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Chapter 18

Design for Sensitivity Analysis

18.1 Introduction

Sensitivity analysis is the study of how uncertainty in the output of a model can be appor-

tioned to different sources of uncertainty in the model input (Saltelli et al., 2004). Sometimes

the term is also used to indicate simply the quantification of the uncertainty in the model’s

prediction, although strictly speaking this is the closely-related discipline of uncertainty anal-

ysis. In general, sensitivity analysis is used to test the robustness of model-based inference,

i.e. how much the results of the model depend on the assumptions made in its construction,

and in particular on the specification of model input values. In engineering and risk analysis,

sensitivity analysis mostly involves an exploration of the multidimensional space of the input

variables.

Sensitivity analysis may also take slightly different meanings dependent on the field: in

econometrics, sensitivity analysis has been advocated first in the form of “extreme bounds

analysis”, measuring the sensitivity of regressor coefficients to the omission or inclusion of

other regressors in a regression model (Leamer, 1985, 2010). A form of derivative-based

sensitivity analysis is also used to check the sensitivity of regression models to misspec-

ification (Magnus, 2007). In engineering, design sensitivity analysis uses the gradient of
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4 CHAPTER 18. DESIGN FOR SENSITIVITY ANALYSIS

the error function between a model output and experimental measurements to estimate un-

known model parameters, such as the stiffness parameters in a structural model (Tortorelli

and Michaleris, 1994). A succinct review of sensitivity analysis methods for use in impact

assessment, i.e. in relation to models used for policy, is in Saltelli and D’Hombres (2010). In

this chapter however, the focus will be on sensitivity analysis in the context of uncertainty

in the inputs and outputs of a model.

Very often, in chemistry, physics, biology and so on, one sees sensitivity analysis per-

formed by changing one input at a time, the so-called OAT design. This practice is not

recommended because it only examines the sensitivity of model inputs at nominal (average)

values, and does not allow the possibility of exploring the model response at other values of

input variables, which could produce very different results if the model is nonlinear (Saltelli

and Annoni, 2010). Instead, current best practice involves designs based on a multidimen-

sional exploration of the space of the input variables, as in classic experimental design.

An important point to note from the start is that sensitivity analysis does not typically

examine “structural uncertainty” , which is the uncertainty due to the model’s approximation

to reality. As such, the results of a sensitivity analysis, which relate to uncertainty in the

input variables, are conditional on the model. Structural uncertainty can often represent

the largest source of uncertainty, so it is important to recognise that a sensitivity analysis is

only half the story in a thorough analysis of uncertainty. Techniques for managing structural

uncertainty will not be addressed here, but two approaches are noted with some references as

a starting point: first, “model ensemble averaging” (Tebaldi and Knutti, 2007; Rougier et al.,

2013) which uses the results of a number of different but plausible models to approximate a

“distribution over models” — an application to climate modelling can be found in Murphy

et al. (2009). Second, an approach which considers the “discrepancy” between a single

calibrated model and the true observed value (Kennedy and O’Hagan, 2001; Strong et al.,

2012). A discussion of model uncertainty in a wider context can be found in Saltelli and

Funtowicz (2013).
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Figure 18.1: Black box view of an engineering computer model, with typical model inputs
and outputs.

18.1.1 The Black Box Perspective

In this chapter, the term “model” refers to a computer program which represents a math-

ematical construct built to simulate some physical, economic or other “real-world” process

— examples could be models to predict climate change, engineering models to analyse the

response of a component under loading, or economic models forecasting the behaviour of

markets.

Since any numerical model has quantifiable inputs and outputs, it is helpful in sensitivity

analysis to consider it from the “black-box” perspective (see Figure 18.1). This views the

model as a function f(x) of k inputs, where x = {xi}ki=1. The model will typically return

a large number of output quantities, but in this chapter, for simplicity it shall be assumed

that the output is a scalar y, such that y = f(x). Note that although the x and y will often

appear as random variables, they will always be expressed in lower case. Importantly, the

models in this chapter will be assumed to be deterministic, such that f is fixed, and the

structure of the model does not contain random components. The uncertainty in the output
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therefore is due uniquely to randomness in x.

Although the function (model) f is known in the sense that it represents a computer

program based on mathematical equations, it will generally be complex enough as to be

only accessible via simulation (i.e. not analytically tractable). Therefore in practice, all

sensitivity analysis approaches involve sampling the inputs a number of times according to

an experimental design, evaluating the model for each selected input vector, and estimating

useful properties from the resulting outputs/data. With this in mind, it is useful to think of

a particular set of model input values x as a “point” in a k-dimensional hyperspace, which

is bounded by the maximum and minimum values of each input variable.

18.1.2 Types of Problem

There is no “one size fits all” solution in sensitivity analysis, due to the fact that each

problem has its own unique characteristics and challenges, such as a large number of model

inputs, model nonlinearities, correlations or other relationships between model inputs and

limitations in CPU time to name but a few. As such, there exist a great number of approaches

that are designed for use under particular circumstances. Here a (non-exhaustive) taxonomy

is attempted of some of the most common settings encountered in sensitivity analysis, and

the tools that are available for each. One of the first defining features is whether or not the

model is actually accessible to the analyst (the person performing the sensitivity analysis)

— two main cases arise in this respect:

Case 1 The analyst can ‘run’ the model. In other words, the model is available to the

analyst, such that it can be evaluated at chosen input values and the corresponding

results recorded. A design can be specified in this case where, for example, n model

input points {x1,x2, ...,xn} are selected in the k-dimensional input space, to obtain

corresponding model outputs {y1, y2, ..., yn}. In this case the sample of the input space

is customarily generated without correlation among the input variables, although de-

signs for correlated inputs are also available (Xu and Gertner, 2008; Li et al., 2010;

Kucherenko et al., 2012; Jacques et al., 2006). The output y could represent, for exam-
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ple, some modeled property of an engineering design such as an aeroplane wing or of a

natural system such as groundwater flow through a geologic region.

Case 2 The sample points are given and the analyst can neither control their positioning

nor generate additional points. Such data might come either from measurements or

experiments, or from a design that is not specifically intended for sensitivity analysis.

The form of the model could be unknown, and the input variables could be correlated

with one another in the sample. To give a simple example, y could be the Human

Development Index computed over k countries and the xi could be the indicators used

in the construction of the index (Paruolo et al., 2013). In this case one cannot generate

additional points/countries.

In Case 1 (when the design points can be specified) the best approach to performing

a sensitivity analysis is determined by the cost of the model runs required to perform the

analysis. In this context, “cost” refers to the total computational time required to evaluate

the model at all the sample points, which is the product of the total number of model runs

and the time required for each run. Since complex models can take minutes, hours or longer

to evaluate for a single input point, it is not always feasible to sample a large number of

input points, see e.g. Becker et al. (2011); Batterbee et al. (2011). The strategies available

for case I are as follows:

Case 1A For “cheap” models (for which a single model evaluation will take a matter of

seconds or less), a fully-fledged quantitative sensitivity analysis can be performed using

Monte Carlo estimators, estimating all k “first order indices” and all k “total order

indices” directly from model output values (see Section 18.3). This approach requires

a large number of sample points (typically hundreds or thousands per input variable),

but is preferred where possible since all sensitivity indices can be estimated with an

accuracy related to the number of sample points. Furthermore, no assumptions are

required about the functional form of the model (apart from that the model f(x) is

square-integrable, though this should not be a limitation in the vast majority of cases).

Case 1B For expensive models a design based on Fourier analysis can be used to compute

all first order indices at a cost which is weakly dependent on the number of input vari-
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ables (see Section 18.4). The cost is of the order of some hundreds of model simulations.

Alternatively, a space-filling design can be used in conjunction with an emulator (see

Section 18.6 and Chapter 17). Although computationally cheaper, both of these ap-

proaches introduce a data-modelling problem which involves making assumptions about

the functional form of the model, such as smoothness and continuity. Additionally, the

use of certain types of emulators becomes rapidly infeasible as the number of sample

points and the dimensionality of the problem increase.

Case 1C In the case where the model is computationally expensive and one has many input

variables, a set of methods known as screening can be applied to sort variables into

influential and non-influential groups: this is known as factor fixing in some literature

(Saltelli et al., 2008). A more detailed sensitivity analysis based on Monte Carlo or

the use of emulators can then be applied on the set of influential variables, while non-

influential variables are kept fixed (see Section 18.5).

A summary of Cases 1A-1C is shown in Figure 18.2: Monte Carlo methods scale well with

dimensionality but need many runs per variable, so are not appropriate for expensive mod-

els. Emulators can deal with expensive models, but only for a limited number of input

variables. In the case where the model has many input variables and is expensive to run,

screening methods can help to reduce dimensionality to bring the problem in reach of emu-

lators. Another possibility is to re-examine the model itself to see whether its run-time can

be reduced, therefore allowing a Monte Carlo analysis. Although this is not a method of

sensitivity analysis, it is an important consideration, since most models are not built with

sensitivity analysis in mind, and therefore are not necessarily optimised for speed. However

this requires access to the model and a deep understanding of it, which is not always possible.

For Case 2, when data are given, two approaches are considered in this chapter:

• Use an emulator either to generate additional points and then perform a Monte Carlo

sensitivity analysis, or to directly estimate sensitivity indices from the available data

(depending on the method – see Section 18.6).

• Estimate directly the k first order indices by univariate regression on the sorted model
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Figure 18.2: Case 1 sensitivity analysis problems based on dimensionality of model and run
time.

evaluations y1, y2, ..., yn (see Section 18.7). In effect, this involves making one-dimensional

scatter plots of y against each xi, then fitting (nonlinear) trend curves. In simple prob-

lems, even a visual inspection of scatter plots may be useful for qualitative analysis.

The various approaches discussed here and the context in which they can be applied

are summarised in Figure 18.3. Note that in the present chapter only three measures of

sensitivity are proposed:

1. First order sensitivity index (see Section 18.2)

2. Total order sensitivity index (see Section 18.2)

3. Elementary effects (see Section 18.5)

The following section gives a brief description of variance-based sensitivity analysis which

underpins measures 1 and 2 above, after which in Section 18.3 Monte Carlo numerical proce-

dures will be described for estimating them (this is the domain of Case 1A). In Section 18.4

an alternative way of estimating the same measures is described, using an approach based on

the Fourier series. Section 18.5 deals with screening approaches (see Case 1C), while Section
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Figure 18.3: Various approaches to sensitivity analysis: when they can be used, and what
they produce. The dotted line here indicates that ST i can only be estimated with certain
types of emulators, and the acronym “RBD” stands for “Random Balance Designs”.
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18.6 explains the concepts of emulation and Section 18.7 scatterplot smoothing to deal with

computationally expensive models (Case 1B), or the case where points are given (Case 2).

Finally, some concluding remarks are given in Section 18.8.

18.2 Variance-Based Sensitivity Indices

Many measures of sensitivity have been proposed in the literature. For example, a well-

known measure is to regress the data against each input variable xi, and take the coefficients

of determination R2
i as measures of sensitivity. An obvious drawback of this is that linear

regression (linear in x) can only meaningfully interpret a linear model response (“model re-

sponse” refers to the effect on the model output of changing its inputs). While this approach

can be extended by more sophisticated forms of regression, it is preferable not to rely on any

modelling of a functional relationship between y and x, since unwanted assumptions would

thus be introduced. Variance-based approaches to measuring sensitivity, which consider the

uncertainty in the model inputs and output from a probabilistic perspective, have become

very popular in recent years, since they allow for highly nonlinear model responses, and

account for variations in the output over the full input space.

In variance-based sensitivity analysis, it is required that the uncertainty in each model in-

put x1, x2, ..., xk is characterised by known probability distributions p1(x1), p2(x2), ..., pk(xk),

and furthermore that these distributions are independent of one another, such that
∏k

i=1 pi(xi) =

p(x). In fact this first step may often pose major challenges to the analyst because it is rarely

the case that enough information exists to characterise the input distributions to a great de-

gree of confidence, and correlations are not uncommon in many problems. This chapter will

not however address these difficulties since the focus is on the statistical aspects of sensitivity

analysis as commonly practiced, although some brief discussion of the practical aspects of

sensitivity analysis is given at the end in Section 18.8.

Given known and independent input distributions then, a useful sensitivity measure for

a given input variable xi is:

Vxi [Ex∼i
(y | xi)] (18.1)
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The meaning of the inner E operator is the expected value of the model output y taken

over all possible values of variables other than xi (i.e. over x∼i), while keeping xi fixed (the

conditional mean). The outer V is the variance taken over all possible values of xi.

The associated normalised sensitivity measure, known as a first order sensitivity coefficient

is defined as:

Si =
Vxi [Ex∼i

(y | xi)]
V (y)

. (18.2)

The measure Si gives the fraction of model output variance which is caused by the input

xi alone, averaged over variations in all other input variables. Formula (18.2) has a long

history, the foundations having been laid by Karl Pearson in the form of the “product-

moment correlation coefficient” in 1895 (Pearson, 1895) (a further discussion of this is given

in Section 18.7). However, the use of partial variances (i.e. (18.2)) as measures of sensitivity

in computer models appears to have been first proposed in 1973 in the context of the Fourier

amplitude sensitivity test (Cukier et al., 1973), which uses a Fourier series representation of

the model (see Section 18.4). The idea was further developed by Ilya Sobol’ in 1990 who

also introduced an approach to estimate Si by the Monte Carlo method, thereby bypassing

the need to use a Fourier series approximation (Sobol’, 1993) (see Section 18.3).

The numerator of Si is in fact the first term in a variance decomposition whereby the

unconditional model output variance V (y) is decomposed as the sum of a set of conditional

variances of first, second, · · · , up to the kth order (Sobol’, 1993). Such a decomposition holds

only if the input variables xi are independent, in which case,

V (y) =
∑
i

Vi +
∑
i

∑
j>i

Vi,j + ...+ V1,2,...,k, (18.3)

where:

Vi = Vxi [Ex∼i
(y|xi)]

Vi,j = Vxi,xj [Ex∼i,j
(y|xi, xj)]− Vxi [Ex∼i

(y|xi)]− Vxj [Ex∼j
(y|xj)]

and so on for the higher order terms. The terms in (18.3) derive from an analogous functional
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decomposition of f(x) into orthogonal functions of increasing dimensionality:

f(x) = f0 +
∑
i

fi(xi) +
∑
i

∑
j>i

fi,j(xi, xj) + . . .+ f1,2,...,k(x1, x2, . . . , xk) (18.4)

where f0 = E(y), fi = Ex∼i
(y|xi)− f0, fi,j = Ex∼i,j

(y|xij)− fi − fj − f0, and so on. Taking

the variance of (18.4) gives the variance decomposition in (18.3), noting that for example

Vxi(fi) = Vxi [Ex∼i
(y|xi) − E(y)] = Vxi [Ex∼i

(y|xi)]. A discussion of the importance of the

first order terms fi = Ex∼i
(y|xi)− E(y) is returned to in Section 18.7.

Dividing all terms in (18.3) by V (y) gives:

∑
i

Si +
∑
i

∑
j>i

Si,j + . . .+ S1,2,...,k = 1. (18.5)

where the Si are the first-order sensitivity coefficients defined in (18.2), and higher-order

terms are generalisations of these to multiple inputs. For example, Si,j measures the variance

due to the interaction between xi and xj, additional to the variance caused by each input

alone. A knowledge of all the sensitivity indices in (18.5) gives a detailed picture of how

each input contributes to the uncertainty of the model output and the interactions between

inputs in the model. Note that the case where
∑k

i=1 Si = 1 is known as an additive model,

in which there are no interactions between model inputs. This is however rarely the case

in complex models, for which reason the calculation of the first order indices alone is not

usually sufficient.

In the ideal case then, one would like to know all sensitivity indices of all orders in (18.5).

Due to computational limitations however, estimating all terms in (18.3) is often impractical

for larger k given that they number 2k− 1 in total. For this reason, a measure known as the

the total order sensitivity index, ST , may be estimated, which measures the total effect of

an input, including its first order effect and interactions of any order (Homma and Saltelli,

1996):

ST i = 1− Vx∼i
[Exi (y | x∼i)]
V (y)

=
Ex∼i

[Vxi (y | x∼i)]
V (y)

(18.6)
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where x∼i denotes the vector of all variables but xi. In Ex∼i
[Vxi (y | x∼i)] the inner variance

V of y, the scalar output of interest, is taken over all possible values of xi while keeping

x∼i fixed, while the output expectation E is taken over all possible values x∼i (Homma and

Saltelli, 1996).

One can see that Exi (y | x∼i) is the main effect of x∼i, and therefore Vx∼i
[Exi (y | x∼i)]

is the variance caused by the main effects and interactions of all the variables and sets of

variables not involving xi. The remaining variance, V (y)−Vx∼i
[Exi (y | x∼i)], is the variance

due to all terms in the decomposition (18.3) including xi, i.e. the variance of its main effect

and all interactions of any order involving xi, giving:

ST i = Si +
∑
j>i

Si,j +
∑
l>j>i

Si,j,l + · · ·+ S1,2,...,k. (18.7)

As an example, consider a function of three input variables, f(x1, x2, x3). The standard-

ised variance decomposition in (18.5) would in this case consist of:

S1 + S2 + S3 + S1,2 + S1,3 + S2,3 + S1,2,3 = 1. (18.8)

In this case, the ST i can be expressed as the sum of any indices involving the index i:

ST1 = S1 + S1,2 + S1,3 + S1,2,3

ST2 = S2 + S1,2 + S2,3 + S1,2,3

ST3 = S3 + S1,3 + S2,3 + S1,2,3

(18.9)

from which one can note that in general
∑k

i=1 ST i 6= 1, unless all the interaction terms are

zero. Observe also that the ST i could in fact be calculated from evaluating and summing all

component sensitivity indices as in (18.9), but in practice this is rarely done, since it involves

a much higher computational effort – for this reason the expression in (18.6) is usually used

as the basis for estimation unless one is particularly interested in the precise nature of the

interactions.

In the next section the design and estimation procedures for the the cases detailed in
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Section 18.1 are described.

18.3 Monte Carlo Estimation of Sensitivity Indices

Monte Carlo estimation of sensitivity indices is generally considered as the preferred approach

to sensitivity analysis where possible, since it makes no assumptions about the functional

form of the model (unlike emulators and FAST – see Sections 18.6 and 18.4). It is however

only possible under the circumstances of Case 1, i.e. when the analyst has full control over

the placement of input points and possibly thousands of model runs can be executed without

difficulty. Monte Carlo estimation involves sampling the model at a large number of points

in the input space using random or quasi-random numbers as a basis. In this section the

use of quasi-random numbers is described, specifically the LPτ sequences of Sobol’ (Sobol’,

1967, 1976) (also known simply as Sobol’ sequences) coupled with a Monte Carlo design

described in Section 18.3.2 (Saltelli, 2002; Saltelli et al., 2010). In the following, therefore,

the focus will be on the Sobol’ sequence. However, the approaches described are also valid

with random numbers and other low-discrepancy sequences – see Niederreiter (1992) for a

summary of many common approaches.

18.3.1 Input Distributions and Sampling

It is assumed here that all random variables x1, x2, . . . , xk are sampled uniformly in the

k-dimensional unit hypercube X ;

x ∈ X : X = [0, 1]k. (18.10)

Different distributions can easily be generated by mapping the points in (18.10) onto the

desired probability density function (uniform, normal, log-normal, etc). This involves the

use of the inverse cumulative distribution function of the variable of interest (also known as

the quantile function), which allows uniformly-distributed points in [0, 1] to be transformed

into points distributed as required (Saltelli et al., 2008). An example is shown in Figure
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Figure 18.4: Generating normally-distributed points using a equally-spaced points and the
inverse cumulative distribution of the normal distribution. Vertical and horizontal lines
illustrate the mapping of sample points from one distribution to another.

18.4 in which a set of equally-spaced points are transformed into normally-distributed points

(equally-spaced points are used here rather than random sampling to more clearly illustrate

the transformation).

The Monte Carlo estimators presented in the following section rely on the use of random or

quasi-random numbers — in particular, the approach recommended in this chapter is to use

the Sobol’ sequence. The Sobol’ sequence and other quasi-random number sequences (also

known as “low-discrepancy sequences”) are fixed sequences of numbers which are designed

to fill hypercubes as uniformly as possible – in the context of sensitivity analysis they can be

used as a list of model input values that explore the model response with a high efficiency.

Figure 18.5 shows a comparison of the Sobol’ sequence against random (strictly speaking

pseudo-random) numbers – observe the clusters and large “holes” in the random design

compared to the relatively well-spaced points in the Sobol’ design. The use of quasi-random

sequences is motivated by their good space filling properties; these sequences outperform

both pseudo-random Monte Carlo sampling as well as Latin Hypercube Sampling (LHS) in

the estimation of multi-dimensional integrals (Sobol’ and Kucherenko, 2005) – for details on

LHS, see Chapter 19. Recent extensive testing with a large variety of functions spanning
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Figure 18.5: 128 points in 2D space: (a) random numbers; (b) Sobol’ sequence

different degrees of dimensionality, linearity and additivity has demonstrated their suitability

for sensitivity analysis (Kucherenko et al., 2011). An additional desirable property of Sobol’

sequences when compared to LHS is that with the former, additional points can be added

sequentially to the analysis until a desired target accuracy is achieved (note the points follow

increasingly fine divisions of the input space – see the first four rows of Figure 18.6 for an

example of the first four points in a 6-dimensional Sobol’ sequence). With LHS, the sample

size cannot be extended once the analysis is performed, without starting again from the

beginning, because the positioning of all points is dependent on the sample size. Sobol’

sequences can be generated using freely available software both in FORTRAN, and Matlab

–see European Commission (2012).

18.3.2 Steps for Estimating Sensitivity Indices

The steps needed to estimate a full set of first order and total order sensitivity indices via

the Monte Carlo method are as follows (see Figure 18.6 for an illustration of the construction

of the matrices):
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1. Generate n points of a 2k-dimensional Sobol’ sequence as in Figure 18.6, such that it

is arranged in a n × 2k matrix with each row giving the coordinates of each point in

the sequence. Call the first k-column submatrix A (i.e. the first k columns), and the

remaining k-column submatrix B. The generic coordinates of A and B can be indicated

respectively as x
(a)
ji and x

(b)
ji , where the index i runs from one to k (the number of input

variables), and the index j runs from one to n, the number of rows1.

2. Generate an additional k matrices Ai
B, i = 1, 2, ..., k, such that the ith matrix is entirely

composed of coordinates from A except for its ith column, which is the ith column of

B. A total of k + 2 sets of coordinates (matrices) have thus been generated.

3. Evaluate the computer model for each of the n(k + 2) input vectors generated as the

rows of each of the matrices A, B and Ai
B, i = 1, 2, ..., k.

4. Compute the sample mean f̂0 of output associated with rows from both matrices of

quasi-random points A and B combined, i.e. using f̂0 = 1
2n

∑n
j=1 (f(A)j + f(B)j)

where, for example, f (A)j indicates values of y computed from running the model f

using the input values given by row j of matrix A. The unconditional sample variance is

also calculated using the unbiased estimator V̂ (y) = 1
2n−1

∑n
j=1[(f(A)j− f̂0)2+(f(B)j−

f̂0)
2].

5. To estimate Si (see (18.2)) one needs first to estimate Vxi [Ex∼i
(y | xi)]. Denoting

Vxi [Ex∼i
(y | xi)] = Vi, model outputs associated with coordinates from A, B and Ai

B

are used in the following estimator (Saltelli, 2002; Sobol’ et al., 2007; Saltelli et al.,

2010):

V̂i =
1

n

n∑
j=1

f (B)j

(
f
(
Ai
B

)
j
− f (A)j

)
, (18.11)

A rationale for estimator (18.11) is given below. Si is estimated by dividing (18.11) by

the sample variance V̂ (y).

6. For ST i one needs first to estimate Ex∼i
[Vxi (y | x∼i)] (see (18.6)). LettingEx∼i

[Vxi (y | x∼i)] =

VT i, this can be estimated using model evaluations from the couple A and Ai
B (Jansen,

1Note that in this chapter, although j is in general an index over samples, it is also sometimes used to index over input
variables, for example in the variance decomposition in (18.3). The meaning should however be clear given the context.
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Figure 18.6: Construction of the A, B and Ai
B matrices, using the Sobol’ LPτ sequence with

k = 3 and N = 4. Grey columns correspond to those taken from the matrix B.

1999):

V̂T i =
1

2n

n∑
j=1

(
f (A)j − f(Ai

B)j

)2
, (18.12)

with a similar meaning of symbols as above. Again, ST i is estimated by dividing (18.12)

by the sample variance V̂ (y).

Note that each matrix Ai
B is used twice for estimating sensitivity indices associated with

xi, once to compute Ŝi and once to compute ŜT i. A derivation of estimators (18.11) and

(18.12) can be found in Saltelli et al. (2008, 2010) – these designs are also called “substituted

column sampling” (Morris et al., 2008). One can notice that the estimators make use of

sums of products of model output values, and that in each product the two function values

being multiplied by one another have some symmetry. In the case of Ŝi the two function

values f (B)j and f (Ai
B)j have identical values for coordinate xi, whereas in the case of ŜT i

the two function values f (A)j and f (Ai
B)j have identical values for all coordinates except

xi. Take the case of Ŝi for illustration: if xi is influential, then the two function values

being multiplied, f (B)j and f (Ai
B)j, will be correlated, such that high values will tend be

multiplied by high values and low values by low values. The resulting sum of these products
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will tend to be greater than the sum of the products of f (B)j and f (A)j (the two terms

of which are uncorrelated), giving a value of Ŝi greater than zero. In contrast, if xi is non-

influential, high and low values of f (B)j and f (Ai
B)j will be randomly coupled, resulting in

an estimation of Si which will tend to zero.

To see where the estimators (18.11) and (18.12) come from, refer back to (18.2) and (18.6).

In the case of Si, the numerator Vxi [Ex∼i
(y|xi)] can be expressed as,

Vxi [Ex∼i
(y|xi)] =

∫
E2

x∼i
(y|xi)dxi −

(∫
Ex∼i

(y|xi)dxi
)2

(18.13)

using the variance identity V (y) = E(y2) − E2(y). The second term in (18.13) reduces to

E2(y) (since E[E(y|xi)] = E(Y )) which is denoted as f 2
0 (refer back to (18.4)). The first

term can be written as the following,

∫
E2

x∼i
(y|xi)dxi =

∫
Ex∼i

(y|xi)Ex∼i
(y|xi)dxi

=

∫ (∫ ∫
f(x∼i, xi)f(x′∼i, xi)dx∼idx

′
∼i

)
dxi

=

∫ ∫
f(x∼i, xi)f(x′∼i, xi)dxdx

′
∼i

(18.14)

Now one can see that the integral in (18.14) can be estimated by Monte Carlo integration

using the first product f (B)j f (Ai
B)j of (18.11).

Finally it is worth briefly examining the experimental design generated in Steps 1 and

2 of this section. In the description given, matrices have been used to facilitate the pro-

gramming of this procedure. However one should note that any row of the sample matrix

Aj is simply a (quasi) random point in the input space, and the corresponding row (Ai
B)j

describes a point which has the same coordinates, except for the ith input variable, which

takes its value x
(b)
ji from the jth row and ith column of B. Considering the set of points

{Aj, (A
1
B)j, (A

2
B)j, ..., (A

k
B)j}, one can see that this subset of the design forms a “star” in

the input space, with a centre point Aj and each subsidiary point (Ai
B)j a step away in the

xi direction. The example design given in Figure 18.6 is plotted for illustration in Figure

18.7. One can see that the design is nothing more than a number of OAT designs replicated



18.3. MONTE CARLO ESTIMATION OF SENSITIVITY INDICES 21

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

x1
x2

x 3

Figure 18.7: Sample design used for estimating sensitivity indices - example points as in
Figure 18.6.

at various locations in the input space. However, by performing multiple OAT experiments

one can begin to understand the “global” behaviour of the model — that is to say, the

sensitivity of the model averaged over the full input space. Note that screening methods

also use replicated OAT designs – see Section 18.5. A shortcoming of the use of the Sobol’

sequence is in fact evident in Figure 18.7 — one can see that the top left “star” is missing

a step in the x2 direction, and another has no steps at all. Going back to the design in

Figure 18.6 the reason can be understood: the coordinate values in the Sobol’ sequence tend

to repeat, which results in some instances where a coordinate value is substituted with the

same number, resulting in Aj = Ai
B,j. These duplicates can however be accounted for, for

example, by excluding them from the design when running the model (to avoid unnecessary

runs), then adding the f (Ai
B)j = f (A)j values where necessary. A further discussion on

this point in the context of screening is given in Section 18.5.3.
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18.3.3 Example

To show how the Monte Carlo estimators described above perform at different values of n,

consider a simple polynomial example,

y = 3x21 + 2x1x2 − 2x3; (18.15)

where the coefficients have been chosen quite arbitrarily. To illustrate the behaviour of the

function with respect to its inputs, Figure 18.8 shows the scatter plots of y against x1, x2

and x3, using random uniform sampling over [0, 1]3. It is evident that x1 has quite a strong,

slightly nonlinear effect on y. Variable x2 has apparently quite a weak effect (there is little

discernable trend), whereas x3 has a slight negative effect. These trends are clearly reflected

in the coefficients of (18.15) – of course, normally one would not have the coefficients of an

analytical equation to examine. The analytical values of Si and ST i are given in columns 3

and 5 of Table 18.1.

To estimate the sensitivities of the variables, a Sobol’ design is created in 3 dimensions,

assuming uniform distributions for x1, x2, x3 for simplicity, and estimators (18.11) and (18.12)

are used. The only choice is what value of n, the number of sample points, to use. Given

that the Sobol’ sequence allows sequential addition of new points, one can start with a small

number of points, then gradually increase until numerical convergence is observed. Figure

18.9 shows the convergence of these measures with n ranging from 8-1024. It is evident that

the estimators converge quite quickly to an accurate estimate of the sensitivity indices; even

at the lowest n, the variables are already correctly sorted, and at n ≥ 128 the indices have

converged to two decimal places. For most applications of sensitivity analysis, this would be

sufficient accuracy. Table 18.1 shows the results at n = 128 compared to analytical values.

Note that since there is a weak interaction between x1 and x2, the ST i of these variables

is slightly higher than their respective Si values, due to the fact that both ST1 and ST2

additionally include the interaction effect S1,2 (refer back to (18.8) and (18.9) to see why).

The value of S1,2 is not estimated here, though it can be deduced from the table, noticing that

x3 does not interact with any variables since S3 = ST3 (and hence S1,3 = S2,3 = S1,2,3 = 0 ),

therefore S1,2 = ST2 − S2 = ST3 − S3.
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Figure 18.8: Scatter plots of the variables in the test equation (18.15).

Variable Ŝi (MC) Si (analytic) ŜT i (MC) ST i (analytic)

x1 0.7517 0.7568 0.7781 0.7720

x2 0.0503 0.0456 0.0604 0.0608

x3 0.1870 0.1824 0.1829 0.1824

Table 18.1: Monte Carlo estimates and analytical values of Si and ST i of polynomial function
with n = 128.
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Figure 18.9: Convergence of the Si and ST i of the polynomial equation (18.15) with increasing
n. Lines represent, from top to bottom, x1, x3 and x2 respectively.

Despite the flexibility of Monte Carlo estimators, one should remember that the cost is

n(k+ 2) model runs (see again Figure 18.6) – i.e. in the previous example the total number

of model runs required was 128×5 = 640. While this is fine for fast models, for large models

which are slower to run it may be impractical. In the following sections some alternative

approaches are discussed that have lower computational requirements.

18.4 FAST and the Random Balance Design

The Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, 1978), which was actu-

ally proposed around 20 years before the Monte Carlo estimators described in the previous

section, uses a transformation of the input variables of the function (model) to represent a

multivariate function as a periodic function of a single “frequency variable”, s, which allows

the function to be analysed using the Fourier series. The transformation of each input vari-

able into s uses a unique characteristic sampling frequency which allows the contribution

of each input to be assessed using the tools of Fourier analysis, which give analytical ex-

pressions for variance-based sensitivity indices (based on the Fourier series approximation).

The advantage, compared to the Monte Carlo method, is that the integrals required to cal-

culate the sensitivity indices, mean and variance (which are k-dimensional, see for example
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Figure 18.10: Examples of transformations from s to x: (a) Equation (18.17), (b) Equation
(18.18), (c) Equation (18.19).

(18.14)) can be expressed as univariate integrals with respect to s. Thus, a full set of Si can

be estimated from a single FAST sample, which means that the computational cost can be

lower. However, the FAST approach relies on using the Fourier series to approximate the

model output, which requires assumptions of smoothness, and furthermore uses truncated

series to estimate sensitivity indices, which introduces estimation bias. A hybrid approach

combines the concept of FAST with random balance designs, a form of experimental design

first proposed by Satterthwaite (1959) – this is described in Section 18.4.4. In the following,

a description of the transformation functions is given in Section 18.4.1, followed by the esti-

mation of sensitivity indices in Section 18.4.2. A recent overview of FAST literature can be

found in Xu and Gertner (2011).

18.4.1 Sampling Designs and Transformation of variables

In order to apply the tools of Fourier analysis to the model, each input variable xi is trans-

formed into a periodic function of a single variable, s, in the following way:

xi = G (sin(ωis), ) i = 1, 2, ..., k, (18.16)

where s is a variable in [−π, π], G is a specified transformation function, and ωi is an integer.

The effect of this transformation is that uniformly sampling s within its range (i.e. taking



26 CHAPTER 18. DESIGN FOR SENSITIVITY ANALYSIS

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

Figure 18.11: A 2D example of a FAST search curve using a triangular basis function (18.19)
and with ω1 = 1 and ω2 = 4.

equally spaced values) results in oscillations in the corresponding sampled values of each xi

over its respective range. Figure 18.10 shows this effect on the following three transformation

functions:

xi = ai exp(bi sin(ωis)) (18.17)

xi = ai (1 + bi sin(ωis)) (18.18)

xi =
1

2
+

1

π
arcsin (sin(ωis)) (18.19)

proposed respectively by Cukier et al. (1973), Koda et al. (1979) and Saltelli et al. (1999) as

functions that are intended to approximate uniform sampling over the sample space X . Note

however, that functions (18.17) and (18.18) give higher densities of points at the edges of the

sample space, therefore for truly uniform sampling, (18.19) is preferred. For non-uniform

input distributions, other transformation functions would be necessary. The parameters a

and b can be altered to give different ranges over xi, for example in Figure 18.10 they have

been adjusted to give xi ∈ [0, 1]. Note also that by varying ωi one can control the number

of oscillations over the range of xi, therefore ωi represents the “search frequency” of each

variable.



18.4. FAST AND THE RANDOM BALANCE DESIGN 27

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

(a)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

(b)

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

(c)

Figure 18.12: Search curves in two-dimensional space using transformation function (18.18):
(a) ω1 = 10, ω2 = 20; (b) ω1 = 15, ω2 = 21; (c) ω1 = 10, ω2 = 21.

When all input variables are determined as functions of s, sampling uniformly over s

produces samples along a “search curve” over the input space of the xi. Figure 18.11 shows

as an example the search curve produced for two input variables, using the triangular trans-

formation given in (18.19), with ω1 = 1 and ω2=4. Notice that taking evenly-spaced values

of s over [−π, π] results in values of x1, x2 that oscillate once over the range of x1 and four

times over the range of x2.

Clearly, a desirable property of the search curve is that it should be able to explore the

input space as efficiently as possible; in other words to generate a space-filling design. Given

a choice of transformation function, the extent to which the sampled points along the search

curve fill the input space is dependent on the choices of the ωi, and n, the number of sample

points. To illustrate this, Figure 18.12 shows the points generated by transforming s into

two input variables with three different sets of search frequencies. Although in all three cases

n is the same, the space-filling properties of the three curves are very different. In particular,

when the two frequencies share common factors (such as in Figure 18.12(a), where ω1 = 10

and ω2 = 20 = 2ω1), the input space is explored very poorly because the curve repeats itself

with a period of π/5. In contrast, in Figure 18.12(c), where ω1 = 10 and ω2 = 21, the only

common factor is 1, which results in a better search curve because the points are unique over

the whole range of s. The problem of frequency selection is not as simple as simply choosing,

for example, large prime number values of ωi, because more sample points are then required
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to adequately represent the search curve due to the Nyquist criterion – this is explained in

a little more detail in the following section. In fact, the choice of the ωi requires a balance

between higher frequency and lower sample size. Sets of ωi that optimise the space-filling

properties of the search curve, for given dimensionality and sample size, can be found in

Schaibly and Shuler (1973).

18.4.2 Calculation of sensitivity index estimates

Given the transformation of variables, f(x) is now expressed as a function f(s) which is

periodic over 2π. As such it can be expanded as a Fourier series:

f(s) =
A0

2
+
∞∑
r=1

(Ar sin(rs) +Br cos(rs)) (18.20)

with coefficients given as,

Ar = 1
2π

∫ π
−π f(s) cos(rs)ds

Br = 1
2π

∫ π
−π f(s) sin(rs)ds,

(18.21)

which can also be viewed as the “amplitudes” of f(s) at a given frequency r, or in other

words, the contribution of frequency r to the function. This provides the basis for FAST —

the coefficients of the Fourier terms at r = ωi can be interpreted as a measure of sensitivity,

because if the function output has a strong component at frequency ωi, this implies that it

is strongly affected by input xi. The corresponding estimators for the coefficients in (18.21)

are:
Âr = 1

n

∑n
j=1 f(sj) cos(rsj)

B̂r = 1
n

∑n
j=1 f(sj) sin(rsj)

(18.22)

The use of the Fourier series allows expressions for the variance and partial variances of

the output y. The expression for V (y) can be given in terms of the coefficients of the Fourier

series as follows (Koda et al., 1979),

V (y) = 1
2π

∫ π
−π

(
f 2(s)ds− E(y)2

)
ds

= 2
∞∑
r=1

(A2
r +B2

r ).
(18.23)
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In practice this expression is truncated to a maximum frequency R and is therefore an ap-

proximation to the variance. Similarly, the partial variance of y, Vxi [Ex∼i
(y|xi)] (as discussed

in Section 18.2), can be expressed in terms of the coefficients that correspond to the frequency

ωi and its multiples (harmonics) pωi, where p is a positive integer (Koda et al., 1979):

Vωi
= 2

∞∑
p=1

(
A2
pωi

+B2
pωi

)
, (18.24)

which will again be truncated to a maximum order p = M , i.e. the Mth harmonic (multiple)

of ωi. The calculation of first-order sensitivity indices proceeds by noting that Si = Vωi
/V (y).

A problem with (18.24) is that of interference: for higher values of p there will inevitably

exist some pth harmonic of ωi that is the same frequency as a qth harmonic of ωj (the

sampling frequency of another input variable xj), such that pωi = qωj. This means that the

coefficients of this frequency would be counted in both Si and Sj, resulting in estimation

bias. However, the amplitudes of higher harmonics in (18.24) generally decrease, so that if

the ωi are carefully chosen, any interferences up to the truncation order will be minimal.

As with Monte Carlo methods, the precision of the FAST estimates increases as n, the

number of sample points, increases. For FAST, n should be at least 2Rωmax + 1, where ωmax

is the highest frequency considered in the estimators (18.23) and (18.24), a limit which is

imposed by the Nyquist criterion (Nyquist, 1928). The required n can therefore become

quite high as k increases, since higher frequencies are required to avoid interference. FAST

additionally suffers from a number of sources of bias – first, that the Fourier series used to

approximate the model must be truncated, and second that for any given set of ωi there will

be points in the input space that can never be sampled no matter how many sample points

are used. Although the Fourier series is known to converge to any periodic function that is

square-integrable (Carleson, 1966) (the same property as the Monte Carlo estimators), the

existence of bias suggests that the Monte Carlo method should generally be preferred when

possible. Some further discussion on bias in FAST can be found in Xu and Gertner (2011);

Tissot and Prieur (2012).
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18.4.3 Extended FAST

An extension to FAST was proposed in Saltelli et al. (1999), which additionally allows the

estimation of the total effect indices discussed in Section 18.2. It proceeds by the observation

that the set of frequencies not in the set of search frequencies and their harmonics (i.e.

ω 6∈ {pωi}; p = 1, 2, 3, ....; i = 1, 2, ..., k) contains information on the residual variance

that is unaccounted for by first order effects, which means that it contains information on

the variance due to interactions of any order between variables (see again (18.3)). In the

configuration described above, however, there is no obvious way to attribute this residual

variance to interactions of particular inputs.

The proposal (known as “Extended FAST”) is therefore to use a high frequency ωi for

the ith variable, then to assign a set of low frequencies to all the remaining variables, such

that their frequencies and harmonics {pωj}Mp=1, j 6= i, will be lower than ωi/2. The result

is that the information about the output variance explained by the x−i variables, including

all interactions between them, is isolated in the frequencies below ω/2. By summing the

variances from all these frequencies, an estimator for Vx∼i
[Exi (y | x∼i)] is obtained, which

can be directly used to estimate ST i – see (18.6).

The obvious drawback to this method is that, whereas the estimation of all the Si can be

performed with one search curve, to estimate all the ST i requires k search curves. However,

the approach has still been shown to be of at least comparable efficiency to the Monte Carlo

approach given in Section 18.3 (Saltelli et al., 1999), although the sources of bias discussed

in the previous section mean that the Monte Carlo method may still be preferable in some

cases.

18.4.4 Random Balance Designs

Since different frequencies must be used to investigate each variable, the computational

cost of FAST quickly rises with k (albeit less than with the Monte Carlo approach), because

higher frequencies are required to avoid interferences between harmonics. Due to the Nyquist
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Figure 18.13: A 2D example of a RBD sample before and after scrambling of coordinates,
with ω1 = ω2 = 1.

criterion, this requires more sample points. The Random Balance Design (RBD) approach to

FAST (Tarantola et al., 2006) circumvents this to some extent by using a single frequency ω

for all inputs. With no further modifications here, the points would be very poorly distributed

in the sample space - in fact they would be limited to a straight line (see Figure 18.13). The

key to RBD, which was first proposed as an approach to experimental design back in 1959

Satterthwaite (1959); Budne (1959), is to then take random permutations of the coordinates

of these points. As an example, seven points for two input variables are generated using

transformation (18.18). Scrambling involves independently randomly permuting columns,

for example as follows,

x1 x2 x1 x2
0.50 0.50 0.50 0.59
0.18 0.18 0.18 0.18
0.14 0.14 0.14 0.77
0.45 0.45 =⇒ 0.45 0.14
0.77 0.77 0.77 0.45
0.91 0.91 0.91 0.50
0.59 0.59 0.59 0.91

where the first two columns represent the sample before scrambling, and the last two show

the sample after scrambling. These points are also illustrated in Figure 18.13 – notice that



32 CHAPTER 18. DESIGN FOR SENSITIVITY ANALYSIS

the scrambled points fill the input space quite well because the design is very similar to a

Latin hypercube (see Chapter 19).

In order to calculate sensitivity indices, the model is run at the points given by the random

balance design, and then for a given input i the points are sorted into increasing order with

respect to xi, which recreates a periodic function of xi. Then the first-order sensitivity indices

can be calculated using (18.22)-(18.24) in the same way as the standard FAST method. The

advantage of RBD is that, since the same frequency can be used for all inputs (which can

be low, e.g. ω = 1), the number of sample points required is less than conventional FAST.

However, the drawback is that when estimating the effect of xi, the random scrambling of the

input variables generates random noise in the signal of xi, resulting in a biased estimation of

Si. A bias-corrected estimator for sensitivity indices of any order has in fact been proposed

by Tissot and Prieur (2012), where a more detailed discussion on bias in RBD can also be

found. Readers might also want to refer back to the original extensive discussion on bias and

other issues surrounding RBD (in the general context) after Satterthwaite’s original paper

(Youden et al., 1959). RBD has also been extended to compute total effect indices – readers

are referred to Mara (2009) for more details.

18.5 Screening Designs

In the case where the user has access to the model, but it is expensive to run and there

are a large number of input variables (Case 1C, see Section 18.1.2), screening methods offer

a computationally-efficient way of identifying influential and non-influential variables. In

this setting, it is not possible to use emulators (see Section 18.6) because they become

increasingly expensive to fit as the number of model inputs increases, so are not suitable for

high-dimensionality problems. Typically, screening methods are used in the “factor fixing”

setting, i.e. to eliminate uninfluential variables before applying a more informative analysis

to the remaining set (thus reducing the dimensionality – see again Figure 18.2), although

they can also be used as a sensitivity analysis in their own right. The reason a user might

prefer a variance-based measure however, is because screening measures do not have a clear
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Figure 18.14: Basic OAT design in two dimensions; red crosses indicate design points

interpretation in terms of contribution the output variance, in contrast to Si and ST i.

The most common screening approach, suggested by Morris (1991), is an extension of a

basic method of sensitivity analysis, the one-at-a-time (OAT) design. Basic OAT designs

simply involve varying one input whilst keeping all other inputs fixed at nominal (mean)

values (see Figure 18.14). While this gives some information about the behaviour of the

model, it is a very limited analysis because the sensitivity of input variables is only seen

at the nominal value of the remaining inputs, and the extremities of the input space (i.e.

the corners in Figure 18.14) are not explored. Morris’s approach, which will be called the

“elementary effects method” overcomes this problem by performing a number of OAT designs

at random locations in the input space, rather than being restricted to nominal values. In

this way nonlinearities and interactions can be accounted for by observing how the sensitivity

of an input variable varies when moving about the input space.

18.5.1 Winding stairs design

The elementary effects design begins by dividing the range of each input into M equally-

spaced intervals (M being chosen by the analyst), such that the input space is divided into

a grid of points. The design then proceeds by selecting a random point from this grid
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as a starting point, then moving in steps of ∆ in each coordinate direction, where ∆ is a

predetermined multiple of 1/(M − 1). This design was stated in general terms by Morris

(1991), but one implementation, known as the “winding stairs design” in some literature

(Campolongo et al., 2011) is given here as an example. The design proceeds as follows:

1. A random point on the grid is selected as the first design point.

2. The first input, x1, is varied by an amount ∆j, which is a randomly chosen multiple of

the intervals in the grid, while keeping all other inputs fixed. This is the second design

point.

3. Using the previous design point as a starting point, the next input, x2 is varied by the

same amount ∆j, keeping all other inputs fixed.

4. Step 3 is repeated for all k inputs.

5. Steps 1-4 are repeated for j = 1, 2, ..., n (n is selected by the user).

This design results in n trajectories, each consisting of k + 1 points (see Figure 18.15 for an

example in three dimensions with n = 5). Because each trajectory is built by moving just

one variable at a time, it is essentially a form of an OAT design. However, in the elementary

effects design, there are n OAT designs in each xi direction, at different points in the input

space, which is much more informative than a single OAT design. The efficiency of the

winding stairs design can be improved slightly by using the last point of the jth trajectory

as the starting point of the (j + 1)th trajectory. This would then form a single continuous

trajectory with cost nk+ 1 instead of n(k+ 1) in the case of the design stated here in Steps

1-5, although this may come at the expense of exploring the input space less thoroughly.

Other variations of these OAT designs are discussed by Morris (1991), including “clustered”

designs which can use fewer sample points to calculate the same number of elementary effects

— readers are referred to the original article for more details.
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Figure 18.15: A trajectory screening design in three dimensions, with n = 5.

18.5.2 Measures

Let x
(i)
j and x

(i′)
j be, respectively, a point in the input space, and a point that differs from

x
(i)
j only in the value of xi. The point x

(i)
j will therefore be the preceding point to x

(i′)
j

in the five steps just described. Sensitivity is then estimated for the ith input using the n

“elementary effects” {ξji}nj=1, where

ξji =
x
(i′)
j − x

(i)
j

∆j

=
x
(i′)
j − x

(i)
j

|x(i
′)

ji − x
(i)
ji |

(18.25)

where j is the index over trajectories. The first measure of sensitivity for the ith input is

thus estimated as the mean of the ξji,

µ̂i =
1

n

n∑
j

ξji. (18.26)
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A further useful measure of nonlinearity and interaction is given by the variance σ2
i of the

elementary effects, which is estimated as follows:

σ̂2
i =

1

n− 1

n∑
j

(ξji − µ̂i)2. (18.27)

The logic here is that if the response of the output to a given input were perfectly linear,

the elementary effects would be identical anywhere in the input space (and hence σ̂2
i would

be zero); in the nonlinear case the opposite would be true.

A drawback with the sensitivity measure given in (18.26) is that if the main effect of

an input is non-monotonic, the average of the elementary effects may be close to zero even

though, individually, they may be significant positive or negative values. The result is that

the measure µ̂i could potentially miss influential variables (although one would observe a

high value of σ̂2
i ). A modified measure µ∗, proposed in Campolongo et al. (2007) suggests

the use of the mean of the absolute values of the elementary effects, i.e.

µ̂∗i =
1

n

n∑
j

|ξji|. (18.28)

By using µ̂i, µ̂
∗
i and σ̂2

i in conjunction, one can assemble a picture of the strength and nature

of the effect of each input at a low computational cost.

18.5.3 Radial design

A drawback of the winding stairs design is that there is no guarantee that the trajectories

are well-spaced, and that the input space has been well-explored given the number of runs.

A glance at the design in Figure 18.15 shows that points can sometimes be close to one

another, therefore inefficiently exploring the input space. An alternative implementation of

this design uses a so-called “radial” configuration based on Sobol’s LPτ sequence to achieve

a screening design with better-spaced trajectories (Campolongo et al., 2011). This design is

in fact almost exactly the same as that used in variance-based sensitivity analysis, but will

be repeated here for clarity.
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To construct the radial design, an LPτ sequence of n points in 2k dimensions is generated

and written as an n × 2k array (k being the number of model inputs). Let the first k

columns be called the “baseline points”, i.e. n points in k dimensions which will be denoted

as a matrix A, with rows (individual points) {Aj}nj=1. The remaining k columns are called

the n “auxiliary” points in a matrix B of the same size, with rows {Bj}nj=1. For a given

baseline point Aj and auxiliary point Bj, a radial configuration of k+1 points is constructed

as the following,

Aj,1, Aj,2, Aj,3, ..., Aj,k

Bj,1, Aj,2, Aj,3, ..., Aj,k

Aj,1, Bj,2, Aj,3, ..., Aj,k

Aj,1, Aj,2, Bj,3, ..., Aj,k
...

Aj,1, Aj,2, Aj,2, ..., Bj,k

where e.g. Aj,1 is the first coordinate of Aj, the jth row of A. This configuration is repeated

for j = 1, 2, ..., n, resulting in n sets of k+1 points: a total of n(k+1) model runs altogether.

Notice that each set of k + 1 points (as shown above) defines a “star” with Aj as its centre

and the other points at steps in each coordinate direction, defined by the coordinates of Bj.

Figure 18.17 shows an example of the radial design in three dimensions, with n = 5, and

Figure 18.16 shows the construction using the A and B matrices. Comparing Figures 18.15

an 18.17 one can see the strengths of each design: the spacing between trajectories/stars

is better in the radial design because the centre points are guaranteed to be well-spaced,

being drawn from the Sobol’ sequence. On the other hand, the spacing of points within each

trajectory/star is arguably better with the winding stairs design, since points are allowed to

differ in more than one variable. Which of these properties is more important, and whether

there is perhaps an advantage in combining the two designs, is left as an open question.

Since in Sobol’ sequences the values of coordinates tend to repeat (see the example of

the sequence in Figure 18.6), it is recommended that the baseline point Aj is not paired

with Bj, but rather with a different row, otherwise there could be no perturbation in certain

dimensions (this problem is also mentioned in Section 18.3). It has been suggested that

pairing Aj and Bj+δ, where δ = 4 gives good results (Campolongo et al., 2011), although
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Figure 18.16: Construction of the first three points of the radial design based on the Sobol’
sequence (design shown in Figure 18.17). Values from the B matrix are shown in grey.
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Figure 18.17: A radial screening design in three dimensions, with n = 5.
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Figure 18.18: Collapse of radial design when projected onto a subspace: (a) a radial design
in three dimensions; (b) the same design projected onto the subspace of x1 and x3.

there is no reason not to consider higher values of δ or to program the algorithm to skip

any replicated values. In any case, this “row shift” means that for a design of n radial

configurations, one needs a Sobol’ sequence of n+ δ points in 2k dimensions. This still has a

computational cost of n(k+1) runs because the first δ rows of B and the last δ rows of A are

discarded. Indeed, this “row-shift” strategy could also be applied to the estimators for the

variance-based sensitivity indices discussed in Section 18.3, but is not generally deemed to be

an issue since when estimating ST i one is in the domain of Case 1A (a cheap computer model

that can be run thousands of times) where an extra few model runs make little difference,

whereas in the screening setting (Case 1C) one has to conserve model runs as much as

possible.

The elementary effects method is often used in the factor fixing setting (identifying input

variables that have little or no effect on the model output), with the possible intention of

estimating sensitivity indices on the remaining set of “important” variables via Monte Carlo

methods. An advantage therefore of using the radial design, noted in Campolongo et al.

(2011), is that since it is effectively the same as the Monte Carlo design, the points can be

re-used as the basis of a Monte Carlo design for estimating sensitivity indices. Alternatively

(and perhaps more realistically), one might want to fit an emulator to the reduced set of input
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variables, since the computational cost of Monte Carlo methods is likely still prohibitive even

after screening. In that case, the OAT-type designs discussed in this section (both winding

stairs and radial) are wasteful since if they are projected onto the reduced-dimensionality

subspace of the set of screened inputs, for every input that is discarded, n model runs are

lost. To see why this is, consider the example in Figure 18.18. A radial design is built in three

dimensions, the elementary effects method is applied, and x2 is found to be unimportant.

It is desired to examine the remaining inputs (x1 and x3) in more detail using an emulator.

When the design is projected into the subspace of x1 and x3, the points that differ only

by a step in the x2 direction, a total of n points, one for each “star”, are now duplicate

points. A recent approach that overcomes this problem uses a set of simplex designs to

estimate screening measures (Pujol, 2009), which have the property that all design points

are retained after screening out unimportant variables.

18.5.4 Example

To show a simple example, the design shown in Figure 18.17 is used to estimate the µi, µ
∗
i

and σ2
i measures on a test function which is defined as,

y = 3x21 + 2x1x2 − 4π sin(x3); (18.29)

Figure 18.19 shows scatter plots of the function values against each input, using random

uniform sampling from [0, 1]3 to give a visual idea of the behaviour of the function. The

screening design is run with n = 5 and k = 3 (exactly as in Figure 18.17); a cost of 20 model

runs. Figure 18.20 shows the results of the screening analysis. Input x2 is clearly the least

influential by any measure, and is relatively linear, having a small value of σ̂2
i . Similarly, x1

is quite linear (having also a small value of σ̂2
i ), but is judged to be more important by its

µ̂i and µ̂∗i measures. In both these cases µ̂i = µ̂∗i , which indicates monotonicity. For x3 one

can observe a much higher σ̂2
i value, indicating a strong nonlinearity. Finally, the fact that

µ̂3 6= µ̂∗3 indicates that the model is non-monotonic with respect to x3. These results are

reflected by the scatter plots in Figure 18.19.
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Figure 18.19: Scatter plots for test function (18.29). Note that these are generated using
random uniform sampling from [0, 1]3 — these are not the same design points used in the
screening design.
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Note that the screening measures do not have an interpretation with regard to the variance

of the output (as compared to the S and ST measures from Section 18.2), but they allow the

user to sort between influential and uninfluential variables. Consider also that the example

given is trivial, since screening is generally for use with high-dimensional problems, but even

with 20 runs the order and to some extent the magnitude of importance of each variable can

be distinguished with these relatively simple measures, as well as information regarding the

linearity and monotonicity.

18.5.5 Discussion

It is interesting to consider briefly the similarity of the estimator of µ∗ in (18.28) and the

estimator for ST i given in (18.12). Let xj be the jth point of a random or quasi-random

sequence in the input space, and let x
(i′)
j be a point that differs from xj only by the ith

variable. Let Ex∼i
[Vxi (y | x∼i)], the numerator of ST i, also be denoted as VT i as before.

Then the estimators for µ∗i and VT i can be stated in similar terms as follows,

µ̂∗i = 1
n

n∑
j=1

∣∣∣∣f(x(i′)
j )−f(xj)

∣∣∣∣
|x(i
′)

ji −xji|

V̂T i = 1
2n

n∑
j=1

∣∣∣f(x
(i′)
j )− f(xj)

∣∣∣2 .
(18.30)

where the estimator for µ∗i has been written slightly differently compared to (18.25) and

(18.28) since in the radial design all k elementary effects in each “star” use the same centre

point, xj. Notice that both measures rely on averages of model outputs from multiple OAT

designs conducted at different points in the input space. The only differences (up to a

proportional constant) are that µ̂∗i uses the absolute value of (f(x
(i′)
j )− f(xj)), whereas ŜT i

uses the square, and µ̂∗i also incorporates the information about the distance between x
(i′)
j

and xj, which is instead discarded by ŜT i.

Another very similar related measure of sensitivity that has been recently the subject of

interest, under the heading of “derivative-based global sensitivity measures” (DGSM) is the
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integral of squared derivatives, i.e. a measure νi =
∫
X (∂f/∂xi)

2dx (Kucherenko et al., 2009).

Using the notation just defined, its estimator is stated as

ν̂i =
1

n

n∑
j=1

∣∣∣f(x
(i′)
j )− f(xj)

∣∣∣2
|x(i

′)
ji − xji|

, (18.31)

with the difference that the x
(i′)
j and xj points are defined to be very close to each other to

provide as close an approximation as possible to the partial derivative at xj. Some further

observations on the similarities of these three measures, and further information on DGSM

are found in Sobol and Kucherenko (2009).

Connections can also be found between the radial design (Figure 18.17) and the Monte

Carlo design for estimating Si and ST i (Figure 18.7), and their respective design matrices

(Figures 18.16 and 18.6). One can see that the two designs are conceptually identical, with

the only difference being that the screening design here uses a shift of the B matrix to avoid

replacing a coordinate with an identical value. Recalling the discussion on the similarity of

the estimators of µ∗i and ST i in the previous section, it is evident that the elementary effects

method and the Monte Carlo estimation of sensitivity indices have much in common.

Finally, in some cases the number of input variables may be so large, or the cost of running

the model so high that even the designs here may be too expensive. In that case, one option

available to the analyst is to use grouped designs, where inputs are grouped and designs

are built with respect to each group, rather than to each input. In that case one would

have a measure of sensitivity for each group, but be ignorant of the relative sensitivity of

inputs inside each group. This concept is discussed more in Watson (1961); Morris (1991);

Campolongo et al. (2007); Moon et al. (2012).

18.6 Emulators

In Case 1B (the model is expensive to run but the dimensionality is not too high) and Case

2 (points are “given” and the analyst cannot specify new points) – refer back to Section
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18.1.2, a general method is presented here which adopts a data modelling approach. The

concept is to fit an emulator (a relatively simple mathematical function, also known as a

metamodel) to the data, which behaves in the same way as the model itself. The emulator

can then be used to estimate the model output at any point in the input space, allowing

analytical or Monte Carlo estimation of the Si and ST i (see Section 18.3) at a considerably

lower computation cost. An alternative approach is to project the data onto a single axis

xi (i.e. create k one-dimensional scatter plots) and attempt to infer the main effect E(y|xi)
using a smoothing regression approach, for example kernel regression. This latter approach

is discussed in Section 18.7.

The central idea of emulation is to find some relatively simple function η (the emulator)

such that it closely approximates the output of the model f at any point in the input space,

i.e. η(x) ≈ f(x), ∀ x ∈ X . If η is considerably cheaper to evaluate at a given x than

the original model, but produces sufficiently similar results for any point in the input space,

then it can be used to generate a very large number of estimated model output values,

for example at the points specified by a Monte Carlo design for estimating Si and ST i (see

Section 18.3). Even better, if η is analytically tractable it can be used to calculate sensitivity

indices analytically, because (18.2) and (18.6) can be expressed as integrals which can be

solved if η(x) is sufficiently simple. This then bypasses Monte Carlo methods altogether and

the associated approximation error of numerical integration.

The four steps associated with building an emulator are,

1. Select a type of emulator, η, that is appropriate for emulating the model f(x). Options

could be as simple as a linear regression, to more complex methods such as Gaussian

processes, neural networks or smoothing splines. A brief description of some emulators

follows in this section, but for a more detailed treatment one should refer to one of the

many books on the subject, such as Bishop (2006).

2. Sample (run) the model f at appropriate points in the input space to provide “training

data” for the emulator. This will be a set of n points {x1,x2, . . . ,xn} and n correspond-

ing model outputs {y1, y2, . . . , yn} where the location of the inputs is usually chosen to

be a space-filling design or “optimal design” (see Section 18.6.3). Emulators can how-
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ever be fit to any sample of data (thus can be used for Case 2 problems) although in

areas of the input space with very few training data they will be less accurate.

3. Use the training data to estimate any parameters or hyperparameters associated with

the model (this is called “training” the emulator).

4. Check the accuracy of the estimator using methods such as cross-validation (an ap-

proach which involves training the emulator on a subset of the training data, and then

comparing the predictions of the emulator with the known model runs in the remaining

set of data).

A large number of different emulators are available – see for example Bishop (2006)); a

comparison of some of these methods in the context of sensitivity analysis can be found in

Storlie and Helton (2008). Once an appropriate emulation method is selected, the accurate

estimation of parameters can be achieved provided that a sufficiently-large sample of training

data (the given points) is available. How large this sample needs to be is dependent on the

type of emulator, the complexity of the model f , and increases dramatically with the number

of input variables (the so-called curse of dimensionality). For this reason, emulator-based

approaches are best suited to situations with few input variables — perhaps fewer than

thirty, depending on the emulator — which demand fewer model evaluations for training

data. Higher-dimensionality problems can sometimes be brought into the reach of emulators

by a precursory screening analysis (see Section 18.5) to reduce the number of variables (refer

back to Figure 18.2). While there are many emulators available in the literature, the following

sections give some brief information on only a small subset to give a flavour of the field.

18.6.1 High-dimensional Model Representation

A significant proportion of emulation methods rely on a technique known as High-Dimensional

Model Representation (HDMR), which seeks to approximate the model by performing a func-

tional decomposition of f into orthogonal terms, then truncating the series (Rabitz and Aliş,

1999; Li, Wang, Rabitz, Wang and Jaffé, 2002). This has already been given in (18.4), and
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is restated as:

f(x) = f0 +
∑
i

fi(xi) +
∑
i

∑
j>i

fi,j(xi, xj) + . . .+ f1,2,...,k(x1, x2, . . . , xk)

≈ f0 +
∑
i

fi(xi) +
∑
i

∑
j>i

fi,j(xi, xj)

(18.32)

where the series is truncated after the second-order terms, based on the (empirical) observa-

tion that the effect of third-order and higher interactions on the model output is negligible in

many models. The task then remains to find suitable orthogonal functions to approximate the

fi(xi) and fi,j(xi,j) (some approaches are discussed in Li, Wang and Rabitz (2002)). Orthog-

onality is satisfied for any two components fu(xu), fv(xv), of the functional decomposition

in (18.32) when
∫
X fu(xu)fv(xv)dx = 0, where u, v ⊆ {1, 2, . . . , k} and e.g. xu = {xi}i∈u.

The advantage of HDMR is that it alleviates to some extent the problem of dimensionality,

since a model with many inputs can be approximated by a sum of one and two-dimensional

terms which are relatively easy to fit.

One method for approximating the terms in the functional decomposition (18.32) which

is relatively simple is to use a series of orthogonal polynomial functions (Li, Wang, Rabitz,

Wang and Jaffé, 2002; Sudret, 2008; Draper and Smith, 1981). These take the form,

fi(xi) =
∞∑
r=1

α
(i)
r φr(xi)

fi,j(xi, xj) =
∞∑
p=1

∞∑
q=1

β
(i,j)
p,q φp,q(xi, xj)

(18.33)

where the φ are terms from a suitable series of orthogonal polynomials, and the α and β are

their corresponding coefficients. Of the many series of orthogonal polynomials, it is typical

to use either the Legendre or the Hermite types (Bayin, 2006). Clearly, it is necessary to

truncate the infinite series of each of the equalities in (18.33) to a certain order M , which is

usually done by discarding terms after the third order based on a heuristic assumption that

higher orders are negligible (Li, Wang, Rabitz, Wang and Jaffé, 2002), or in some cases by

sequentially adding terms and re-estimating coefficients until estimated sensitivity indices
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appear to converge (Zuniga et al., 2013). This gives the approximated functions as follows,

fi(xi) ≈
M∑
r=1

α̂
(i)
r φr(xi)

fi,j(xi, xj) ≈
M∑
p=1

M∑
q=1

β̂
(i,j)
p,q φp,q(xi, xj)

(18.34)

where the estimates of the coefficients α and β are obtained by minimising the squared

difference between the terms in (18.34) and their counterparts in the HDMR decomposition

one at a time. This minimisation problem can be expressed as a series of integrals which can

be solved by Monte Carlo integration (Li, Wang and Rabitz, 2002). The HDMR emulator

can then be built by assembling the terms from (18.34) into the truncated representation

in (18.32). However, due to the simplicity of the orthogonal polynomials, it is possible to

derive analytical expressions for Si and Si,j, which are as follows,

Ŝi =

∑∞
r=1(α̂

(i)
r )2

V̂ (y)
(18.35)

Ŝi,j =

∑∞
p=1

∑∞
q=1(β̂

(ij)
pq )2

V̂ (y)
(18.36)

where the summations are again truncated to the same orders used in (18.34). ST i may

be approximated from the sum of Si and its second order interactions, based on the same

assumption used in (18.33) that interactions above the second order do not contribute signif-

icantly to the model output (and therefore by extension to V (y)). The variance term V̂ (y)

can be calculated either from an analytical expression similar to those for the sensitivity

indices, or from the original sample data. The drawbacks to the use of orthogonal polyno-

mials are that the HDMR representation must be truncated, then a further truncation is

necessary of the polynomial series. Higher-order polynomials can be used, but this requires

the estimation of more coefficients, each of which has an associated Monte Carlo error, and

tends to increase the error rather than diminish it (Li, Wang and Rabitz, 2002).

A somewhat related method to HDMR with orthogonal polynomials is called polynomial

chaos expansion, which is an approach which involves representing the random variable of
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the model output, y, as a function of other random variables (the model inputs x) via a

polynomial expansion in orthogonal polynomials. The details of this method will not be

explored here, but the reader is referred to Sudret (2008) for details on the methodology in

the context of sensitivity analysis.

Another more complex approach for approximating functions that has been used with

considerable success is the use of smoothing splines (Ratto and Pagano, 2010). Smoothing

splines are most commonly used on univariate data but can be extended to the multivariate

case by the use of HDMR decompositions. In the following short introduction the univariate

case is therefore described for simplicity. A smoothing spline model assumes that the un-

derlying function to be emulated is continuous, has a continuous first derivative, and further

that the second derivative is square-integrable. The smoothing spline estimate arises from

considering the function g that minimises the following,

1

n

n∑
j=1

{yj − g(xj)}2 + λ

∫ 1

0

{g′′(x)}2dx (18.37)

The first term in this “tradeoff” expression is simply the sum of squared errors between the

training data and the emulator g — if the function were to pass through every data point

(exact interpolation), this term would be zero. The second term expresses the integral of

the square of the second derivative of g, which is a global measure of roughness, and λ is a

“tuning parameter” that controls the weighting between the two terms. Overall therefore, the

expression summarizes the tradeoff between interpolation and model simplicity. The solution

to this minimisation problem can be shown to be a natural cubic spline, with knots (joins

between the local cubic functions) at each of the data points. Natural cubic splines are simply

local cubic polynomial functions between each data point and the next, with the constraints

that the global function is continuous and the first derivative is continuous at knots. Since

multivariate spline emulators rely on HDMR decompositions however, estimates of total

effect indices ST i are difficult since the HDMR series is truncated (usually neglecting third-

order and higher interactions), so higher-order interactions that may contribute to ST i are

not accounted for. A common approximation is therefore to assume that ST i ≈ Si+
∑k

j=1 Si,j.

The basis functions of splines as described above are not mutually orthogonal and there-
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fore cannot be used in their standard form as the components of an HDMR emulator (Li,

Wang and Rabitz, 2002). However, a class of spline methods known as “smoothing spline

ANOVA models” allows the construction of mutually orthogonal spline basis functions via

the reproducing kernel Hilbert space approach, which is discussed extensively in Gu (2002).

An extension of multivariate splines, known as Adaptive Component Selection and Shrink-

age Operator (ACOSSO), uses a modified version of (18.37) that uses norms rather than

square-norms, and also includes the integral of the first derivative of g (Lin and Zhang,

2006). The result is that terms in the HDMR decomposition that contribute very little to

the function are eliminated, resulting in a simpler and more computationally-efficient emu-

lator. This approach has also been combined with state-dependent parameter regression, as

described in Ratto et al. (2007). Matlab scripts for performing sensitivity analysis with this

approach can be found in European Commission (2012).

18.6.2 Gaussian Processes

Another emulator that is widely used in sensitivity and uncertainty analysis is a Gaussian

process (GP), otherwise known as kriging. GPs are widely used in the machine learning

community as a sophisticated form of nonlinear regression and classification (Rasmussen

and Williams, 2006). In short, a GP is a distribution over functions, i.e. the random variable

of the distribution is a function rather than a single number or fixed-length vector. Instead of

returning only a point estimate ŷ for any given input point x (as in a standard regression), the

GP returns a specification for a Gaussian probability distribution (a mean and a variance).

Figure 18.21 shows an example of a simple one-dimensional GP fitted to a few points from

a sine wave. Notice that at any value of x the output y is estimated by the GP as a

predicted mean value (which forms a curve over the range of x) and a variance, here plotted

as plus/minus two standard deviations of the predictive distribution.

GPs are fitted to training data following a Bayesian procedure. A prior distribution over

functions is specified, which is then conditioned on the training points to give a posterior dis-

tribution over functions. Figure 18.21 shows an example of this process applied to data from
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Figure 18.21: Gaussian process examples: (a) samples from the prior distribution over func-
tions; (b) the GP conditioned on randomly-generated points from a sine wave. The dotted
line is the underlying sine function, the solid line is the fitted mean of the GP and the grey
region represents 95% prediction intervals.

a noisy sine wave — Figure 18.21(a) shows samples from the prior distribution over func-

tions, and Figure 18.21(b) shows the posterior distribution over functions after conditioning

on the training data.

The specification for the GP includes a number of hyperparameters. These may be es-

timated, for example, by plug-in estimators, e.g. by using maximum likelihood estimation

– this effectively treats the hyperparameters as known. Alternatively, one can assign prior

distributions to hyperparameters, then integrate them out (marginalise them) either analyt-

ically or using Markov Chain Monte Carlo methods – see Bishop (2006) and Chapter 16 for

more information on Bayesian inference). In this “full Bayesian” framework the confidence

intervals of the GP also include the uncertainty in the estimation of the hyperparameters.

GPs have the advantage that they do not invoke the HDMR assumption (of neglect-

ing higher-order interactions, see (18.32)), and as result can be used to estimate sensitivity

indices of all orders, including the ST i. A further useful property of the GP is that, given

certain assumptions, estimated sensitivity indices can be calculated analytically (Oakley and
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O’Hagan, 2004; Becker et al., 2012). Another extremely useful property is that, since the

GP is a probabilistic emulator, sensitivity indices can be stated with confidence intervals

which account for the uncertainty in the fit of the emulator (and also the uncertainty in the

hyperparameter estimation, when Bayesian inference is used). However, perhaps the main

weakness of GPs is that the cost of training scales poorly with n, the number of training

data, since it involves the inversion of a n × n covariance matrix at a cost of the order of

n3. This limitation impacts on the dimensionality of the problems to which GPs can be

applied, since more training data is required as the dimensionality increases. Added to the

fact that the estimation of hyperparameters becomes increasingly expensive as the dimen-

sionality increases, GPs tend to encounter problems emulating models with k > 30 inputs

or so, depending on computational resources (this is however the case with all emulators,

to some extent). A number of techniques are being developed to alleviate this problem –

see Rasmussen and Williams (2006) for some examples. Some fairly recent additions in the

field of GPs with respect to sensitivity analysis include a method of automatically screen-

ing out unimportant variables using the correlation parameter in the covariance function

(see Linkletter et al. (2006), based on Welch et al. (1992)), a method based on screening

variables in groups using GPs (Moon et al., 2012), and the use of multiple GPs divided by

decision trees to allow for discontinuous responses (Gramacy and Taddy, 2010; Becker et al.,

2013) (available as an R package). A very good general online resource on many aspects of

GPs, emulation and sampling can be found at Managing Uncertainties in Complex Models

(MUCM) Toolbox (2013).

As an example of how an emulator may reduce the number of model runs required for

sensitivity analysis, consider again the simple polynomial from (18.15). Using 128 points of

the Sobol’ sequence over the unit cube, a Gaussian process was trained (i.e. the hyperpa-

rameters of the mean and covariance functions were estimated using the training data), and

estimated sensitivity indices inferred analytically from the resulting posterior distribution.

Table 18.2 shows the results. The GP is achieving accuracies of three or more decimal places

on only 128 points – recall that the Monte Carlo estimator, for a similar level of accuracy,

requires several thousands of runs per variable, therefore the GP is at least an order of mag-

nitude more efficient. However, the GP and other emulators are only as good as their fit to

the data: here the polynomial function is a smooth, “well-behaved” function, which is an



52 CHAPTER 18. DESIGN FOR SENSITIVITY ANALYSIS

Variable Ŝi (GP) Si (analytic) ŜT i (GP) ST i (analytic)
x1 0.7566 0.7568 0.7715 0.7720
x2 0.0456 0.0456 0.0605 0.0608
x3 0.1829 0.1824 0.1830 0.1824

Table 18.2: Comparison of Si and ST i estimates from a Gaussian process regression against
analytical values

easy data modelling problem. For data that are heteroscedastic, discontinuous, or of varying

smoothness, the emulators are likely to be much less reliable. Additionally, they scale poorly

with dimensionality. However, in the cases where the model gives a relatively smooth output

(which appears to be the majority of physical models) emulators can offer a powerful solution

to the problem of analysing uncertainty and sensitivity for computationally-expensive mod-

els. For more detailed information on GPs please refer to Rasmussen and Williams (2006)

and Chapter 17 of this handbook.

Overall, there is no “best” emulator available. The approach will depend on compu-

tational resources, sample size and model dimension, amongst other things. Both (Bishop,

2006) and (Storlie and Helton, 2008) are recommended as background reading. Furthermore,

it is essential to test the fit of any emulator by methods such as cross validation.

18.6.3 Custom Sampling for Emulators

Although the points were considered as “given” in the discussion above, it can happen

that the analyst has the possibility to design their own set of training data for fitting an

emulator. This can be the case when, for example, the analyst only has a small number of

input variables, but a very computationally-expensive model (Case 1B in Section 18.1.2). In

this scenario it makes sense to go directly to an emulator approach, since pure Monte Carlo

would be too expensive and screening too inaccurate.

Experimental designs for fitting emulators can be divided into two categories - space-filling

designs, and model-based designs. In the former, the design is constructed to fill the sample

space as evenly as possible, which is to say that points should be as far apart from each

other as possible. The reasoning for this is that first, it is required to capture the behavior
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of the model over the whole input space with as few points as possible. Second, assuming

that the output of the model is deterministic and smooth with respect to its inputs, little

information can be gained by having points close to each other (since the outputs will be

very similar). For this reason, purely random sampling is not an efficient design.

For a general-purpose design for fitting an emulator, a space-filling design such as the

Sobol’ sequence discussed in Section 18.3 is a good choice. Sobol’ designs have a low-

discrepancy property that avoids “clumping” of points, and allow the sequential addition of

new points. For other space-filling designs the reader is referred to Chapter 19 or Niederreiter

(1992).

An even more sophisticated approach is to use “optimal design”. In this approach, the

design is constructed so as to optimise some emulator-dependent criterion of interest, thus

tailoring the design to the requirements of the emulator. For example, a popular criterion,

called “D-optimality”, is to select design points which minimise the variance of the estimators

of the emulator parameters. Another way to select design points is to minimise the maximum

variance of the emulator prediction at any given input point (G-optimality). Note however

that for emulators based on linear models or stationary Gaussian processes, these designs

are not dependent on the output of the model, only on the form of the emulator and the

values of its parameters. See Chapter 2, Section 2.3 for more information on D-optimality.

A further approach to building designs for emulators is to construct them sequentially.

One starts with an initial design with a few input points (e.g. a space-filling or optimal

design) and runs the model at these points. The emulator is fitted to this training data

(i.e. its hyperparameters are estimated), then the next input point is selected as the point

which optimises some criterion of interest. An example, for a GP, would be to choose the

point which returns the highest predictive variance. This new point is then run through the

model and used to re-estimate the hyperparameters. The procedure is repeated, choosing

each time the point with the highest predictive variance, until a design with a sufficient

number of points is created. The advantage of the sequential approach (known as adaptive

design) is twofold – first, the output values will influence the optimum placement of new

points, so knowledge of previous points will produce a more effective design than one that
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is constructed in one go. Second, by proceeding in small steps, one can generate exactly the

required number of points to reach some level of accuracy of interest, perhaps measured by

cross validation. More information on adaptive sampling can be found in Gramacy and Lee

(2009).

The theory of model-based designs is a large field of research that is beyond the remit

of this chapter, therefore the reader is referred to Atkinson et al. (2007) for a good general

resource. There is also a strong interest in Bayesian approaches to optimal design; a review

can be found in Chaloner and Verdinelli (1995).

18.7 Scatter Plot Smoothing

A useful approach for estimating first order sensitivity indices with “given” data is based

on one-dimensional nonlinear smoothing regression. From a computational point of view,

this method is less vulnerable to the curse of dimensionality, although it cannot be used to

calculate the total order sensitivity indices ST i.

A first visual indication of the effects of input variables can be gained by making k plots

of xi against y (see Figure 18.8). If the data shows any kind of trend (or shape) with

respect to xi, this indicates that xi has some effect on the output. Indeed, the effect of xi

on the output is described by the curve Ex∼i
(y|xi) — in other words, the expected value

of the model output if we were to fix xi at some value. Over the range of xi, Ex∼i
(y|xi) is

equivalent to a moving weighted average of the points in the xi against y plot. As long as the

xj, j = 1, 2, ..., n have been randomly drawn from their specified distribution p(x), Si can be

estimated by taking the variance of the y values of this curve (since Si = Vxi [Ex∼i
(y|xi)]).

To estimate such a moving average, it is a matter of using any of a number of smooth-

ing regression approaches. Kernel regression has been already used for sensitivity analysis

(Paruolo et al., 2013). As with any smoothing regression, the data are modelled as,

y = m(xi) + ε (18.38)
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where m(xi) is the smoothed curve (ideally equivalent to Ex∼i
(y|xi)), and ε is an independent

error term with mean 0 and a variance that may be dependent on xi. Although most

nonlinear regression approaches assume a fixed variance over xi, the smoothing curves that

result when this assumption does not hold are still valid, albeit less efficient. However,

nonlinear regression that accounts for heteroscedasticity is still a field of active research,

therefore this chapter does not venture into this territory and readers are referred to a

discussion in Ruppert et al. (2003) as a starting point for further information.

In the kernel regression setting, m(xi) is typically chosen to be either a local mean or local

linear kernel. The local mean estimator first proposed by Nadaraya (1964); Watson (1964),

for a single input variable xi, is expressed as,

m̂(xi) =

∑n
j=1w(xji − xi;h)yj∑n
j=1w(xji − xi;h)

(18.39)

where w is a weighting function and h is a tuning parameter. The weighting function

typically gives the strongest weight to points close to xi, which reflects the belief that the

closer two points are to each other in xi, the more likely they are to have similar values in

y. A commonly-used function that fulfils this requirement is a Gaussian density function

with standard deviation h. The local linear estimator is expressed in a similar fashion –

see (Bowman and Azzalini, 1997) for details – and is generally regarded as preferable to the

local mean, due to its improved properties near the edges of the data cloud. In all cases,

the smoothing parameter h can be optimised by cross-validation. Following the simple

polynomial example from (18.15), Figure 18.22 shows an illustration of local linear kernel

regression applied to scatter plots of y against each xi. The resulting estimates of sensitivity

are given in Table 18.3.

In order to estimate sensitivity from the fitted kernel regression, the estimated variance of

the conditional expectation can be calculated using a standard variance identity (the domain

of the expected value is explicitly stated as a subscript here for clarity),

Vxi{Ex∼i
(y|xi)} = Exi{Ex∼i

(y|xi)2} − Exi{Ex∼i
(y|xi)}2. (18.40)
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Figure 18.22: Local-linear kernel regression applied to the polynomial function.
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Variable Ŝi (kernel) Si (analytic)
x1 0.7345 0.7568
x2 0.0494 0.0456
x3 0.1821 0.1824

Table 18.3: Comparison of Si estimates from local-linear kernel regression of polynomial
function against analytical values

Then denoting Vi = Vxi [Ex∼i
(y | xi)] as before, Vi is estimated by the smoothed curve m̂(xi)

to give,

V̂i = Exi{m̂(xi)
2} − Exi{m̂(xi)}2. (18.41)

To evaluate (18.41) one simply calculates a large number of values of m̂(xi) at different

locations and uses the standard estimator for sample variance for each term.

Note here that since the expectation of a random variable A is defined as
∫
Ap(A)dA,

the expected values in (18.40) should be evaluated with respect to p(xi), the probability

distribution of xi. The simplest way of doing this is to make kernel predictions at the same

xi values as the training data. A more sophisticated approach would be to estimate p(xi) with

kernel density estimation or a similar technique. In both cases, the practitioner should ensure

that the given data has been sampled with respect to the correct underlying distributions –

this may not necessarily be the case if the points have come from an optimization process,

for example.

While the examples here have focused on kernel smoothing, this is by no means the only

viable approach to estimating Ex∼i
(y|xi). The problem is essentially an emulation/regression

problem in one dimension, which can be tackled by any number of methods such as smoothing

splines – see e.g. Ruppert et al. (2003) or earlier in Section 18.6, or Gaussian processes

(Rasmussen and Williams, 2006). Even basic linear regression will provide a good estimate

if the data is sufficiently linear. Good references on parametric and nonparametric regression

can be found in Bishop (2006) and Ruppert et al. (2003).

The estimation of Si using smoothing techniques is very closely related to the well-known

“coefficient of determination”, R2. The “standard” R2 is the square of the Pearson corre-

lation coefficient, and measures linear correlation between two variables. The nonlinear R2
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measure, which measures correlation when nonlinear regression is used, can be stated in gen-

eral terms as R2
nonlin = SSreg/SStot, where SSreg =

∑
j(m̂(xi,j)−ȳ)2 and SStot =

∑
j(yj−ȳ)2.

It can be seen therefore as the ratio of the variance explained by the regression of y on xi and

the total variance of y. Therefore if the function m(xi) is equal to Ex∼i
(y|xi), the nonlinear

R2 measure is exactly equivalent to Si.

Finally, it should be pointed out that while the idea of reducing a multidimensional prob-

lem to a series of one-dimensional problems is very appealing from a computational point

of view, it is not a “silver bullet” solution. The estimation is dependent on a good approxi-

mation of Ex∼i
(y|xi), which can be difficult to obtain depending on the data and smoothing

method used. Moreover, as the dimensionality of the problem increases, trends in scatter-

plots can be increasingly biased and/or less precise due to variation in other dimensions.

18.8 Conclusions and Discussion

In this chapter, a number of “best practice” methods have been outlined that address many

of the various situations that can confront an analyst. It is not claimed nor intended by the

authors that an exhaustive review of all methods has been addressed here, but the reader

should have found here enough material to apply or adapt to a practical case, with references

to other material to direct the reader to more in-depth descriptions.

It is however useful to summarise some areas not covered by the chapter. What did this

chapter leave out? An incomplete list is as follows:

• Gradient-based sensitivity measures (mentioned in Section 18.5.1) use a measure similar

to µ∗i given in (18.28), which is the integral of the squared partial derivative as a measure

of sensitivity, which has been shown to have a relationship with ST i – see Sobol and

Kucherenko (2009); Kucherenko et al. (2009).

• Polynomial Chaos Expansions, briefly mentioned in Section 18.6, constitute a significant

branch of emulator-based sensitivity analysis, but were omitted from the chapter due

to space limitations and with the intention of focusing more on the sampling aspect of
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sensitivity analysis. More information can be found in Sudret (2008).

• Moment independent methods form a class of sensitivity analysis approaches that ex-

amine how fixing an input variable modifies the entire empirical probability distribution

function of y – see Borgonovo (2007). The rationale behind these methods is that vari-

ance is but one of several possible moments that can indicate sensitivity. Such methods

focus on measures of “distance” between the unconditional distribution of y and the

conditional distribution of y|xi.

• A sensitivity analysis approach based on plots of how the sample mean varies as succes-

sively greater quantiles of the distribution xi are included is known as the “contribution

to the sample mean” (Bolado-Lavin et al., 2009), with a similar method based on the

contribution of the sample variance (Tarantola et al., 2012).

• Correlated input variables: variance-based sensitivity analysis (the variance decompo-

sition given in (18.3)) is based on the assumption that the probability distributions

of input variables are independent. Quite often, however, a modeller encounters the

situation where this assumption is not valid. In such cases other methods must be

considered, although this is a relatively immature field of research and (arguably) no

one “definitive” approach exists. Some examples of methods in the literature include:

(i) a method based on linear regression (Xu and Gertner, 2008); (ii) a method based

on decomposition of the input covariance matrix (Li et al., 2010); (iii) a copula-based

approach (Kucherenko et al., 2012), and (iv) an approach based on grouping inputs into

sets which are independent of one another but variables may be correlated inside each

group (Jacques et al., 2006).

The present chapter has in particular stressed the fact that a design should be explorative,

in contrast to approaches that rely on a single one-at-a-time experiment, a practice which

is so often seen in the literature but so poor at exploring nonlinear non-additive problems

(Saltelli and Annoni, 2010). It should always be noted however, that the designs that have

been described here only explore the uncertainty due to the input variables of the model.

This ignores the extremely significant “structural” uncertainty that results in the model’s

simplification of reality, which is extremely difficult to quantify.
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All the sensitivity analysis techniques here assume some knowledge of the probability

distributions of the input variables, from simple ranges in the elementary effects method to

full probability distributions in variance-based sensitivity analysis. As any practitioner of

sensitivity and uncertainty analysis knows, finding reliable information on distributions of

input variables can be the most challenging task in the whole process. Some literature gives

details on eliciting distributions from experts (O’Hagan et al., 2006), although this in itself

assumes that there are knowledgable experts available to consult. This issue is left as an

open problem.

Lastly, every sensitivity analysis is a case apart (since every model has its idiosyncracies),

and the choice of which technique to apply is highly dependent on factors such as the model

run-time, the dimensionality, linearity and whether the analyst can access the model and run

it at chosen input values or not. The outline that has been presented here should however

be helpful in devising a suitable approach to sensitivity analysis for a wide variety of models.
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ments by high dimensional model representations (HDMR)’, Chemical Engineering Science

57(21), 4445–4460.

Lin, Y. and Zhang, H. (2006), ‘Component selection and smoothing in smoothing spline

analysis of variance models’, Annals of Statistics 34(5), 2272–2297.

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D. and Ye, K. (2006), ‘Variable

selection for Gaussian process models in computer experiments’, Technometrics 48(4), 478–

490.

Magnus, J. R. (2007), ‘Local sensitivity in econometrics’, Measurement in economics: A

handbook pp. 295–319.

Managing Uncertainties in Complex Models (MUCM) Toolbox (2013), http://mucm.

aston.ac.uk/MUCM/MUCMToolkit/.

Mara, T. A. (2009), ‘Extension of the RBD-FAST method to the computation of global

sensitivity indices’, Reliability Engineering & System Safety 94(8), 1274–1281.



64 CHAPTER 18. DESIGN FOR SENSITIVITY ANALYSIS

Moon, H., Dean, A. M. and Santner, T. J. (2012), ‘Two-stage sensitivity-based group

screening in computer experiments’, Technometrics 54(4), 376–387.

Morris, M. (1991), ‘Factorial sampling plans for preliminary computational experiments’,

Technometrics 33(2), 161–174.

Morris, M. D., Moore, L. M. and McKay, M. D. (2008), ‘Using orthogonal arrays in the

sensitivity analysis of computer models’, Technometrics 50(2).

Murphy, J. M., Sexton, D., Jenkins, G., Booth, B., Brown, C., Clark, R., Collins, M.,

Harris, G., Kendon, E., Betts, R. et al. (2009), ‘UK climate projections science report:

climate change projections’.

Nadaraya, E. (1964), ‘On estimating regression’, Teoriya Veroyatnostei i ee Primeneniya

9(1), 157–159.

Niederreiter, H. (1992), Quasi-Monte Carlo Methods, Wiley Online Library.

Nyquist, H. (1928), ‘Certain topics in telegraph transmission theory’, American Institute

of Electrical Engineers, Transactions of the 47(2), 617–644.

Oakley, J. and O’Hagan, A. (2004), ‘Probabilistic sensitivity analysis of complex models: a

Bayesian approach’, Journal of the Royal Statistical Society B 66, 751–769.

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J.,

Oakley, J. E. and Rakow, T. (2006), Uncertain judgements: eliciting experts’ probabilities,

John Wiley & Sons.

Paruolo, P., Saisana, M. and Saltelli, A. (2013), ‘Ratings and rankings: voodoo or science?’,

Journal of the Royal Statistical Society: Series A (Statistics in Society) 176(3), 609–634.

Pearson, K. (1895), ‘Notes on regression and inheritance in the case of two parents’, Pro-

ceedings of the Royal Society of London 58, 240–242.

Pujol, G. (2009), ‘Simplex-based screening designs for estimating metamodels’, Reliability

Engineering & System Safety 94(7), 1156–1160.
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