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a b s t r a c t

This work illustrates available best practices to run a sensitivity analysis for ecological mod-

els. The properties of recommended methods and their ranges of application are illustrated

by applying the sensitivity analysis techniques to two test cases. The first one is a classic

Lotka–Volterra model, while the second one is a study on a fish population dynamics. Both

quantitative and qualitative approaches are applied and the differences between local and

global techniques are highlighted by using the test cases.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models and computer simulations are devel-
oped by ecologists at different scales of resolution and levels
of sophistication to study ecosystems and population dynam-
ics. In some instances models help to corroborate or falsify
hypothesis about the ecological system (e.g. is it true that
a postulate model of ecological communities interprets the
available evidence when uncertainties are weighted in? Are
species in equilibrium with one another?). Often models are
asked to answer specific questions about the present or future
behaviour of the system under analysis (e.g. is extinction
within a fixed time horizon a concrete threat?) or investigate
interactions among model components (Zaldı̀var et al., 1998).

The construction of a model is not a simple task; it is impos-
sible to identify a single model structure for a natural system
since the system is never closed and more than one model
will be plausible given the evidence (Konikov and Bredehoeft,
1992; Oreskes et al., 1994; Beven et al., 1998). Further, models
themselves are built under uncertainties in the values of the
factors (e.g. the growth rate of a specific population), in the

∗ Corresponding author. Tel.: +39 0332 789686; fax: +39 0332 785733.
E-mail address: andrea.saltelli@jrc.it (A. Saltelli).

parameterization of the system (e.g. the boundary conditions
of the dynamics) or in the choice of mutually exclusive sce-
narios (e.g. the choice of equations that describe dynamics).
Finally, uncertainty can be related to an inherent stochastic-
ity of the model (i.e. the dynamics includes a random term).
Issues of parsimony in model identification are discussed in
Young et al. (1996).

It is important to have a clear understanding of the types of
uncertainty that the method addresses, to give a correct inter-
pretation of the model results. Uncertainty associated with
model structure and model parameters can be reduced by col-
lecting more data, while uncertainty due to stochasticity in the
population (variability) cannot be reduced by further study.

Methods considering multiple sources of uncertainty, such
as model identification and parameter estimation, should
allow the identification of the contribution of each source to
the total predictive uncertainty (Wu and Tsang, 2004; Saltelli
et al., 2000a,b, 2004).

In Fig. 1 some possible approaches to incorporate uncer-
tainty propagation in the analysis are presented. The figure
exemplifies a technique known as bootstrap (sampling with

0304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2005.10.045
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Fig. 1 – Schematization of the: (a) parametric bootstrap; (b) bootstrap of the modelling process; (c) Bayesian approach.

replacement). Either the bootstrap is applied to the model
parameters (Fig. 1a) or directly to the data (Fig. 1b). In the first
case, the model is assumed to be completely known, while in
the second case it is identified through the bootstrap replicates
(Chatfield, 1993). Fig. 1c illustrates the Bayesian approach,
where the posterior distributions for the models and their
parameters are estimated from their priors and from the data
(see, e.g. Planas and Depoutot, 2000, and references therein,
as well as Saltelli et al., 2004, p. 170).

Debates on the reliability of environmental models
emerged both in the academy and among practitioners (Veld,
2000; Lomborg, 2001; Van der Sluijs, 2002). It has been argued
that while the scientific methods dictate the methodology
for drawing observations as well as the internal fabric of
mathematical model, the process of inferring models from
observations cannot be formalized scientifically (Rosen, 1991).
Moreover, models that encode as much information as possi-
ble on a given structure can be judged as irrelevant because

“they have many degrees of freedom and can be made to pro-
duce virtually any desired behaviour, often with both plausible
structure and parameter values” (Hornberger and Spear, 1981).
The main problem is that models cannot be validated (Konikov
and Bredehoeft, 1992; Oreskes et al., 1994), but only confirmed
or corroborated by demonstrating agreement between obser-
vations and predictions. Scientists are thus not supposed to
reveal the truth by using models, but only to provide evi-
dence (often expressed with probability) based on incomplete
knowledge (Funtowicz and Ravetz, 1992). Further reading on
the critique of models can also be found in Leamer (1990) and
Funtowicz and Ravetz (1993, 1999).

In this view, uncertainty and sensitivity analysis (UA,
SA) can help investigating the way uncertainties of differ-
ent orders propagate on the output variables, and on the
inference which the model is called to support. Uncertainty
analysis quantifies the variability of the output caused by the
incomplete knowledge or misspecification of the modeller.
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Sensitivity analysis aims at establishing the relative impor-
tance of the input factors involved in the model, answering
questions such as:

“Which of the uncertain input factors are more influential
in determining the variability affecting the inference?”

“If the uncertainty of one of the inputs could be elimi-
nated, which one should be chosen in order to reduce to
the minimum the variance of the output of interest?”

“Are there factors whose effect on the output is so low that
they can be confidently fixed anywhere in their ranges of
variation without affecting the results?”

Some methods are available to attempt answering such
questions. These are the subjects of the present paper.

An overview of SA methodologies can be found in Saltelli et
al. (2000a, 2004, 2005). Some relevant applications of SA tech-
niques to ecological and environmental science include, e.g.
atmospheric chemistry (Campolongo et al., 1999a,b), transport
emissions (Kioutsioukis et al., 2004), geographic information
systems (Crosetto and Tarantola, 2001), environmental man-
agement (EPA, 2003) and population dynamics (Zaldı̀var and
Campolongo, 2000; Fieberg and Jenkins, 2005).

The role of UA and SA is crucial in ecological risk assess-
ment (see, e.g. Paustenbach, 2002), which applies analytical
models to estimate the impact of human actions on natural
resources and to interpret the significance of those effects
in light of the uncertainties identified in each component
of the evaluation process. The importance of characterizing
the variability in the risk estimate to support public and pri-
vate decisions is also a subject of debate. Stirling (1999) noted
that risk assessments are often presented as crisp numbers
conveying an idea of accuracy and precision that does not
correspond to the assessment process.

Some effort has been put in understanding the correct role
of SA from an environmental regulatory point of view. Both
the report on Good Practice Guidance and Uncertainty Management
in National Greenhouse Gas Inventories (EPA, 2003) and the Draft
Guidance on the Development, Evaluation, and Application of Reg-
ulatory Environmental Models (IPCC, 2000) provide information
about model use and model science in environmental settings.
EPA (2003) also contains recommendations on good practices
for UA and SA. In Europe, sensitivity analysis is mentioned in
the guidelines for impact assessment (EC, 2005).

Another domain where UA and SA play a crucial role is that
of composite indicators construction (Saisana and Tarantola,
2002; Saisana et al., 2005a). The request for a methodology
that certifies the quality of composite indicators exploiting the
use of UA/SA is exemplified by the Environmental Sustainability
Index 2005 (Saisana et al., 2005b), which assesses a country’s
progress toward environmental sustainability in 141 countries
worldwide.

The present work aims to present how SA techniques can
be used in ecological modelling. Different SA techniques will
be applied to two models for population dynamics, to illustrate
the properties of the various techniques and the suggested
domains of application. The paper’s stance is a methodolog-
ical one and the test cases used serve as illustrative (and
simplified) examples.

The paper is organized as follows. Section 2 sketches an
overview of SA techniques. Section 3 introduces two ecological
models and presents the results of the application of some SA
methodologies. Section 4 concludes.

2. Sensitivity analysis: an overview

2.1. Characteristics of an ideal SA method

In the following, a generic model is assumed to describe a
natural system. The model is represented by a mapping f (a
deterministic or stochastic function) which relates the inputs
domain to the output space:

Y = f (X1, X2, . . . , Xk).

The input factors (X1, X2, . . ., Xk) are supposed to be ran-
dom variables described by identified probability distributions
which reflect the uncertain knowledge of the system under
analysis. Y is taken to be a scalar, i.e. even in the application
we shall consider each output variable in turn.

If executed in accordance with available good practices,
SA can help the modeller to measure model adequacy (e.g.
does the model fit observation) and relevance (e.g. is the
model-based inference robust), to identify critical regions in
inputs space (e.g. which combination of factors corresponds
to the highest risk), to detect interactions between factors,
to establish priorities for research and to simplify the model
structure.

As discussed in the reviews quoted in Section 1, an ideal
SA methodology should be sensitive to the range of variation
of each input factor and to the shape of its probability distri-
bution. It should also operate simultaneously on all uncertain
inputs, so that interactions among factors can be detected. A
method is considered to be model independent (or model free)
when it is not affected (or deceived) by non-linearities or non-
additivities of the mapping f. Finally an ideal method should
be able to treat groups of factors as single factors, allowing for
a synthesis of the results and an easier interpretation.

A few heuristic settings for SA, each corresponding to a
specific stage or need of the modelling process, are suggested
in Saltelli and Tarantola (2002) and Saltelli et al. (2004). For
instance, the aim of the SA experiment can be the identifica-
tion of the most important factor/s which, if fixed to their true
values, would lead to the greatest reduction in the variance of
the output. This setting, known as factors prioritization set-
ting, can be used for the prioritization of research, as it allows
to identify (and rank) those factors which are most deserving
of better measurement in order to reduce the output variance
to the minimum. In general, since the true value of factors is
not known before its measurement, the prediction of sensitiv-
ity analysis in priority setting will be of a probabilistic nature,
e.g. “factor Xj seems to be the one that—on average, once fixed,
would reduce the most the output variance”. The purpose of
this approach is to allow a rational choice under uncertainty
(Saltelli et al., 2000a).

Another setting for SA can be that of screening non-
influential factors in the model, i.e. identifying those factors
that can be fixed at any given value in their domains without
significantly reducing the output variance (factors fixing set-
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ting). This setting is useful for model simplification or when
the modeller has prior beliefs about the importance of some
input factors, as it can help in proving or disproving a given
model representation.

In other cases the objective of SA can be the reduction of the
output variance to a lower threshold (variance cutting setting) by
simultaneously fixing the smallest number of input factors.
This setting could be of use when SA is part of a risk assess-
ment study and e.g. when a regulatory authority was to find
the width of the impact estimate distribution too wide. Note
that the variance cutting and factor prioritization settings may
appear to be very similar, as they both aim at reducing the out-
put variance. However, in the case of factor prioritization the
scope is to identify the most influent factors one by one, while
in the variance cutting setting the objective is to reduce the
output variance down to a pre-established level by fixing the
smallest subset of factors at once.

Finally, the interest of the modeller can be to study which
values of the input factors lead to model realizations in a given
range of the output space, e.g. above or below an assigned
threshold (factors mapping setting). For example, the analyst
wishes to divide the realizations of the Monte Carlo simula-
tion into two groups, e.g. by categorizing them as acceptable
or non-acceptable. This setting can be carried out using the
Smirnov test and the approach is known as Regionalized Sen-
sitivity Analysis (RSA, Hornberger and Spear, 1981).

2.2. Brief overview of the available methods

The most common classifications of available SA method-
ologies distinguish between quantitative and qualitative
methods and between local and global techniques.

Qualitative methods are aimed at screening, for example, a
few active factors within a system with many non-influential
ones. They do not give information on the relative difference
of importance. Quantitative techniques can be designed to give
information on the amount of variance explained by each fac-
tor. In general, the choice of which kind of method to use is
driven by cost, as local or qualitative methods are computa-
tionally less expensive.

In local approaches (also known as one-at-a-time, OAT,
methods) the effect of the variation of a single factor is esti-
mated keeping all the others fixed at their nominal values
(see, e.g. Rabitz, 1989; Turanyi and Rabitz, 2000; Cacuci, 2003
for applications).

Yet they cannot include the effect of the shape of the
density functions of the inputs, and they are not model inde-
pendent. Note that while in general all local methods are OAT,
the reverse is not true, because on can vary one-at-a-time by
a finite step of non-zero width.

Global approaches estimate the effect on the output of
a factor when all the others are varying, enabling the iden-
tification of interactions in non-linear and/or non-additive
models. Generally, global approaches allow the use of model-
independent methods as they do not require assumptions of
additivity or linearity. As a drawback, they are usually com-
putationally expensive to estimate, while local methods can
be set to produce system derivatives with a number of model
simulations much lower than the number of derivatives to be
estimated.

The simplest and most intuitive way to obtain a local
sensitivity index is to compute derivatives (Tomovic and
Vukobratovic, 1972; see Varma et al., 1999; Grievank, 2000 for
recent review). The sensitivity of the output Y to a perturba-
tion of an input factor Xi is estimated at a given value, X∗

i
, as

Y′
Xi

= ∂Y

∂Xi

∣∣∣
Xi=X∗

i

.

In situations where Y and Xi have different ranges of uncer-
tainty, a more balanced measure can be obtained normalizing
the derivatives by the factors’ standard deviations:

S�
Xi

= �Xi

�Y

∂Y

∂Xi

∣∣∣
Xi=X∗

i

.

The estimation of these local measures can be easily imple-
mented (with the scope of assessing the relative importance
of input factors) by solving systems of derivatives or taking
incremental ratios, but they are informative only if the model
is linear or if the range of uncertainty of the input factors is
small, the latter condition often ensuring the former.

The Standardized Regression Coefficients (SRCs) can be
viewed as an attempt to overcome shortcomings of local mea-
sures. Since they are built on regression analysis (see Section
3.1 for a detailed description) and based on Monte Carlo simu-
lation, the SRCs reflect the shape of the probability distribution
of each factor. Regression analysis allows also for the esti-
mation of the model coefficient of determination, R2, which
represents the fraction of the output variance explained by
the regression model itself. In the case of linear modelsg R2 = 1
and the SRCs exactly quantify the amount of output vari-
ance explained by each factor; when models are moderately
non-linear (i.e. R2 > 0.7), the SRCs can be still used to qualita-
tively assess the factors’ importance; finally, when R2 becomes
small, the SRCs cannot be considered as a reliable sensitiv-
ity measure. A typical example of failure of SRC is when the
model is non-monotonic, e.g. when the scatterplot of Y ver-
sus an influent factor Xj is bell-shaped. In this case, SRC(Xj)
can be small even if Xj is important. The quest for a method
independent from linearity, additivity and monotonicity of
the mapping has been satisfied by variance-based methods,
developed starting from the principle of variance decomposi-
tion. The procedure for applying variance-based methods in
numerical experiments is the same employed in the ANOVA
in experimental designs (Box et al., 1978; Santner et al.,
2003).

Different techniques have been used to decompose the out-
put variance into the contributions imputable to each input
factor. The most widely used are the Fourier Amplitude Sensi-
tivity Test (FAST), and the Sobol’ method. FAST (Cukier et al.,
1973, 1978; Koda et al., 1979a; McRae et al., 1982; Sobol’, 1990)
decomposes the output variance V(Y) by means of spectral
analysis:

V(Y) = V1 + V2 + · · · + Vk + K

where Vi is the amount of variance explained by factor Xi and
K is the residual (for some applications of FAST, see Koda et
al., 1979b; Koda, 1982; Koda and Seinfeld, 1982; Liepmann and
Stephanopoulos, 1985).
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The Sobol’ method is based on the same decomposition of
variance, which is achieved by Monte Carlo methods in place
of spectral analysis.

Both FAST and Sobol’ methods estimate sensitivity mea-
sures which summarize the model behaviour. These measures
concern the output sensitivity with respect to each factor

individually and the total factor sensitivity inclusive of inter-
actions. The most widely used measure, called the main effect
or the first-order effect of factor Xi, is defined as:

Si = Vi

V(Y)

Fig. 2 – (a) Sketch of the various techniques available and their use as a function of computational cost of the model and
dimensionality of the input space. AD means “automated differentiation”. (b) Decision tree resuming the principal
methods’ characteristics and applications. MCF means “Monte Carlo Filtering”, while FF, FP, VC and FM stand for “Factor
Fixing”, “Factor Prioritization”, “Variance Cutting” and “Factor Mapping”, respectively.
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and can be shown to be the proper measure to use for factor
prioritization setting (Saltelli and Tarantola, 2002).

Another useful measure describes the cases where the
combined effect of two (or more) factors is greater than the
sum of the individual effects, i.e. when the model is non-
additive and interactions are present. In principle, interactions
up to order k can be estimated but usually a synthetic measure
is used. This measure is the total effect index STi (Homma and
Saltelli, 1996) and it accounts for all the contributions to the
output variation due to factor i (its first-order effect plus all its
interactions). STi is effective for the factor fixing setting (see
also Section 3.3).

Monte Carlo-based estimates of FAST sensitivity measures
have been widely investigated, exploring the input space with
techniques like Latin Hypercube Sampling or pseudo-random
sampling (see, e.g. Hora and Iman, 1986; Iman and Hora,
1990; Ishigami and Homma, 1990; Krzykacz-Hausmann, 1990;
Saltelli et al., 1993; Homma and Saltelli, 1996; McKay, 1996).
The Sobol’ and FAST approaches have been also improved to
become computationally cheaper and easier to apply (Saltelli
and Bolado, 1998; Saltelli et al., 1999, 2000b; Saltelli, 2002).

In cases where the model contains a large number of fac-
tors or/and it is computationally too expensive, the application
of FAST or Sobol’ methods is not possible. In these cases, the
screening design developed by Morris (1991) and extended by
Campolongo et al. (2006) can be used. This method is com-
putationally cheaper, model free and can be used to identify
non-influential factors (factor fixing setting). Nevertheless, it
does not supply the variance decomposition obtained with the
variance-based measures. The method is briefly described in
Section 3.2.

Fig. 2 can be useful to choose among the different options,
methods and procedures available for sensitivity analysis.
Part (a) helps the user choosing the most suitable technique
depending on the number of factors of the model and on the
CPU time required to run it. Part (b) is a decision tree that
leads to a suggested approach depending on the type of model
(linear/non-linear, computationally cheap/expensive) and to
an appropriate measure on the basis of the settings introduced
above. Note that the computational cost of a model is deter-
mined by the number of runs (model evaluations) required,
as the CPU time needed to compute the sensitivity measures
once the model evaluations are available is usually negligible.

3. Applications

3.1. Simple test case—Lotka–Volterra population
model

Lotka–Volterra population model (for a review, see May, 1976;
Wangersky, 1978), is used here to present SA methods. The
classical Lotka–Volterra predator–prey model with a stable
solution describes the evolution of two species, one of which
feeds upon the other, via the system of two partial differential
equations:

dxt

dt
= rxt

[
1 − xt

K

]
− ˛xtyt,

dyt

dt
= −myt + �xtyt. (1)

Fig. 3 – Evolution of the prey (xt) and predator (yt)
populations estimated at the mean values of input factors.

Variables xt and yt denote the size of prey and predator popula-
tions, respectively, r the intrinsic rate of prey natural increase,
˛ the proportionality constant linking prey mortality to the
number of prey and predators, m the mortality rate of preda-
tors, � the proportionality constant linking the increase in
predators to the number of predators and prey, and K is a
maximum number of preys that the environment can support.

The role of four uncertain input factors, r, ˛, m and �, is
analyzed. The following uniform distributions are assumed:

r ∼ U[0.8, 1.8], ˛ ∼ U[0.2, 1], m ∼ U[0.6, 1],

� ∼ U[0.05, 0.15]. (2)

The constant K and the initial population sizes x0, y0 are
treated as known constants

K = 50, x0 = 8, y0 = 2.

Note that by allowing the input factors to be independent ran-
dom variables, the output factors, xt and yt, are also random
variables.

The time evolution of xt and yt for the mean values of uncer-
tain input factors, r = 1.3, ˛ = 0.6, m = 0.8, � = 0.1, is given in Fig. 3,
where an equilibrium is observed.

The local sensitivities of xt and yt

∂xt

∂z

∂yt

∂z
, z = r, ˛, m, � (3)

and their squared normalized versions

(
�z

�x,t

∂xt

∂z

)2
(

�z

�y,t

∂yt

∂z

)2

, z = r, ˛, m, � (4)

with respect to the uncertain factors computed at their mean
values are estimated. Fig. 4a and b plot the absolute values of
the local sensitivities while the squared normalized measures
are reported in Fig. 4c and d as a function of the time. �r, �˛, �m

and �� are the standard deviations of r, ˛, m and �, and �x,t and
�y,t are standard deviations of xt and yt at time t, respectively.
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Fig. 4 – (a) Pure local sensitivity of xt with respect to the factors r, ˛, m and �, absolute value. z in the y axes label indicates
the parameter r, ˛, m, �, depending on the curve. (b) Pure local sensitivity of yt with respect to the factors r, ˛, m and �,
absolute value. z in the y axes label indicates the parameter r, ˛, m, �, depending on the curve. (c) Normalized local
sensitivity of xt with respect to the factors r, ˛, m and �, absolute value. z in the y axes label indicates the parameter r, ˛, m,
�, depending on the curve. (d) Normalized local sensitivity of yt with respect to the factors r, ˛, m and �, absolute value. z in
the y axes label indicates the parameter r, ˛, m, �, depending on the curve.

The standard deviations �x,t and �y,t as shown in Fig. 4 are
constructed using the approximation

�2
x,t

∼= �2
r

(
∂xt

∂r

)2
+ �2

˛

(
∂xt

∂˛

)2
+ �2

m

(
∂xt

∂m

)2
+ �2

�

(
∂xt

∂�

)2
,

�2
y,t

∼= �2
r

(
∂yt

∂r

)2
+ �2

˛

(
∂yt

∂˛

)2
+ �2

m

(
∂yt

∂m

)2
+ �2

�

(
∂yt

∂�

)2
. (5)

Such an approximation is justified in linear systems and its
adequacy is evaluated later.

The uncertainty of xt and yt is better captured by the nor-
malized sensitivities than by the simple derivatives, since the
former take into account the differences in the ranges of vari-
ation of the input factors. In particular, in our approximation
(Eq. (5)), the squared normalized measures quantify the con-
tribution of each factor to the output variance (Fig. 4c and d),
which is in most cases the purpose of sensitivity analysis.

If we consider the prey population, � is identified as the
most important factor for t > 10 both by local and standardized
local measures; in the transient phase (t < 10) � is the most
important factor at all times for the local measure while for
the standardized local measures ˛ is more important than �

at some points of time. For predators, ˛ and � are the most
influential factors for the local measure while ˛ and r are more
significant in the standardized local approach. Note that while
the relative importance of factors fluctuates in time in the pure
local approach, the normalized local results are more easily
interpretable for predators.

3.2. Standardized regression coefficients

The standard deviations of the output variables xt and yt for
the computation of the normalized sensitivities are based on
the linear approximation defined in Eq. (5). To check whether
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Fig. 5 – Squared normalized local sensitivity and squared SRCs of xt with respect to the factors r, ˛, m and �.

the model (1) is linear in its input factors the SRCs can be used
(see Section 2.2). To this aim, a Monte Carlo simulation of the
total computational cost of C = 500 independent runs from the
distributions defined in (2) is performed. Indicating with rd,
˛d, md, ˇd the input samples, with xt,d and yt,d the correspond-
ing values of the output variables (d = 1, . . ., 500), the following
linear regressions are fit

xt,d = bx,0 + bx,rrd + bx,˛˛d + bx,mmd + bx,��d + ex,t,d,

yt,d = by,0 + by,rrd + by,˛˛d + by,mmd + by,��d + ey,t,d (6)

at each point of time t.
Since these regression coefficients are dimensioned, it is

common to use their standardized version, the SRCs:

ˇx,z = �x,t

�z
bx,z, ˇy,z = �y,t

�z
by,z, z = r, ˛, m, �.

For linear models, (ˇz)2 provides the fraction of the out-
put variance due to factor z. Using the SRCs to assess the
contribution of each factor to the output variability leads to
different results with respect to the local measures in the tran-
sient phase of the system. For instance, for the prey population
at t = 8 both local measures identify m as the most important
factor, while the most significant factor is � when using the
squared SRCs. Note that the squared normalized local mea-
sures are equal to the squared SRCs for linear models, but even
for partially non-linear models they differ from one another.
In fact, while the normalized local measures are evaluated at
single fixed points, the SRCs are estimated exploring the input
space of each input factor, capturing the non-linear model
features. Figs. 5 and 6 plot the (ˇz)2 together with squared
normalized local measures for the Lotka–Volterra model.

Note that if the factors are independent and the true model
(1) is linear, then the following equalities hold (see Draper and

Smith, 1981):

(ˇx,r)
2 + (ˇx,˛)2 + (ˇx,m)2 + (ˇx,�)2 = 1,

(ˇy,r)
2 + (ˇy,˛)2 + (ˇy,m)2 + (ˇy,�)2 = 1. (7)

The sum of (ˇz)2 therefore serves as a check of the model
linearity. This sum is known also as the model coefficient of
determination which can be computed as:

R2
x,t =

500∑
d=1

(x∗
t,d

− �x,t)
2

(xt,d − �x,t)
2

, R2
y,t =

500∑
d=1

(y∗
t,d

− �y,t)
2

(yt,d − �y,t)
2

.

�x,t and �y,t are the mean values of xt and yt, and x∗
t,d

and y∗
t,d

are fitted values based on Eq. (6). As can be seen from Fig. 7, the
coefficients of determination of xt and yt are above 0.7, with
the exception of xt at t = 8. At the equilibrium R2 is above 0.9 for
xt and above 0.8 for yt. The linearity of the model is therefore
higher at the equilibrium than at the transient stage. It follows
that the use of the local measure is not fully justified in the
transient phase.

The price one pays using a computationally cheaper sen-
sitivity measure, e.g. a normalized local measure, instead of
the more expensive global sensitivity measures is a loss of
information in the non-linear part of the model. In general
it is useful to perform a regression analysis as a preliminary
step in SA. It may happen that the relationship between input
and output variables is not monotonic and/or that interactions
are part of it. This can lead to a low value of R2 as discussed.
When this happens one needs either to search for non-linear
regression models (see, e.g. McCarthy et al., 1995, 1996 for the
application of a logistic regression to a population viability
model), or to apply a model-free global sensitivity approach
(see next section).
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Fig. 6 – Squared normalized local sensitivity and squared SRCs of yt with respect to the factors r, ˛, m and �.

3.3. Variance decomposition-based sensitivity
measure—method of Sobol’

The basic idea of Sobol’ method (Sobol’, 1990) is to decompose
the function f(X1, . . ., Xk) into terms of increasing dimension-
ality, namely

f (X1, . . . , Xk) = f0 +
k∑

j=1

fj(Xj) +
∑

1≤j<l≤k

fjl(Xj, Xl)

+ · · · + f1,2,...,k(X1, . . . , Xk). (8)

If the input factors are mutually independent then there exists
a unique decomposition of (8) such that all the summands are
mutually orthogonal. The variance of the output variable Y can

Fig. 7 – Evolution of the coefficient of determination for
predator and prey populations.

be therefore decomposed into:

V(Y) =
k∑

j=1

Vj +
∑

1≤j<l≤k

Vjl + · · · + V1,2,...,k (9)

where Vj, Vjl, . . ., V1,2,. . .k denote the variance of fj, fjl, . . ., f1,2,. . .,k,
respectively. In this approach the first-order sensitivity index
for factor Xj defined in Section 2.2, is given by:

Sj = V(E(Y|Xj))

V(Y)
=

Vxj
(Ex∼j

(Y|Xj))

V(Y)
(10)

where E and V indicate, respectively, the mean and variance
operators and ∼j indicates all factors but j. The inner expecta-
tion is taken at a generic point in the space of variable Xj, while
the outer variance is over all possible values of this generic
point.

The higher order sensitivity indices Sj1,...,js are given by

Sj1,...,js = Vj1,...,js

V(Y)

for s > 1. Eq. (9) can be rewritten in terms of sensitivity indices
as:

1 =
k∑

j=1

Sj +
∑

1≤j<l≤k

Sjl + · · · + S1,2,...,k.

The total order effect STj is instead given by:

STj = E(V(Y|X∼j))

V(Y)
. (11)

Note that this time the inner variance is over all possible
generic values of Xj while the outer mean is over the space
X∼j. In Saltelli (2002) a computationally efficient design is dis-
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Table 1 – Sobol’ first and total order sensitivity indices for
the predator and prey populations at two different times

xt prey yt predator

t = 8 (%) t = 60 (%) t = 8 (%) t = 60 (%)

Sobol’ Si

Sr 5.4 0.0 18.9 16.1
S˛ 1.8 0.0 57.7 77.4
Sm 4.6 16.2 0.6 0.2
S� 62.1 82.4 4.5 1.5
Sr + S˛ + Sm + S� 74.0 98.7 81.8 95.3

Sobol’ STi

STr 26.9 0.0 35.5 20.3
ST˛ 21.9 0.0 73.5 81.8
STm 12.0 18.0 2.7 0.5
ST� 71.7 84.2 12.0 2.2

t = 8 is representative for the transitional stage; t = 60 is representa-
tive for the equilibrium stage.

cussed, which allows to estimate the {Sj, STj, j = 1, 2, . . ., k} at
the computational cost of

C = m(k + 2) (12)

where m is the Monte Carlo sample size used to estimate the
integrals in definitions (10) and (11).

For our Lotka–Volterra model (1) the first-order sensitiv-
ity indices and total sensitivity indices based on C = 12.288
(m = 2.048) draws are computed at time t = 8 and 60, see Table 1.
For the prey population the first-order indices explain 74%
of the total variance at time t = 8 and the most influential
is parameter �. For the predator population, the first-order
indices account for more than 81% of the total variance. At
the equilibrium (t = 60) almost 99% of the variance of the prey
population size and 95.3% of the variance of predator popula-
tion size are explained by the first-order effects. These results
confirm that a model-free sensitivity analysis is useful for the
transient phase, where the contributions of interactions to the
variance are, respectively, 26% and 19% for prey and predator
populations. On the other hand, the model is almost linear at
equilibrium and a local analysis can be suitable.

Note that the classical Lotka–Volterra model used in the
present example can be easily extended for the inclusion of a
stochastic term (Goel et al., 1971; Vilar and Solé, 1998):

dxt

dt
= rxt

[
1 − xt

K

]
− ˛xtyt + fx(x, y)�x(t),

dyt

dt
= −myt + �xtyt + fy(x, y)�y(t). (13)

where �i(t) (i = x, y) are (correlated) random processes (e.g.
Brownian motions) and the terms fi(x, y)�i(t) (i = x, y) model the
contribution of a noise term which may, for instance, represent
a fluctuating growth rate.

In this case, the sensitivity analysis can be conducted to
account for the contribution of the stochastic term as a sepa-
rate factor. To this aim, a number of realizations of the random
processes is generated and a trigger factor is used to select
one couple of elements (one from the predators, the other
from the preys) for each run of the Monte Carlo simulation.
The sensitivity analysis indices can be estimated as described
above, the contribution of the noise term being described by
the sensitivity indices of the trigger factor.

In general, whenever there is sufficient information, it is
better to build a stochastic model; if not, deterministic models
can be carefully used to gain insight into stochastic sensitivi-
ties (Caswell, 1989).

This is an important aspect to be considered, as many pop-
ulation dynamic models in ecology are in fact stochastic (the
environment, together with vital rates, vary randomly over
time).

3.4. A model for fish population dynamics

A model for the dynamics of pelagic fish ecosystems is given
in Zaldı̀var et al. (1998). The model describes the time evolu-
tion of an ecosystem with three species of fishes: sardines,
anchovies and mackerels. The dynamics are governed by
the Lotka–Volterra difference equations and a stage-based
approach is chosen, i.e. the life cycle is defined in terms of
size classes rather than age classes (Caswell, 1989). Detailed
information on the model is given in Zaldı̀var and Campolongo
(2000).

Table 2 – Stage life history factor values of the Pacific sardine (Smith et al., 1992)

Stage Daily mortality Duration (days) Daily fecundity

Min Max Min Max Min Max

Egg 0.310 2.12 1.4 3.9 0 0
Yolk-sac larvae 0.394 0.971 1.4 3.9 0 0
Early larvae 0.1423 0.3502 5 21 0 0
Late larvae 0.057 0.139 20 50 0 0
Juvenile 1 0.029 0.081 17 40 0 0
Juvenile 2 0.0116 0.0285 30 80 0 0
Juvenile 3 0.0023 0.0058 80 146 0 0
Juvenile 4 0.0016 0.004 105 185 0 0
Juvenile 5 0.0012 0.0032 110 220 0 0
Prerecruit 0.0006 0.0015 110 220 0 161
Early adult 0.0006 0.0015 190 570 286 489
Adult 0.0006 0.0022 400 920 730 1114
Late adult 0.0006 0.0022 1908 3473 1064 3123



Aut
ho

r's
   

pe
rs

on
al

   
co

py

e c o l o g i c a l m o d e l l i n g 2 0 3 ( 2 0 0 7 ) 167–182 177

Table 3 – Stage life history factor values of the Northern anchovy (Butler et al., 1993)

Stage Daily mortality Duration (days) Daily fecundity

Min Max Min Max Min Max

Egg 0.12 0.45 1.4 3.9 0 0
Yolk-sac larvae 0.19 0.59 1.4 3.9 0 0
Early larvae 0.187 0.345 8 23 0 0
Late larvae 0.047 0.087 35 71 0 0
Early juvenile 0.0009 0.017 45 100 0 0
Late juvenile 0.0029 0.053 60 138 0 0
Prerecruit 0.002 0.0037 200 632 0 19.4
Early adult 0.0011 0.0036 750 1250 199.2 230.7
Late adult 0.0011 0.0036 1000 1500 448.4 529.0

Each population s (s = sardine, anchovy and mackerel)
evolves following a discrete stage-based dynamics given by:

ns
i+1 = Asns

i , i = 1, 2, ..., q (14)

where the vector ns
i

describes the population at each stage i
of life for species s. For sardines 14 stages are included in the
model (Table 2), while for anchovies and mackerels 9 stages
are considered (Tables 3 and 4). The transition matrix As is of
the form (see Caswell, 1989):

As =

⎡
⎢⎢⎢⎢⎢⎣

Ps
1 Fs

2 Fs
3 · · · Fs

q−1 Fs
q

Gs
1 Ps

2 0 · · · 0 0
0 Gs

2 Ps
3 · · · 0 0

...
...

...
...

...
0 0 0 · · · Gs

q−1 Ps
q

⎤
⎥⎥⎥⎥⎥⎦

. (15)

For each species s, Fs
i

is the maternity per fish per unit time in
stage i, Ps

i
the probability of surviving in stage i and Gs

i
is the

probability of surviving in stage i and growing into the next
stage. They are functions of the survival probability ps

i
= e−Zs

i :

Ps
i = ps

i (1 − �s
i ), Gs

i = ps
i �s

i

where Zs
i

is the daily instantaneous mortality rate,

�s
i = (1 − ps

i
)ps

i
exp (Ds

i
− 1)

1 − ps
i

exp (Ds
i
)

and Ds
i

is the duration within stage i. The evolution of each
species is then completely described by the parameters Fs

i
, Zs

i

and Ds
i
.

As discussed in Zaldı̀var et al. (1998) the model includes
also density-dependent competitions between different
stages of life, e.g. larval or juveniles intraspecific competi-
tions (Matsuda et al., 1992). Fig. 8 schematically represents
the complete evolution matrix A of the system with the three
intercompetitive species. Each species is represented by its
evolution matrix As and interspecific competitions are sym-
bolized by grey cells.

The model contains 103 biological and physical uncer-
tain factors, 72 describing the single species evolution (daily
natural mortality (Z), duration (D) and daily fecundity (F) of
sardines (I), anchovies (J) and mackerels (K)) and 31 account-
ing for migration and interspecific competitions (represented
by lower case letters in Table 5). The lower and upper bounds of
the distributions chosen for these factors can be found in the
literature (see Smith et al., 1992; Butler et al., 1993; Dickerson et
al., 1992, respectively, for sardines, anchovies and mackerels)
and are listed in Tables 2–4. The output of interest in the model
is the largest eigenvalue �max of the evolution matrix A, after
1-year simulation time. Since the number of input factors is
high and the model is computationally expensive to run, a SA
exercise using the Morris method (Morris, 1991; Saltelli et al.,
2000a; Campolongo et al., 2006) is conducted (see also Zaldı̀var
et al., 1998) to screen non-influential factors in the model (fac-
tor fixing setting) with a conveniently small number of model
evaluations.

Table 4 – Stage life history factor values of the chub mackerel (Dickerson et al., 1992)

Stage Daily mortality Duration (days) Daily fecundity

Min Max Min Max Min Max

Egg 0.126 1.614 16.43 21.14 0 0
Yolk-sac larvae 0.20 0.360 3.03 33.74 0 0
Early larvae 0.16 0.079 29.1 121.2 0 0
Late larvae 0.0009 0.055 20 144.5 0 0
Early juvenile 0.0009 0.045 17 289 0 0
Late juvenile 0.0016 0.045 45 144.5 0 0
Prerecruit 0.0005 0.0018 190 570 288.2 452.9
Early adult 0.0005 0.0018 400 920 691.7 1086.1
Late adult 0.0005 0.0018 1908 3473 1165.4 1831.4



Aut
ho

r's
   

pe
rs

on
al

   
co

py

178 e c o l o g i c a l m o d e l l i n g 2 0 3 ( 2 0 0 7 ) 167–182

Fig. 8 – Schematic layout of matrix describing the evolution of the system with the three species of fishes. Grey cells
represent the interspecies competitions, e.g. larval competition or juveniles competition. E indicates egg stage, L the larvae,
J the juveniles, P the prerecruits and A indicates adults.

A short description of the method is offered here. In Morris,
each input factor is allowed to vary over p levels and r trajec-
tories are randomly generated. Each trajectory is built in such
a way that factors are varied one-at-a-time across their levels.
Along each trajectory, the so-called elementary effect of factor i,
di, is evaluated as:

di(x) = y(x1, . . . , xi−1, xi + 	, xi+1, . . . , xk) − y(x)
	

where 	 is a predetermined multiple of 1/(p − 1), x = (x1, x2, . . .,
xk) is a selected point in the trajectory and (x + ei	) is the trans-
formed point where only the component i has been changed.

Table 5 – Results of SA by using the Morris method

Factor � Factor � Factor � Factor �

DK5 4.3062 DJ4 0.1713 ZI9 0.0270 DJ9 0.0033
ZK5 2.2599 ZJ2 0.1685 ZI7 0.0259 aj12 0.0032
DJ3 0.9174 ZK7 0.1615 FI13 0.0222 aj23 0.0024
DK3 0.8679 ZK4 0.1571 ZK9 0.0205 DI13 0.0021
ZK1 0.8139 FJ8 0.1378 aj33 0.0198 B3 0.0018
DK2 0.7033 DI1 0.1370 DJ8 0.0180 al22 0.0016
ZJ4 0.6690 FJ7 0.1278 aj11 0.0172 aj21 0.0016
ZJ3 0.645 ZI3 0.1271 DI11 0.0172 al31 0.0008
ZJ6 0.6252 DI2 0.1132 DK8 0.0152 al12 0.0008
DK6 0.5572 DI6 0.0925 FI11 0.0123 D1a 0.0007
DJ7 0.5352 FK8 0.0872 FJ9 0.0123 D1b 0.0007
ZI4 0.5327 ZK6 0.0712 ZI13 0.012 al32 0.0006
DJ6 0.3715 ZK8 0.0678 D2b 0.0087 aj32 0.0005
ZK2 0.3439 DI9 0.0669 ZI10 0.0087 D2c 0.0004
ZJ5 0.2617 DI7 0.0637 al13 0.0076 D3a 0.0004
DJ2 0.2613 ZI2 0.0630 FK7 0.0063 al21 0.0003
ZJ1 0.2603 aj22 0.0599 FK9 0.0061 D3b 0.0002
DI3 0.2383 ZK3 0.0529 D2a 0.0054 D1d 0.0001
DK7 0.2314 ZI5 0.0528 DI12 0.0052 D3c 0.0001
ZJ8 0.2292 ZI6 0.0403 FI10 0.0049 D1c 0.0001
ZI1 0,2185 DI5 0.0368 FI12 0.0047 al23 0.0001
ZJ7 0.2050 DI10 0.0345 DK9 0.0045 al11 0.0001
DK1 0.1913 DI8 0.0339 b1 0.0043
DI4 0.1880 ZI12 0.0328 b2 0.0041
DK4 0.1877 ZI11 0.0327 aj13 0.0041
DJ5 0.1854 ZI8 0.0310 al33 0.0037
DJ1 0.1754 ZJ9 0.0300 aj31 0.0034

Importance ranking of the 103 input factors.
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The mean � and the standard deviation � of the abso-
lute values of the elementary effects over the r trajectories
are used as sensitivity measures to ascertain factors impor-
tance. � measures the overall effect of a given factor on the
output while � accounts for all the effects of a factor that are
non-linear or due to interactions with other factors (Morris,
1991; Campolongo et al., 2006). At first instance one may think
of a parallel between � and some combination of variance-
based measures, e.g. (STi − Si). However, the two measures
differ because of the curvature or higher order effects (i.e.
the effects due to terms such as X2, X3, . . ., and so on) that,
while included in �, are excluded from the difference (STi − Si)
(Campolongo et al., 2006).

Morris can be considered as a global measure since it aver-
ages the effects of the factors at different points of the domain;
it can also work with groups as shown in Campolongo et al.
(2006). The computational cost of the Morris experiment is a
linear function of the number of factors, C = r(k + 1).

In the present experiment, each factor is varied across p = 4
levels, and r = 10 trajectories are generated, implying a total
number of model evaluations C = 1040. Results of the appli-
cation of the Morris method are shown in Fig. 9, which plots
� and � for the 103 input factors. Each input factor with a
high value of the estimated mean � also presents a high value
of the estimated standard deviation �, highlighting that the
model is strongly non-linear and non-additive. Fig. 9 shows
two influential factors strongly separated from the others (DK5
and ZK5, respectively, duration and daily natural mortality of
mackerels in the juvenile stage). A second group of factors is
the one including duration of mackerels at larval and juvenile
stages (DK2, DK3, DK6), duration of anchovies at larval and pre-
recruit stages (DJ3, DJ7), daily natural mortality of anchovies
at larval and juvenile stages (ZJ3, ZJ4, ZJ6) and mortality of
mackerels at the egg stage (ZK1).

Table 5 ranks the 103 factors according to decreasing val-
ues of the Morris measure �. None of the factors involved in
the migration and interspecific competitions appears in the
first 30 factors identified by Morris; this means that these fac-
tors probably do not play a significant role in the magnitude of
the population fluctuations. Moreover, it seems that the early
stages of life affect more the output variability. In fact among
the most 20 influential factors, only one (the mortality of

Fig. 9 – Result of the Morris experiment: scatterplot of the
Morris � vs. the Morris �.

early adult anchovies, ZJ8) is related with adult life, while two
parameters connected to the prerecruit stage (DJ7 and DK7)
are present. All the other factors are associated with juveniles
or larvae stages. Finally, as we can see from Table 5, among
the first 20 factors only 2 are related to sardines, namely ZI4
(ranked as 12) and DI3 (ranked as 18). It thus seems that the
population dynamics is more influenced by the parameters
describing anchovies and mackerels.

To confirm the results obtained by the Morris method, a
SA on groups of factors applying variance-based techniques
have been performed. The Sobol’ method can in fact work with
groups, since:

V(E(Y|u)) + V(E(Y|u, v) = V(Y) − V(E(Y|v).

V(E(Y|u)) and V(E(Y|v)) are the first-order effects of groups
u and v, respectively, and they account for the contribution of
all the factors belonging to each group plus the within-group
interactions. V(E(Y|u, v)) estimates the effect of the interac-
tions between the two groups.

With the aim of fixing the parameters describing the inter-
specific competitions and simplifying the model (factor fixing
setting), the factors are divided into two groups. Specifically
all the factors accounting for interspecific competitions are
collected in a first group v while all the parameters describing
single species evolution are put in a second group u. The first
and total order sensitivities indices are computed for both of
them. The total number of model executions for this experi-
ment is 4000 since (Eq. (12)) k = 2 and m is chosen to be 1000.

Results confirm that the set of factors describing the inter-
species competitions do not affect the variance of the output.
In fact more than 99.5% of the total outcome variability is
imputable to the second group of factors. This exercise allows
fixing the values of the 31 factors describing the interspecific
competitions to their nominal values, obtaining a substantial
simplification of the model.

Two other quantitative analyses on groups of factors using
the Sobol’ method have been performed on the remaining
72 parameters to confirm results obtained with the Morris
method. First the variance of the output is apportioned to the
contributions due to different stages of fish life, regardless of
the species (see Table 6 for the grouping strategy). Finally, the
decomposition of the variance grouping factors according to

Table 6 – Results of the SA experiment performed
classifying the 72 factors into three groups

Groups Factors ST

Larvae ZI(t), DI(t), t = 1, . . ., 4 0.8567
ZJ(t), DJ(t), t = 1, . . ., 4
ZK(t), DK(t), t = 1, . . ., 4

Juveniles ZI(t), DI(t), t = 5, . . ., 9 0.3968
ZJ(t), DJ(t), t = 5, 6
ZK(t), DK(t), t = 5, 6

Adults ZI(t), DI(t), FI(t), t = 10, . . ., 13 0.0835
ZJ(t), DJ(t), FJ(t), t = 7, . . ., 9
ZK(t), DK(t), FK(t), t = 7, . . ., 9

The grouping strategy, based on age stage, and the total order sen-
sitivity indices are reported.
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species is estimated. In both cases the analysis is performed
on three groups and the computational cost of each experi-
ment is, according to (12), C = 5000 (m = 1000).

The second experiment, where factors are grouped by ages,
supports the result obtained with the Morris method, accord-
ing to which the parameters describing the adult stages do
not influence the growth of the species. In fact the total order
sensitivity index for the adult group is only 0.0835, while for
juveniles and larvae the estimates are, respectively, 0.3968
and 0.8567. This allows concluding that, if the model under
analysis is considered a good proxy of reality, from a fish-
ing regulatory point of view the main effort has to be put on
developing strategy for young species.

Also the last experiment, which groups parameters accord-
ing to species, strengthens the screening results. The most
important species is that of anchovies (STj = 0.7334), followed
by mackerels (STk = 0.2909) and sardines (STi = 0.0199).

4. Conclusions

This work has shown how different sensitivity analysis meth-
ods can be applied to an ecological model. The choice of which
method to use depends on various factors, such as the com-
putational cost, the number of input factors and the setting
for the analysis.

When the number of factors is low (i.e. less than 20) and
the model is efficient, the best choice is to use variance-based
methods, which provide more accurate sensitivity measures.
In our first example based on the Lotka–Volterra equations, we
showed that local measures are suitable only for linear models
and provide the user with a measure dependent on the point
of the inputs’ domain chosen to estimate the derivatives. On
the other hand the use of a regression analysis allows defining
sensitivities measures (the squared standardized regression
coefficients) which explore the entire input space. These mea-
sures are quantitative for linear models and can be used to
rank factors also for moderately non-linear models. More-
over the model coefficient of determination can be used to
detect the level of linearity of the model. However, when non-
linearity or interactions account for a considerable fraction of
the output variance, the standardized regression coefficient
cannot be considered as a reliable sensitivity measure and the
application of global techniques is advisable.

When the number of input factors is high (several tens or
higher, as in the case of the fish population dynamics exam-
ple) and/or the model is computationally expensive, the best
way to reduce costs is to use a screening method such as Mor-
ris. This method is computationally cheaper, model free and
can be used to identify non-influential factors (factor fixing
setting). When the execution time of the model is very large,
sensitivity analysis becomes problematic. In these cases, one
may resort to analyst-time expensive approach such as auto-
mated differentiation (Grievank, 2000; Cacuci, 2003). In this
case, the analyst may intervene on the code that implements
the method, in order to efficiently compute a system of partial
derivatives.

If the choice is instead driven by the setting of the analysis,
first-order sensitivity indices are used for factor prioritization,
while total indices or the method of Morris are the best choice

for factors fixing setting. For factors mapping it is suggested
to combine all these methods with Monte Carlo filtering, as
shown in Saltelli et al. (2004).
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