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bstract

A model function f(x1,. . .,xn) defined in the unit hypercube Hn with Lebesque measure dx = dx1. . .dxn is considered. If the
unction is square integrable, global sensitivity indices provide adequate estimates for the influence of individual factors xi or
roups of such factors. Alternative estimators that require less computer time can also be used. If the function f is differentiable,
unctionals depending on ∂f/∂xi have been suggested as estimators for the influence of xi. The Morris importance measure modified
y Campolongo, Cariboni and Saltelli μ* is an approximation of the functional μi = ∫

Hn |∂f /∂xi| dx.
In this paper a similar functional is studied

νi =
∫

Hn

(
∂f

∂xi

)2

dx

vidently, μi ≤ √
νi, and νi ≤ Cμi if |∂f /∂xi| ≤ C. A link between νi and the sensitivity index Stot

i is established:

Stot
i ≤ νi

π2D

here D is the total variance of f(x1,. . .,xn). Thus small νi imply small Stot
i , and unessential factors xi (that is xi corresponding to a

ery small Stot
i ) can be detected analyzing computed values ν1,. . .,νn. However, ranking influential factors xi using these values can

ive false conclusions.
Generalized Stot

i and νi can be applied in situations where the factors x1,. . .,xn are independent random variables. If xi is a normal
andom variable with variance σ2

i , then Stot
i ≤ νiσ

2
i /D.
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Let f(x1,. . .,xn) be a model function defined in the unit hypercube Hn. If the function f is square integrable, global
ensitivity indices provide an adequate tool for estimating the effect of individual factors xi or groups of such factors
n f. However, numerical algorithms for computing these indices involve evaluation of f at a large number of random
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or quasi-random points, and if one model evaluation requires more than several minutes of computer time, a direct
application of these algorithms (without using multiprocessor schemes) is impractical. Alternative approaches were
developed that provide less expensive estimates of the influence of individual factors xi on f. They can be applied
to more complex models. These alternative estimates sometimes disagree with the ones obtained from sensitivity
indices.

If the function f is differentiable, the partial derivative ∂f/∂xi is used for estimating the local sensitivity of f with
respect to xi at the point x1,. . .,xn. Naturally that attempts were made to construct global sensitivity measures as
functionals depending on ∂f/∂xi [1,3,5]. The Morris importance measure μ is a measure of this type: finite difference
approximations to ∂f/∂xi are computed at a discrete set of points inside Hn and μ is defined as a weighted mean of this
approximate values of ∂f/∂xi [3]. Campolongo et al. suggested a modified Morris measure based on absolute values
|∂f/∂xi| called μ* [1]. It was noticed that for some practical problems this measure has similarities with global total
sensitivity indices Stot

i in that it gives a ranking of the variables very similar to that based on the Stot
i but no formal

proof of the link between μ* and Stot
i was given.

In this paper we consider partial derivative based global sensitivity measures and establish the link between them
and global total sensitivity indices. It is organized as follows: the next section gives a brief description of the Morris
method. Section 3 gives an overview of the theory of global sensitivity indices. A link between global sensitivity
indices and partial derivatives is established in Section 4. Section 5 introduces derivatives based importance criteria.
Section 6 contains examples. A counterexample showing that in some cases derivative based importance estimates
suggest false conclusions is presented in Section 7. Section 8 briefly reviews the case when (x1,. . .,xn) are indepen-
dent random variables. Finally, conclusions are presented in the last section. In the Appendix A a limit for μ* is
considered.

2. The Morris method

The sensitivity measures proposed in the original work of Morris [3] are based on what is called an elementary
effect. The general scheme of the Morris method is defined as follows. The range of each input variable is divided into
p levels. Then the elementary effect of the ith input factor is defined as finite difference

EEi

(
x∗) = f

(
x∗

1, . . . , x
∗
i−1, x

∗
i + Δ, x∗

i+1, . . . , x
∗
n

) − f (x∗)

Δ
, (2.1)

where Δ is a predetermined multiple of 1/(p − 1) and point x* ∈ Hn is such that x∗
i + Δ ≤ 1. The distribution of

elementary effects Fi is obtained by randomly sampling N points from Hn. Two sensitivity measures are evaluated
for each factor: μ(i) an estimate of the mean of the distribution Fi, and σ(i) an estimate of the standard deviation of
Fi. A high value of μ(i) indicates an input variable with an important overall influence on the output. A high value of
σ(i) indicates a factor involved in interaction with other factors or whose effect is nonlinear. The total computational
cost for this scheme is NF = 2Nn. Morris suggested a more economical algorithm by using already computed values
of functions in calculation of more than one elementary effects. His algorithm involves a calculation of the so-called
sampling matrix which is used for generating trajectories of n steps in the input variables space. These trajectories are
such that on each step only one component of a stating point x = (x1,x2,. . .,xn) taken from grid-levels is increased by Δ.
The computational cost of the Morris method is NF = N(n + 1). The revised version of the EEi(x*) measure and a more
effective sampling strategy, which allows a better exploration of the space of the uncertain input factors was proposed
in [1].

Non-monotonic functions have regions of positive and negative values of EEi(x*), hence due to the effect of averaging
values of μ can be very small or even zero. For this reason Campolongo et al. [1] considered another sensitivity measure
called μ*, which estimates the mean of the distribution of elementary effect absolute values.
Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

3. Global sensitivity indices

Global sensitivity indices are often classified as variance based. However, they can be defined without assuming
that the variable x is random. Consider a function f(x) defined and square integrable in the unit hypercube Hn with the

dx.doi.org/10.1016/j.matcom.2009.01.023
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ebesque measure dx = dx1. . .dxn. According to [7] the identity

f (x) = f0 +
n∑

s=1

∑
i1<···<is

fi1,...,is

(
xi1 , ..., xis

)
(3.1)

s called ANOVA-decomposition of f(x) if

f0 =
∫

Hn

f (x) dx (3.2)

nd for all p = 1,2,. . .,s∫ 1

0
fi1,...,is

(
xi1 , ..., xis

)
dxip = 0. (3.3)

he interior sum in (3.1) is extended over all different groups of indices i1,. . .,is such that

1 ≤ i1 < i2 < · · · < is ≤ n. (3.4)

Thus (3.1) can be rewritten as

f (x) = f0 +
∑

i

fi (xi) +
∑
i<j

fi,j

(
xi, xj

) + · · · + f1,2,...,n (x1, x2, ..., xn) .

t follows from (3.2) and (3.3) that all the terms in (3.1) are orthogonal.
Constants Di1,...,is = ∫

Hn f 2
i1,...,is

(
xi1 , ..., xis

)
dx are called partial variances and the constant

D =
∫

Hn

f 2 (x) dx − f 2
0

s called total variance. Squaring (3.1) and integrating over Hn, we obtain

D =
n∑

s=1

∑
i1<···<is

Di1,...,is .

Global sensitivity indices are defined as ratios

Si1,...,is = Di1,...,is

D
.

bviously
n∑

s=1

∑
i1<···<is

Si1,...,is = 1.

One-dimensional index Si = Di/D shows the effect of the single factor xi on the output f(x) but it does not account
or the high dimensional terms in (3.1). For estimating the total influence of the factor xi, total partial variances are
ntroduced:

Dtot
i =

∑
〈i〉

Di1...is ,

here the sum
∑
〈i〉

is extended over all different groups of indices satisfying (3.4) at 1 ≤ s ≤ n, where one of the indices

s equal i. The corresponding total sensitivity index is

tot Dtot
i

Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

Si =
D

.

In general 0 ≤ Si ≤ Stot
i ≤ 1.

The output f(x) does not depend on the factor xi if and only if Stot
i = 0. If the value xi is somehow fixed, the error

n f(x) depends on Stot
i (for more details see [9]). Indices Stot

i are often used for ranking variables xi.

dx.doi.org/10.1016/j.matcom.2009.01.023
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In [7] (Theorem 3) a general formula for Dtot
y is given, where y is an arbitrary subset of the variables x1,. . .,xn. In

the case when y = (xi), this formula can be rewritten as

Dtot
i = 1

2

∫
Hn

1∫
0

[
f (x) − f

(◦
x
)]2

dxdx′
i, (3.5)

where
◦
x = (

x1, ..., xi−1, x
′
i, xi+1, ..., xn

)
.

4. Sensitivity indices and partial derivatives

In this section two theorems that establish links between the index Stot
i and the derivative ∂f/∂xi are proved. In the

first theorem the limiting values of |∂f/∂xi| and in the second theorem the mean value of (∂f/∂xi)2 are used.

Theorem 1. Assume that c ≤ |∂f/∂xi| ≤ C. Then

c2

12D
≤ Stot

i ≤ C2

12D
. (4.1)

The constant factor 12 in (4.1) cannot be improved.

Proof. Consider the increment of f(x) in (3.5):

f (x) − f
(◦
x
)

= ∂f (x̂)

∂xi

(
xi − x′

i

)
, (4.2)

where x̂ is a point between x and
◦
x. Substituting (4.2) into (3.5) we obtain

Dtot
i = 1

2

∫
Hn

∫ 1

0

(
∂f (x̂)

∂xi

)2(
xi − x′

i

)2
dxdx′

i (4.3)

In (4.3) c2 ≤ (∂f/∂xi)2 ≤ C2 while the remaining integral is
∫ 1

0

∫ 1

0

(
x′
i − xi

)2
dx′

idxi = 1

6
.

Thus we obtain inequalities that are equivalent to (4.1). Finally consider the function f = f0 + c (xi − 1/2). In this
case C = c, D = 1/12, Stot

i = 1 and the inequalities (4.1) become equalities. �

Theorem 2. Assume that ∂f/∂xi ∈ L2. Then

Stot
i ≤ 1

π2D

∫
Hn

(
∂f

∂xi

)2

dx. (4.4)

Proof. Denote by u(x) the sum of all terms in (3.1) that depend on xi:

u (x) =
∑
<i>

fi1,...,is

(
xi1 , ..., xis

)
.

Obviously Dtot
i = ∫

Hn u2 (x) dx and ∂f
∂xi

= ∂u
∂xi

.

Consider u(x) as a function of x only. It follows from (3.3) that the mean
∫ 1

u (x) dx = 0, therefore an inequality
Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

i 0 i

for one-dimensional functions from [6] can be applied:
∫ 1

0
u2 (x) dxi ≤ 1

π2

∫ 1

0

(
∂u

∂xi

)2

dxi.

dx.doi.org/10.1016/j.matcom.2009.01.023
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Integrating this inequality over all other variables we obtain

Dtot
i ≤ 1

π2

∫
Hn

(
∂f

∂xi

)2

dx.

This is equivalent to (4.4).
To complete the proof of Theorem 2, consider an example: f (x) = sin π (xi − 1/2). In this case Stot

i = 1, D = 1/2

nd
∫ 1

0 (∂f/∂xi)2dxi = π2/2, so the right-hand side in (4.4) is also equal to 1. �

emark. From the relation (4.2) we conclude that Dtot
i = 1

12

[
(∂f/∂xi)2]∗

, where [ ]* is a rather sophisticated mean
alue. If [ ]* is replaced by an ordinary mean value we get an approximate relation that yields an approximate formula

Stot
i ≈ 1

12D

∫
Hn

(
∂f

∂xi

)2

dx.

Unfortunately, we have no reliable error estimate for this approximation. We can only expect this approximation to
e correct in situations in which the second derivative ∂2f/∂x2

i is negligible.

. Derivative based importance criteria

Consider the set of values ν1,. . .,νn, where

νi =
∫

Hn

(
∂f

∂xi

)2

dx, 1 ≤ i ≤ n.

One can expect that smaller νi correspond to less influential variables xi. This importance criterion is similar to the
odified Morris importance measure μ*, whose limiting values are (see Appendix A)

μi =
∫

Hn

∣∣∣∣ ∂f

∂xi

∣∣∣∣ dx.

From a practical point of view the criteria μi and νi are equivalent: they are evaluated by the same numerical
lgorithm and are linked by relations νi ≤ Cμi, μi ≤ √

νi. Therefore the results of Section 4 can be regarded as support
or both νi and μi. The only point that can be interpreted as an advantage of νi is the inequality (4.4):

Stot
i ≤ νi

π2D

hat provides the estimation of Stot
i without knowing the upper bound C of the partial derivative.

It is been shown in Kucherenko et al. [2] that the computational time required for MC evaluation of derivative based
mportance criteria is much lower than that for estimation of the Sobol’ sensitivity indices. It is also lower than that for
he Morris method. The efficiency again is especially dramatic for the Quasi MC integration method based on Sobol’
equences. It is also been shown that the Morris method can produce inaccurate measures for non-monotonic functions
uch as g-function for which characteristic length of function variation is much smaller than Δ.

. Functions with separated variables

Consider f (x) =
n∏

i=1

ϕi (xi), where ϕi (t) ∈ L2, ϕ′
i (t) ∈ L2. Denote

Ai =
∫ 1

0
ϕi (t) dt, Di =

∫ 1

0
ϕ2

i (t) dt − A2
i .
Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

Then

D =
n∏

i=1

(
Di + A2

i

)
−

n∏
i=1

A2
i ,

dx.doi.org/10.1016/j.matcom.2009.01.023
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Dtot
i =

∏
k /= i

(
Dk + A2

k

)
Di,

∫
Hn

(
∂f

∂xi

)2

dx =
∏
k /= i

(
Dk + A2

k

) ∫ 1

0

[
ϕ′

i (t)
]2

dt.

Thus
∫
Hn

(
∂f
∂xi

)2
dx

Dtot
i

=
∫ 1

0

[
ϕ′

i (t)
]2

dt

Di

. (6.1)

Example 1. Consider the so-called g-function that is often used for numerical experiments in sensitivity analysis

f =
n∏

i=1

(|4xi − 2| + ai)/(1 + ai). Surprisingly, for the g-function the ratio (6.1) is constant and does not depend on

the parameter ai. Thus for all important or non-important variables xi the right-hand side in (4.4) is proportional to the
left-hand side. However, the value of this constant 48 is considerably larger than �2 or 12.

Example 2. If ϕi is strongly nonlinear, the ratio
(∫ 1

0

[
ϕ′

i (t)
]2

dt
)

/Di can be very large. Assume that �i(t) = tm.

Then Ai = 1/(m + 1), Di = m2/((2m + 1)(m + 1)2),
∫ 1

0

[
ϕ′

i (t)
]2

dt = m2/(2m − 1). The ratio
(∫ 1

0

[
ϕ′

i (t)
]2

dt
)

/Di =
(m + 1)2 ∗ (2m + 1)/(2m − 1). At m = 1 the ratio is 12, but for large m it will be ≈(m + 1)2.

7. Counterexample

Example 3. Consider a function f which has the following ANOVA decomposition:

f =
4∑

i=1

ci

(
xi − 1

2

)
+ c12

(
x1 − 1

2

) (
x2 − 1

2

)5

,

where ci = 1, 1 ≤ i ≤ 4, c12 = 50. For this function all Si = 0.237, 1 ≤ i ≤ 4, S12 = 0.0523 and Stot
1 = Stot

2 = 0.289, Stot
3 =

Stot
4 = 0.237, so variables 1, 2 and variables 3, 4 have the same importance. However, for derivative based importance

criteria variables 1 and 2 have different importance ν1 = 1.22, ν2 = 3.26, while variables 3 and 4 still have equal
importance ν3 = ν4 = 1.0. Moreover, ν2 > ν1 + ν3 + ν4.

Comparing left and right-hand side of inequality (4.4) (Table 1), one can see that νi/(�2D) is much higher than Stot
i

only for variable 2. It is caused by the strong nonlinearity of the term f1,2(x1,x2) with respect to x2 (compare with test
Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

function of Example 2).

This example shows that ranking of influential variables based on νi may result in false conclusions: in our example
x2 seems more important than all the other variables together.

Table 1
Stot

i and νi/(π2D) for the Counterexample.

i Stot
i νi/(π2D)

1 0.289 0.354
2 0.289 0.938
3 0.237 0.288
4 0.237 0.288

dx.doi.org/10.1016/j.matcom.2009.01.023
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. Random variables

Consider a model function f(x1,. . .,xn), where x1,. . .,xn are independent random variables with distribution functions
1(x1),. . .,Fn(xn). Thus the point x = (x1,. . .,xn) is defined in the Euclidian space Rn and its measure is dF1(x1). . .dFn(xn).
he theory of global sensitivity indices can be easily generalized and applied in this case (see e.g. [8]). The following
ssertion is a generalization of Theorem 1.

heorem 3. Assume that c ≤ |∂f/∂xi| ≤ C and that the variance of xi is finite σ2
i = var(xi) < ∞. Then σ2

i c2/D ≤
tot
i ≤ σ2

i C2/D. The constant factor σ2
i cannot be improved.

roof. One can repeat the proof of Theorem 1 with three changes:

1) The starting point is the relation Dtot
i = 1

2

∫
Rn

∫ ∞
−∞

[
f (x) − f

(◦
x
)]2 n∏

k=1

dFk(xk)dFi(x′
i).

2) The “remaining integral” in this case is
∫ ∞
−∞

∫ ∞
−∞

(
x′
i − xi

)2
dFi(xi)dFi(x′

i) = 2σ2
i .

3) Finally consider the function f(x) = f0 + c(xi − E(xi)), where E(xi) is a mean value of xi. In this case C = c, D =
σ2

i , Stot
i = 1 and the inequalities become equalities. �

The following results are similar to Theorem 2 but it is not a generalization of Theorem 2.

heorem 4. Assume that xi is a normal random variable with parameters (ai;σi) and the integral in (8.1) is finite.
hen

Stot
i ≤ σ2

i

D

∫
Rn

(
∂f

∂xi

)2 n∏
k=1

dFk(xk). (8.1)

The constant factor σ2
i cannot be reduced.

roof. The logic of the proof is the same as in Theorem 2. However, the inequality from [6] that was used in Theorem
must be replaced by a new one:

Inequality. Denote p(t) = 1
σ
√

2π
exp[−(t − a)2/(2σ2)], −∞ < t < ∞. If both u(t) and u′(t) are square integrable with

eight p(t), and∫ ∞

−∞
u(t)p(t)dt = 0. (8.2)

Then∫ ∞

−∞
u2(t)p(t)dt ≤ σ2

∫ ∞

−∞

[
u′(t)

]2
p(t)dt. (8.3)

The simple example f(x) = xi − ai shows that in (8.1) equality is possible: Stot
i = 1, ∂f/∂xi = 1, D = σ2

i . �

roof of the inequality. Let Φ = Φ[u] be a functional depending on u(t):

Φ =
∫ ∞

−∞

[
σ2(u′)2 − u2

]
p(t)dt. (8.4)

Consider a typical problem in calculus of variations: minimize Φ[u] while u(t) satisfies (8.2). The extremal function
* = t − a satisfies the Euler–Lagrange equation and condition (8.2). The minimum value of the functional (8.4) is min
[u] = Φ[t − a] = 0. Thus Φ[u] ≥ 0 and this is equivalent to (8.3). �
Please cite this article in press as: I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link with
global sensitivity indices, Math. Comput. Simul. (2009), doi:10.1016/j.matcom.2009.01.023

xample 4. We consider the quadratic polynomial Oakley and O’Hagan function defined as follows [4]:

f (x) = aT
1 x + aT

2 cos (x) + aT
3 sin (x) + xT Mx.

dx.doi.org/10.1016/j.matcom.2009.01.023
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Here x is a vector of fifteen normally distributed variables N(0, 1). For this function the sensitivity indices Stot
i

increase monotonically from Stot
1 = 0.059 up to Stot

15 = 0.154. The estimates on the right-hand side of (8.1) were
computed and divided by Stot

i . In full agreement with Theorem 4, all these ratios exceed 1: 1.01; 1.00; 1.00; 1.04; 1.09;
1.18; 1.16; 1.06; 1.26; 1.08; 1.19; 1.20; 1.20; 1.15; 1.14.

9. Conclusions

The main results of the present paper are

(1) A link between sensitivity indices and measures based on partial derivatives is established.
(2) It is proved that small values of derivative based measures imply small values of one-dimensional total sensitivity

indices. This result supports the recommendation of [1,3,5] that derivative based measures can successfully be
used for detecting unessential variables.

(3) The importance criterion μ* can be improved by using squared partial derivative rather than its absolute value.
(4) It is shown that for highly nonlinear functions the ranking of important factors using derivative based importance

measures may suggest false conclusions.

Acknowledgements

The authors would like to thank A. Sobol’ for his help in preparation of this manuscript and N. Shah for his support
and interest in this work. One of the authors (S.K.) gratefully acknowledges the financial support by the EPSRC grant
EP/D506743/1.

Appendix A. A limit for Morris importance measure

Let x(l),. . .,x(k),. . . be a quasi-random sequence of points inside Hn so that for an arbitrary Riemann integrable
function g(x)

lim
N→∞

1

N

N∑
k=1

g(x(k)) =
∫

Hn

g(x)dx

We consider one of the variables, say xi, and let h be its increment, 0 < h < 1 − xi. Denote x̃ =
(x1, ..., xi−1, xi + h, xi+1, ..., xn) and Δf (x) = f (x̃) − f (x).

The following algorithm is a version of the modified Morris measure μ*. Choose N points x(k), 1 ≤ k ≤ N, and N
corresponding increments h(k). Compute 2N values f(x(k)) and f

(
x̃(k)

)
, 1 ≤ k ≤ N. Then

μ∗ = 1

N

N∑
k=1

∣∣	f
(
x(k)

)∣∣
h(k) .

If f(x) does not depend on xi, then μ* = 0.

Theorem A. Assume that ∂f/∂xi is Riemann integrable and ∂2f/∂x2
i is bounded. Then if N → ∞ and max h(k) → 0,

then μ* → μi, where

μi =
∫

Hn

∣∣∣∣ ∂f

∂xi

∣∣∣∣ dx.
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Proof. Given an arbitrary � > 0, we choose N so large that∣∣∣∣∣
1

N

N∑
k=1

∣∣∣∣∣
∂f

(
x(k)

)
∂xi

∣∣∣∣∣ − μi

∣∣∣∣∣ <
ε

2
. (A.1)
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We choose the increments h(l),. . .,h(N) so small that max h(k)
∣∣∂2f/∂x2

i

∣∣ ≤ ε. The function f(x) can be regarded as
ne-dimensional function of xi. Its increment has a form

	f (x)

h
= ∂f (x)

∂xi

+ 1

2
h

∂2f (x̂)

∂x2
i

,

here x̂ is a point between x and x̃. If x = x(k) and h = h(k), the last term in this expression does not exceed ε/2, therefore
e can easily prove that∣∣	f

(
x(k)

)∣∣
h(k) =

∣∣∣∣∣
∂f

(
x(k)

)
∂xi

∣∣∣∣∣ + rk,

here the remainder |rk| ≤ ε/2. Averaging the last relation over 1 ≤ k ≤ N, we obtain∣∣∣∣∣μ∗ − 1

N

N∑
k=1

∣∣∣∣∣
∂f

(
x(k)

)
∂xi

∣∣∣∣∣
∣∣∣∣∣ <

ε

2
. (A.2)

From (A.1) and (A.2) it follows that |μ∗ − μi| < ε. �
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