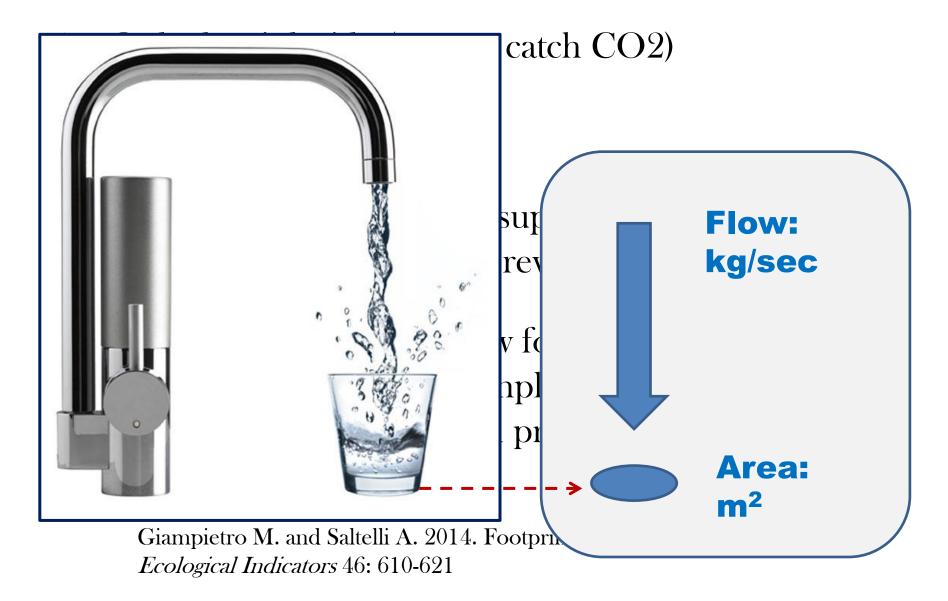

Examples of MISLEADING INDICATOR based on SLOPPY PROTOCOLS (2)

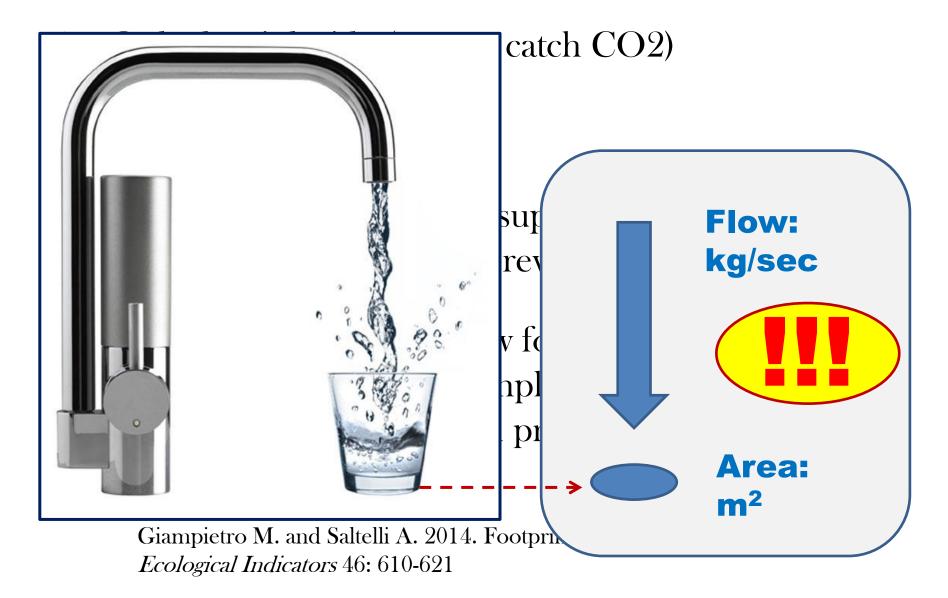

"The Ecological Footprint"




Giampietro M. and Saltelli A. 2014. Footprints to nowhere *Ecological Indicators* 46: 610-621


The change of world footprint in time (1961-2006)



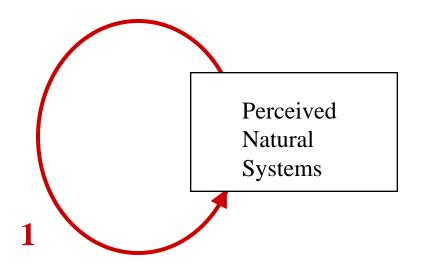

- 1. Only the sink-side (area to catch CO2)
 - * what about the supply?
 - * what about other GHG?

- 1. Only the sink-side (area to catch CO2)
 - * what about the supply?
 - * what about other GHG?
- 2. It assumes that the energy supply will remain fossil energy forever

- 1. Only the sink-side (area to catch CO2)
 - * what about the supply?
 - * what about other GHG?
- 2. It assumes that the energy supply will remain fossil energy forever
- 3. It assumes that forests grow for ever!
 - * this wrong assumption implies a dimensional problem with the chosen protocol

HOW IS IT POSSIBLE THAT WE USE THESE INDICATORS?

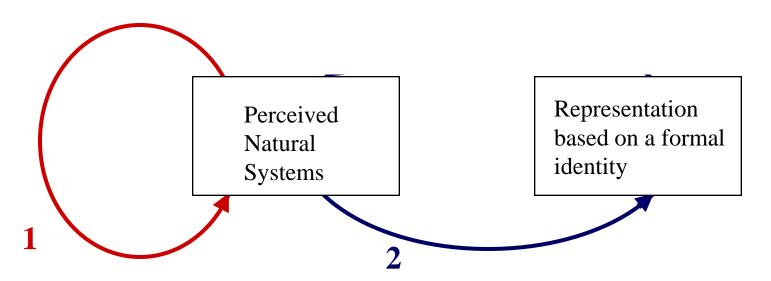
HOW IS IT POSSIBLE THAT WE USE THESE INDICATORS?


The validation of models is based on "perceptions" and not on a quality check of the modeling relation

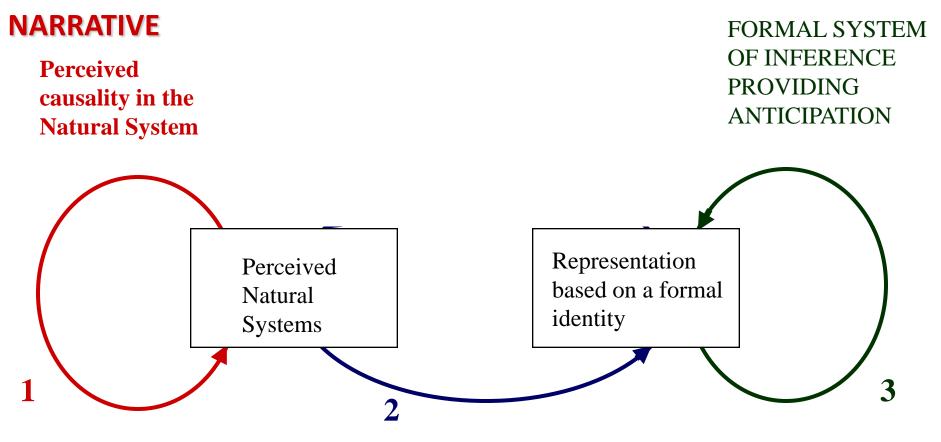
- Consumption of the rich vs consumption of the poor
- Ecological footprint

Perceived Natural Systems Representation based on a formal identity

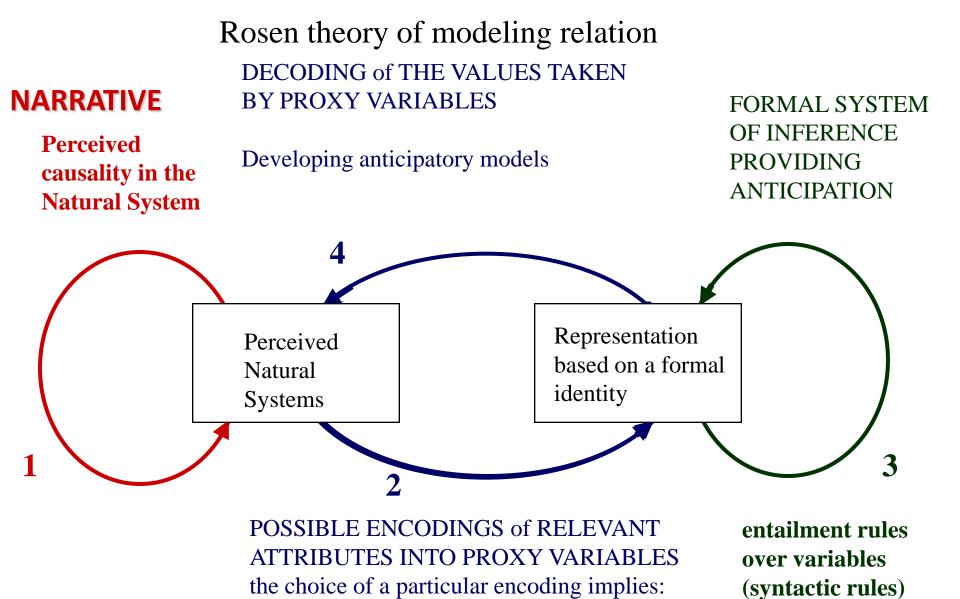
NARRATIVE


Perceived causality in the Natural System

Representation based on a formal identity


NARRATIVE

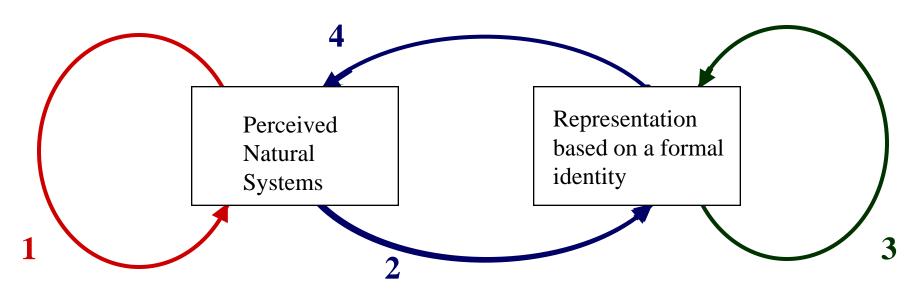
Perceived causality in the Natural System


POSSIBLE ENCODINGS of RELEVANT ATTRIBUTES INTO PROXY VARIABLES the choice of a particular encoding implies:

- selection of a finite set of measurable qualities
- selective neglecting of other attributes

POSSIBLE ENCODINGS of RELEVANT ATTRIBUTES INTO PROXY VARIABLES the choice of a particular encoding implies: entailment rules over variables (syntactic rules)

- selection of a finite set of measurable qualities
- selective neglecting of other attributes



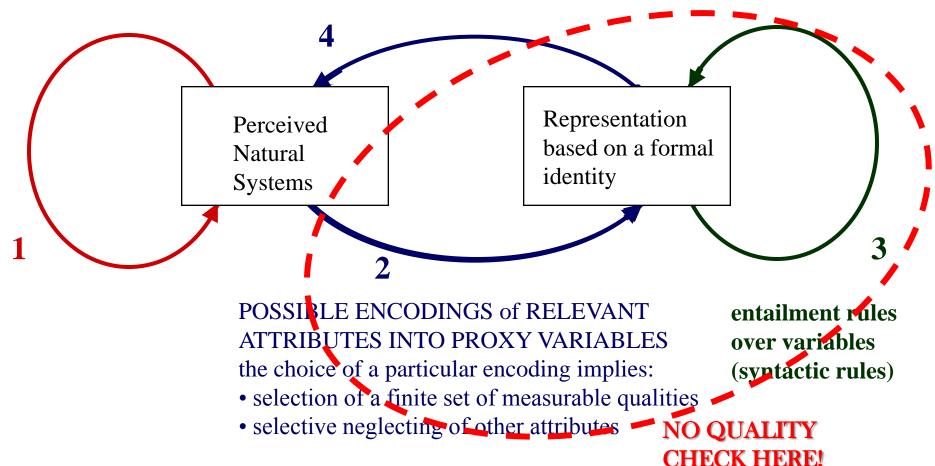
- selection of a finite set of measurable qualities
- selective neglecting of other attributes

NARRATIVE

Perceived **Natural System**

IF THE "ARROW1" AND THE "ARROW4" ARE COMPATIBLE THEN THE MODEL IS VALIDATED AND "ARROW2" AND causality in the "ARROW3" ARE ASSUMED TO BE OK!

POSSIBLE ENCODINGS of RELEVANT ATTRIBUTES INTO PROXY VARIABLES the choice of a particular encoding implies:


entailment rules over variables (syntactic rules)

- selection of a finite set of measurable qualities
- selective neglecting of other attributes

NARRATIVE

Perceived **Natural System**

IF THE "ARROW1" AND THE "ARROW4" **ARE COMPATIBLE THEN THE MODEL IS** VALIDATED AND "ARROW2" AND causality in the "ARROW3" ARE ASSUMED TO BE OK!



2. Quantitative analysis across multiple-scales requires "scaling": knowing how to change the definitions of external referent

You cannot measure the length of a segment of a coastal line if you do not define first the scale of the map that you will be using

The longer the dx the shorter the coastal line representation

Benoit Mandelbrot

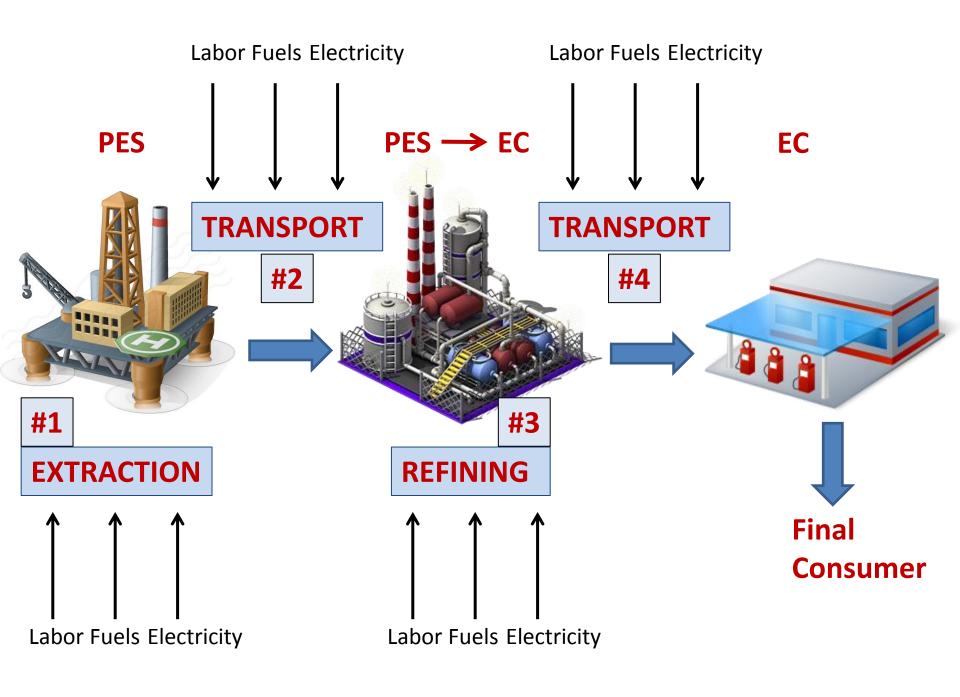
The shorter the dx the longer the coastal line representation

$$f_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + \dots + f_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + f_0(x)y = h(x)$$

$$f_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + \dots + f_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + f_0(x)y = h(x)$$

$$f_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + \dots + f_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + f_0(x)y = h(x)$$

After 20 years $g_m(z) \frac{d^m k}{dz^m} + \dots + g_1(z) \frac{dk}{dz} + g_0(z)k = j(z)$


After 20 years $g_m(z) \frac{d^m k}{dz^m} + \dots + g_1(z) \frac{dk}{dz} + g_0(z)k = j(z)$

mannan

ISSUE OF SCALE (1)

When gathering quantitative information one should be aware that there is information referring to "types" (out of scale, unitary operations) and information referring to "instances" (scaled)

This distinction is totally missed in Life Cycle Assessment

Year 2010 Brazil	Labor <i>Mhrs</i>	INPUTS GJ fuel	GJ electr.	PES throughput <i>m³ oil/year</i>	FUNCTIONAL COMPARTMENTS
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES

Mhrs	GJ fuel	GJ electr.	m³ oil	

Mhrs	GJ fuel	GJ electr.	m³ oil	
				EXTRACTION

	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000	EXTRACTION
				118,000,000	

	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
					TRANSPORT TO REFINERY

	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY

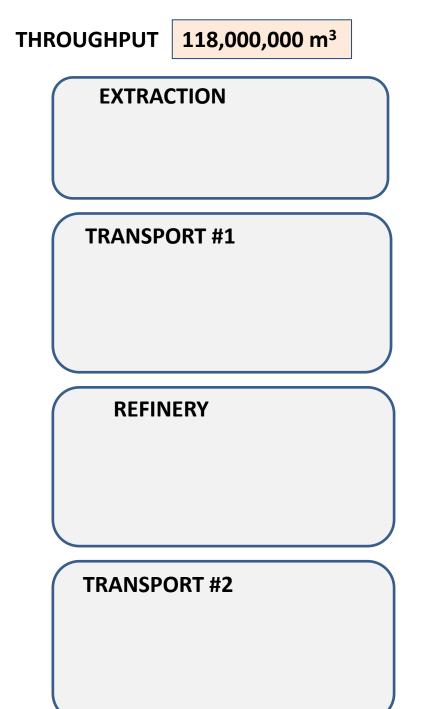
	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
					REFINERY

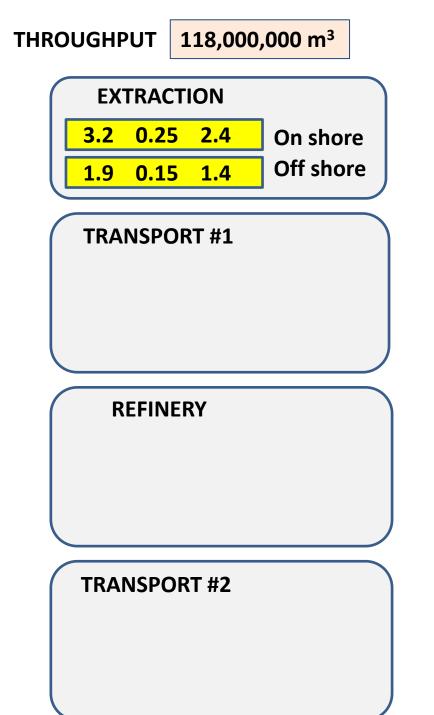
	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY

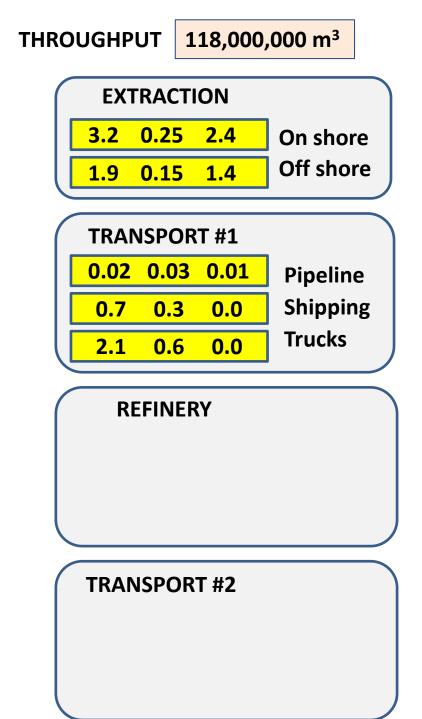
	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
					TRANSPORT TO END USES

	Mhrs	GJ fuel	GJ electr.	m³ oil	
On shore Off shore	38 200	3,000 16,000	28,000 145,000	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES

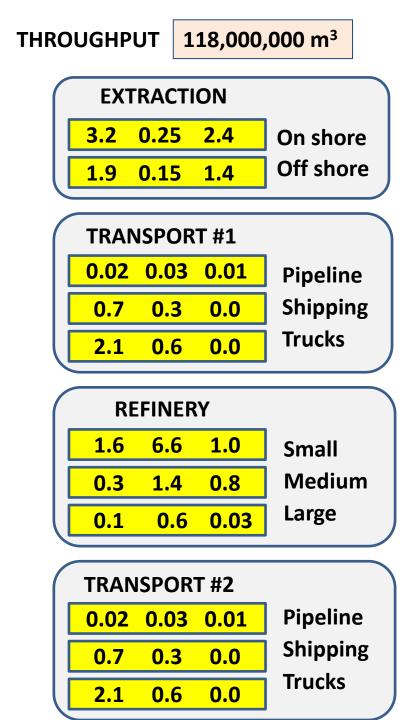
	hr/m³	GJ fuel m3	GJ electr. m3	m³ oil	
On shore Off shore On shore Off shore	38 200 3.2 1.9	3,000 16,000 0.25 0.15	28,000 145,000 2.4 1.4	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES

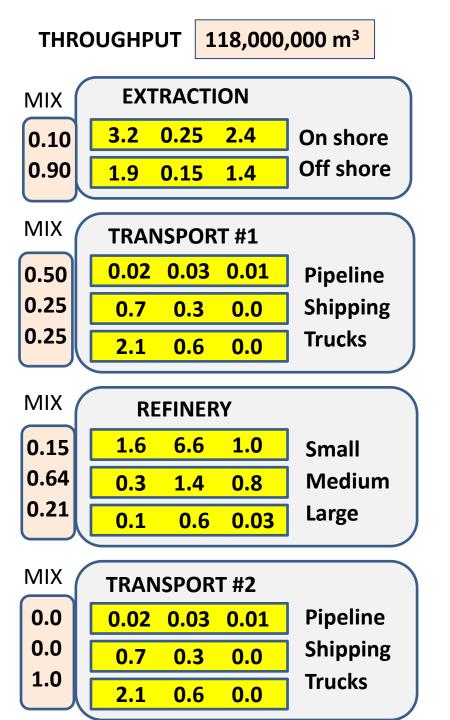

	hr/m³	GJ fuel m3	GJ electr. m3	m³ oil	
On shore Off shore On shore Off shore	38 200 3.2 1.9	3,000 16,000 0.25 0.15	28,000 145,000 2.4 1.4	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks Pipeline Ships Trucks	1 20 60 0.02 0.7 2.1	1,800 9,000 18,000 0.03 0.3 0.6	600 0 0 0.01 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES

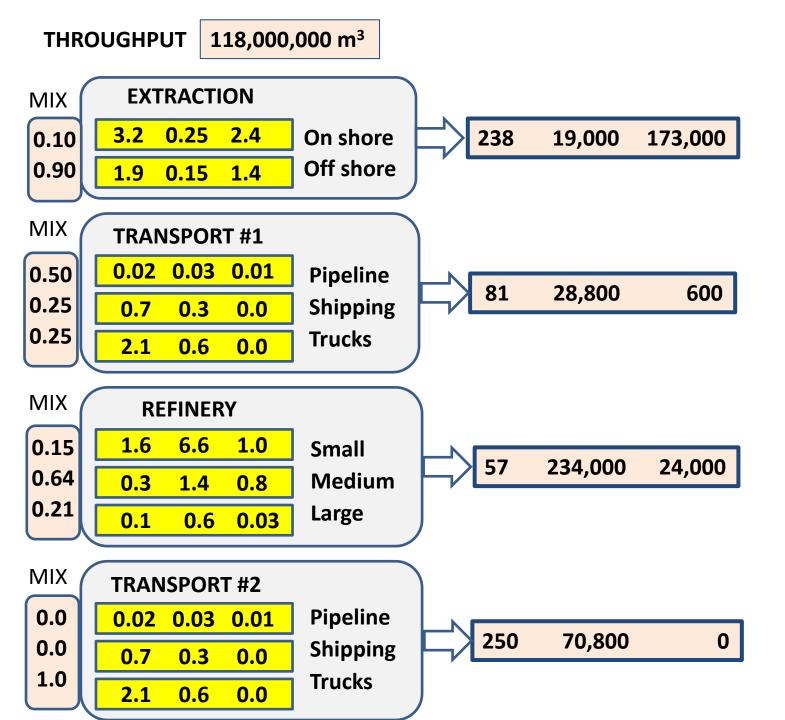

	hr/m³	GJ fuel m3	GJ electr. m3	m³ oil	
On shore Off shore On shore Off shore	38 200 3.2 1.9	3,000 16,000 0.25 0.15	28,000 145,000 2.4 1.4	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks Pipeline Ships Trucks	1 20 60 0.02 0.7 2.1	1,800 9,000 18,000 0.03 0.3 0.6	600 0 0 0.01 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large Small Medium Large	28 25 3.5 1.6 0.3 0.1	117,000 102,000 15,000 6.6 1.4 0.6	17,000 6,200 800 1.0 0.8 0.03	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES

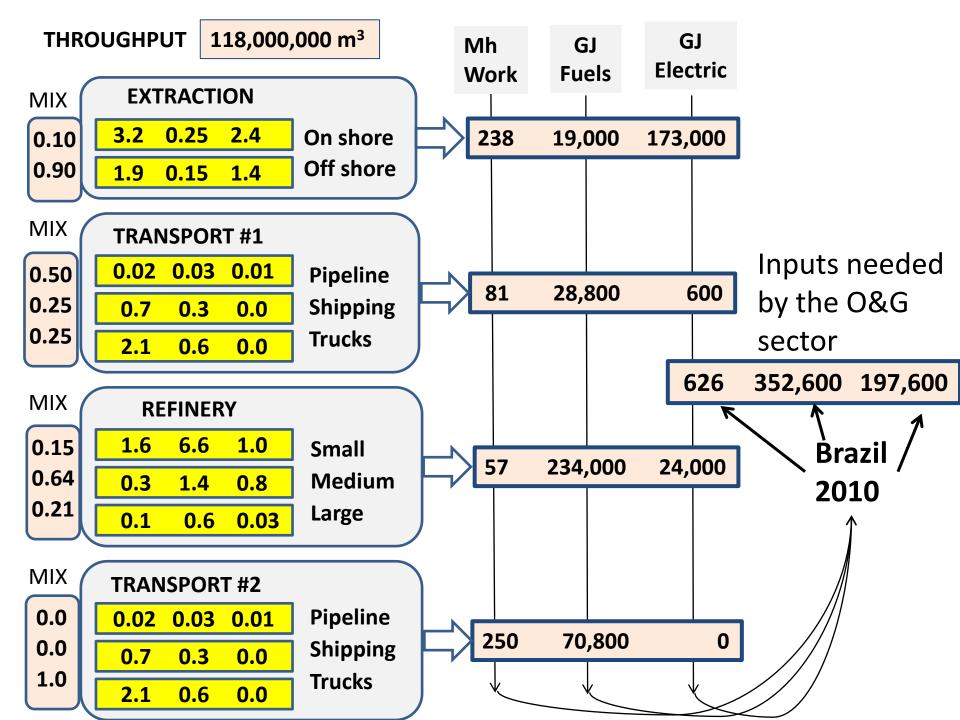

	hr/m³	GJ fuel m3	GJ electr. m3	m³ oil	
On shore Off shore On shore Off shore	38 200 3.2 1.9	3,000 16,000 0.25 0.15	28,000 145,000 2.4 1.4	12,000,000 106,000,000 118,000,000	EXTRACTION
Pipeline Ships Trucks Pipeline Ships Trucks	1 20 60 0.02 0.7 2.1	1,800 9,000 18,000 0.03 0.3 0.6	600 0 0 0.01 0 0	60,000,000 29,000,000 29,000,000 118,000,000	TRANSPORT TO REFINERY
Small Medium Large Small Medium Large	28 25 3.5 1.6 0.3 0.1	117,000 102,000 15,000 6.6 1.4 0.6	17,000 6,200 800 1.0 0.8 0.03	17,700,000 75,500,000 24,800,000 118,000,000	REFINERY
Trucks Trucks	250 <mark>2.1</mark>	70,800 <mark>0.6</mark>	0 0	118,000,000	TRANSPORT TO END USES

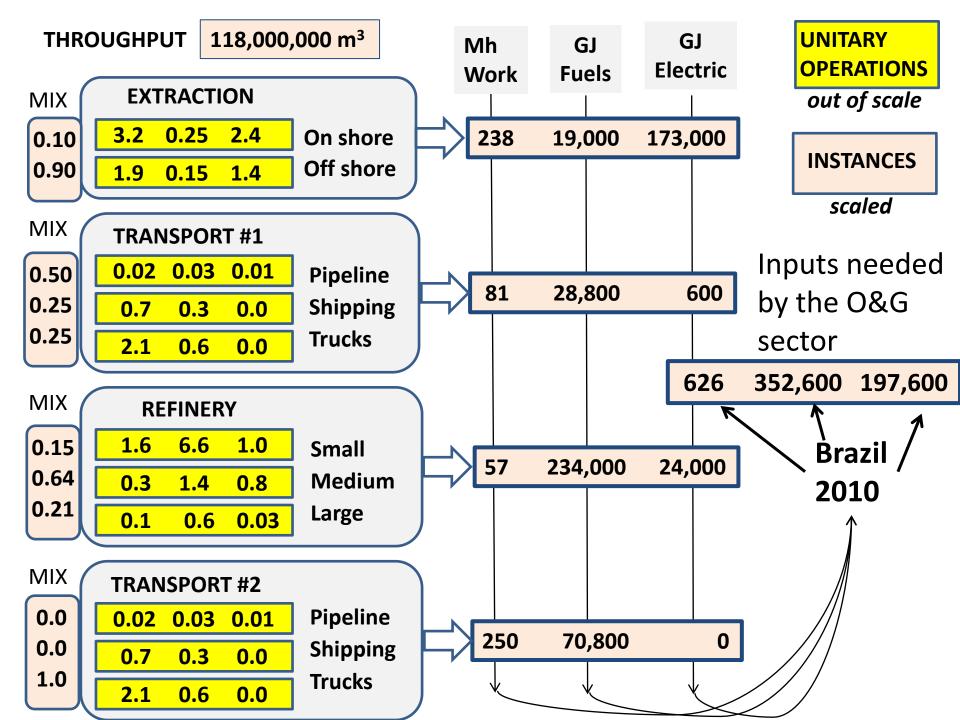

	hr/m³	GJ fuel m3	GJ electr. m3	m³ oil	
On shore Off shore On shore	38 200 3.2	3,000 16,000 0.25	28,000 145,000 2.4	12,000,000 106,000,000	EXTRACTION
Off shore	1.9	0.15	1.4	118,000,000	90% 118,000,000
Pipeline Ships Trucks	1 20 60	1,800 9,000 18,000	600 0 0	60,000,000 29,000,000 29,000,000	TRANSPORT TO REFINERY
Pipeline Ships Trucks	0.02 0.7 2.1	0.03 0.3 0.6	0.01 0 0	118,000,000	50% 25% 118,000,000 25%
Small Medium Large	28 25 3.5	117,000 102,000 15,000	17,000 6,200 800	17,700,000 75,500,000 24,800,000	REFINERY
Small Medium Large	1.6 0.3 0.1	6.6 1.4 0.6	1.0 0.8 0.03	118,000,000	15% 64% 118,000,000 21%
Trucks	250	70,800	0	118,000,000	TRANSPORT TO END USES
Trucks	2.1	0.6	0		100% 118,000,000





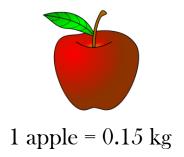


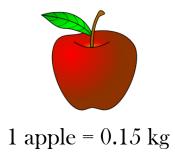


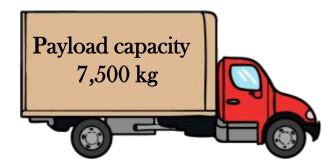

TRANSPORT #2

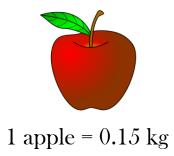
ISSUE OF SCALE (2)

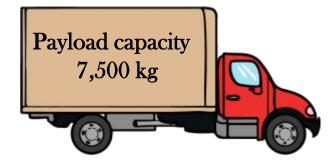
In order to assess environmental impact one has to individuate and use the right information:

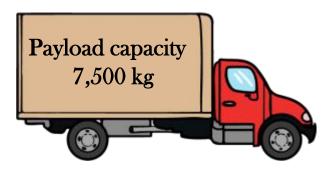

- (i) attributes of environmental stress have to be identified in relation to the specificity of embedding ecosystems;
- (ii) the stress has to be assessed after scaling;


Therefore the analysis of environmental impact has to be based on georeferenced data (GIS).


Many conventional indicators of environmental pressure are not useful because they are missing the implications of the difference between intensive variables (characteristics of types) and extensive variables (characteristics of instances . . .)

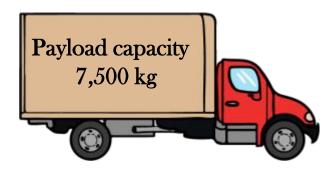

To assess environmental impact you have to define: (i) the type of pollution;


(ii) the type of ecological funds which are polluted;(iii) scaling this information to define the implications of the interaction under study.


1 watermelon = 2.5 kg

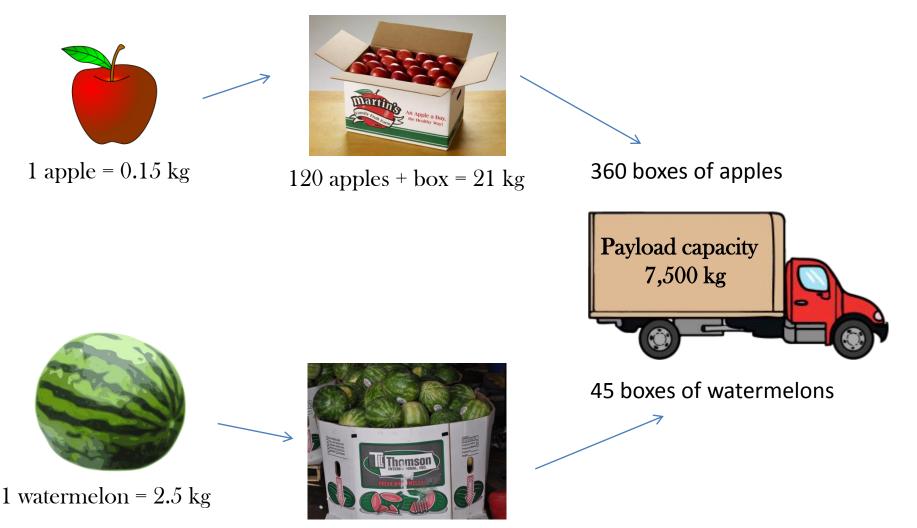
1 apple = 0.15 kg

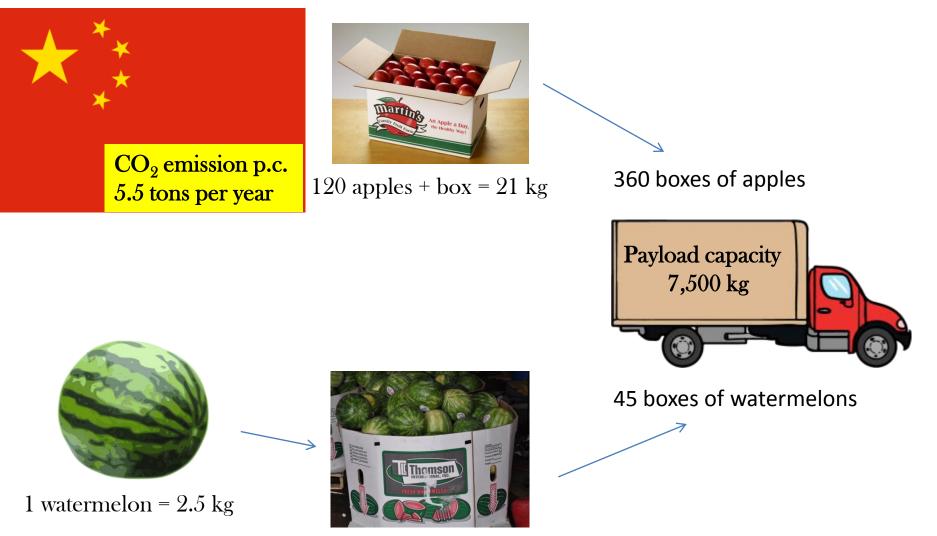
120 apples + box = 21 kg

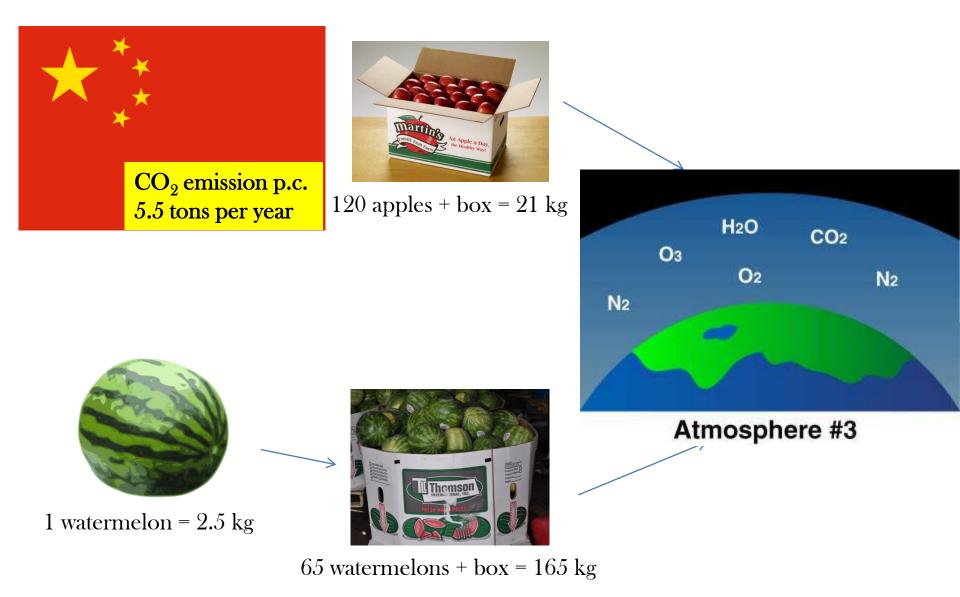

1 watermelon = 2.5 kg

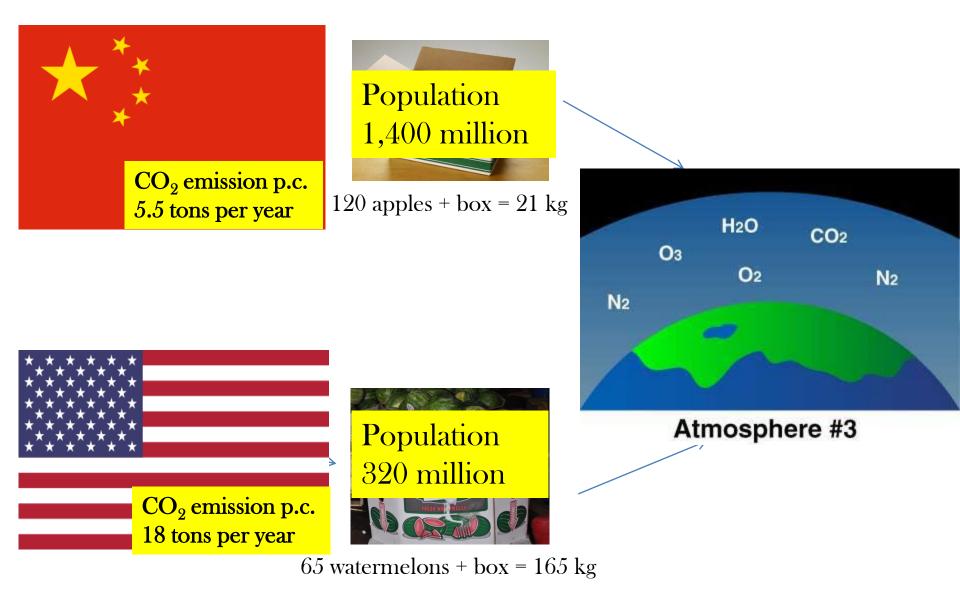
1 apple = 0.15 kg

120 apples + box = 21 kg




1 watermelon = 2.5 kg


65 watermelons + box = 165 kg


65 watermelons + box = 165 kg

65 watermelons + box = 165 kg

China

 CO_2 emission p.c. 5.5 tons per year

USA

CO₂ emission p.c. 18 tons per year

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

Population 1,400 million

Quantitative characteristics of human society

Population 320 million

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

EXTENSIVE VARIABLES

they make it possible the scaling, after having characterized the society (how much society)

> Population 1,400 million

Quantitative characteristics of human society

Population 320 million

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

EXTENSIVE VARIABLES

they make it possible the scaling, after having characterized the society (how much society)

Population 1,400 million

Quantitative characteristics of human society

Population 320 million

load of CO₂ 7.7 billion tons

Quantitative and qualitative characteristics of the pressure

load of CO_2 5.8 billion tons INTENSIVE VARIABLES they characterize in qualitative terms the society but they need scaling

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

EXTENSIVE VARIABLES

they make it possible the scaling, after having characterized the society (how much society)

Population 1,400 million

Quantitative characteristics of human society

Population 320 million

EXTENSIVE VARIABLES

they make it possible to define the pressure (how much CO_2 has to be absorbed by atmosphere)

load of CO₂ 7.7 billion tons

Quantitative and qualitative characteristics of the pressure

load of CO₂ 5.8 billion tons INTENSIVE VARIABLES they characterize in qualitative terms the society but they need scaling

China

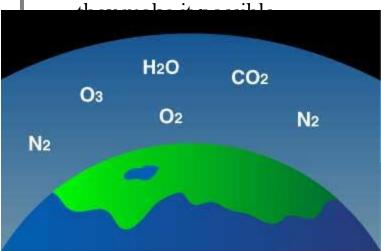
CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

EXTENSIVE VARIABLES


they make it possible the scaling, after having characterized the society (how much society)

Population 1,400 million

Quantitative characteristics of human society

Population 320 million

EXTENSIVE VARIABLES

Atmosphere #3

Quantitative and qualitative characteristics of the pressure

How much is too much?

How large is this flow in relation to the sink capacity of the atmosphere? INTENSIVE VARIABLES they characterize in qualitative terms the society but they need scaling

China

CO₂ emission p.c. 5.5 tons per year

Qualitative characteristics of human society

USA

CO₂ emission p.c. 18 tons per year

EXTENSIVE VARIABLES

they make it possible the scaling, after having characterized the society (how much society)

Population 1,400 million

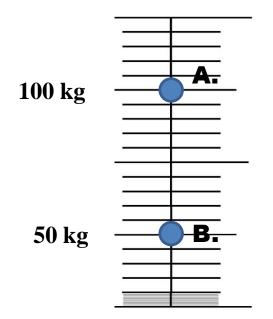
Quantitative characteristics of human society

Population 320 million In order to answer these questions we have to include in the analysis also the functioning and the state of the atmosphere . . .

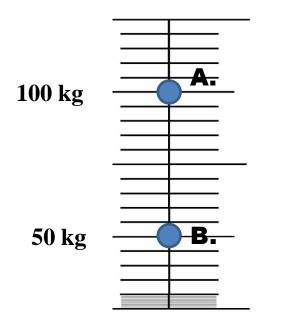
02

N₂

N₂


Atmosphere #3

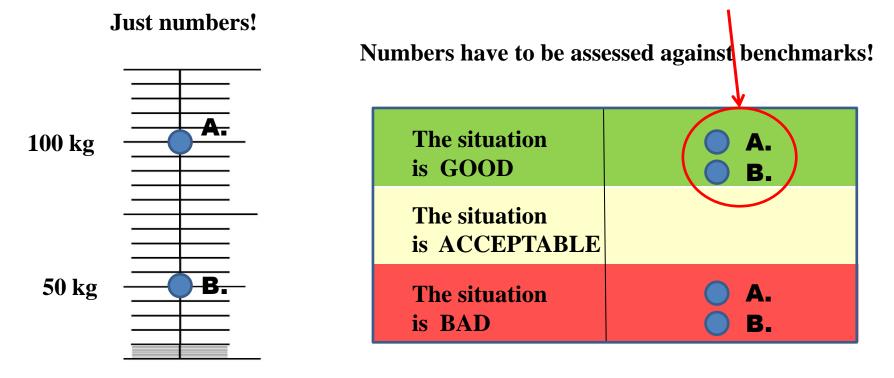
Quantitative and qualitative characteristics of the pressure


How much is too much?

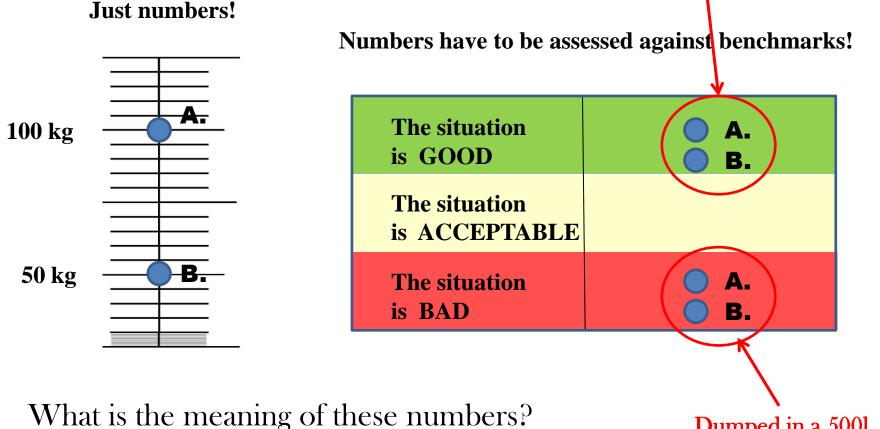
How large is this flow in relation to the sink capacity of the atmosphere?

Just numbers!

Just numbers!

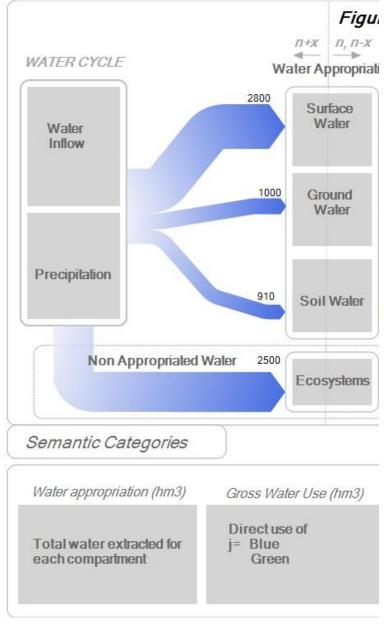

What is the meaning of these numbers? How do we know how much is too much?

Just numbers!


What is the meaning of these numbers? How do we know how much is too much?

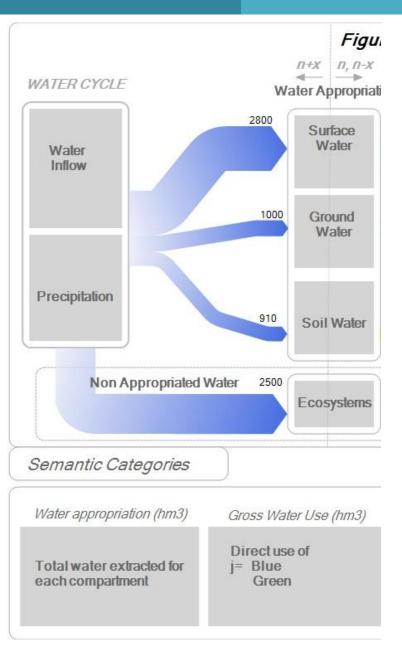
Dumped in the sea

What is the meaning of these numbers? How do we know how much is too much?


Dumped in the sea

How do we know how much is too much?

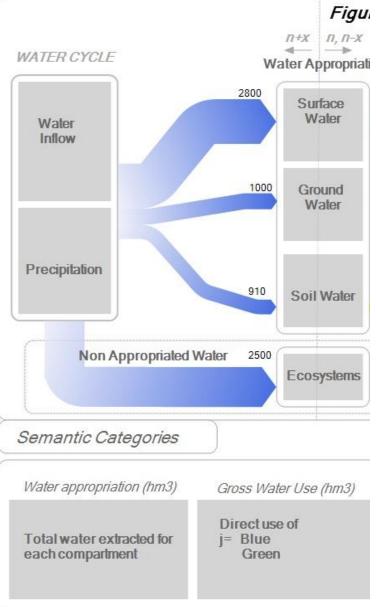
Dumped in a 500l tank of drinking water


<u>4. Environment</u>

Water Accounting

1. Challenges

<u>4. Environment</u>



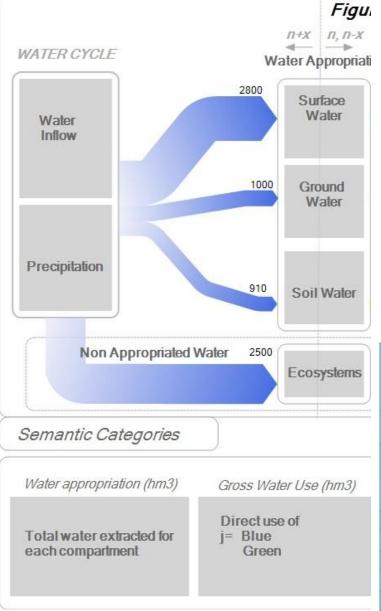
Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218

Water Accounting

1. Challenges

<u>4. Environment</u>

Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218

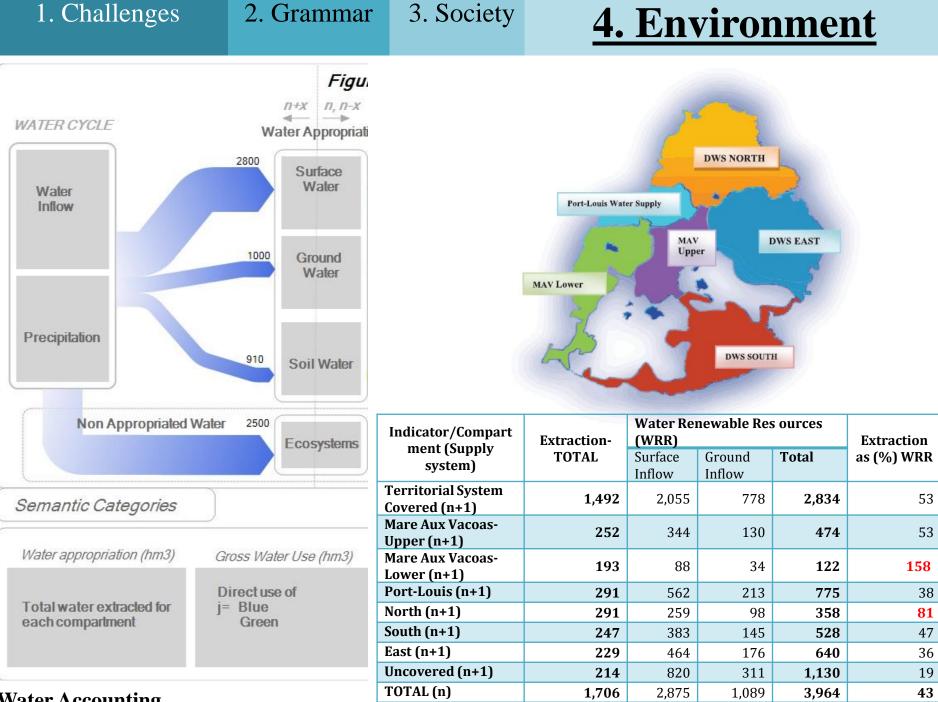

Indicator/Compart ment (Supply	Extraction-	Water Renewable Res ources (WRR)			Extraction
system)	TOTAL	Surface Inflow	Ground Inflow	Total	as (%) WRR
Territorial System Covered (n+1)	1,492	2,055	778	2,834	53
Mare Aux Vacoas- Upper (n+1)	252	344	130	474	53
Mare Aux Vacoas- Lower (n+1)	193	88	34	122	158
Port-Louis (n+1)	291	562	213	775	38
North (n+1)	291	259	98	358	81
South (n+1)	247	383	145	528	47
East (n+1)	229	464	176	640	36
Uncovered (n+1)	214	820	311	1,130	19
TOTAL (n)	1,706	2,875	1,089	3,964	43

Water Accounting

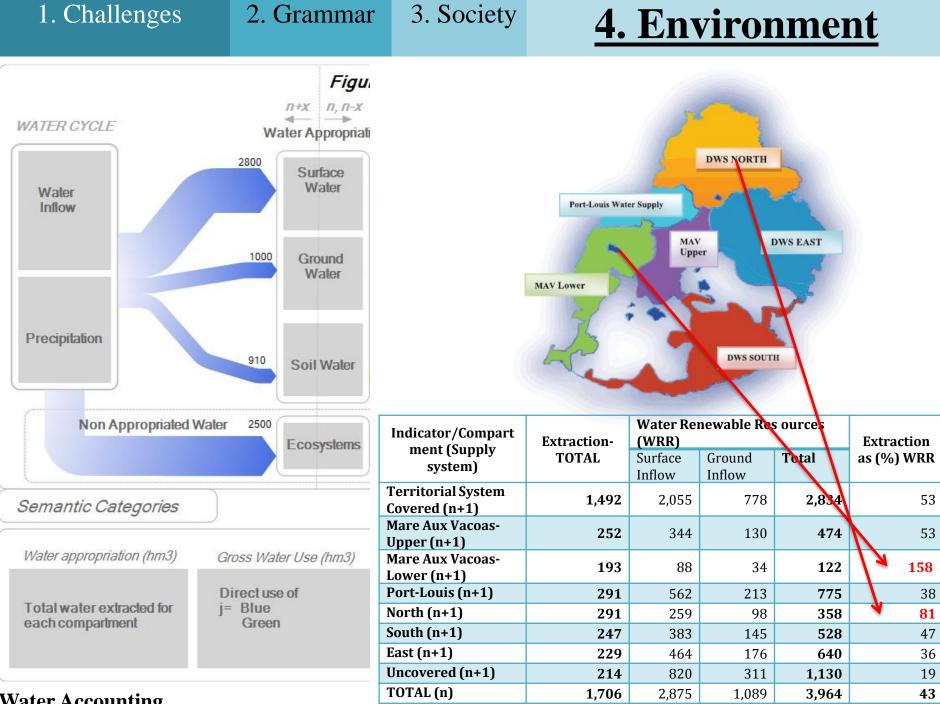
__ ~ ~ _

1. Challenges

<u>4. Environment</u>



Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218


Indicator/Compart	Extraction-	Water Rer (WRR)	Extraction		
ment (Supply system)	TOTAL	Surface Inflow	Ground Inilow	Total	as (%) WRR
Territorial System Covered (n+1)	1,492	2,055	778	2,834	53
Mare Aux Vacoas- Upper (n+1)	252	344	130	474	53
Mare Aux Vacoas- Lower (n+1)	193	88	34	122	158
Port-Louis (n+1)	291	562	213	775	38
North (n+1)	291	259	98	358	81
South (n+1)	247	383	145	528	47
East (n+1)	229	464	176	640	36
Uncovered (n+1)	214	820	311	1,130	19
TOTAL (n)	1,706	2,875	1,089	3,964	43

Water Accounting

___ ~_

Water Accounting

Water Accounting

ENVIRONMENTAL IMPACT MATRIX

Taxonomy of ecological funds and categories of environmental impact

TYPOLOGY OF FUNDS		SUPPLY STRESS INDICATOR	SINK STRESS INDICATOR
Terrestrial ecosystems	Boreal forests		
	Tropical forests		
Aquatic (inland) ecosystems	Rivers		
	Wetlands		
Marine/Coastal systems	Gulf		
	Beach		
Soil	Alfisol		
	Oxisol		
Atmosphere	Global		
	Local		

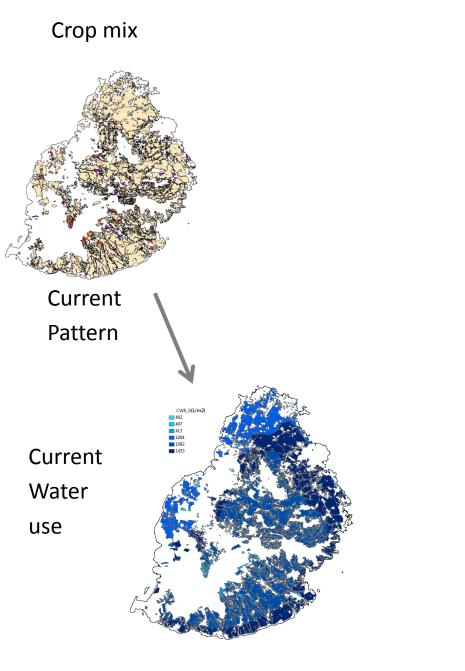
3. Moving away from numbers and models toward a quantitative analysis based on patterns and grammars

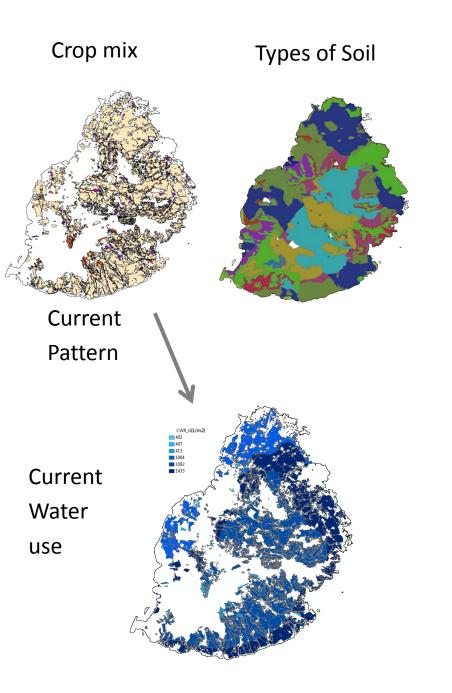

FIGTHING HYPOCOGNITION (1)

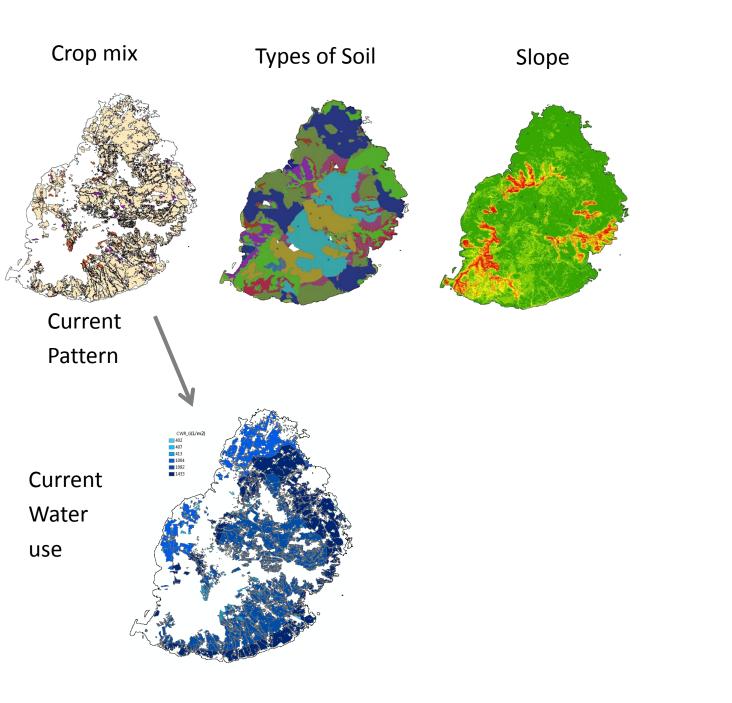
Using the metaphor:

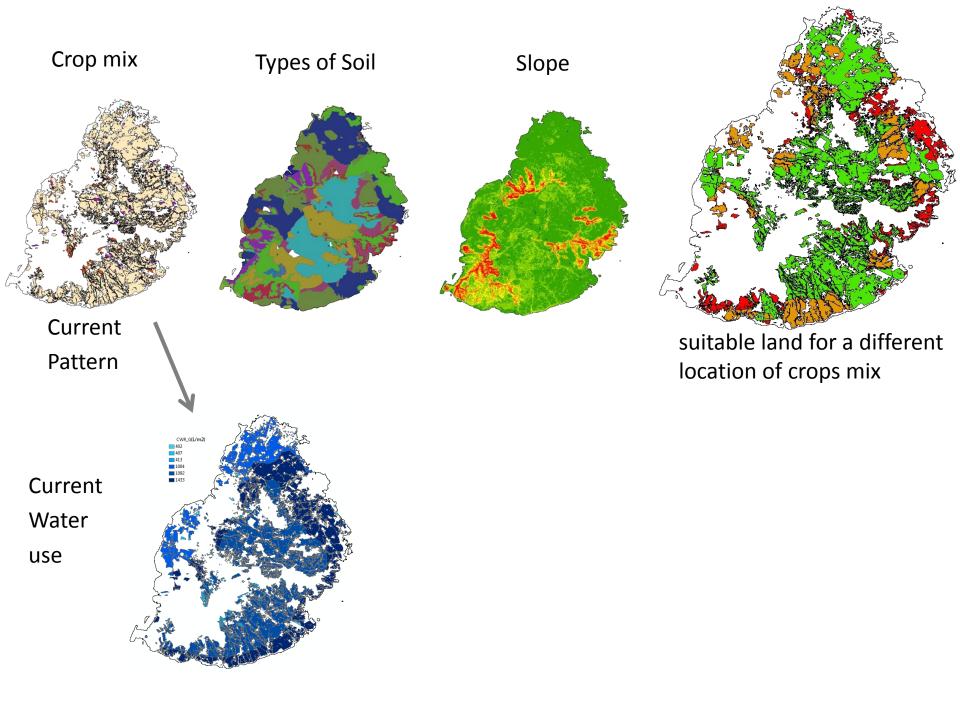
Moving away from Traditional Maps To Geographic Information System

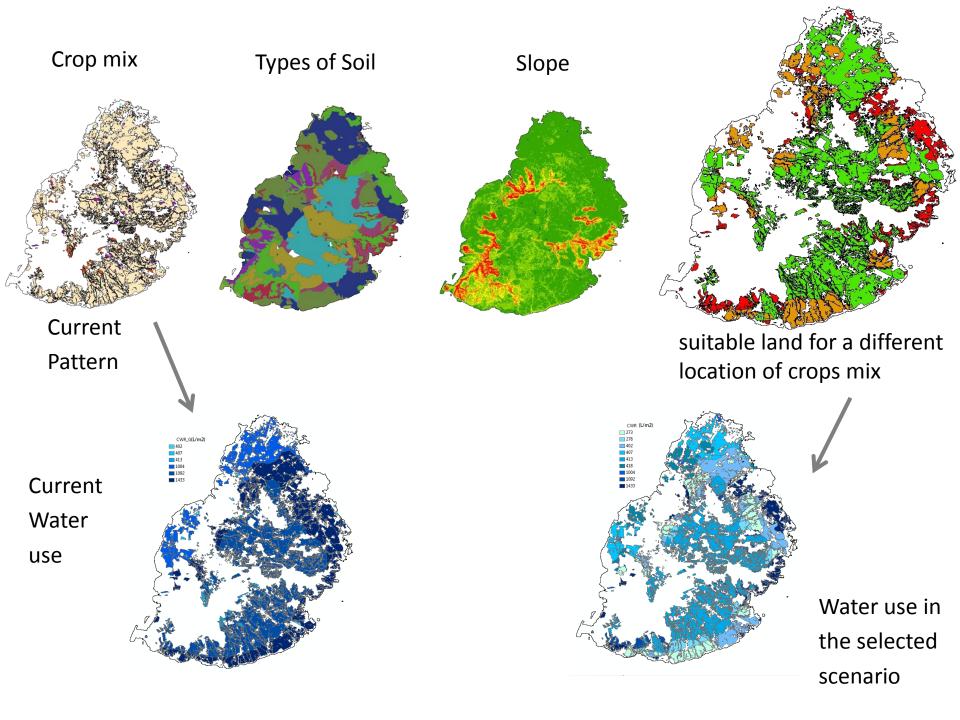
Old fashion map of Mauritius with information about the elevation of the points

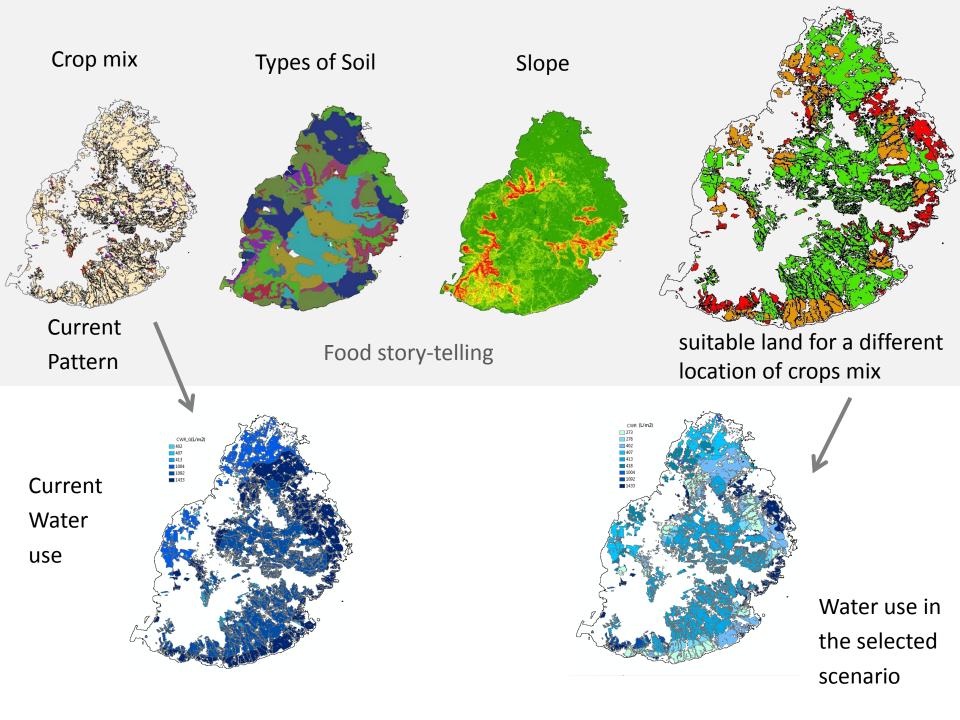

Old fashion map of Mauritius with information about the elevation of the points


> Quantitative models see only a dimension at the time . . .






Current Pattern





FIGTHING HYPOCOGNITION (2)

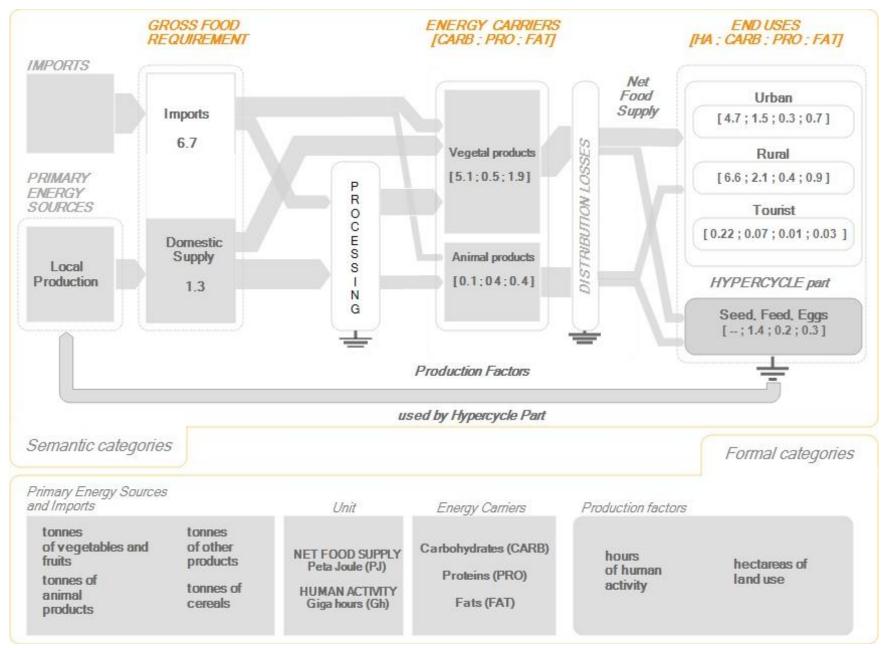
Moving away from assessments based on "a single set of numbers" to assessments based on "several sets of numbers" that are integrated using grammars A GRAMMAR is a set of expected relations defined over a set of semantic categories. This implies that a GRAMMAR is a sort of meta-model that can be tailored on: (i) the specificity of the research question; and (ii) the specificity of the investigated system

3. A set of production rules – establishing causality in the chosen representation - deciding what should be considered as either a dependent or independent variable (escaping impredicativity)

A GRAMMAR is a set of expected relations defined over a set of semantic categories. This implies that a GRAMMAR is a sort of meta-model that can be tailored on: (i) the specificity of the research question; and (ii) the specificity of the investigated system

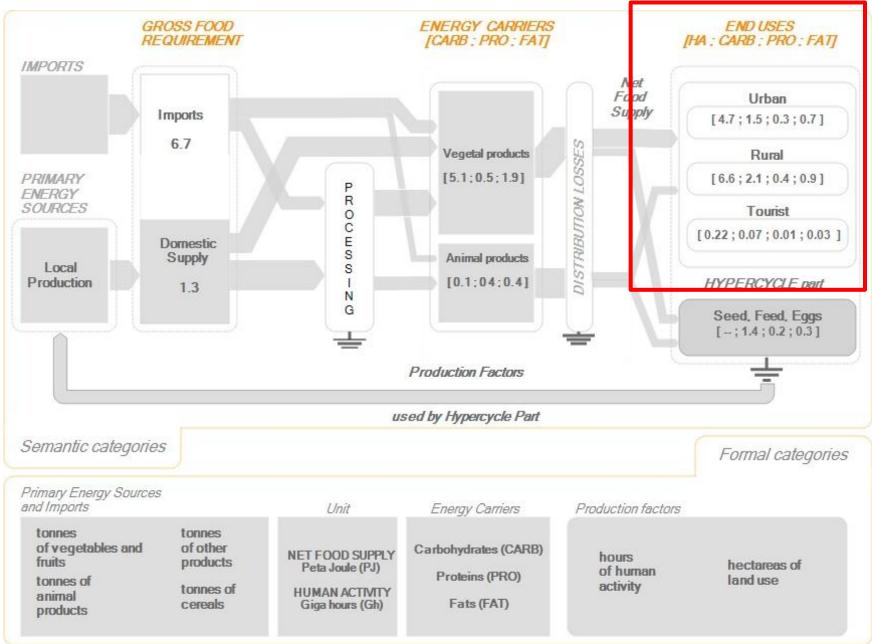
1. A taxonomy - defining the perception of what is relevant the definition of semantic categories (the types of types)

3. A set of production rules – establishing causality in the chosen representation - deciding what should be considered as either a dependent or independent variable (escaping impredicativity)

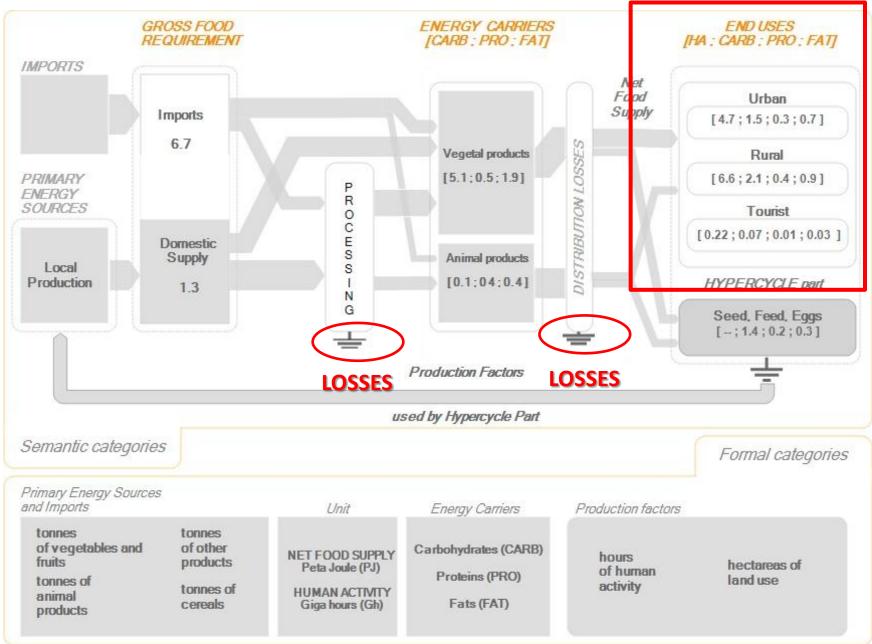

A GRAMMAR is a set of expected relations defined over a set of semantic categories. This implies that a GRAMMAR is a sort of meta-model that can be tailored on: (i) the specificity of the research question; and (ii) the specificity of the investigated system

1. A taxonomy - defining the perception of what is relevant the definition of semantic categories (the types of types)

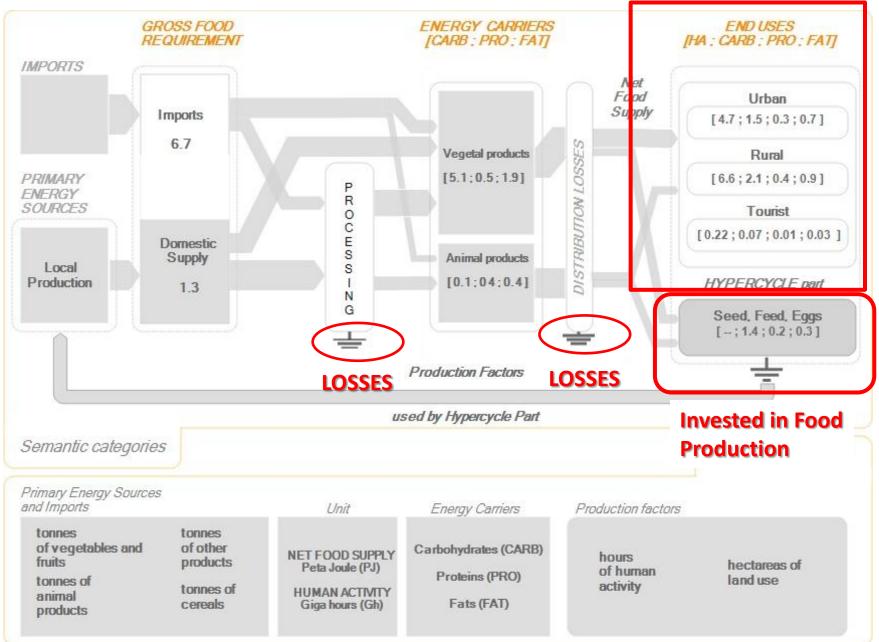
2. A lexicon (vocabulary) – choosing what is observed/represented the definition of external referents to be assigned to the types (the formal identities used to represent the elements)


3. A set of production rules – establishing causality in the chosen representation - deciding what should be considered as either a dependent or independent variable (escaping impredicativity)

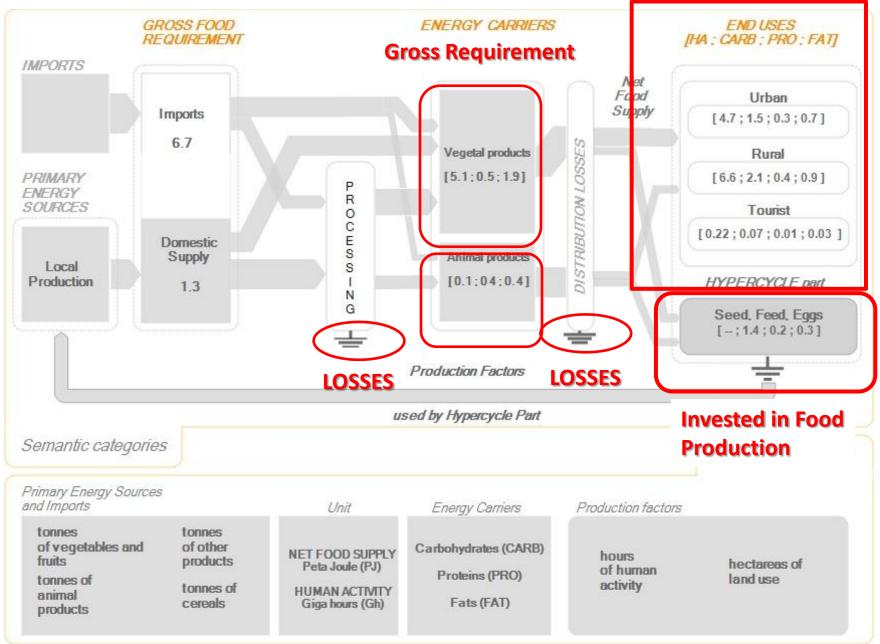
Multi-Level Grammars


Multi-Level Grammars

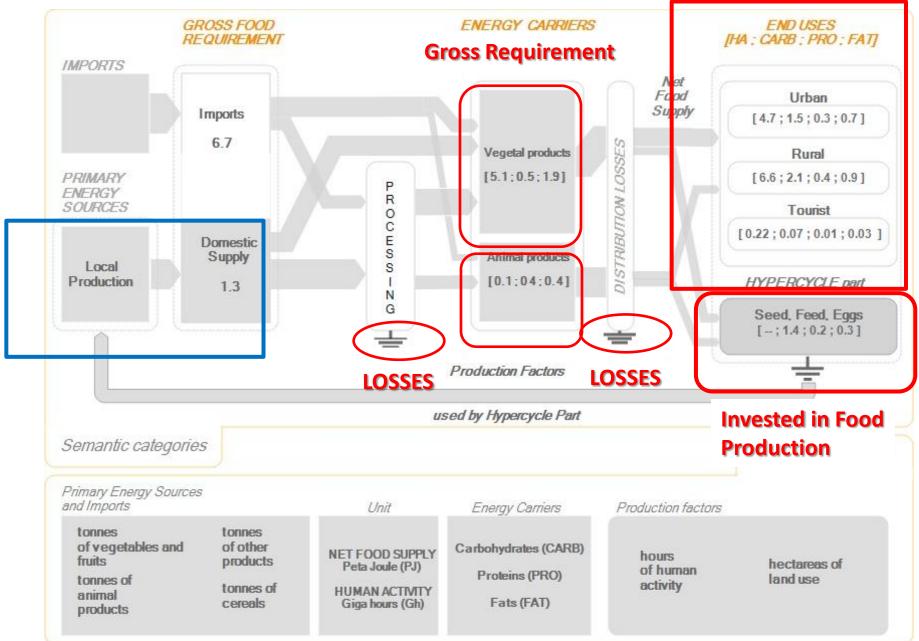
Final Consumption


Multi-Level Grammars

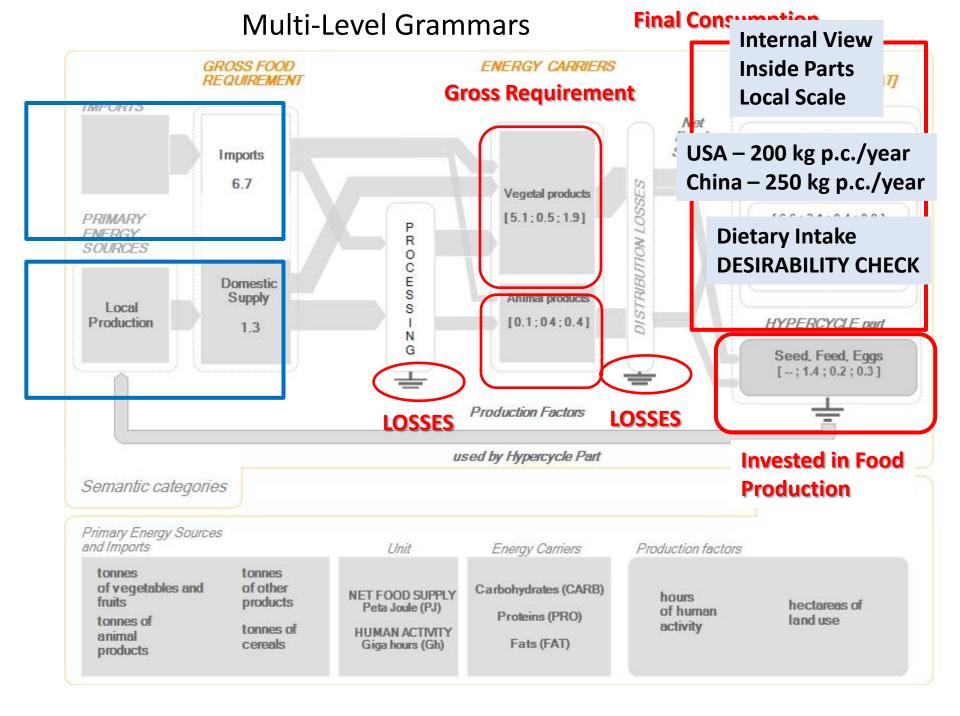
Final Consumption

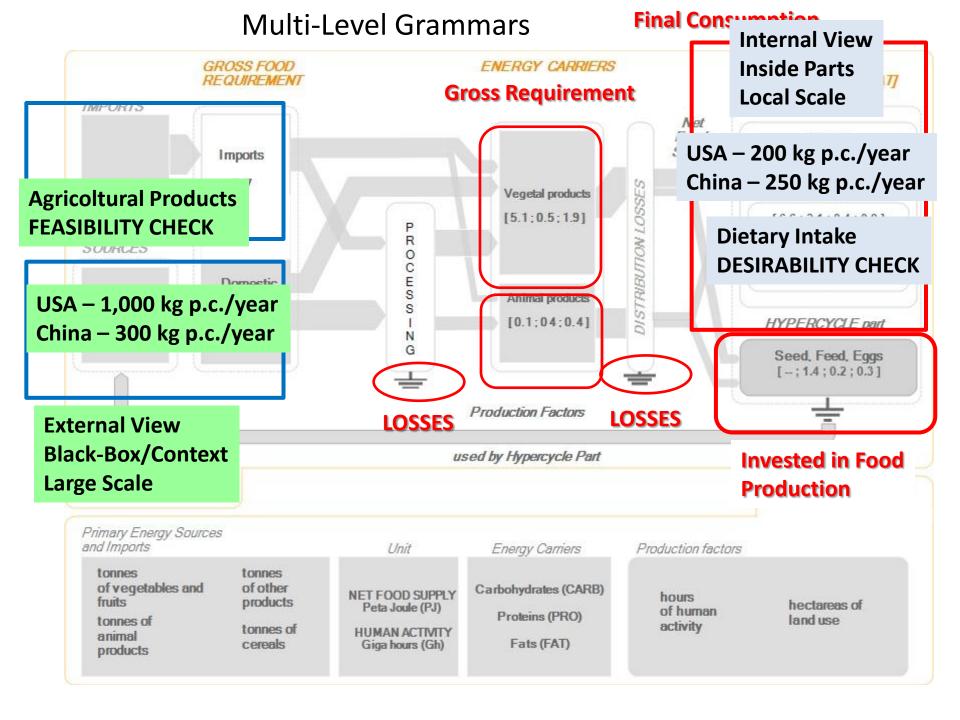


Multi-Level Grammars

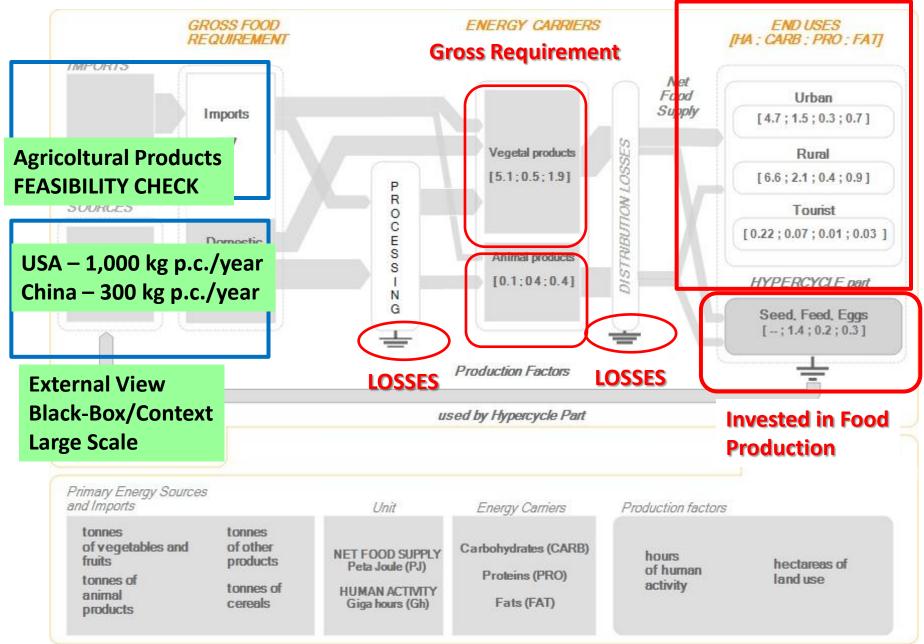

Final Consumption

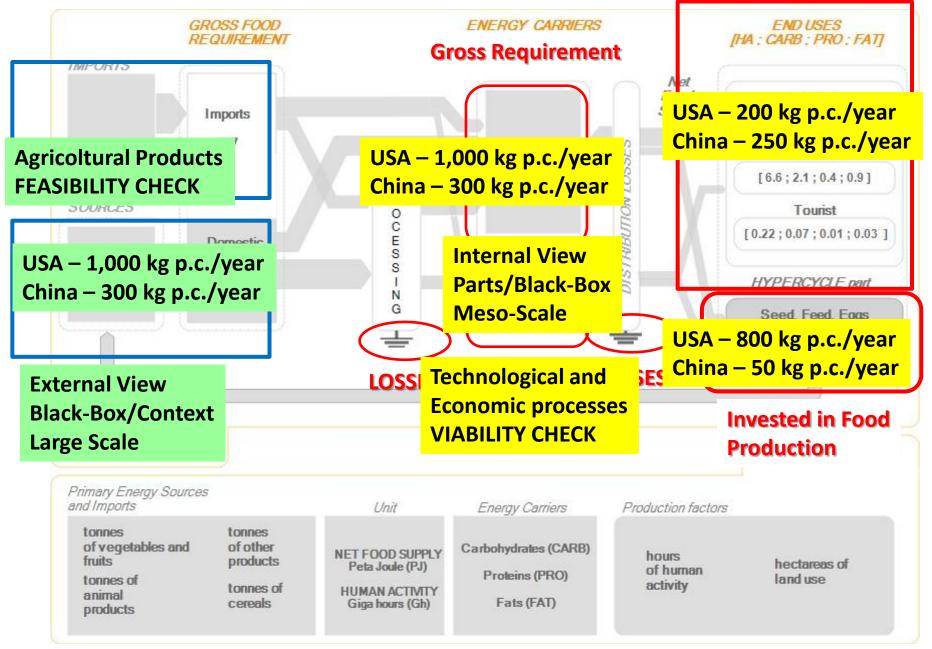
Multi-Level Grammars Final Consumption

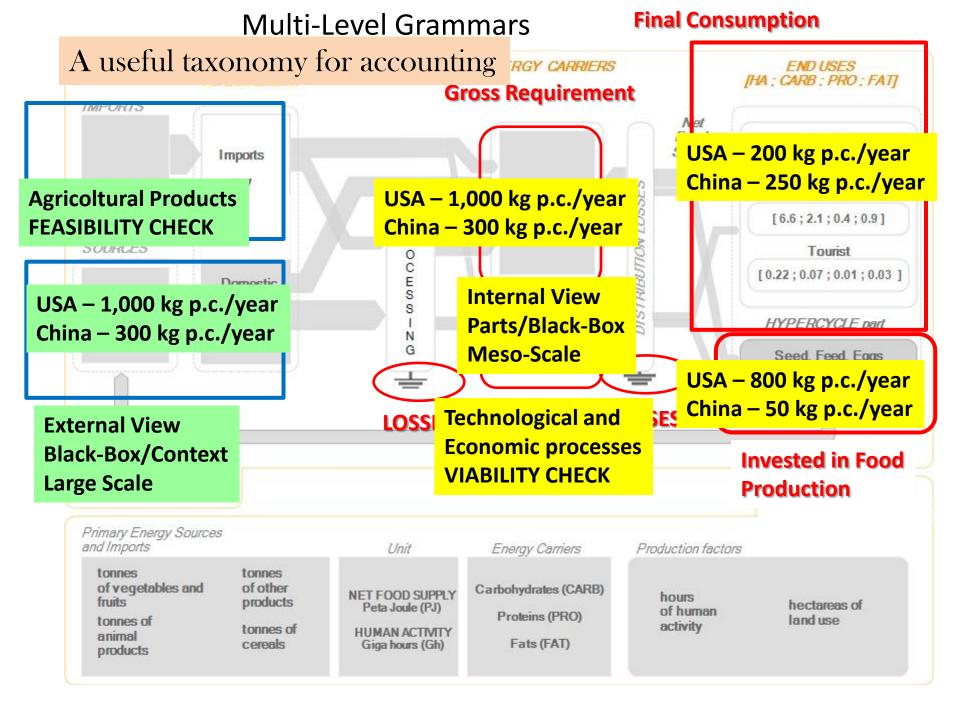



Multi-Level Grammars Final Consumption

Multi-Level Grammars Final Consumption


GROSS FOOD ENERGY CARRIERS END USES REQUIREMENT [HA : CARB : PRO : FAT] **Gross Requirement** IMPORIS Food Urban Supply Imports [4.7; 1.5; 0.3; 0.7] 6.7 DISTRIBUTION LOSSES Vegetal products Rural [5.1:0.5:1.9] [6.6; 2.1; 0.4; 0.9] PRIMARY P FNFRGY R SOURCES Tourist 0 CES [0.22;0.07;0.01;0.03] Domestic Supply Animal products S Local [0.1:04:0.4] Production HYPERCYCLE part 1.3 N G Seed, Feed, Eggs [-;1.4;0.2;0.3] Production Factors LOSSES LOSSES used by Hypercycle Part **Invested in Food** Semantic categories Production Primary Energy Sources and Imports Unit Energy Carriers Production factors tonnes tonnes of vegetables and of other Carbohydrates (CARB) NET FOOD SUPPLY hours products fruits hectareas of Peta Joule (PJ) of human Proteins (PRO) land use tonnes of activity tonnes of HUMAN ACTIVITY animal Fats (FAT) cereals Giga hours (Gh) products


Multi-Level Grammars

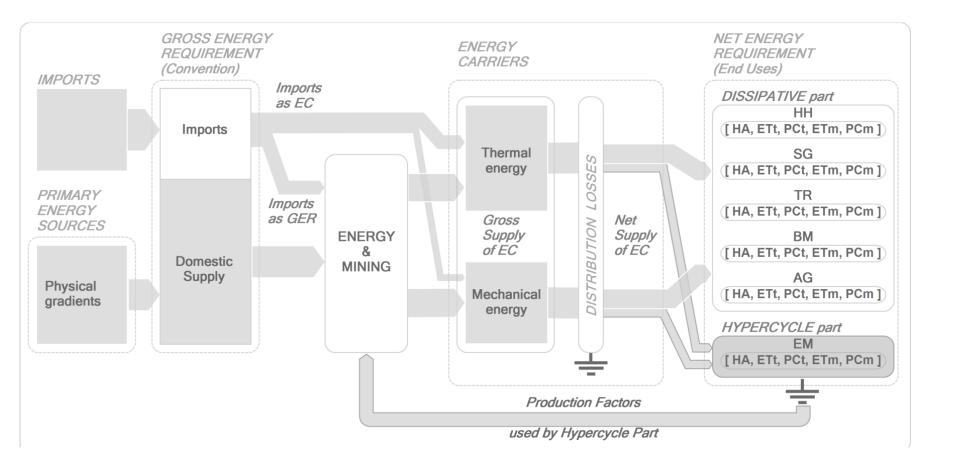

Final Consumption

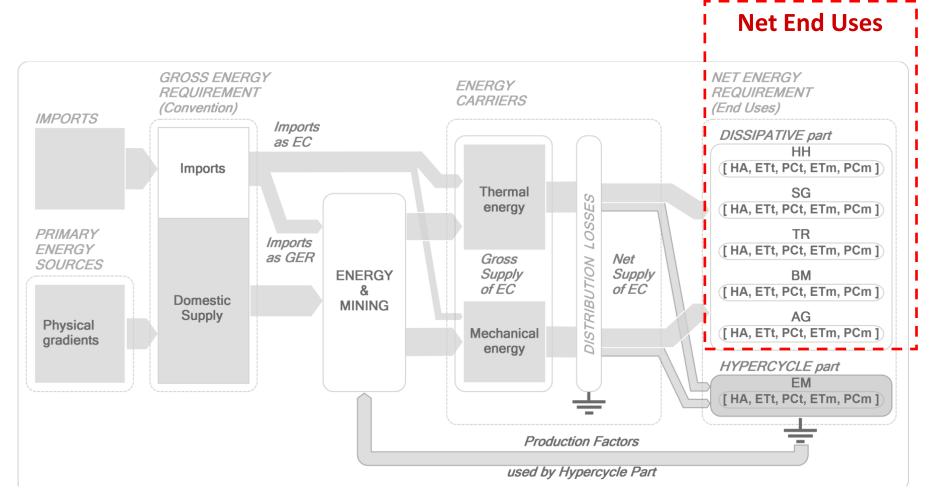
Multi-Level Grammars

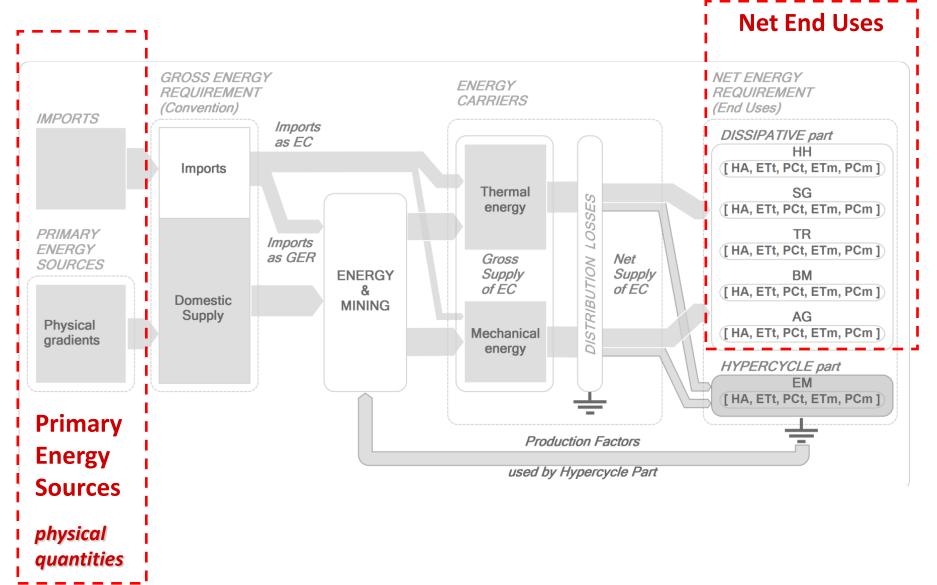
Final Consumption

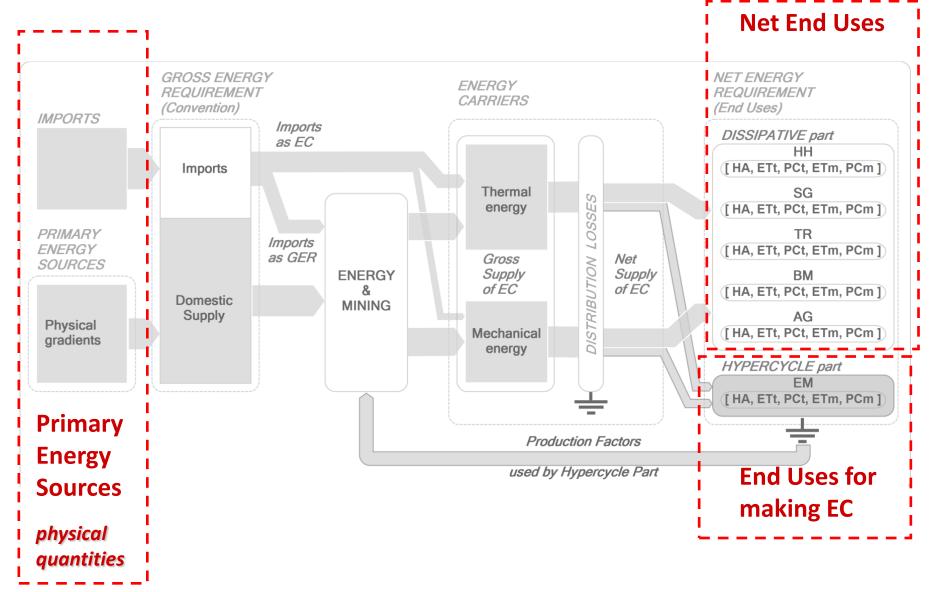
	FLOW elements			FUND	eleme	ents			
	Food (PJ)	Energy (PJ-GER)	Water (hm3)	HA (Mhr)	PC (GW)	Land (ha)	Money (Billion US\$)		
нн	5.9	15	84	10000	4.5	28,000			
SG	0.8	21	16	590	1.0		6		
BM	losses	16	23	250	0.5		2		
AG	1.3	0	110	50	negl	20,500	0.3		
EM	negl	2	260	8	negl		0.2		
exp _{PW*}		0		430			5		
exp _{AG}	negl		1100	33		54,000	0.3		
ТОТ	8	56	1700	11000	6	103000	9		
Imports	6.7	48	1300			211,500	6		
Local Supply	1.3	7.2				20,500			

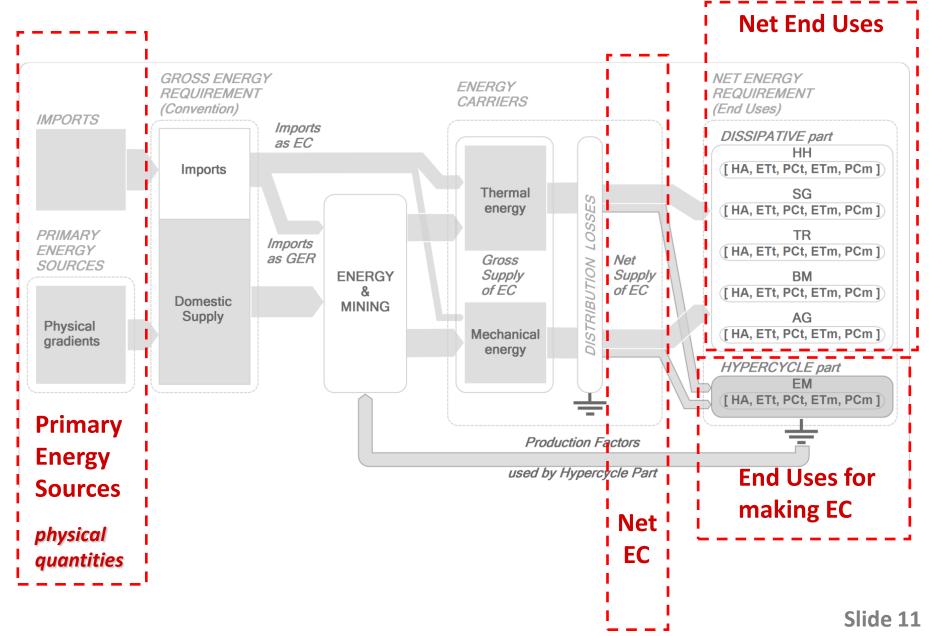
	FLOW elements			FUND	eleme	nents			
	Food (PJ)	Energy (PJ-GER)	Water (hm3)	HA (Mhr)	PC (GW)	Land (ha)	Money (Billion US\$)		
нн	5.9	15	84	10000	4.5	28,000			
SG	0.8	21	16	590	1.0		6		
BM	losses	16	23	250	0.5		2		
AG	1.3	0	110	50	negl	20,500	0.3		
EM	negl	2	260	8	negl		0.2		
exp _{PW*}		0		430			5		
exp _{AG}	negl		1100	33		54,000	0.3		
ТОТ	8	56	1700	11000	6	103000	9		
Imports	6.7	48	1300			211,500	6		
Local Supply	1.3	7.2				20,500			

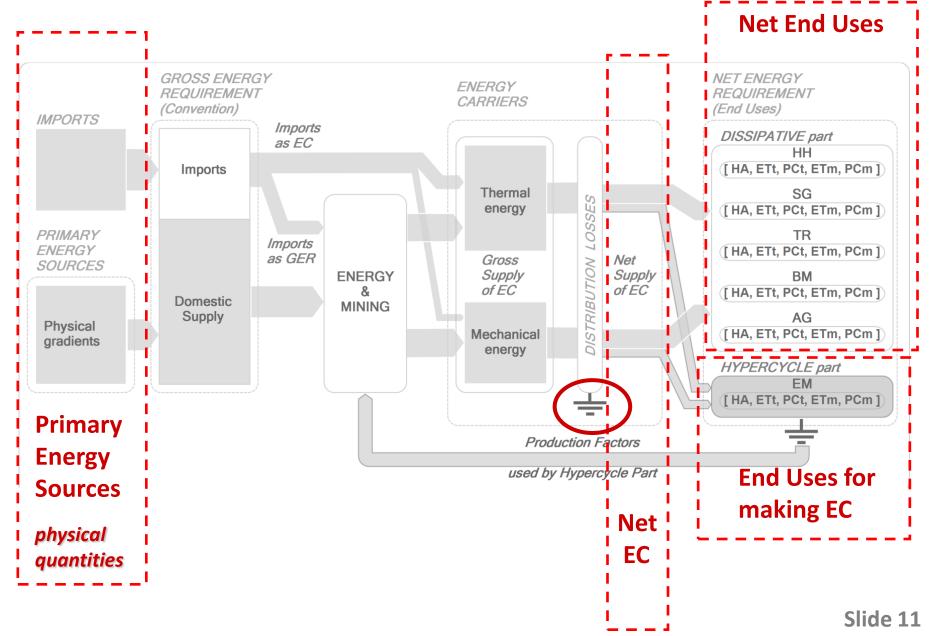

	FLO	W element	S	FUND	D elements			
	Food (PJ)	Energy (PJ-GER)	Water (hm3)	HA (Mhr)	PC (GW)	Land (ha)	Money (Billion US\$)	
нн	5.9	15	84	10000	4.5	28,000		
SG	0.8	21	16	590	1.0		6	
BM	losses		23	250	0.5		2	
AG	1.3	0	110	50	negl	20,500	0.3	
EM	negl	2	260	8	negl		0.2	
exp _{PW*}		0		Diet	compo			
exp _{AG}	negl		Unit: PJ	oules	CAR	В	PROT	FAT
тот	8	56			3.6	;	0.7	1.6
							-	
Imports	6.7	48	1300			211,500	6	
Local Supply	1.3	7.2				20,500		

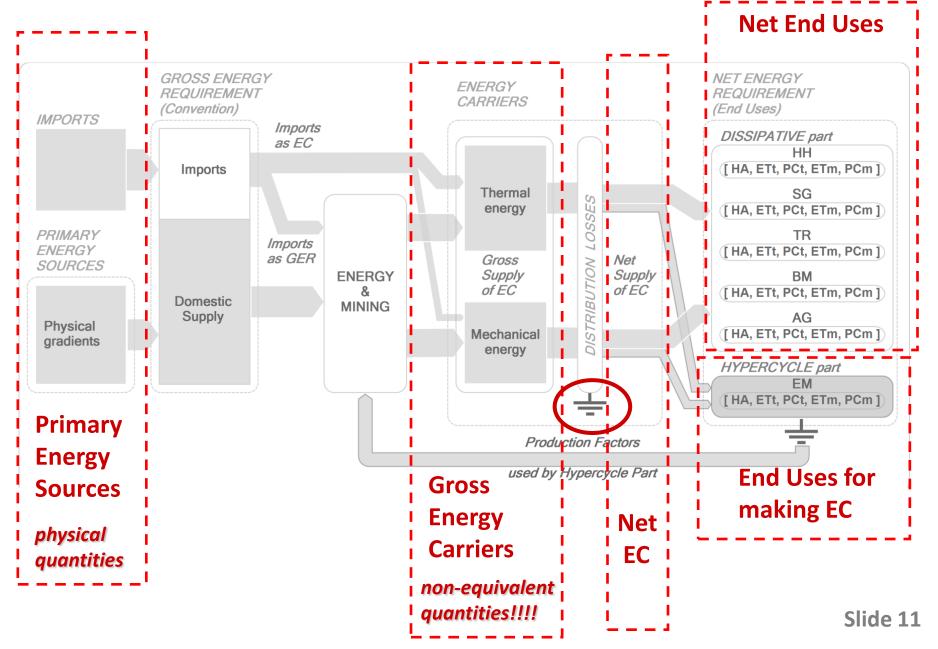

	FLO	Pe Weler	Population Structure			Dietary needs of the population elements					
	Food (PJ)	Ener (PJ-G			P '((C GW)	Lano (ha)	Yoney Billion US\$	5)		
нн	5.9	15			4	.5	28,000	Diet	Requi	reme	ent
SG	0.8	21	Female	Male	1		it: PJoule	CARB	PRO		FAT
BM	losses		23	250		Tourist Rural		0.1	Negl 0.4	_	Negl 0.9
AG	1.3	0	110	50		Urban		1.5	0.3		0.7
EM	negl	2	260	8	n	egl		0.2			-
exp _{PW*}		0		Die	t co	mpo	sition	;			
exp _{AG}	negl		Unit: PJ	oules		CAR	В	PROT		FAT	
тот	8	56				3.6	,	0.7		1.6	;
Imports	6.7	48	1300				211,500	6			
Local Supply	1.3	7.2					20,500				

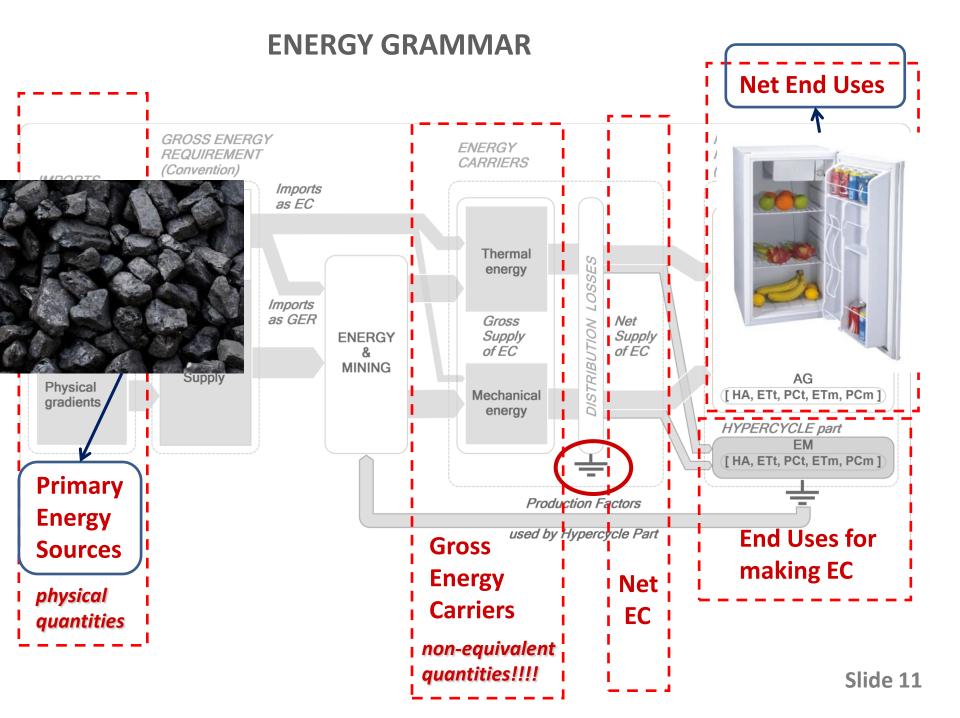

	FLO	Pe Weler	opulation Structure			Dietary needs of the population					
	Food (PJ)	Ener (PJ-G				PC (GW)	Lano (ha)	Ioney Billion US\$	5)		
нн	5.9	15			4	4.5	28,00	Diet	Re	quiren	nent
SG	0.8	21	🔲 Female 🔳	Male		Un	it: PJoule	CARB		PRO	FAT
BM	0.8 losses		23	250		Tourist		0.1		Negl	Negl
						Rural		2.1		0.4	0.9
AG	1.3	0	110	50		Urban		1.5		0.3	0.7
EM	negl	2	260	8	1	negl		0.2			
exp _{PW*}		0		Die	t c	ompo	sition	5			
exp _{AG}	negl		Unit: PJ	oules		CAR	В	PROT	٦	FA	T
тот	8	56				3.6	;	0.7		1.	6
			Cereals, roo	ts		2.7	7	0.3		Ne	gl
			Animals pro	ducts		0.1		0.3		0.	3
Imports	6.7	48	Veg. and fru	its		0.1		Negl		Ne	gl
Local	1.3	7.2	Oil			Neg	ζl	Negl		1.	2
Supply			Others			0.7	7	Negl		Ne	g
		— Primary	Agricultu	ral Proc	luc	ts —		1			


		FLO	Peler	opulation Stru		Dietary eleme		of the pop	ulation	
		Food (PJ)	Ener (PJ-G			PC (GW)	Lano (ha)	Joney Billion US\$		
	нн	5.9	15			4.5	28,00	Diet	Requirem	nent
	SG		21	🔲 Female 🔳	Male	Un	it: PJoule	CARB	PRO	FAT
	D14	0.8 losses		22	250	Tourist		0.1	Negl	Negl
	BM	105505		23	250	Rural		2.1	0.4	0.9
	AG	1.3	0	110	50	r Urban		1.5	0.3	0.7
	EM	negl	2	260	8	negl		0.2		_
	eyn		0		Die	+ t compo	sition	;		
Agricul pattern		AS A		Unit: PJ	oules	CAR	В	PROT	FA	ιT
			6			3.6	5	0.7	1.	6
5		A COL		Cereals, roo	ts	2.7	7	0.3	Ne	gl
				Animals pro	ducts	0.1	L	0.3	0.	3
			18	Veg. and fru	its	0.1	L	Negl	Ne	gl
		Martin.	7.2	Oil		Ne	gl	Negl	1.	2
			Others		0.7		Negl	Ne	g	
Li		and the second s	Primary	Agricultu	ral Prod	ucts —				


Food products supply by agriculture or imports



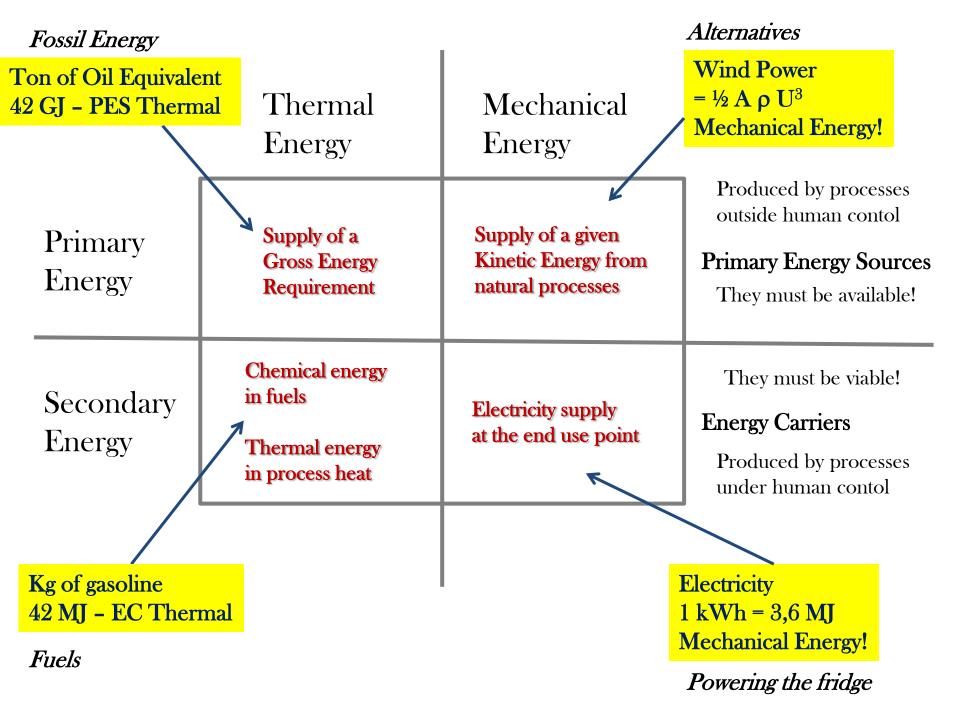


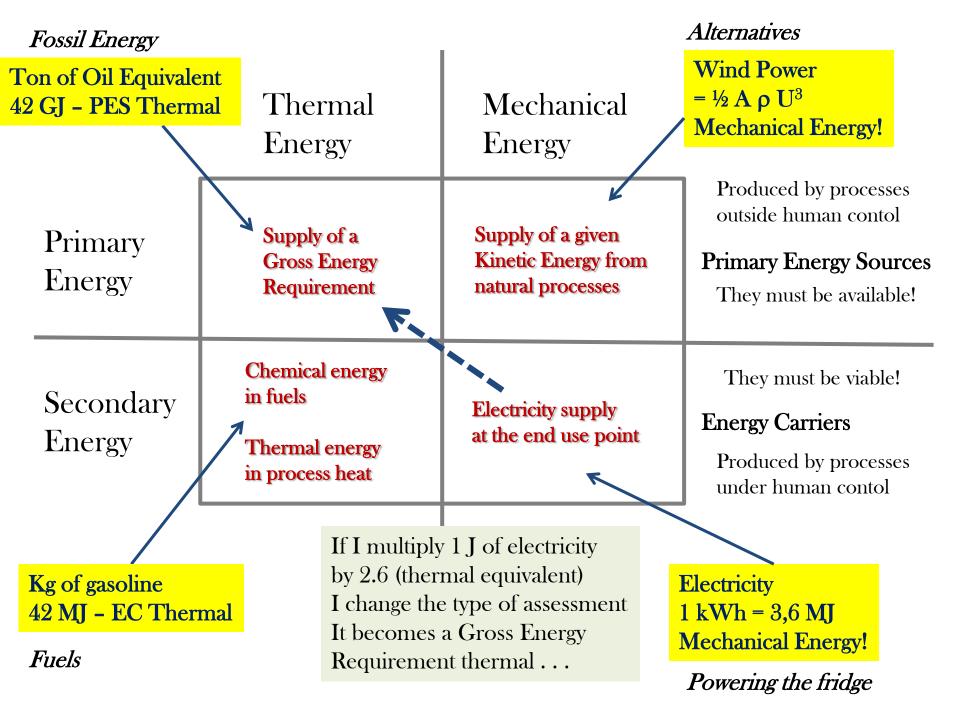


ENERGY GRAMMAR Net End Uses GROSS ENERGY ENERGY REQUIREMENT CARRIERS (Convention) **IMPORTS** Imports as EC Imports Thermal OSSES energy PRIMARY Imports ENERGY as GER Net Gross DISTRIBUTION SOURCES Supply Supply **ENERGY** of EC of EC & Domestic MINING Supply AG Physical [HA, ETt, PCt, ETm, PCm] **Mechanical** gradients energy HYPERCYCLE part EM [HA, ETt, PCt, ETm, PCm] **Primary** Production Factors Energy used by Hypercycle Part **End Uses for** Gross **Sources** making EC Energy Net physical **Carriers** EC quantities non-equivalent quantities!!!! Slide 11

	Thermal Energy	Mechanical Energy	
Primary Energy			Produced by processes outside human contolPrimary Energy Sources They must be available!
Secondary Energy			They must be viable! Energy Carriers Produced by processes under human contol

	Thermal Energy	Mechanical Energy	
Primary Energy	Supply of a Gross Energy Requirement	Supply of a given Kinetic Energy from natural processes	Produced by processes outside human contol Primary Energy Sources They must be available!
Secondary Energy	Chemical energy in fuels Thermal energy in process heat	Electricity supply at the end use point	They must be viable! Energy Carriers Produced by processes under human contol


Fossil Energy


TOSSII Energy		1	
Ton of Oil Equivale 42 GJ – PES Thern		Mechanical Energy	
	Lincigy	Energy	
Primary Energy	Supply of a Gross Energy Requirement	Supply of a given Kinetic Energy from natural processes	Produced by processes outside human contol Primary Energy Sources They must be available!
Secondary Energy	Chemical energy in fuels Thermal energy in process heat	Electricity supply at the end use point	They must be viable! Energy Carriers Produced by processes under human contol

Fossil Energy		_	Alternatives
Ton of Oil Equivale 42 GJ – PES Therm		Mechanical Energy	Wind Power = ½ Α ρ U ³ Mechanical Energy!
Primary Energy	Supply of a Gross Energy Requirement	Supply of a given Kinetic Energy from natural processes	Produced by processes outside human contolPrimary Energy Sources They must be available!
Secondary Energy	Chemical energy in fuels Thermal energy in process heat	Electricity supply at the end use point	They must be viable! Energy Carriers Produced by processes under human contol
			_

Fossil Energy			Alternatives
Ton of Oil Equivale 42 GJ – PES Thern		Mechanical Energy	Wind Power = ½ Α ρ U ³ Mechanical Energy!
Primary Energy	Supply of a Gross Energy Requirement	Supply of a given Kinetic Energy from natural processes	Produced by processes outside human contol Primary Energy Sources They must be available!
Secondary Energy	Chemical energy in fuels Thermal energy in process heat	Electricity supply at the end use point	They must be viable! Energy Carriers Produced by processes under human contol
Kg of gasoline 42 MJ – EC Ther	mal		

Fuels

REQUIRED PHYSICAL GRADIENTS

REQUIRED PHYSICAL GRADIENTS

domestic	Sink-side	Supply-side
coal	27.4 Mton CO_2	9.3 Mtonnes
oil	0.9 Mton CO ₂	0.3 Mtonnes
gas	0.9 Mton CO ₂	$0.4 {\rm Gm}^3$
nuclear	mine wastes	imports
hydro/wind	heat	kinetic energy
biofuels	N, P, Pesiticides	land, water, soil
		1

Sink Capacity Supply Capacity

REQUIRED PHYSICAL GRADIENTS

domestic	Sink-side	Supply-side		
coal	27.4 Mton CO_2	9.3 Mtonnes		
oil	0.9 Mton CO ₂	0.3 Mtonnes		
gas	0.9 Mton CO ₂	$0.4 {\rm Gm}^3$		
nuclear	mine wastes	imports		
hydro/wind	heat	kinetic energy		
biofuels	N, P, Pesiticides	land, water, soil		
Sink Capacity Supply Capacity				
Stock-flow				
LOCAL IMPACT (non-renewable PES)				
ON THE Fund-flow				
ENVIRONMENT (renewable PES)				

Spain 2004

REQUIRED PHYSICAL GRADIENTS

Externalization of constraints

imports	Sink-side	Supply-side
coal	60.2 Mton CO ₂	20.4 Mtonnes
oil	221.7 Mton CO ₂	69 Mtonnes
gas	59.1 Mton CO ₂	27 Gm ³
uranium	2.14 kton HLW	1,244 tonnes

domestic	Sink-side	Supply-side		
coal	27.4 Mton CO_2	9.3 Mtonnes		
oil	0.9 Mton CO ₂	0.3 Mtonnes		
gas	0.9 Mton CO ₂	$0.4 {\rm Gm}^3$		
nuclear	mine wastes	imports		
hydro/wind	heat	kinetic energy		
biofuels	N, P, Pesiticides	land, water, soil		
Sink Capacity Supply Capacity				
Stock-flow				
LOCAL IMPACT (non-renewable PES				
ON THE Fund-flow				
ENVIRONMENT (renewable PES)				

Spain 2004

EXTERNAL VIEW Primary Energy Sources

REQUIRED PHYSICAL GRADIENTS

Externalization of constraints

imports	Sink-side	Supply-side
coal	60.2 Mton CO_2	20.4 Mtonnes
oil	221.7 Mton CO ₂	69 Mtonnes
gas	59.1 Mton CO ₂	27 Gm ³
uranium	2.14 kton HLW	1,244 tonnes


domestic	Sink-side	Supply-side							
coal	27.4 Mton CO ₂	9.3 Mtonnes							
oil	0.9 Mton CO ₂	0.3 Mtonnes							
gas	0.9 Mton CO ₂	$-0.4 {\rm Gm}^3$							
nuclear	mine wastes	imports							
hydro/wind	heat	kinetic energy							
biofuels	N, P, Pesiticides	land, water, soil							
S	Sink Capacity	Supply Capacity							
LOCAL IM		c k-flow renewable PES)							
ON THE	Fun	Fund-flow							
ENVIRONN	IENT (rene	wable PES)							

INTERNAL VIEW Energy Carriers

EXTERNAL VIEW Primary Energy Sources

REQUIRED PHYSICAL GRADIENTS

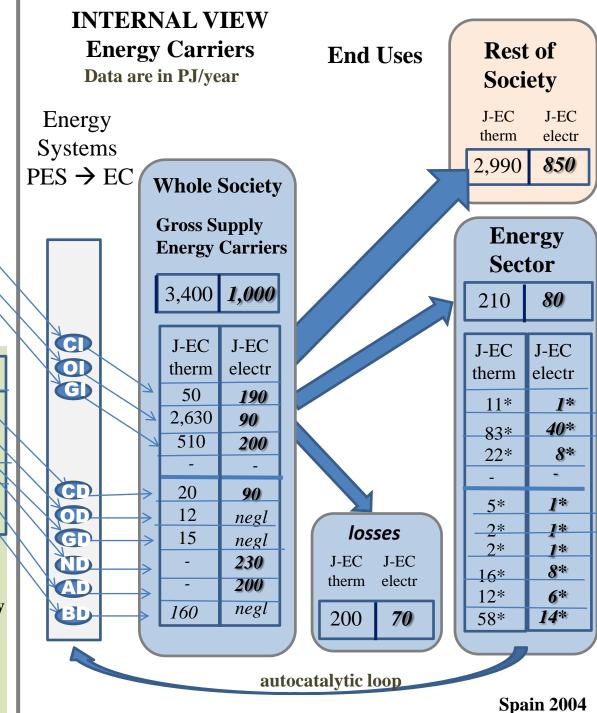

Externalization of constraints

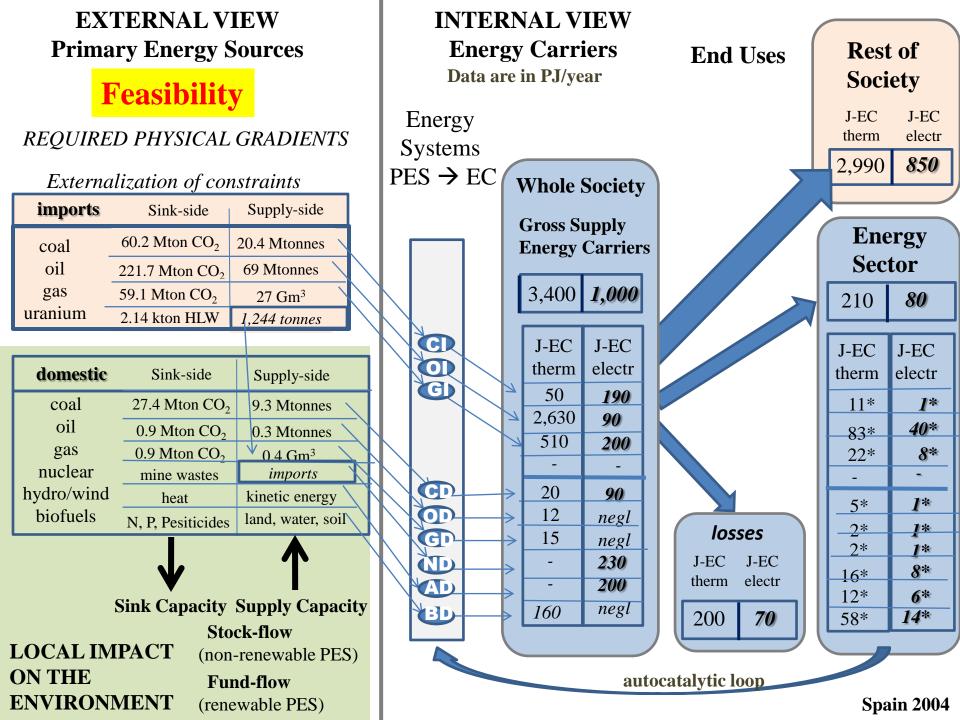
domestic	Sink-side	Supply-side
coal	27.4 Mton CO ₂	9.3 Mtonnes
oil	0.9 Mton CO_2	0.3 Mtonnes
gas	0.9 Mton CO ₂	$\sqrt{0.4 \mathrm{Gm}^3}$
nuclear	mine wastes	imports
hydro/wind	heat	kinetic energy
biofuels	N, P, Pesiticides	land, water, soil

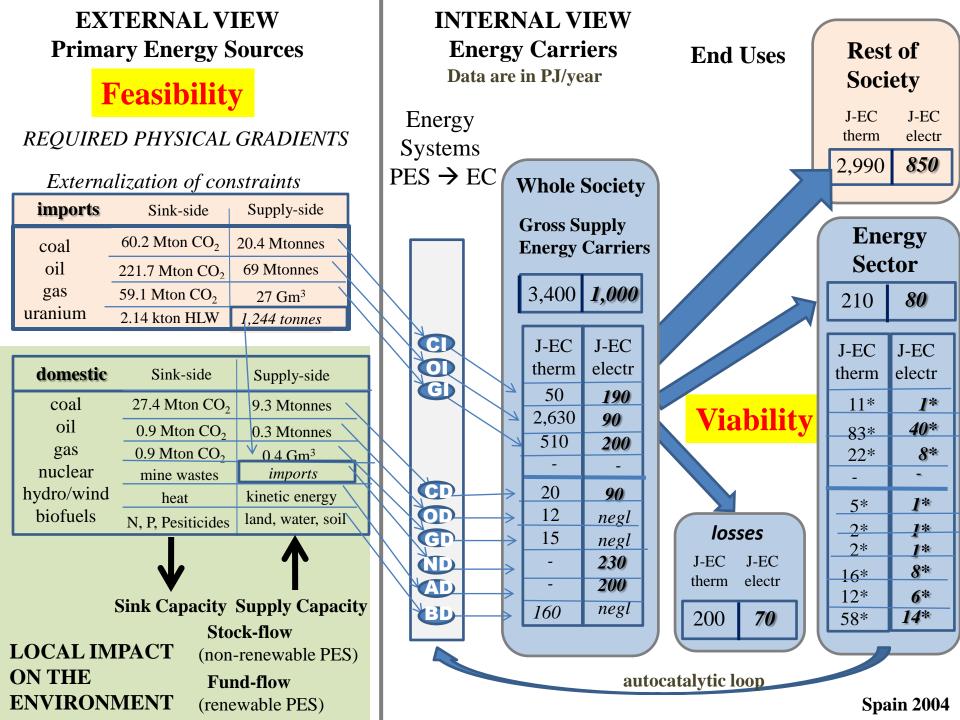
INTERNAL VIEW Energy Carriers Data are in PJ/year

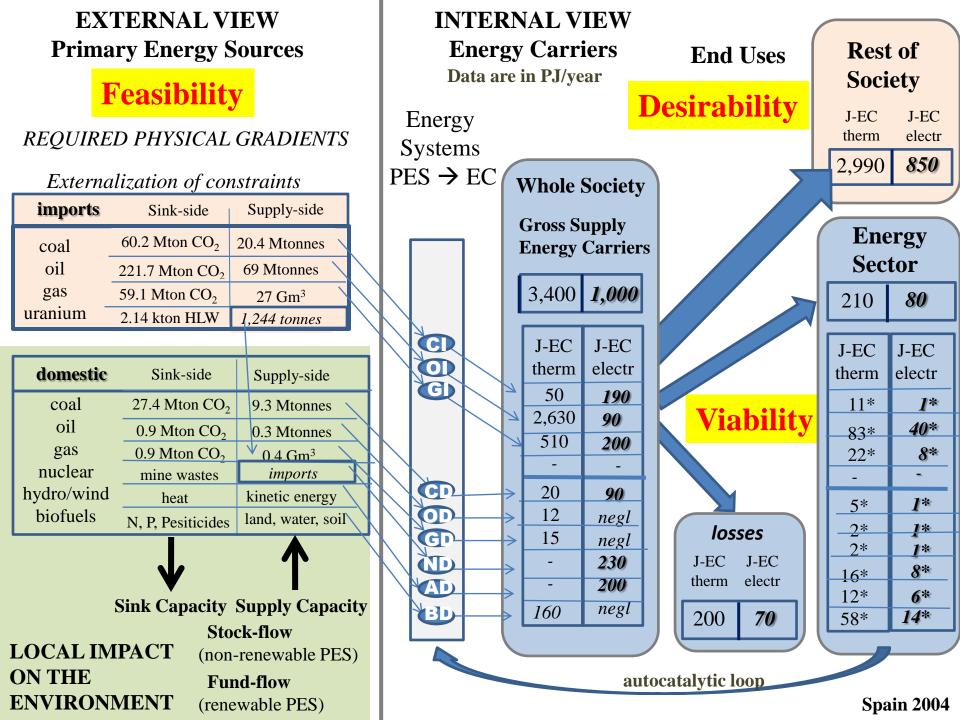
Spain 2004

EXTERNAL VIEW Primary Energy Sources


REQUIRED PHYSICAL GRADIENTS


Externalization of constraints


imports	Sink-side	Supply-side	
coal	60.2 Mton CO_2	20.4 Mtonnes	
oil	221.7 Mton CO ₂	69 Mtonnes 📏	
gas	59.1 Mton CO_2	27 Gm ³	
uranium	2.14 kton HLW	1,244 tonnes	


domestic	Sink-side	Supply-side
coal	27.4 Mton CO ₂	9.3 Mtonnes
oil	0.9 Mton CO_2	0.3 Mtonnes
gas	0.9 Mton CO ₂	$\sqrt{0.4 \mathrm{Gm}^3}$
nuclear	mine wastes	imports
hydro/wind	heat	kinetic energy
biofuels	N, P, Pesiticides	land, water, soil

4. Quantitative Story-Telling as a remedy against hypocognition (reducing the damages of socially constructed ignorance) 4. Quantitative Story-Telling as a remedy against hypocognition (reducing the damages of socially constructed ignorance)

Following the example of GIS

Quantitative Story-Telling Information System

Multi-scale integrated characterization of the metabolic pattern of the Mauritius Islands

The multi-level end-uses matrix characterizing the metabolic pattern of Mauritius:

3 flows

3 funds

6 compartments consumption

2 compartments supply

Money flow is also included

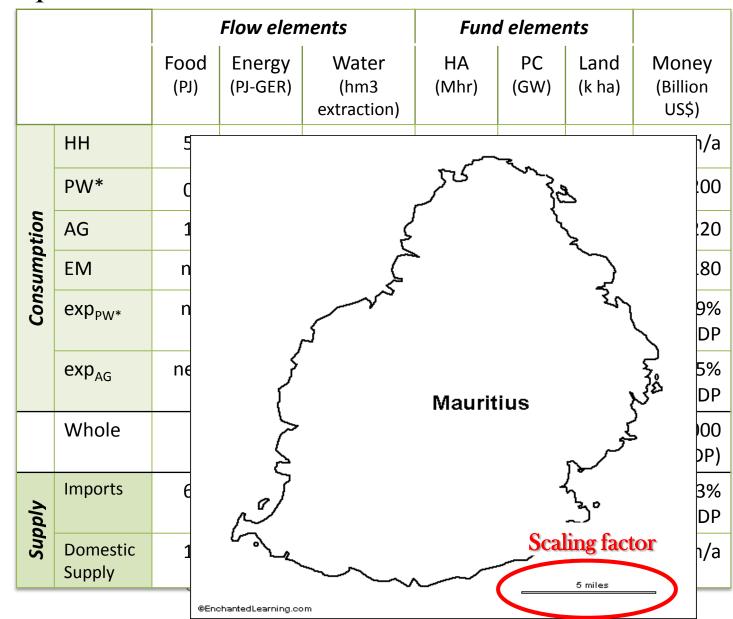
EXTERNAL VIEW – assessments based on scalars

			Flow elen	nents	Fund	l eleme	nts	
		Food (PJ)	Energy (PJ-GER)	Water (hm3 extraction)	HA (Mhr)	PC (GW)	Land (k ha)	Money (Billion US\$)
	нн	5.9	16	100	10,000	4.5	20	n/a
	PW*	0.8	37	44	606	1.4	28	8,200
otion	AG	1.3	negl	190	39	negl	21	220
Consumption	EM	n/a	2.2	260	8	0.03	negl	180
Con	exp _{PW*}	n/a	n/a	3	590	n/a	n/a	59% GDP
	exp _{AG}	negl	0.4	1,100	33	0.02	54	2.5% GDP
	Whole	8	56	1,700	11,300	6.0	103	10,000 (GDP)
Supply	Imports	6.7	49	n/a	n/a	n/a	n/a	63% GDP
Sup	Domestic Supply	1.3	7	1,700	11,300	6.0	103	n/a

Multi-scale integrated characterization of the metabolic pattern of the Mauritius Islands

The multi-level end-uses matrix characterizing the metabolic pattern of Mauritius:

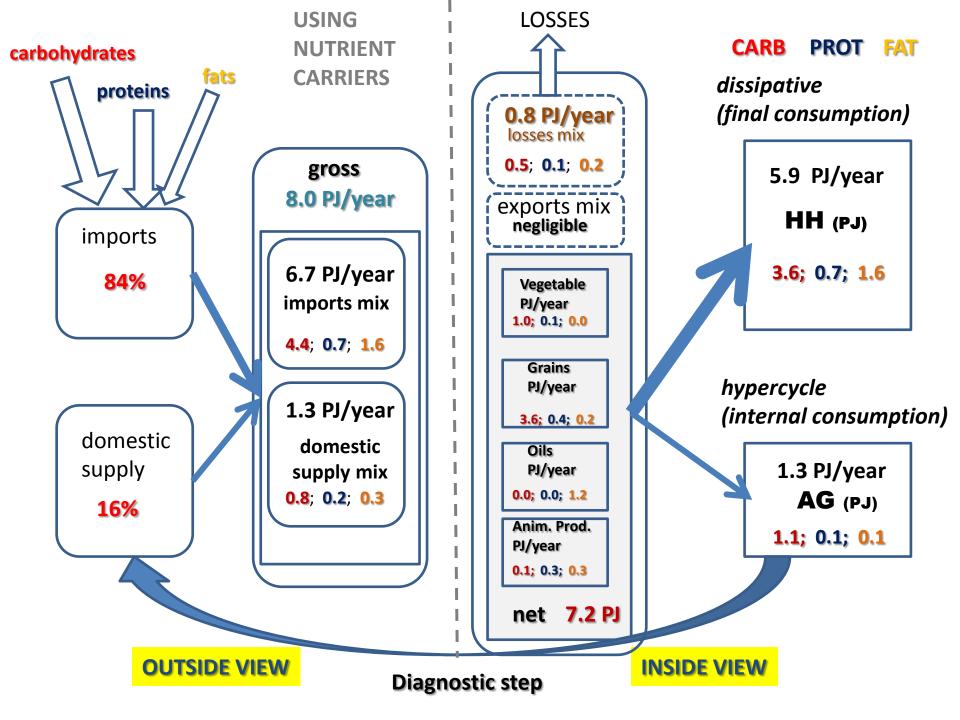
3 flows

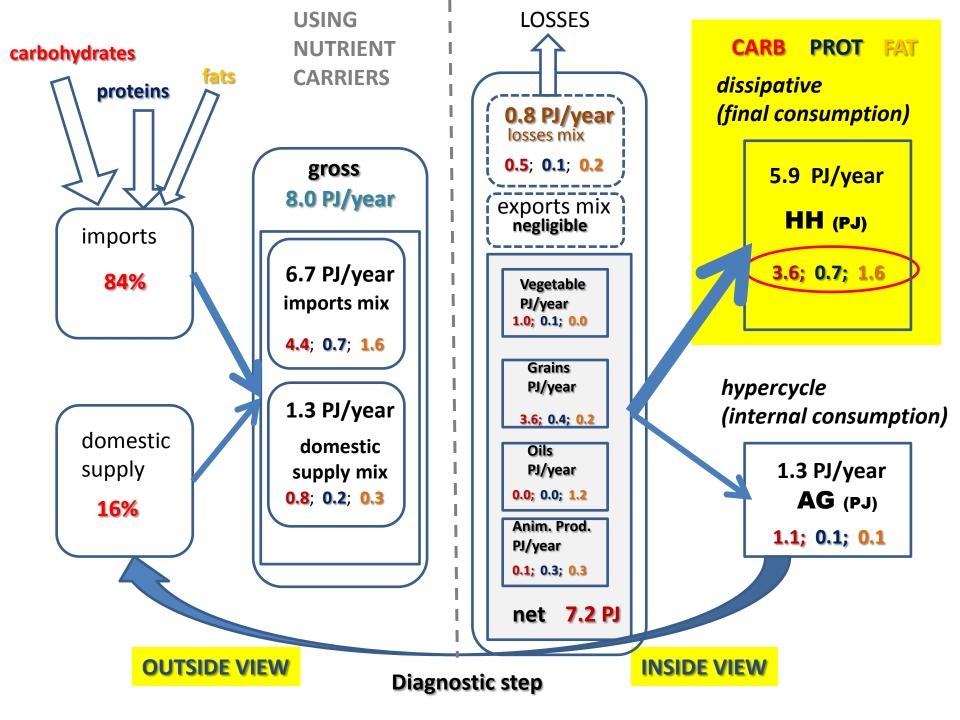

3 funds

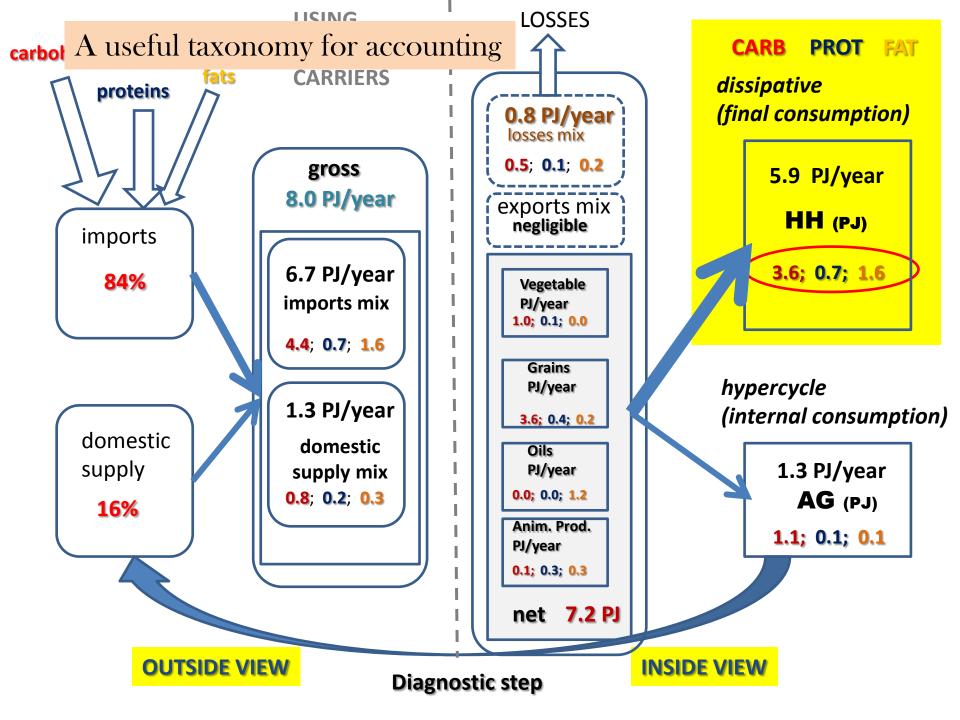
6 compartments consumption

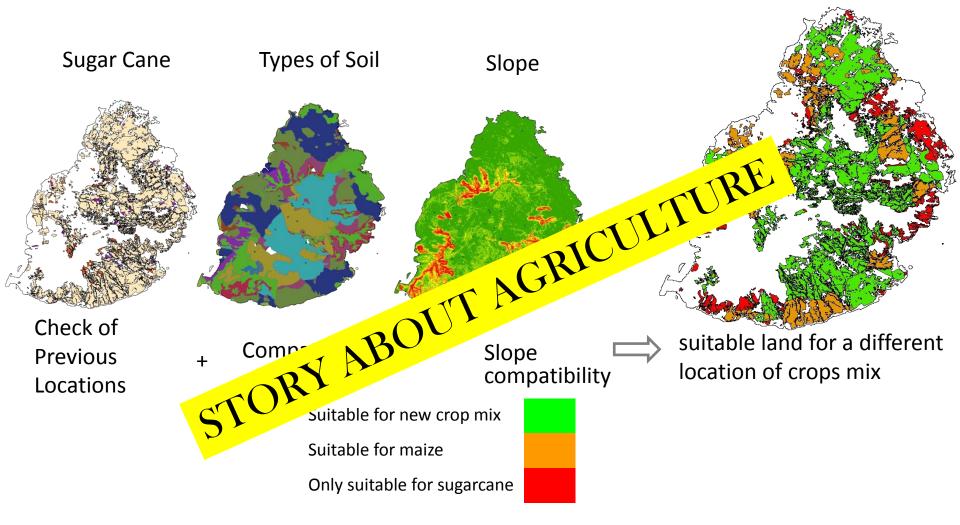
2 compartments supply

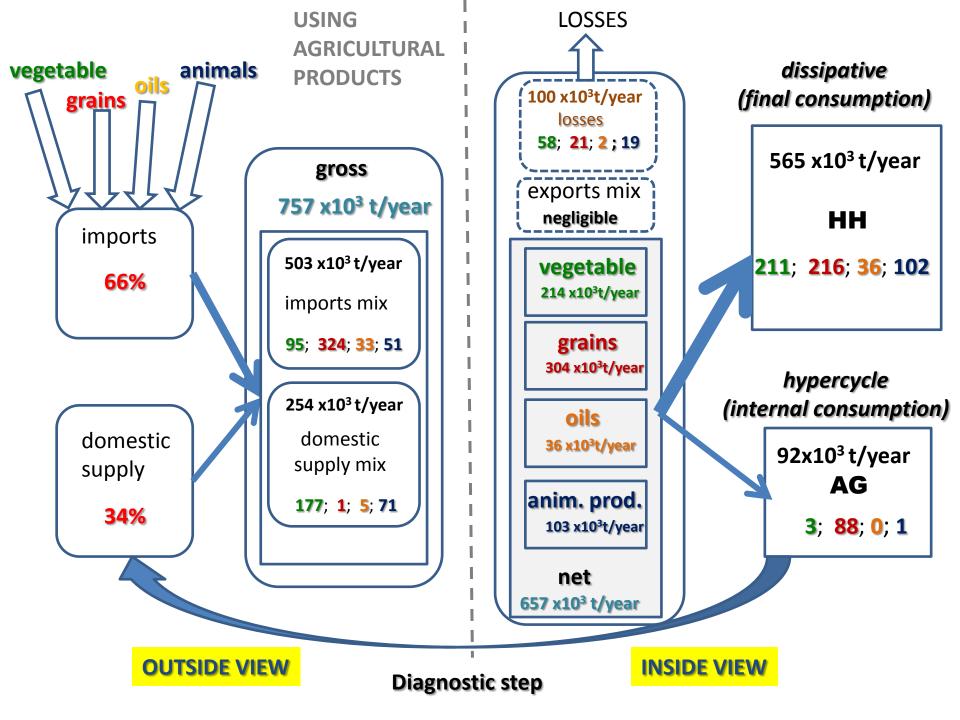
Money flow is also included

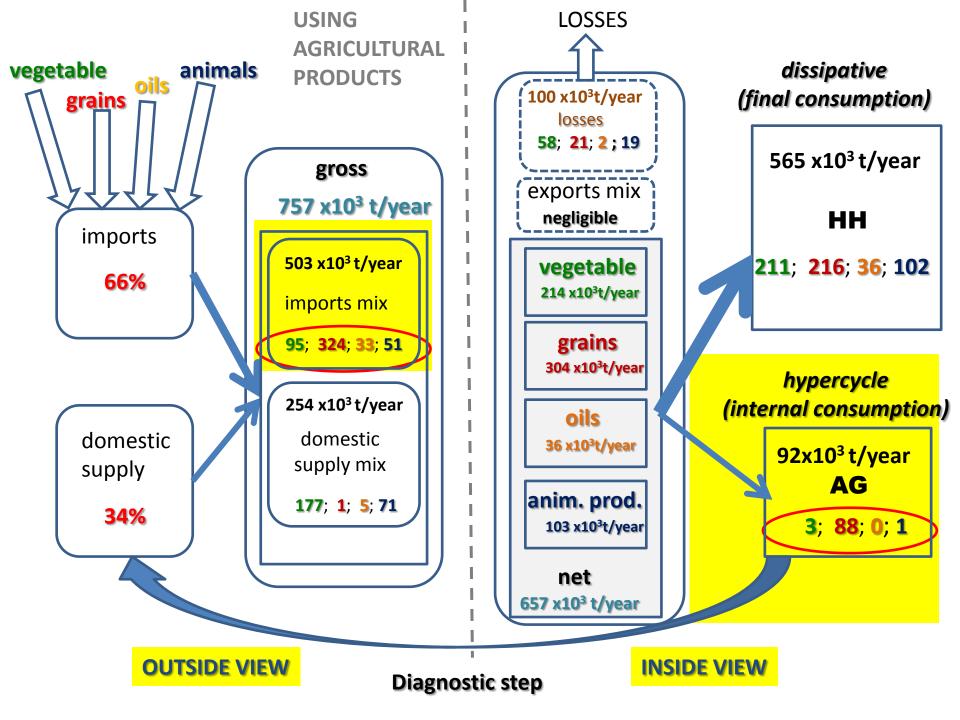

EXTERNAL VIEW – assessments based on scalars

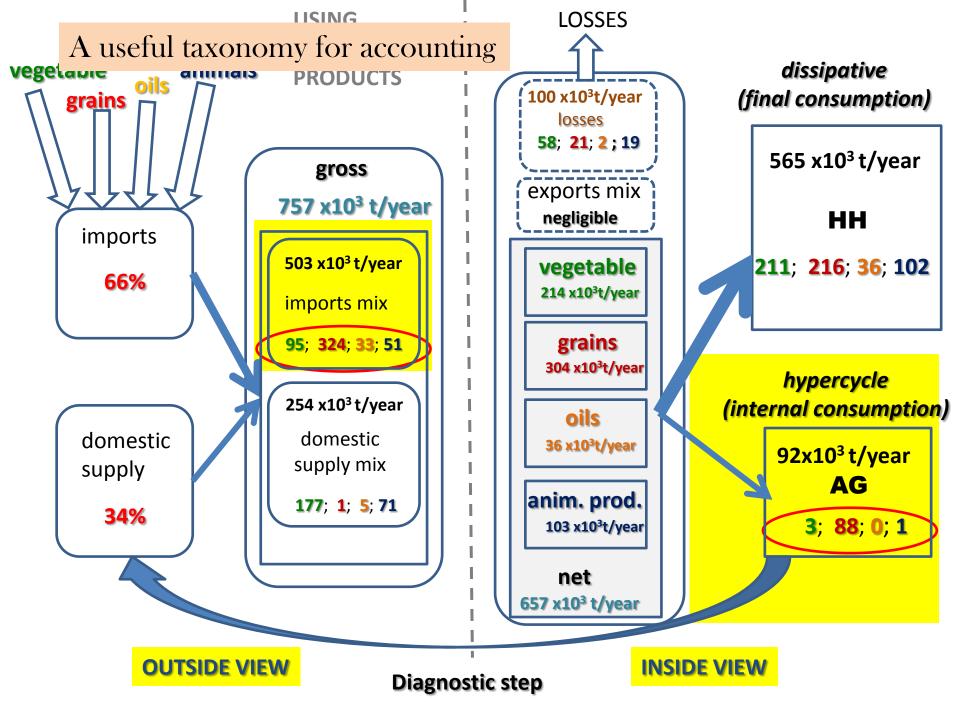


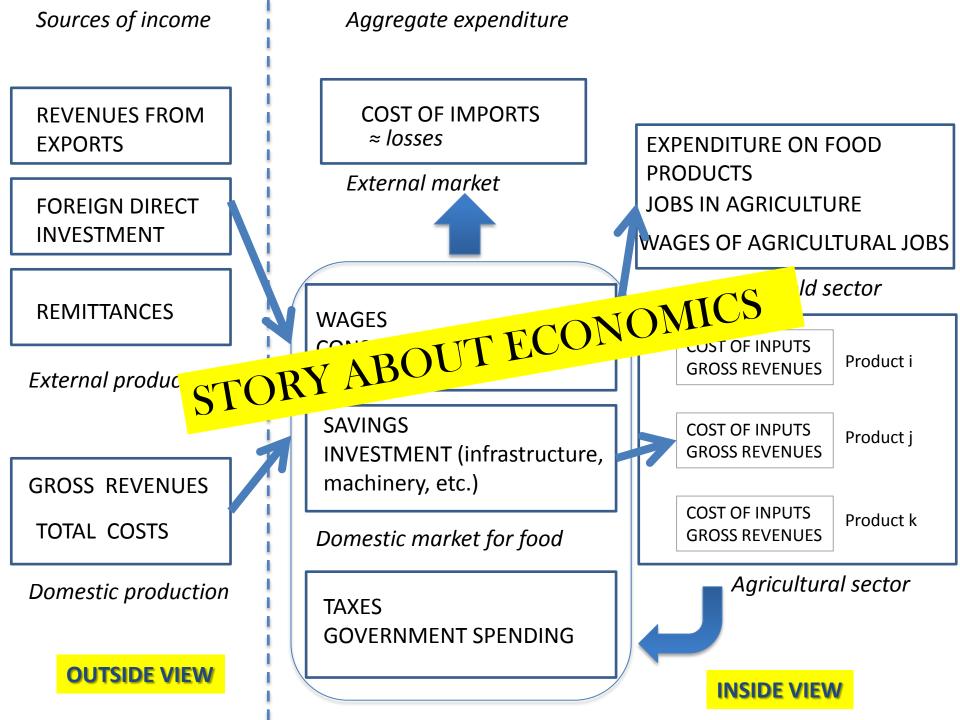

Political relevance of your "number crunching" . . .


Do we guarantee an adequate diet to the population?






Political relevance of your "number crunching" . . .



Do we have an adequate amount of land for agriculture?

Caracterización del Sistema energético

			S	upply		Consumptio	ons				
Fuentes primari	as /	FUENTES	VECTORE			Ecuador (2012)*					
Importaciones		PRIMARIAS DE ENERGIA	ENERGET	ICOS			FUNDS	FLO	WS	ΜΕΤΑΒΟΙ	LIC RATES
		Termica equiv.	Termica PJ-EC	Elec PJ-EC		CONSUMPTION	HUMAN ACTIVITY (Ghr)	GSEC Thermal (PJ-EC)	GSEC Elec (PJ-EC)	EMR Thermal (MJ/hr)	EMR Elec (MJ/hr)
SUMINISTRO DO	DMESTICO					ECUADOR (n)	136	508	104	3.7	0.8
Petroleo crudo	output	12 PJ-GER	-	4.7						3.7	0.8
	input	0.30 Mtn	0.26	1.6		HH (Hogares)		CV	23	0.7	0.2
Productos	output	230 PJ-GER	227	28		ATT F.	N E F	GI	23	38	3.0
petrolíferos	input	8.4 Mtn	17	TT AT	2			105	34	41	13
Gas natural	output	33 P. CT	<u>'OK</u>	YA		HH (Hogares)	3.4	6	negl.	1.7	0
	input	1630 🔈	U=	د.ي							
Hydroenergía	output	112 PJ-GER	-	44			Hv	percycle			
	input	7,400 hm3 de agua	negl.	11		EM (En./Min.)	0.13	24	24	187	188
IMPORTACIONE	S (EC)					*: numbers may not	add un du	e to roundi	na		
Productos	output	251 PJ-GER	251	negl.		. numbers may not	uuu up uu		ig		
petrolíferos	input	n/a	n/a	n/a							
Electricidad	output	2.2 PJ-GER	-	0.86							
	input n/a n/a n/a	n/a									
		Total output	508	92	-						
		Total input	24	24		<u></u>					50
		EROI	21:1	3.8:1							50

. .

Extraction Blue Green Total Underground 31 0 31 0 31 Surface 15 0 15 0 15 TOTAL 46 26 72 0 1 0 External view Internal view Internal view Internal view Strongy Abbout Water Accounting Water Accounting 201 of	1. Challenges			2. Gra	mmar	3. Society	у	<u>4. En</u>	viro	vironment				
Underground 31 0 31 0 31 0 31 Surface 15 0 15 0 15 0 16 17 10 Surface 9 0 10 1					_									
Surface 15 0 15 - 6 = Surface 9 0 9 Soil 0 26 26 0 = Surface 9 0 26 26 TOTAL 46 26 72 TOTAL 40 26 66 External view Internct view STORY ABOUT WATER STORY ABOUT WATER	Extraction	Blue	Green	Total	Loses	factor (Blue)		Use	Blue	Green	Total			
Soil 0 26 26 0 Soil 0 26 26 TOTAL 46 26 72 TOTAL 40 26 66	Underground	31	0	31		0		Underground	31	0	31			
TOTAL462672TOTAL402666External viewSTORY ABOUT WATERSTORY ABOUT WATER	Surface	15	0	15	-	6	=	Surface	9	0	9			
External view Internal view STORY ABOUT WATER	Soil	0	26	26		0		Soil	0	26	26			
STORY ABOUT WATER	TOTAL	46	26	72				TOTAL	40	26	66			
				STC	DRY	ABOU	JT	WATE	R		201 of			

1. Chal	lenges		2. Grammar 3. So		3. Soc	ociety		<u>4. E</u>	nvi	roni	nen	<u>it</u>
Extraction	Blue	Green	Total	Loses	factor (Blue)			Use	Blue	Gr	een	Total
Underground	31	0	31			0		Underground		31	0	31
Surface	15	0	15	_		⁶ =		Surface		9	0	9
Soil	0	26	26			0		Soil		0	26	26
TOTAL	46	26	72					TOTAL		40	26	66
Ex	External view STORY ABO									Inter	nal v	iew
						TT	Г	WAT	ER	Green	WMR	EPW
				DV	ABC)(I		1	0	5	N/A
			SIC)NI	1-	PW	/ (n-1	L)	39	26	2,993	
							(·· –	,		26	9,129	
								Wheat (n-3)	35	23	9,064	
							ports	Whole (n)	40 0	26 0	274 0	
							ports	5	0	0	0	0

	1. Challenges			2. Grammar 3. So			ciety <u>4.</u>]			E	<u>Environment</u>						
Ex	traction	Blue	Green	Total		Loses	factor (Blue)			Jse		Bl	Je	Gro	een ^r	Total
Ur	nderground	31	0	31				0			Jndergro	und		31		0	31
Su	irface	15	0	15	-			6	=	S	Surface			9		0	9
So	oil	0	26	26				0		5	Soil			0		26	26
то	DTAL	46	26	72						1	TOTAL			40		26	66
	Ex	terna													er	nal v	iew
	STORY ABOL										NA		ER	Gree	en	WMR	EPW
					T	V	AB()(1	0	5	N/A
				STC	<u>)</u> [PW ((n-1)			3	9	26	2,993	31
				0 =					AG (n-2)			3	9	26	9,129	9
									Rice	& Wł	neat (n-3)		3	5	23	9 <i>,</i> 064	N/A
									TOTA	AL Wh	ole (n)		4	0	26	274	30
									Impo	orts				0	0	0	0
									Don	nestic	Use		Blue	Gree	en		
									HH -	+ PW*	* (n-2)			1	0		
									AG ((n-2)			1	C	9		
									Rice	& WI	neat (n-3	Þ		7	6		
		ТС		TOT	AL SA	(n)		1	1	9							
									Expe	editio	ns India		2	8	16		
Wat	ter Accou	nting							Expe	editio	ns %		719	6 (54%		203 of

	1. Challenges			2. Grammar 3. So			ciety <u>4.</u>			Environment					
	Extraction	Blue	Green	Total	Loses	factor (Blue)			Use		Blue	Gr	een	Total	
	Underground	31	0	31		0			Undergrou	Ind		31	0	31	
	Surface	15	0	15	-	6	=		Surface			9	0	9	
	Soil	0	26	26		0			Soil			0	26	26	
	TOTAL	46	26	72					TOTAL			40	26	66	
_	Fv	terna		<u>ــــــــــــــــــــــــــــــــــــ</u>			_	_		-		Inter	nalu		
	LA	terna		V						TT	R			lew	
	STORY ABOUT WAT PW (n-1) AG (n-2)											Green	WMR	EPW	
	TODV ABC						U	L			1	0	5	N/A	
				STC			PW	V (n-1)		39	26	2,993	31	
							AG	i (n-2)			39	26	9,129	9	
							Ric	:e & V	Vheat (n-3)		35	23	9,064	N/A	
							то	TAL W	/hole (n)		40	26	274	30	
							Im	ports			0	0	0	0	
							Do	omest	ic Use	Blu	Je	Green			
							HF	H + PV	V* (n-2)		1	0		enness=	
							AG	6 (n-2))		10	9		-68% t exporter)	
							Rio	ce & V	Vheat (n-3	\Rightarrow	7	6			
							TOTAL SA		A (n)		11	9			
				Ex	Expeditions India		4	28	16						
V	Vater Accou	nting					Ex	pediti	ons %		71%	64%		204 of	

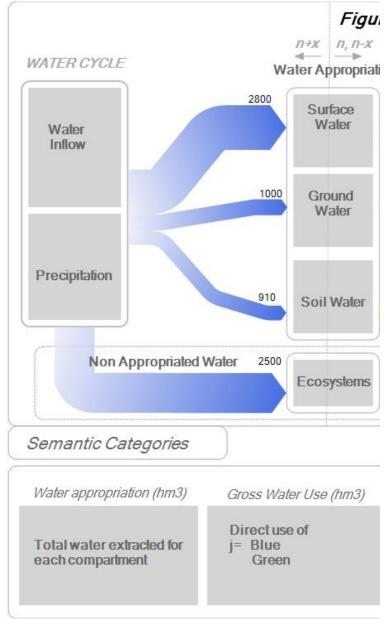
1. Chal	1. Challenges2.			2. Grammar 3. Soc				4. Environ					me	nent		
													-	_		
Extraction	Blue	Green	Total		ses factor (Use			Blue		Green	То		
Underground	31	0	3:)		rground	1		31	0		31	
Surface	15	0	1	-		e	=	Surfa	ce			9	0		9	
Soil	0	26	2	6		()	Soil				0	26		26	
TOTAL	46	26	72	2				ΤΟΤΑ				40	26		66	
Ex	terna	l viev	V			Τ					2	Inte	rnal	vie	ew	
							TT	<mark>r W</mark> / (n-1)	AI	E	1	Green	WMR		EPW	
	Approp	riation			J AF	30					1	(D	5	N/A	
	Recharg	ge (Km3)	ST(<u>JK</u>			PW	/ (n-1)			39	20	5 2,99	3	31	
	Interntl	. Use Rig		25%	100%			(n-2)			39	20	5 9,12	.9	9	
Extraction	Dam Re	serve (km	3)	11	N/A		Ric	e & Wheat ((n-3)		35	23	3 9,06	64	N/A	
Extraction	Blocks (no.)		N/A	138		TO	TAL Whole (n)		40	20	6 27	'4	30	
	Extracti	on (km3)		15	31		Im	ports			0	(C	0	0	
	Overexp	o. Blocks (r	าด.)	N/A	110		Do	mestic Use		Blue		Green				
	RAMSA	R in Risk		3/3	N/A			I + PW* (n-2			1	() 0	pen	ness=	
	Regions	Over Salir	nity	N/A	6/25			i (n-2)			10	Ç			8%	
Lodging	Regist. (Over Nitra	te	N/A	16/25			ce & Wheat	(n-3	>	7		6 (ľ	iet ex	(porter)	
	Regist. (Over Meta	ls	N/A	10/25			TAL SA (n)			11		9			
	Regist. I	Max. BOD	(mgL)	50	N/A			peditions In	dia 🕻		28	16				

Expeditions %

71%

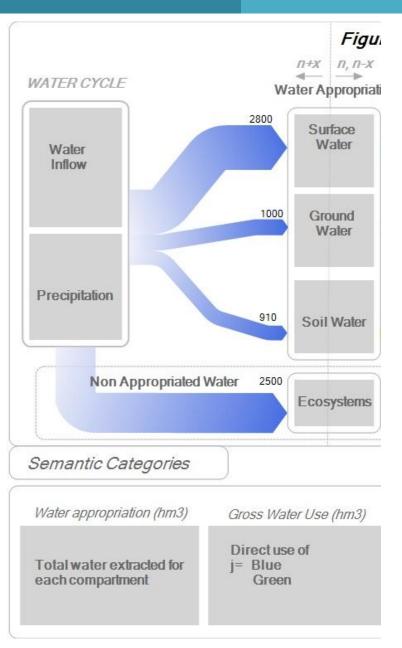
64%

1. Challenges				2. Gra	mmai	r 3. S	Socie	ety		<u>4.</u>	E	<u>nvi</u>	ron	n	ier	<u>nt</u>
Extractio	n	Blue	Green	Total	Los	ses factor (I	Blue)			Use		Blue		Gree	n	Total
Undergro	ound	31	0	31			0			Undergrou	und		31		0	31
Surface		15	0	15	_		6	=		Surface			9		0	9
Soil		0	26	26			0			Soil			0		26	26
TOTAL		46	26	72						TOTAL	-		40		26	66
	External view											TD	Inte	ern	al v	view
						I AP		T		WA	Ţŀ	JK	Green		WMR	EPW
		Approp	riation		Tu.	J AP	<u>30</u>	U	L	V V Z		1		0	5	N/A
			ge (Km3)	STC)K]			PW	/ (n-1	.)		39	2	26	2,993	31
			. Use Rig		25%	100%		AG	(n-2))		39	2	26	9,129	9
Let Extra	iction		serve (km	3)	11	N/A		Ric	e & V	Vheat (n-3)		35	2	23	9,064	N/A
		Blocks (•		N/A	138		то	TAL V	Vhole (n)		40	2	26	274	30
			on (km3)		15	31		Imp	ports			0		0	0	0
			o. Blocks (I	no.)	N/A	110		Do	mest	tic Use	E	Blue	Green			
			R in Risk		3/3	N/A		HH	l + PV	W* (n-2)		1		0		enness=
		-	Over Sali		N/A	6/25		AG	i (n-2)		10		9		-68% t exporter)
Lod	ging	U	Over Nitra		N/A	16/25		Ric	:e & \	Wheat (n-3	Þ	7		6		
		-	Over Meta		N/A	10/25		TO	TAL S	6A (n)		11		9		
		Regist. I	Max. BOD	(mgL)	50	N/A		Exp	pedit	ions India	4	28	1	16		


Expeditions %

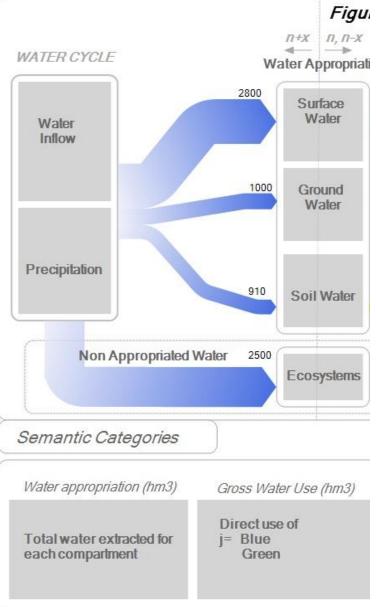
71%

64%


1. Challenges			,	2. Gra	Grammar 3. Society		<u>4. Environment</u>						t		
Fxtr	action	Blue	Green	Total	Lo	oses factor (I	Blue)		Use		в	lue	Gr	een ·	Total
	erground	31	0	31			0		Underg	round		31		0	31
Surf	-	15	0	15	_		6	_	Surface	:		9		0	9
Soil		0	26	26			0	-	Soil			C)	26	26
тот	AL	46	26	72					TOTAL			40	1	26	66
Г	External view								iew						
L		Approp	riation	P		y AF	201	J	ΓWA	T	Fr	Gre	en 0	WMR 5	EPW N/A
		Recharg	ge (Km3)	ST() R	YAI		PW	' (n-1)		:	39	26	2,993	31
		Interntl	. Use Rig		25%	100%			(n-2)		:	39	26	9,129	9
L	Extraction	Dam Re	serve (km	3)	11	N/A		Rice	e & Wheat (n	-3)	:	35	23	9,064	N/A
•	Extraction	Blocks (no.)		N/A	138		ТОТ	۲AL Whole (n)		4	10	26	274	30
		Extracti	on (km3)		15	31		Imp	oorts			0	0	0	0
		Overex	o. Blocks (r	no.)	N/A	110		Do	mestic Use		Blue	Gre	en		
		RAMSA	R in Risk		3/3	N/A		НН	+ PW* (n-2)			1	0		enness=
Lodging		Regions	Over Salir	nity	N/A	6/25			(n-2)			LO	9		68% exporter)
		Regist.	Over Nitra	te	N/A	16/25		Ric	e & Wheat (n	-3	•	7	6	(ince	experiery
		Ū	Over Meta		N/A	10/25		TO	TAL SA (n)		-	11	9		
	•	Regist. I	Max. BOD	(mgL)	50	N/A		Exp	peditions Indi	a L		28	16		
Wate	er Accou	nung					+	Exp	peditions %		71	%	64%		207 of

<u>4. Environment</u>

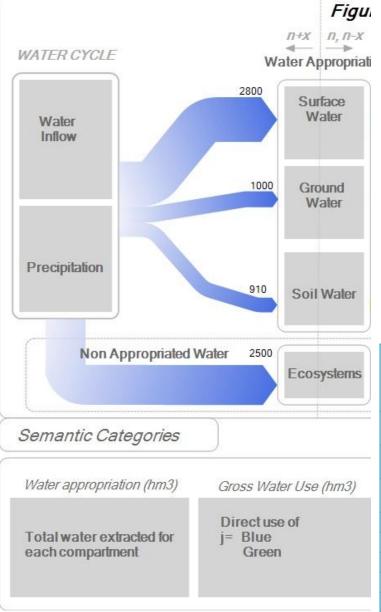
1. Challenges


<u>4. Environment</u>

Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218

1. Challenges

4. Environment

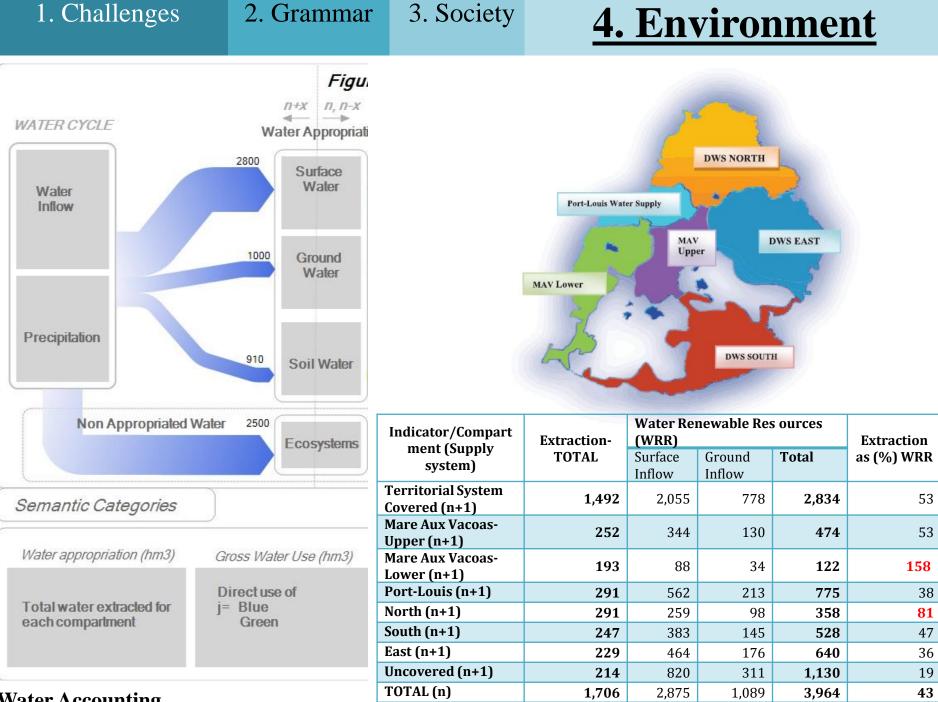


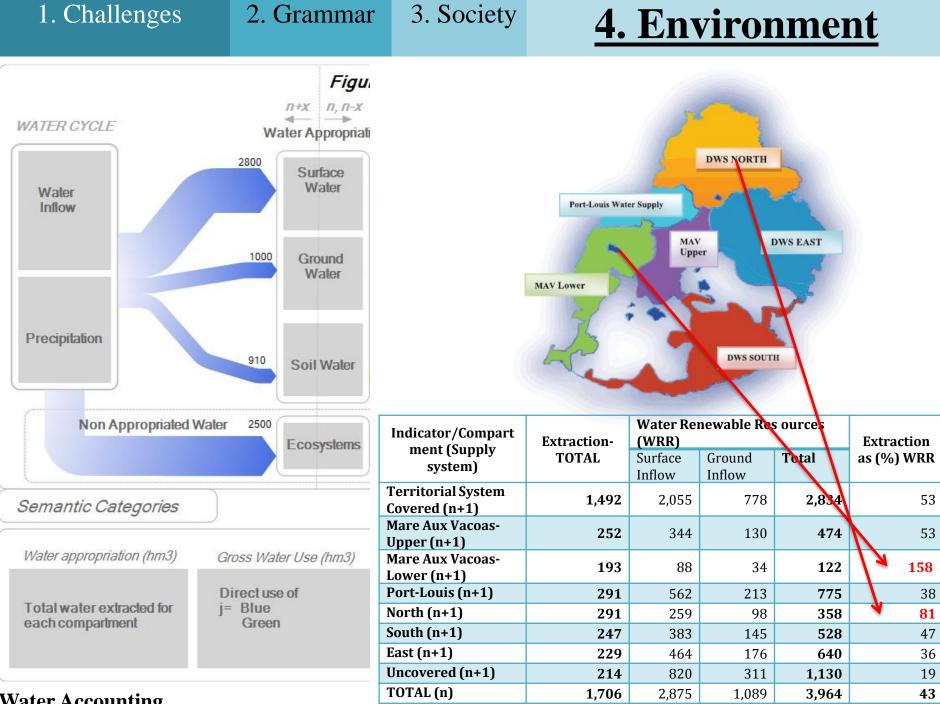
Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218

Indicator/Compart ment (Supply	Extraction-	Water Rei (WRR)	Extraction		
system)	TOTAL	Surface Inflow	Ground Inflow	Total	as (%) WRR
Territorial System Covered (n+1)	1,492	2,055	778	2,834	53
Mare Aux Vacoas- Upper (n+1)	252	344	130	474	53
Mare Aux Vacoas- Lower (n+1)	193	88	34	122	158
Port-Louis (n+1)	291	562	213	775	38
North (n+1)	291	259	98	358	81
South (n+1)	247	383	145	528	47
East (n+1)	229	464	176	640	36
Uncovered (n+1)	214	820	311	1,130	19
TOTAL (n)	1,706	2,875	1,089	3,964	43

1. Challenges

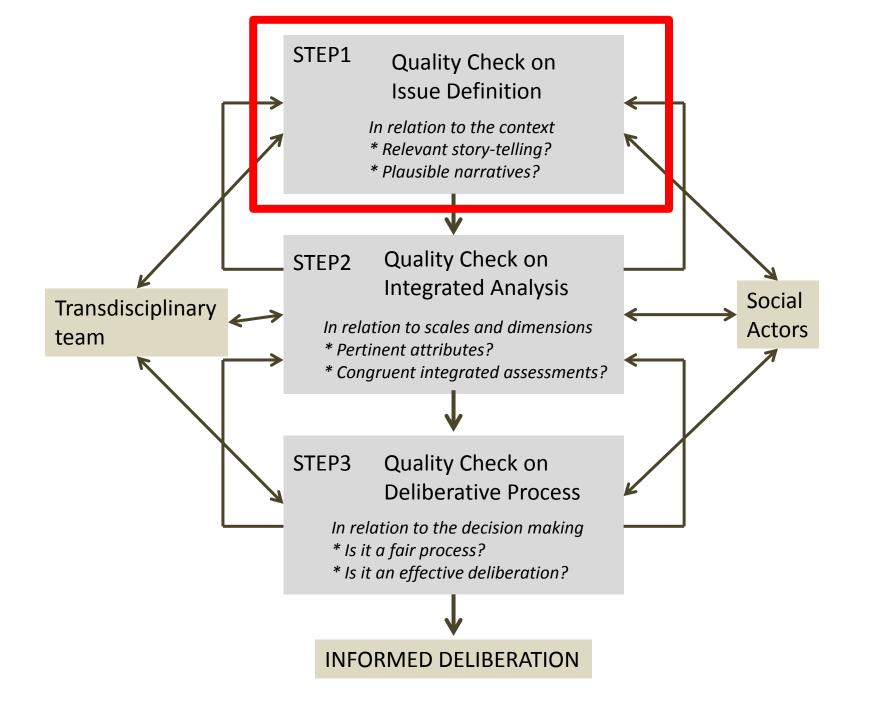
<u>4. Environment</u>




Indicator/ Compartment	Extraction Total	EXT Blue- Surface	EXT Blue- Ground	EXT Gree n	USE Losses	USE Total
Whole (n)	1,706	555	432	718	108	1,599
HH (n-1)	98	74	24	0	14	84
HH-Urban (n-2)	41	31	10	0	0	35
HH-Rural (n-2)	57	43	14	0	0	49
PW (n-1)	1,608	481	408	718	94	1,515
PW-SG (n-2)	17	13	4	0	2	15
PW-TR (n-2)	1.72	1.30	0.42	0	0	1
PW-BM (n-2)	27	20	7	0	4	23
PW-EM (n-2)	262	255	7	0	4	258
PW-AG (n-2)	1,300	192	390	718	84	1,218

Indicator/Compart	Extraction-	Water Rei (WRR)	Extraction		
ment (Supply system)	TOTAL	Surface Inflow	Ground Inflow	Total	as (%) WRR
Territorial System Covered (n+1)	1,492	2,055	778	2,834	53
Mare Aux Vacoas- Upper (n+1)	252	344	130	474	53
Mare Aux Vacoas- Lower (n+1)	193	88	34	122	158
Port-Louis (n+1)	291	562	213	775	38
North (n+1)	291	259	98	358	81
South (n+1)	247	383	145	528	47
East (n+1)	229	464	176	640	36
Uncovered (n+1)	214	820	311	1,130	19
TOTAL (n)	1,706	2,875	1,089	3,964	43

Water Accounting


--- --

FIGTHING HYPOCOGNITION (3)

A procedure of participatory integrated assessment based on the concept of Quantitative Story Telling

Checking the quality (usefulness) of the chosen issue definition of sustainability

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy

Keep prices of food commodities LOW I.F.P.R.I. - U.S. scientist

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy Keep prices of food commodities LOW Keep prices of food commodities HIGH

I.F.P.R.I. - U.S. scientist

Ag. Econ. - Prof. from Pakistan

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy Keep prices of food commodities LOW Keep prices of food commodities HIGH

I.F.P.R.I. - U.S. scientist

Ag. Econ. - Prof. from Pakistan

International Policy

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy		
Keep prices of food commodities LOW	I.F.P.R.I U.S. scientist	
Keep prices of food commodities HIGH	Ag. Econ Prof. from Pakistan	

International Policy

REDUCING imports from the South

Wuppertal Inst. - German scientist

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy		
Keep prices of food commodities LOW	I.F.P.R.I U.S. scientist Ag. Econ Prof. from Pakistan	
Keep prices of food commodities HIGH		
International Policy		
REDUCING imports from the South	Wuppertal Inst German scientist	

INCREASING imports from the South

Wuppertal Inst. - German scientist Ag. Dev. - Prof. from Ghana

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy		
Keep prices of food commodities LOW	I.F.P.R.I U.S. scientist	
Keep prices of food commodities HIGH	Ag. Econ Prof. from Pakistan	
International Policy		
REDUCING imports from the South	Wuppertal Inst German scientist	

INCREASING imports from the South

Wuppertal Inst. - German scientist Ag. Dev. - Prof. from Ghana

Social Policy

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy		
Keep prices of food commodities LOW	I.F.P.R.I U.S. scientist	
Keep prices of food commodities HIGH	Ag. Econ Prof. from Pakistan	
International Policy		
REDUCING imports from the South	Wuppertal Inst German scientist	
INCREASING imports from the South	Ag. Dev Prof. from Ghana	
Social Policy		

PRESERVING local cultural heritage

NGO - Swiss Feminist

International Conference on World Food Security SAGUF - Zurich, October 9 - 10, 1996

National Policy		
Keep prices of food commodities LOW	I.F.P.R.I U.S. scientist Ag. Econ Prof. from Pakistan	
Keep prices of food commodities HIGH		
International Policy		
REDUCING imports from the South	Wuppertal Inst German scientist	
INCREASING imports from the South	Ag. Dev Prof. from Ghana	
Social Policy		
PRESERVING local cultural heritage	NGO - Swiss Feminist	
FIGHTING local cultural heritage	Sociologist - Prof. from India	

"Models by their nature are like blinders. In leaving out certain things, they focus our attention on other things. They provide a frame through which we see the world".

Joseph Stiglitz

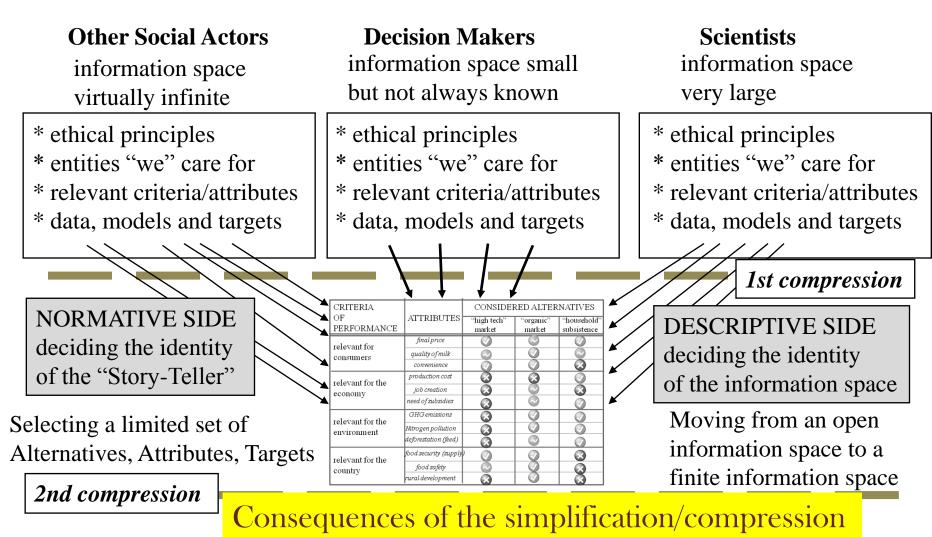
Hypocognition is a term used to flag the risk of the tunnel-vision effect generated by the adoption of a given frame of analysis. Hypocognition hampers the capacity to deal with the implications of uncertainty and complexity.

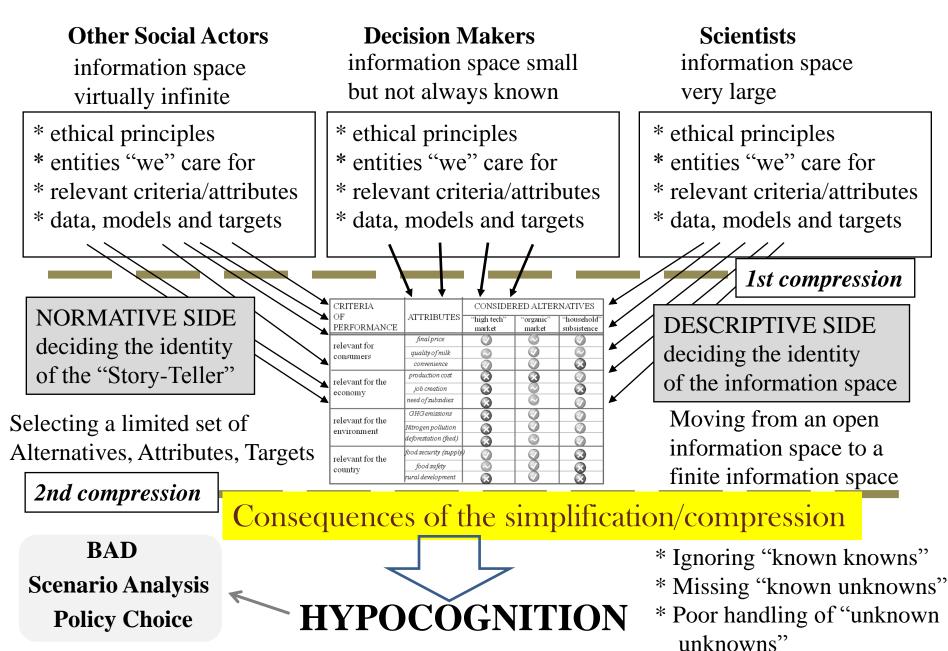
George Lakoff

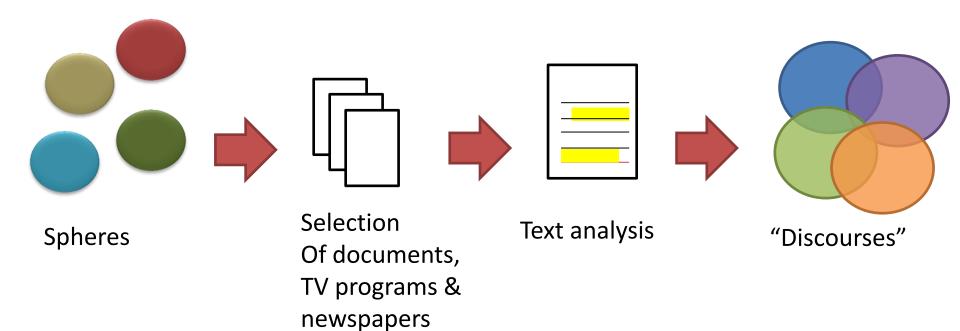
In quantitative analysis the use of a single dimension and scale at the time reduces the explanatory power of the representation missing feedback loops and interactions with other dimensions and scales of analysis.

when dealing with complex issues

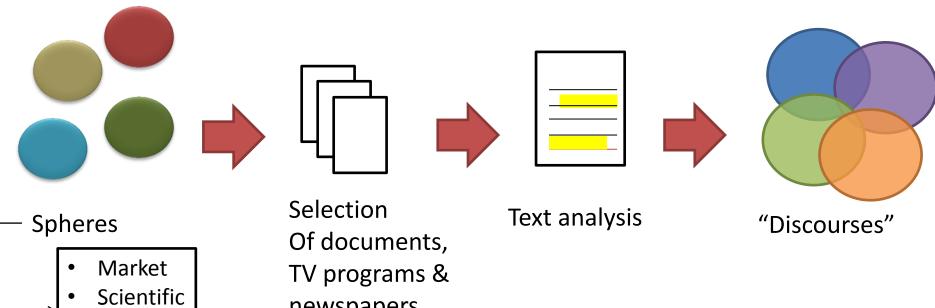
any formalization of the chosen issue definition (problem structuring) into a finite set of data and models unavoidably generates **hypo-cognition*** = the missing of relevant known-known and relevant known-unknown plus a reduced ability to deal with unknown unknowns.

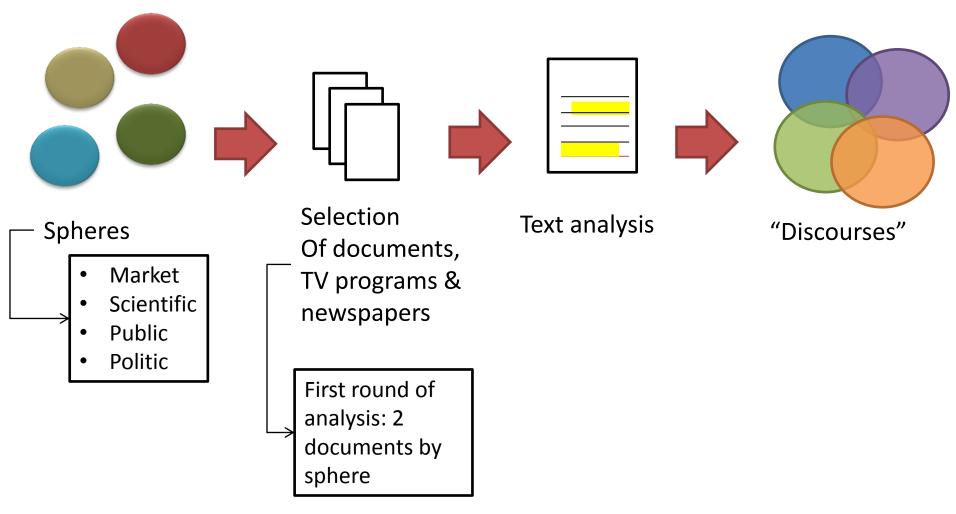

This entails that without a quality check on the choice of the story-telling, more data and larger models developed within sloppy explanations and perceptions will only increase the level of indeterminacy and uncertainty leaving untouched the level of hypo-cognition.


when dealing with complex issues

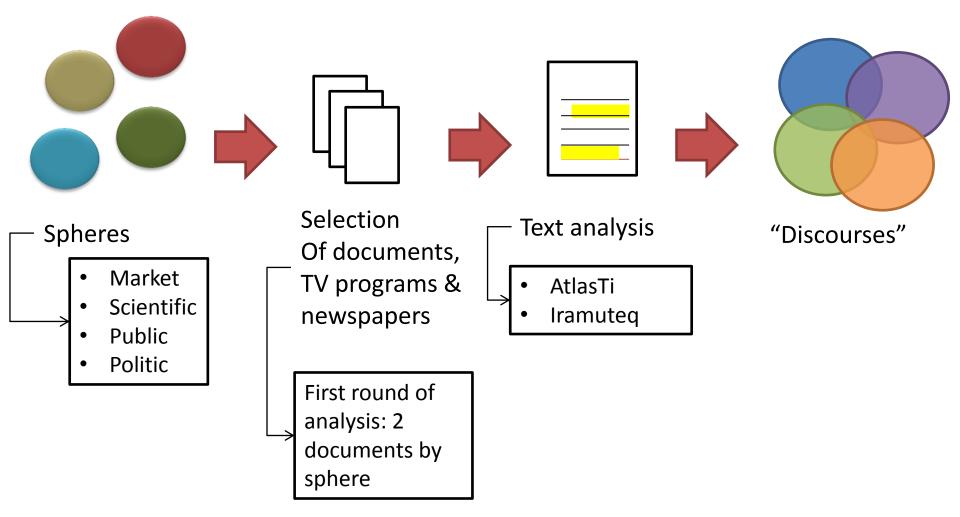

any formalization of the chosen issue definition (problem structuring) into a finite set of data and models unavoidably generates **hypo-cognition*** = the missing of relevant known-known and relevant known-unknown plus a reduced ability ORANCE, unknown unknowns. This ert of CONSTRUCTED IGNORANCE SOCIAL are story-telling, more data and larger

This error CONSULT a quality check on the SOCIAL me story-telling, more data and larger models developed within sloppy explanations and perceptions will only increase the level of indeterminacy and uncertainty leaving untouched the level of hypo-cognition.

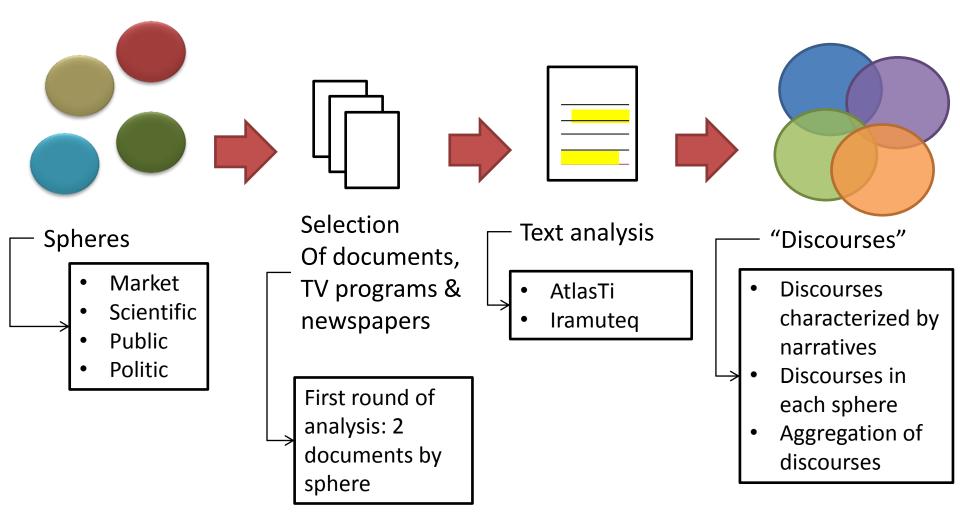

Other Social Actors	Decision Makers	Scientists
information space	information space small	information space
virtually infinite	but not always known	very large
 * ethical principles * entities "we" care for * relevant criteria/attributes * data, models and targets 	 * ethical principles * entities "we" care for * relevant criteria/attributes * data, models and targets 	 * ethical principles * entities "we" care for * relevant criteria/attributes * data, models and targets

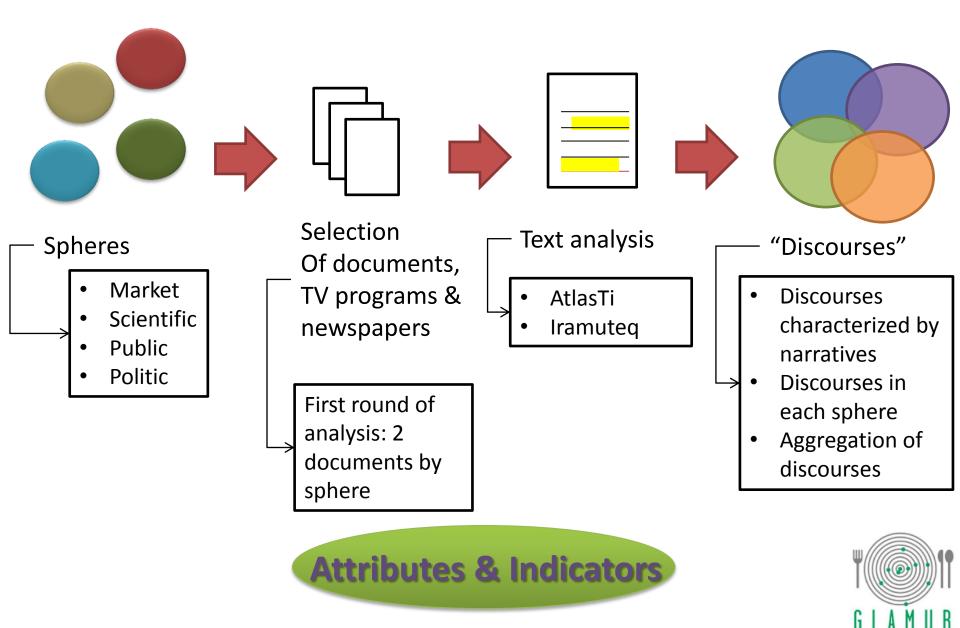


Public


Politic

newspapers





(1) It expresses technical processes in order to produce food commodities at a given level of profit, its sustainability depends on economic viability

- (1) It expresses technical processes in order to produce food commodities at a given level of profit, its sustainability depends on economic viability
- (2) It expresses technical processes in order to provide jobs and opportunities of rural development, its sustainability depends on socio-economic desirability

- (1) It expresses technical processes in order to produce food commodities at a given level of profit, its sustainability depends on economic viability
- (2) It expresses technical processes in order to provide jobs and opportunities of rural development, its sustainability depends on socio-economic desirability
- (3) It expresses technical processes in order to guarantee food security to the society no matter what it must be feasible and viable

- (1) It expresses technical processes in order to produce food commodities at a given level of profit, its sustainability depends on economic viability
- (2) It expresses technical processes in order to provide jobs and opportunities of rural development, its sustainability depends on socio-economic desirability
- (3) It expresses technical processes in order to guarantee **food** security to the society no matter what it must be feasible and viable
- (4) It expresses technical processes that can either generate or reduced the current impact on the environment it must be feasible

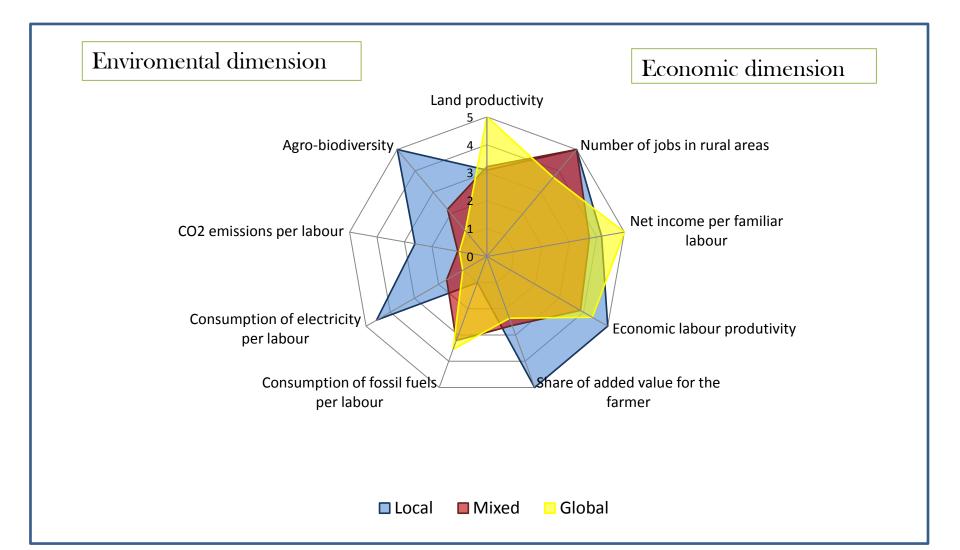
- (1) It expresses technical processes in order to produce food commodities at a given level of profit, its sustainability depends on economic viability
- (2) It expresses technical processes in order to provide jobs and opportunities of rural development, its sustainability depends on socio-economic desirability
- (3) It expresses technical processes in order to guarantee **food** security to the society no matter what it must be feasible and viable
- (4) It expresses technical processes that can either generate or reduced the current impact on the environment it must be feasible
- (5) It generates a set of unavoidable trafe-offs between different sustainability goals. Therefore an analysis of its performance should be used for a reflection on our normative values and the governance solutions adopted in the society.

- (1) It expresses to be in the agents (producers & consumers) Needed by economic agents (producers on economic viability
- (2) It expresses technical processes in order to provide jobs and opportunities of rural development, its sustainability depends on socio-economic desirability
- (3) It expresses technical processes in order to guarantee food security to the society no matter what it must be feasible and viable
- (4) It expresses technical processes that can either generate or reduced the current impact on the environment it must be feasible
- (5) It generates a set of unavoidable trafe-offs between different sustainability goals. Therefore an analysis of its performance should be used for a reflection on our normative values and the governance solutions adopted in the society.

- (1) It expresses to be in the agents (producers & consumers) Needed by economic agents (producers on economic viability
- (2) It expresses technical processes in a large strate of runnities of
- (3) It expresses technical processes in order to guarantee food security to the society no matter what it must be feasible and viable
- (4) It expresses technical processes that can either generate or reduced the current impact on the environment it must be feasible
- (5) It generates a set of unavoidable trafe-offs between different sustainability goals. Therefore an analysis of its performance should be used for a reflection on our normative values and the governance solutions adopted in the society.

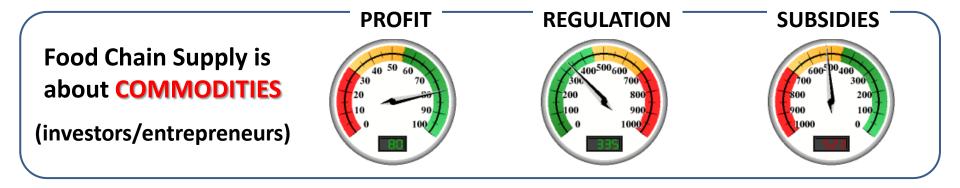
- (1) It expresses to be in the agents (producers & consumers) Needed by economic agents (producers on economic viability
- (2) It expresses technical processes in a large line of rund sectors and the sector of runded by local administrators/communities desirability
- (3) It expresses tool, it allowernments/communities and security to the so Needed by governments/communities and viable
- (4) It expresses technical processes that can either generate or reduced the current impact on the environment it must be feasible
- (5) It generates a set of unavoidable trafe-offs between different sustainability goals. Therefore an analysis of its performance should be used for a reflection on our normative values and the governance solutions adopted in the society.

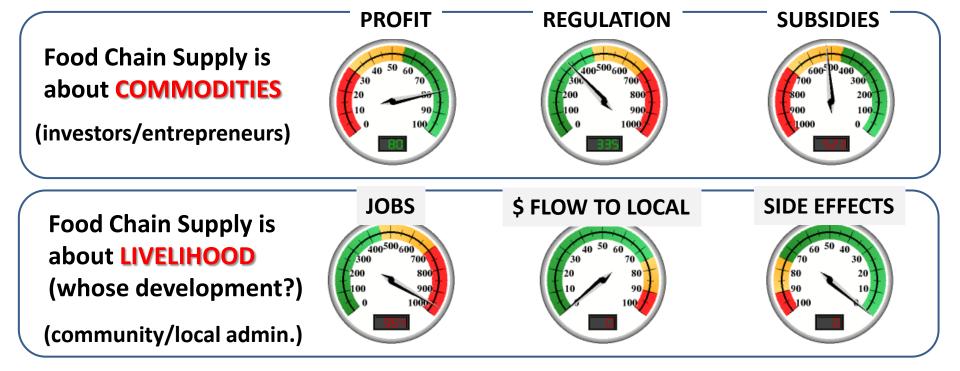
- (1) It expresses to be in the agents (producers & consumers) Needed by economic agents (producers on economic viability
- (2) It expresses technical processes in a large strate of runnities of
- (3) It expresses tool is a security to the so Needed by governments/communities and viable
- (4) It expresses technical processes dependent of the current in Needed by governments/NGOs
- (5) It generates a set of unavoidable trafe-offs between different sustainability goals. Therefore an analysis of its performance should be used for a reflection on our normative values and the governance solutions adopted in the society.

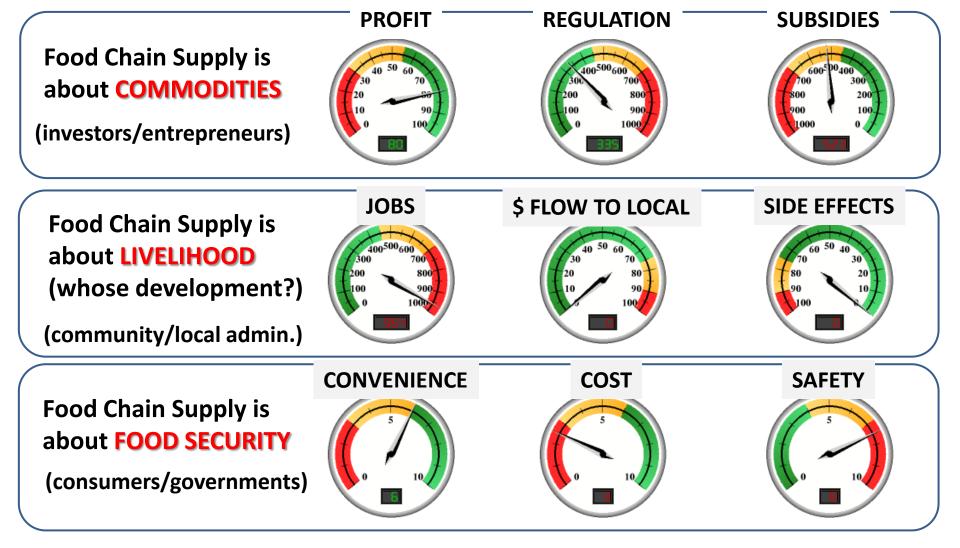

- (1) It expresses to be in the second second
- (2) It expresses technical processos in a least of runder of runde
- (3) It expresses to do it allowernments/communities and security to the so Needed by governments/communities and viable
- (4) It expresses technical processes dependent of the current in Needed by governments/NGOs
- (5) It generation in the society of the second seco

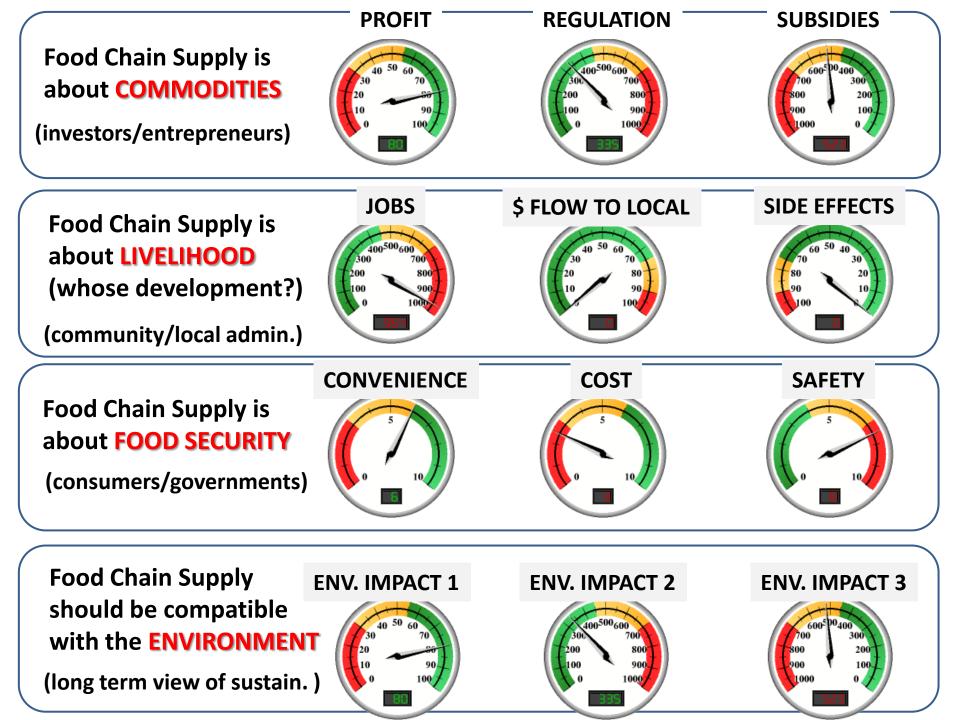
How useful is a characterization of performance of FSC based on the conventional multicriteria approach?

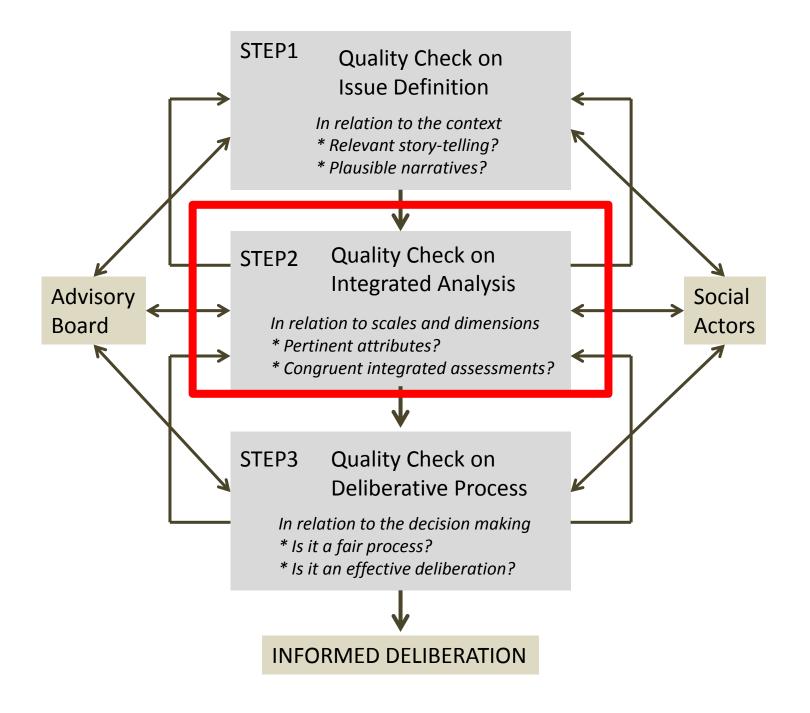
How useful is a characterization of performance of FSC based on the conventional multicriteria approach?

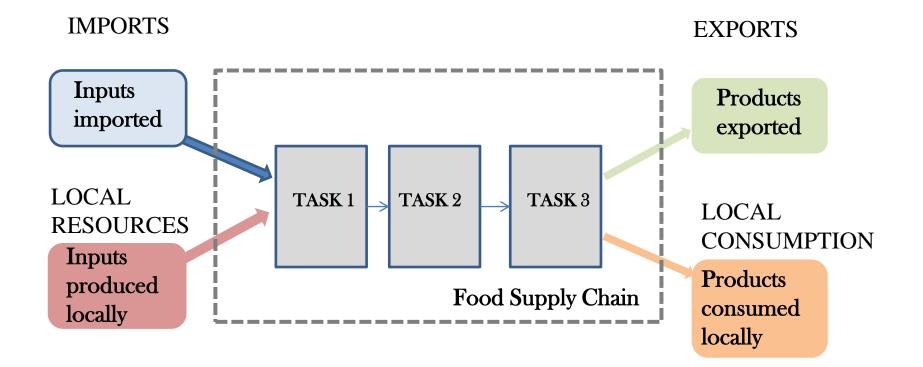


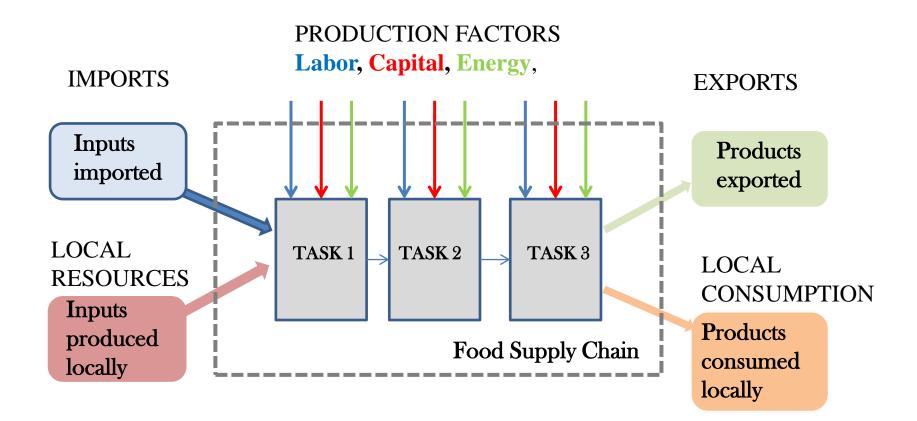

What if, rather than by dimensions, we organize the characterization based on attributes/indicators by story-telling (i.e. by typologies of social actors?)

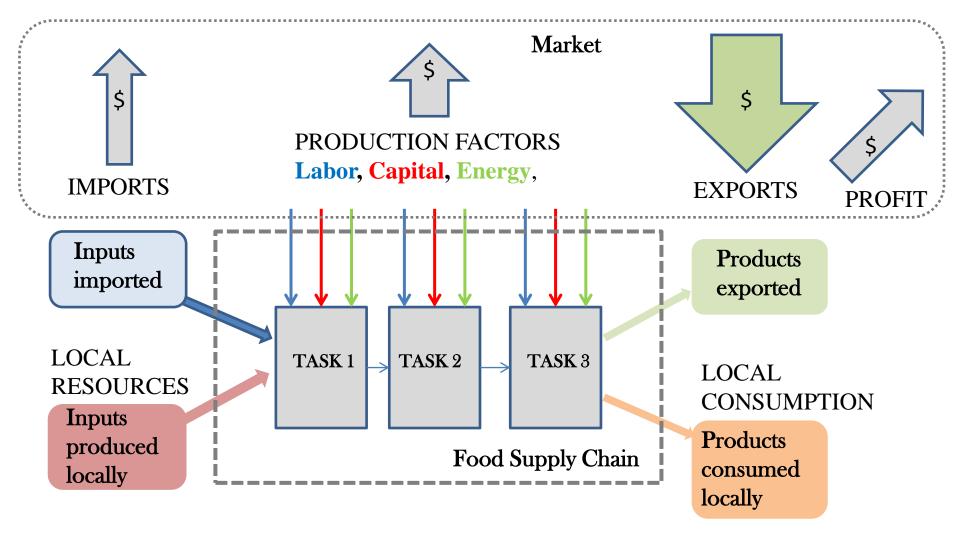

In this way, we can still use all the indicators that we want, but organizing them in a set of different dash-boards we can better understand policy relevant issues such as:

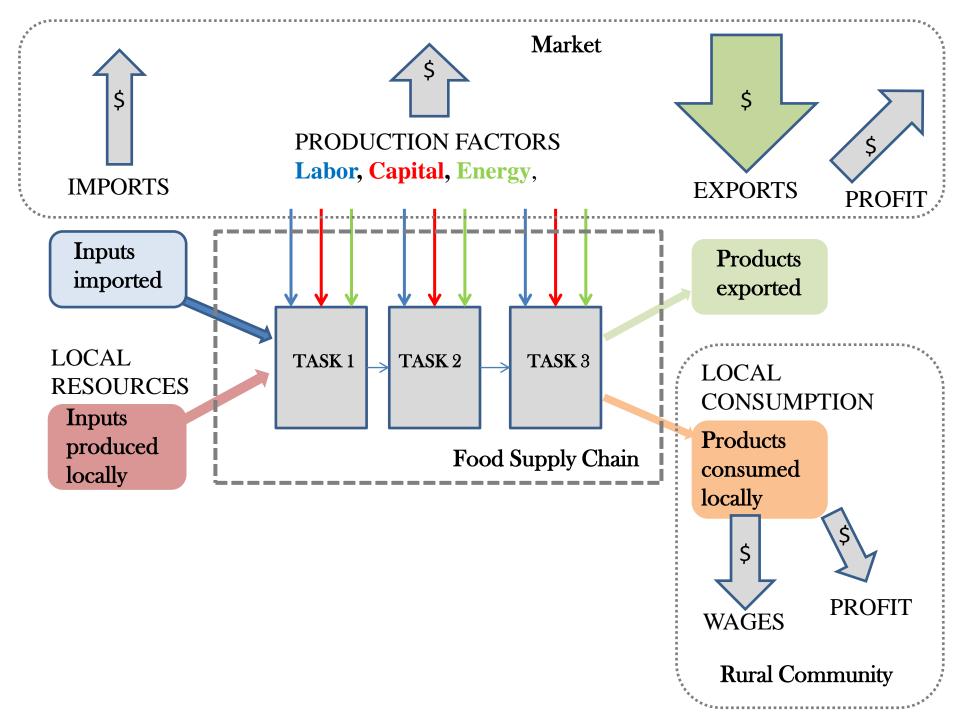

- (i) winners, losers, critical situations;
- (i) trade-offs to be considered when looking for feasible, viable, and desirable compromises.

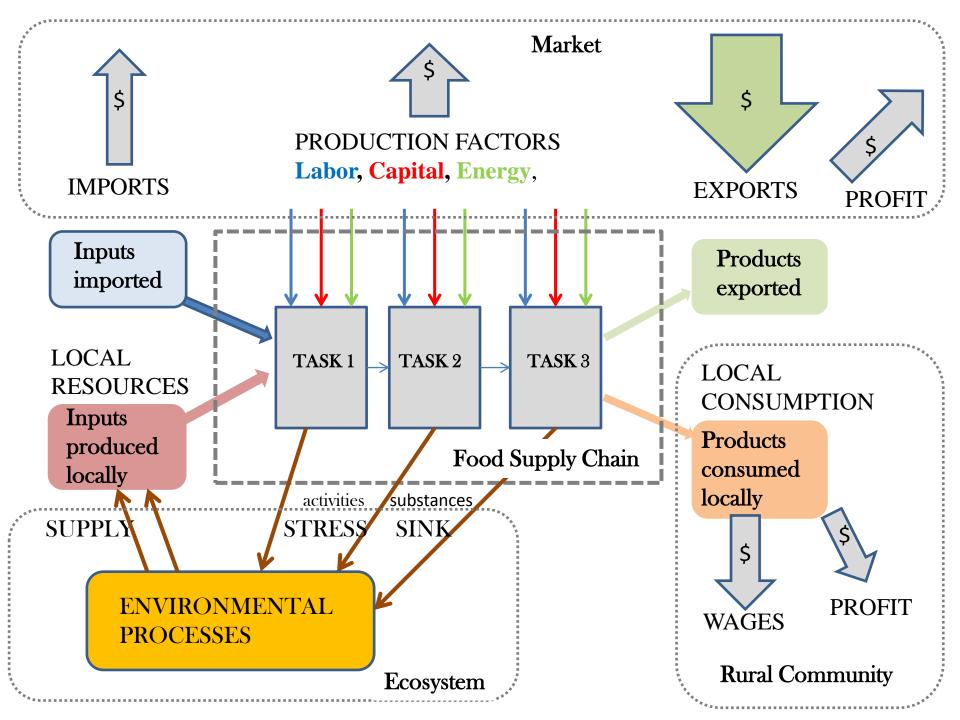

What if we organize the set of indicators over dash-boards reflecting the existence of different story-telling?

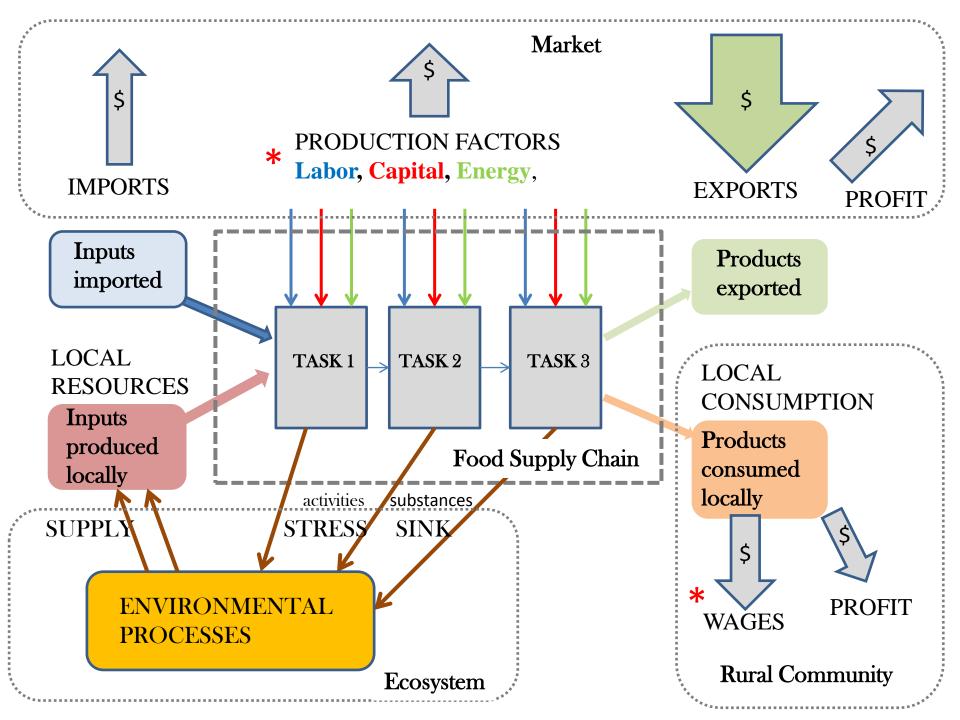


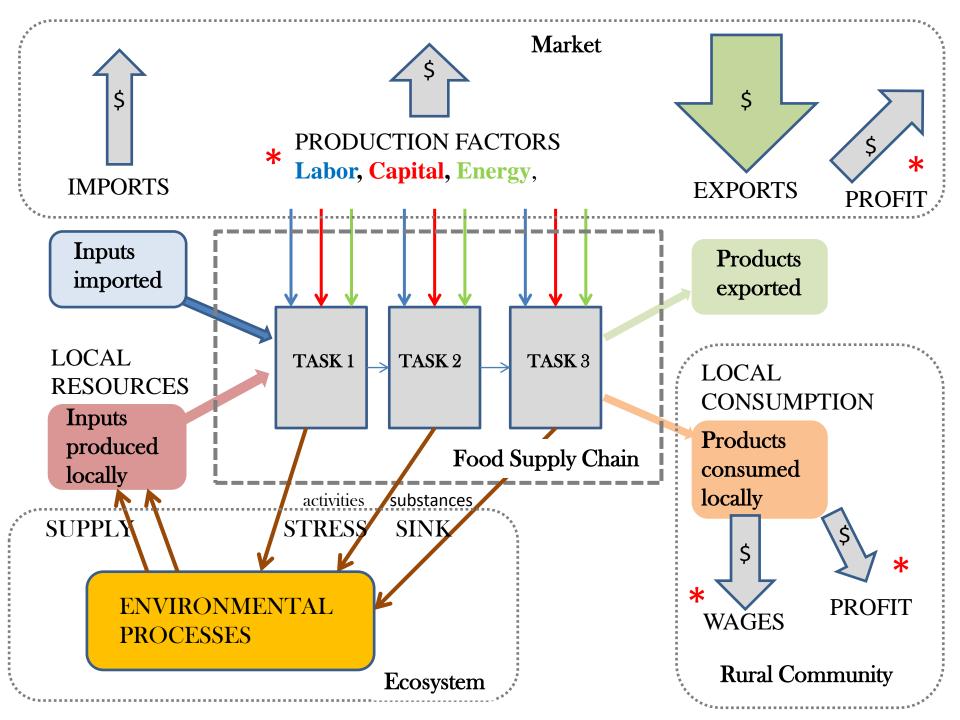


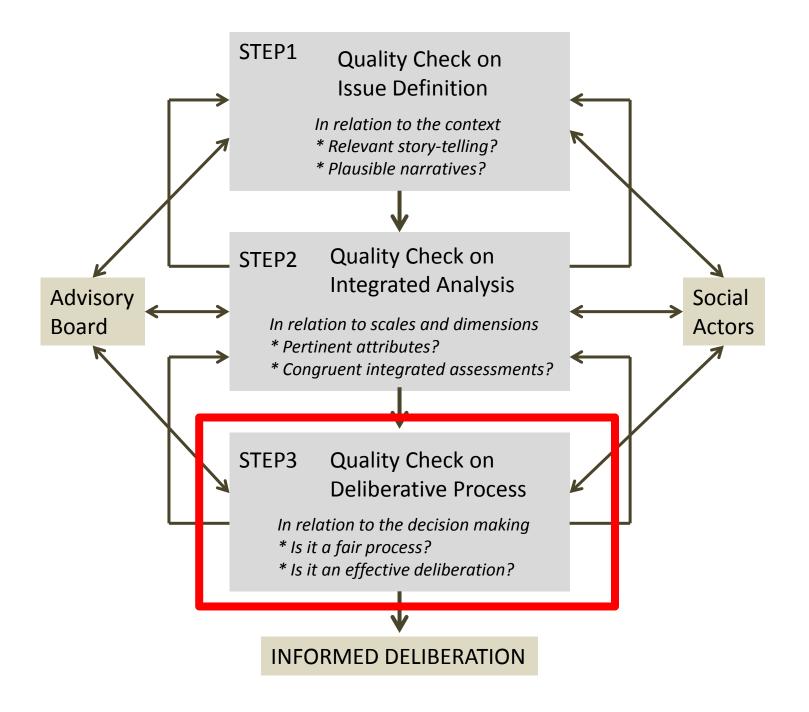












So what?

adequate information made up of narratives, data and models that **can be used** to deal **successfully** with **relevant** issues

This definition of KNOWLEDGE implies the definition of a STORY-TELLER needed to provide a legitimate value judgment about "**success**" and "**relevance**"

adequate information made up of narratives, data and models that **can be used** to deal **successfully** with **relevant** issues

This definition of KNOWLEDGE implies the definition of a STORY-TELLER needed to provide a legitimate value judgment about "**success**" and "**relevance**"

IGNORANCE \rightarrow LACK OF KNOWLEDGE lacking adequate information (narratives, data and models) that would be required to deal **successfully** with **relevant** issues

adequate information made up of narratives, data and models that **can be used** to deal **successfully** with **relevant** issues

This definition of KNOWLEDGE implies the definition of a STORY-TELLER needed to provide a legitimate value judgment about "success" and "relevance"

IGNORANCE \rightarrow LACK OF KNOWLEDGE lacking adequate information (narratives, data and models) that would be required to deal **successfully** with **relevant** issues

Prediction and Control

vs Wisdom and Adaptability

adequate information made up of narratives, data and models that **can be used** to deal **successfully** with **relevant** issues

This definition of KNOWLEDGE implies the definition of a STORY-TELLER needed to provide a legitimate value judgment about "success" and "relevance"

IGNORANCE \rightarrow LACK OF KNOWLEDGE lacking adequate information (narratives, data and models) that would be required to deal **successfully** with **relevant** issues

> *Prediction and Control vs Wisdom and Adaptability*

Whose relevance matters? How to know what will be relevant in the future?

Not necessarily. When dealing with complex systems we can still use quantitative science to gather useful insight

Not necessarily. When dealing with complex systems we can still use quantitative science to gather useful insight

But we do have a problem with the way quantitative science is used in the field of sustainability right now

Not necessarily. When dealing with complex systems we can still use quantitative science to gather useful insight

But we do have a problem with the way quantitative science is used in the field of sustainability right now

The problem is generated when quantitative science is used for dealing with complex issues with the goal of obtaining **prediction and control –** i.e. individuating the best course of action, optimal solutions, risk assessments . . . The damages of socially constructed ignorance are generated by either:

- 1. ENDORSEMENT OF SLOPPY QUANTITATIVE ANALYSIS (BAD MODELS or INDICATORS)
- 2. ENDORSEMENT OF IRRELEVANT STORY-TELLING

THEN UNCERTAINTY (IGNORANCE) DEPENDS FIRST OF ALL ON THE JUDGMENT ABOUT THE RELEVANCE OF THE SELECTED STORY-TELLING!!!!

There is uncertainty about nuclear energy?

There is uncertainty about nuclear energy?

Only if someone insists that is a relevant issue to be discussed . . .

There is uncertainty about GMOs?

There is uncertainty about GMOs?

WHAT IS RELEVANT FOR THE CONSUMERS?

There is uncertainty about GMOs?


WHAT IS RELEVANT FOR THE CONSUMERS?

- * Why do we need GMOs? What are the benefits?
- * Who will benefit from their use?
- * Who decided that they should be developed and how?
- * Why were we not better informed about their use in our food, before their arrival on the market?
- * Why are we not given an effective choice about whether or not to buy and consume these products?
- * Do regulatory authorities have sufficient powers and resources to effectively counter-balance large companies who wish to develop these products?

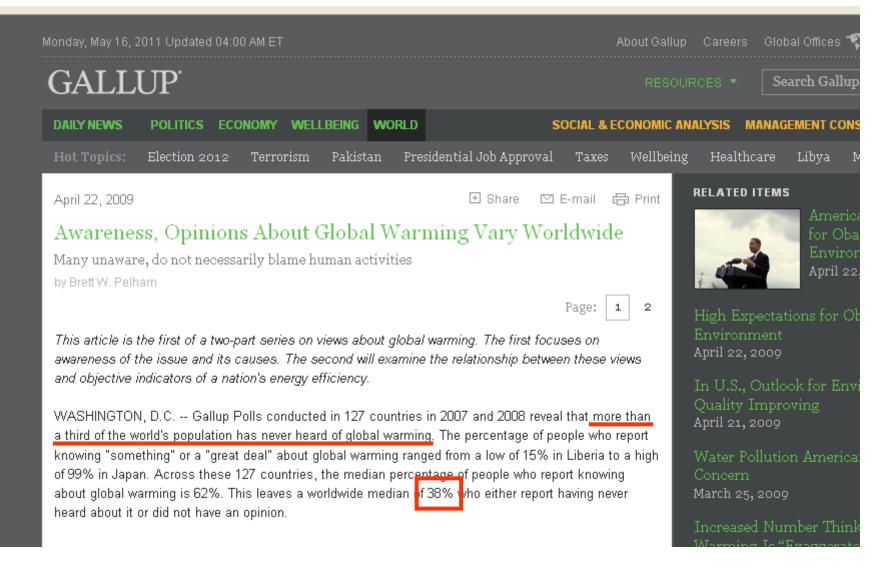

There is uncertainty about climate change?

GLOBAL WARMING & CLIMATE CHANGE

News and comments on global climate change, global warming and greenhouse effect

Why is Global climate change the single most important problem of our time?

Home



Climate change the world's greatest challenge, says Brown Who decided that climate change is "the" single most relevant problem of our time?

By Emily Ashton, Press Association

Are we sure about the absolute priority of this issue for humankind?

Are we sure about the absolute priority of this issue for humankind?

Are we sure about the absolute priority of this issue for humankind?

Home | About Us | Donate | Signup | Archives | Search

Featured Views

We Can't Do It Without You!

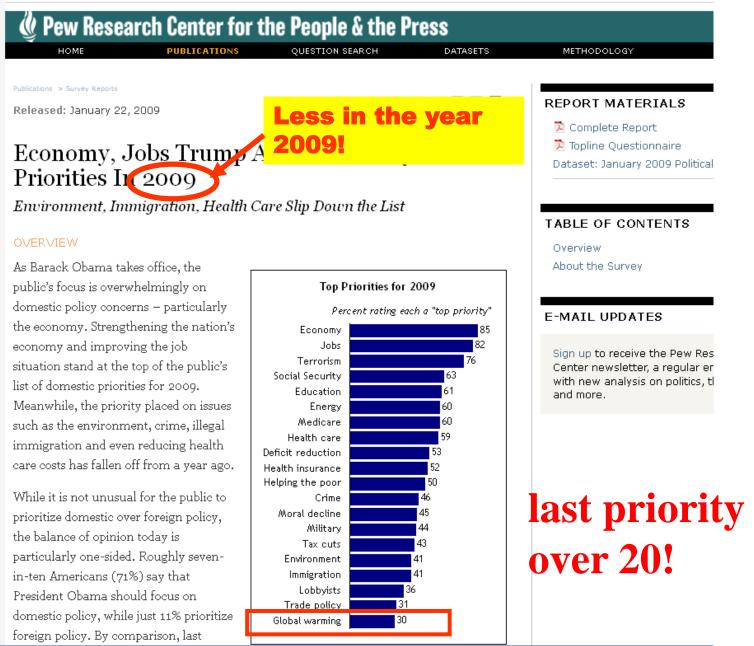
Monday, May 16, 2011

■Printer Friendly Version E-Mail This Article

Published on Wednesday, May 24, 2006 by the Independent/UK

Climate Change is the Major Problem Facing the World

by David Attenborough


I was sceptical about climate change. I was cautious about crying wolf. I am always cautious about crying wolf. I think conservationists have to be

PewResearchCenter

FOLLOW US 🛃 🔚 🔝 SEARCH

GALLUP Less in the year 2010

Federal Debt, Terrorism Considered Top Threats to U.S.

Republicans perceived as best party to deal with both

by Lydia Saad

June 4, 2010

PRINCETON, NJ -- Terrorism and federal government debt tie as the most worrisome issues to Americans when they consider threats to the future wellbeing of the U.S. Four in 10 Americans call each an "extremely serious" threat, with healthcare costs ranking a close third.

Perceived Threats to U.S. Future Wellbeing


How serious a threat to the future wellbeing of the United States do you consider each of the following -- extremely serious, very serious, somewhat serious, not very serious, or not a threat at all? How about ___?

	Extremely serious	Very serious	Somewhat/ Not very serious/ Not a threat at	
	%	%	Mentioned but	
Terrorism	40	39		
Federal government debt	40	39	only as an	
Healthcare costs	37	42		
Unemployment	33	50	environmental	
Illegal immigration	29	34	37 Environmental	
The size and power of the federal government	29	32	38	
Having U.S. troops in combat in Iraq/Afghanistan	26	40	₃₁ issue	
The environment, including global warming	21	30	49	
The size and power of large corporations	21	31	47	
Discrimination against minority groups	17	29	53	

USA Today/Gallup, May 24-25, 2010

$\frac{RASMUSSEN}{R E P O R T S}^{*}$

« If it's in the news it's in our polls. «

climate change is no longer included among the possible 10 most relevant issues!

Europeans are experiencing again war in Europe

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development

In the world 2.5 billion people (those lucky) defecate in cropfields

Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

There is a growing number of failed states around EU (Iraq, Syria, Yemen, Libya, Mali, Somalia . . .)

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development

In the world 2.5 billion people (those lucky) defecate in cropfields

In the world 783 million people do not have access to safe drinking water

Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

There is a growing number of failed states around EU (Iraq, Syria, Yemen, Libya, Mali, Somalia . . .)

In 2013 the number of world migrants reached 232 million

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development

In the world 2.5 billion people (those lucky) defecate in cropfields

In the world 783 million people do not have access to safe drinking water

World food demand will grow of 70% by the year 2050

Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

There is a growing number of failed states around EU (Iraq, Syria, Yemen, Libya, Mali, Somalia . . .)

In 2013 the number of world migrants reached 232 million

Only less than 5% of farmers in developed countries is younger of 35 and almost half of EU farmers is over 65

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development

In the world 2.5 billion people (those lucky) defecate in cropfields

In the world 783 million people do not have access to safe drinking water

World food demand will grow of 70% by the year 2050

In the world 805 million people do not have enough food Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

There is a growing number of failed states around EU (Iraq, Syria, Yemen, Libya, Mali, Somalia . . .)

In 2013 the number of world migrants reached 232 million

Only less than 5% of farmers in developed countries is younger of 35 and almost half of EU farmers is over 65

Due to fundamentalism developed countries are no longer capable of guaranteeing the freedom of expression within their borders

The degradation of ecosystem services could grow significantly in the next 50 years and be a hindrance to development

In the world 2.5 billion people (those lucky) defecate in cropfields

In the world 783 million people do not have access to safe drinking water

World food demand will grow of 70% by the year 2050

In the world 805 million people do not have enough food

In the world 500 million women still cannot read

Europeans are experiencing again war in Europe

Global debt has increased by \$57 trillion since 2007, outpacing world GDP growth

There is a growing number of failed states around EU (Iraq, Syria, Yemen, Libya, Mali, Somalia . . .)

In 2013 the number of world migrants reached 232 million

Only less than 5% of farmers in developed countries is younger of 35 and almost half of EU farmers is over 65

Due to fundamentalism developed countries are no longer capable of guaranteeing the freedom of expression within their borders

Global military expenditure was \$1776 billion in 2014

In the world mor women are forced below 15 year of option of chosing

The degradation could grow signifi years and be a hi

In the world 2.5 k lucky) defecate in

In the world 783 have access to saf

World food dem by the year 2050

T /1

hers in developed 5 and almost half OBVIOUSLY, SOME PEOPLE ARE UNAPOLOGETICALLY ELITIST. leveloped countries taning the 11005

How many people do really believe that "the most" relevant problem that humankind has to face now is to prevent a 78 cm rise in the sea level in the year 2100?

ing again

d by \$57 trillion rld GDP growth

er of failed states Yemen, Libya,

orld migrants