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Abstract 

A two-step approach to sensitivity analysis of model output in large computational models is proposed. A preliminary 
screening exercise is suggested in order to identify the subset of the most potentially explanatory factors. Afterwards, a 
quantitative method is recommended on the subset of preselected inputs. The advantage of the proposed procedure is that, 
very often, among a large number of input factors, only a few have a significant effect on the model output. The approach 
provides quantitative sensitivity measures while controlling the computational cost of the experiment. The procedure has 
been tested on a recent version of a chemical kinetics model of the tropospheric oxidation pathways of dimethylsulphide, 
including 68 uncertain factors. (~) 1999 Elsevier Science B.V. 
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1. Introduct ion 

Sensitivity Analysis  (SA)  is helpful in building 
models, useful in calibrating them, and essential in the 
use of models  to sustain or disprove hypotheses. This 
is because our knowledge about the world - what con- 
stitutes the input to models  - is affected by uncertain- 
ties, and the output of  a model is likewise uncertain. 
SA allows the latter uncertainty to be labelled accord- 
ing to source, thus offering one element of reckoning 
about the consistency between the model internal en- 
tailment structure and the world that it tries to emulate. 
Referring to the elegant formalism of Rosen [ 1 ], SA 
may be considered as useful in the craftsmanship of  
cod ing /decod ing  associated with the process of mim- 
icking reality by models. 
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Several SA methods are available in the literature 
and the choice of  which SA method to adopt, is a 
difficult step. Such a choice depends on the problem 
that the investigator is trying to address, on the char- 
acteristics of  the model under study, and also on the 
computational cost that the investigator can afford. 

As a rule [2] when the model is nonlinear and 
various input variables are affected by uncertainties 
of  different orders of  magnitude, a global sensitivity 
method should be used. By global we mean a SA ex- 
periment covering the entire space of  existence of  the 
input factors, defined in contrast with local, where the 
input parameters are given a small interval of  frac- 
tional variation around a nominal value. The use of  a 
local SA implies the assumption (rarely satisfied) that 
the input-output  relationship is linear. If  the model is 
indeed nonlinear, the linear sensitivity approach is un- 
able to assess effectively the impact of  possible differ- 
ences in the scale of  variation of  the input variables. 
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In dealing with models that are computationally ex- 
pensive to evaluate and have a large number of input 
parameters, the choice of  the SA method is restricted 
to those methods which are computationally cheap, 
i.e. which require a relatively small number of  model 
evaluations. In general, as a drawback, those "eco- 
nomic" methods can only provide sensitivity measures 
which are qualitative, i.e. measures capable of rank- 
ing the input factors in order of  importance, but not of  
quantifying how much a given factor is more impor- 
tant than another. A quantitative method instead would 
give, for example, the exact percentage of  the total 
output variance that each factor (or group of factors) 
is accounting for. Thus, there is a trade-off between 
computational cost and information. 

Following this idea, in Fig. I we have represented 
some well-known classes of  methods according to the 
two properties: "information", i.e. the amount of  in- 
formation produced in terms of the model sensitivity 
(on the abscissa) and "cost", i.e. the computational 
cost (on the ordinate). The computational cost is mea- 
sured in number of  model evaluations and is a func- 
tion of  the number of  input factors examined (k),  and 
of the complexity of  the model. 

We have put closest to the origin the class of  the "el- 
ementary OAT" methods. By "elementary OAT" we 
mean those methods that change one factor at a time 
(OAT) and explore what the model does with the new 
datum. In these analyses the baseline value is kept con- 
stant, i.e. the factors are moved away from the baseline 
only once (or twice) and the baseline is not changed 
throughout the analysis. While this approach is com- 
putationally very cheap ( ~  k model evaluations), its 
limitations are evident because the information that it 
is produced is only local. 

A method that, still changing one factor at the time, 
can be considered as global is the method proposed 
by Morris [3] .  The Morris sensitivity measure is ob- 
tained by computing a number r of local measures at 
different points x l  . . . .  X r  of the input space and then 
taking their average (so to lose the dependence of the 
specific point at which the measure was computed). 
The information on the model sensitivity produced by 
the Morris method is more general with respect to an 
elementary OAT in the sense that the method explores 
the whole input factor space. As a drawback, the com- 
putational cost has been increased up to r x (k + 1) 
model evaluations, where r is usually in the range 5 -  
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Fig. I. Representation of various classes of methods for sensi- 
tivity analysis according to two properties: "'information", i.e. the 
amount of information produced in terms of the model sensitivity 
(along the abscissa), and "cost", i.e. the computational cost of 
the experiment (along the ordinate). The "'cost" is measured in 
terms of the number of model evaluations and is a function of the 
number of input factors (k) and of the complexity of the model. 

15 (see Fig. 1). 
The OAT method proposed by Morris - which es- 

timates the main effects of  the input factors on the 
output - has been extended by Campolongo and Brad- 
dock [4] to estimate also the two-factor interactions 
effects. The number of  model evaluations required by 
the extended Morris is O(k  2) (see Fig. 1). Note that 
both the original Morris and its extended version pro- 
vide sensitivity measures that are only qualitative. 

To obtain a quantitative sensitivity measure, the 
computational cost has to be further increased. For in- 
stance, methods such as the Sobol'  indices [5] or the 
extended FAST [6] that are capable of  quantitatively 
decomposing the total output variance in the percent- 
ages that each factor (or combination of factors) is 
accounting for, require a higher number of  model eval- 
uations. The computational cost of  these methods is 

k x N model evaluations, where N is usually in the 
range of  hundreds to thousands. However, these meth- 
ods are valuable because they can quantify the impor- 
tance of  each factor. We would recommend their use 
any time the modeller can afford the computational 
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cost. 
Campolongo and Saltelli [7] suggested that, when 

dealing with models containing a large number of pa- 
rameters, a possible procedure, which would match 
sensitivity information achieved with computational 
cost, would be the one made by two consecutive ex- 
periments. A preliminary screening exercise could be 
conducted with the goal of identifying the parameter 
subset that controls most of the output variability with 
low computational effort. Then, the screening could 
be followed by a quantitative method applied on the 
subset of preselected inputs. For a successful exper- 
iment, both the exercises should be run with global 
techniques. 

This procedure can be effective, especially since 
often, among a large number of input parameters in- 
volved in a model, only a few have a significant effect 
on the model output. Furthermore, the approach has 
the big advantage of providing quantitative sensitivity 
measures while controlling the computational cost of 
the experiment. 

In this paper, the idea is implemented for the first 
time on a real model. The model under study is KIM 
(Kinetic Model), a chemical kinetics model of the 
tropospheric oxidation pathways of dimethylsulphide 
(DMS). 

A description of KIM and a brief story of its de- 
velopment are given in Section 2. Section 3 reports 
the results of a previous qualitative SA conducted on 
KIM. Section 4 describes the two SA methods adopted 
within the new analysis, the Morris screening method 
(Section 4.1), and the quantitative extended FAST 
(Section 4.2). Results and conclusions are given in 
Section 5. 

2. The K I M  model  

KIM stands for Kinetic Model for OH-initiated 
oxidation of DMS (CH3SCH3), and incorporates 
a description of the tropospheric reaction pathways 
for the formation of sulphur-containing molecules, 
such as sulphur dioxide (SO2) and methane sul- 
phonic acid (MSA, CH3SO3H), from DMS. KIM is 
0-dimensional and includes multiphase (droplets-air) 
transport and chemistry. The KIM model is relevant 
to climate change studies, because of the important 
contribution of DMS emissions to the formation of 
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climatically active atmospheric aerosols and in partic- 
ular the hypothesised feedback mechanism linking the 
biogenic sulphur cycle to the greenhouse effect [ 8,9]. 

The oxidation can be enhanced by the presence of 
water droplets in the troposphere, and provide an aque- 
ous pathway for the formation of sulphur containing 
molecules. 

The process of building the KIM model involved 
tackling uncertain mechanisms and reaction rates. Cer- 
tain mechanistic aspects of the chemistry of DMS were 
so poorly understood that the knowledge of the var- 
ious reactions and of their relative weights was very 
imprecise. Thus, the reaction scheme adopted in the 
model was affected by large uncertainty (structural 
uncertainty). Furthermore, given the large uncertain- 
ties in the parameter values governing DMS oxidation 
kinetics, the error bars associated with the rate con- 
stants involved were large, and in some instances al- 
most arbitrary (parametric uncertainty). 

All the above reasons, together with the scarcity of 
observed data for a proper model calibration, led to 
the implementation of a model building process where 
uncertainty and sensitivity analysis played a central 
role. The KIM model was run within a Monte Carlo 
driver, capable of propagating the uncertainty in the 
input parameters onto the output variables. The MC 
analysis of Saltelli and Hjorth [ 10] allowed the quan- 
tification of ( l )  the uncertainty in model prediction, 
and (2) the relative importance of each input parame- 
ter in determining such an uncertainty. The study was 
based on KIM-I, a purely gas-phase chemistry version 
without droplets. 

One of the main limitations of studies done with 
KIM-I was that it neglected the temperature effects 
on the DMS-oxidation process. In 1994, Remedio et 
al. [ 1 1 ] extended the KIM-I model to include the lat- 
itude dependency, producing a second version of the 
model, KIM-II. The Monte Carlo analysis was then 
performed again on KIM-II, and a latitudinal analysis, 
emphasising the possible regional differences on the 
main oxidation pathways of DMS and on the relative 
amounts of end-products formed, was carried out. Re- 
sults of the analysis agreed generally with those found 
in a recent bibliography by Koga and Tanaka [ 12 ], and 
several conclusions could be drawn. However, those 
conclusions were still conditional upon the model and 
data assumptions underlying the experiment. Among 
these assumptions, the non-inclusion of the heteroge- 
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neous chemistry (aqueous phase) and dry deposition, 
by far the largest sink for SO2 molecules, was the most 
severe. 

In 1997, a third version of the KIM model (KIM- 
1II) was produced [13]. In KIM-IlI, the heteroge- 
neous chemistry is dealt with, and a first attempt is 
made to include some elements of cloud processing in 
the model. Liquid phase chemistry occurs inside the 
water droplets in the troposphere, and involves transfer 
to the droplet, chemical reactions inside the droplet, 
and the sink terms for the droplet (e.g. washout). 

Uncertainties in the heterogeneous oxidation of 
DMS and of its intermediates in the liquid phase are 
even more severe than for the homogeneous chemistry 
mechanism [13]. 

As discussed by Ayers et al. [ 14], the concentration 
ratio in marine aerosol between MSA and non-sea-salt 
sulphates (nss-SO], including SO 2 and H2SO4) ,  i.e. 

o~ = MSA/(SO2 ÷ H2SO4)  , 

seems to offer the best opportunity for comparing ob- 
served data to those predicted by models, in particu- 
lar, for considering the temperature dependencies in- 
volved in the various branches of the oxidation pro- 
cesses. Further, the MSA/nss-SO 4 ratio may be used 
for estimating the actual contribution of DMS to ob- 
served nss-SO 4 from measurements of MSA, if the 
dependence of the ratio on temperature and other am- 
bient conditions are sufficiently well known [ 15,16]. 

The temperature dependency of a was the focus of 
the study by Campolongo et al. [ 13]. The values of a 
predicted by KIM-III were compared with field obser- 
vations of MSA to non-sea-salt-sulphate ratios [17]. 

3. Previous SA on KIM 

Campolongo et al. [ 13] carried out a qualitative SA 
study to identify the parameters most influential on the 
ratio o~. The input parameters included in the analy- 
sis were not only temperature dependencies involved 
in the gas phase chemistry but also the anticipated 
temperature dependencies of the interaction between 
gas phase (homogeneous) and liquid phase (hetero- 
geneous) chemistry. Results indicated that these latter 
temperature dependencies might, to a large extent, ex- 
plain the actual observed values of the o~ ratio. Thus 
the analysis highlighted the potential role of multi- 
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phase atmospheric chemistry not only in the case of 
SO2, but also of other oxidation products of DMS and, 
particularly, of DMS itself. 

The KIM-III version of KIM involves 68 uncertain 
input variables. It follows that with such a large num- 
ber of potential explanatory variables, any SA measure 
based on a regression (such as the Standardised Re- 
gression Coefficient SRC, the Partial Correlation Co- 
efficient PCC, etc.) cannot be trusted with any high 
level of confidence [ 18 ]. In order to perform the SA 
on KIM-III by focusing only on a limited number of 
variables, Campolongo et al. [13] conducted a pre- 
liminary analysis and identified the 20 more influen- 
tial input variables out of the total 68. The prelimi- 
nary analysis was carried out by computing the SRC's 
10 different times (on the base of ten different Monte 
Carlo simulations) for all the 68 input variables, and 
then selecting those variables which had been identi- 
fied at least three times (out of the ten MC analysis 
executed). 

A more rigorous Monte Carlo type sensitivity anal- 
ysis was then carried out on the 20 preselected vari- 
ables. The other variables were fixed to a "nominal" 
value and kept constant in the succeeding simulations. 
The SRC regression coefficients, from the least-square 
regression analysis applied to the Monte Carlo simu- 
lation, were computed for the 20 variables of interest 
and used to rank them in order of importance [ 13]. 

4. The present SA on KIM 

4.1. The screening exercise 

One of the factors identified as very important by 
SRC sensitivity measures was the kinetic parameter 
k21 [13]. Unfortunately, estimates of the k21 value 
presented in the literature show strong discrepan- 
cies [10], and this value is still very uncertain. For 
these reasons, Campolongo et al. [ 13] felt appropriate 
to repeat their analysis of the latitude dependency of 
the ratio ~ after replacing the value distribution of k21, 
which originally was taken from Ray et al. [ 19], by 
an alternative value, which was reported in Mellouki 
et al. [20]. The disagreement found comparing the 
two sets of model outcomes (obtained respectively 
with the first and second choices of the k2j value) 
confirmed the key role played by this factor and the 
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need to obtain a accurate estimate for its value. 
In this work, we investigate the sensitivity of  the 

final version of  the KIM model, which is the KIM-III 
but with the k21 value as given in Mellouki et al. [20] .  
The preliminary screening analysis is conducted here 
by using the screening method of  Morris [3].  

This method varies one-factor-at-a-time across a 
certain number of  levels selected in the space of  the 
input factors, s'2. The method requires a total number 
of model evaluations that is of  the order of k, O(k) ,  
where k is the number of  model input factors. Two 
sensitivity measures are provided for each input fac- 
tor: a measure/z  of  the "main" effect, and a measure 
o- that is the sum of all the second and higher order 
effects in which the factor is involved (including cur- 
vatures and effects due to interaction with other fac- 
tors). Note that the measure # computed by Morris is 
global. In fact, # is obtained by computing a number 
r of  local measures - called Elementary Effects - at 
different points x ~ . . . .  Xr of  the input space, and then 
taking their average (so to lose the dependence of the 
specific point at which the measure was computed). 
The number r of selected points is called the sample 
size of the experiment [3] .  In this work, we adopted 
a sample size r = 10 and a number of  levels 1 = 4. 

At present, all the examples of  application of  the 
Morris method available in the literature are based on 
the assumption that the distribution of  each input factor 
is uniform [3,4,7]. Such an assumption, although gen- 
erally weak, is the only acceptable when the knowl- 
edge of  the input parameters is quite poor. When the 
assumption of  uniform distributions holds, the levels 
of  the experiment are then simply obtained by dividing 
in equal parts the interval in which each factor varies. 
For example, if a factor varies in [0, 1 ] and we want 
to select a number of  4 levels, these levels are Ii = 0, 
12 = 1/3, 13 = 2/3,  14 = I. 

In the present work, more accurate information is 
available about the input factors of the KIM model. 
Statistical distribution functions have been selected 
mostly based on the literature (uniform, log-uniform, 
normal, log-normal . . . .  ). In this case, a simple choice 
of levels as the one mentioned above, would result in a 
loss of  information, since it would neglect the statisti- 
cal intbrmation contained in the distribution functions. 
The procedure we adopted for the KIM model exer- 
cise is the following: instead of  sampling the input val- 
ues directly in/2, we first sampled in the space of  the 
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quantiles of the distributions, which is a k-dimensional 
hyper-cube (each quantile varies in [0, I ] ) .  Then, 
given a quantile value for a given input factor, the ac- 
tual value taken by the factor was derived from its 
known statistical distribution. 

Results of  the Morris screening exercise are given 
in Fig. 2. The two Morris sensitivity measures/.~ and 
o- are plotted for the 68 input factors (only the 10 
most important factors are named). Note that/z and o- 
provide two complementary measures of  sensitivity; 
however, for this exercise, the two sets of  the 10 most 
important factors as identified by # and by o- are iden- 
tical. The ranking of  the factors obtained according to 
/.~ is given in Table 1. 

4.2. FAST on KIM 

4.2.1. The FAST method 

The Fourier Amplitude Sensitivity Test (FAST) 
was proposed in the 70's [2,21,22] and was success- 
fully employed in investigating the sensitivity of  large 
sets of coupled reaction systems to uncertainties in 
rate coefficients. 

In a further article [23] the method was reviewed 
and reinterpreted as to fit into an ANOVA setting. In 
an ANOVA setting the total output variance D is de- 
composed into orthogonal terms of  increasing dimen- 
sionality, e.g. for a model with three factors, 

D = D1 + D2 + DI2 + D13 + D23 + D I 2 3  . ( l ) 

The same decomposition of  response into effects is 
commonly used in experimental design [24].  

Here the first order term Di captures the effect on the 
output uncertainty due to variations in factor i, while 
all the other factors are averaged over their range of  
uncertainty. The second order t e r m  Dij is a two-way 
interaction between factors i and j not including the 
individual effects due to i and j, which are already 
taken into account by Di and Dj. Higher order partial 
variances express the influence on the output uncer- 
tainty due to higher order interactions among factors, 
and are defined in a similar way. Dividing Eq. ( 1 ) by 
D one obtains 

1 =Si  + $ 2 + $ 3 + S 1 2 + S 1 3 + 5 ' 2 3  +S123, 

where Si,,i2 .... are the so-called sensitivity indices. 
In FAST, the input factors of  a model are assumed to 

be noncorrelated and all of  them are varied simultane- 
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Fig. 2. Results of the Morris screening exercise. The estimated quantities for /.z (along the abscissa) and ~r (along the ordinate) are 
illustrated for all the factors. The first 10 most important factors have been labelled. 

ously over their ranges of  uncertainty, so that a global 
appreciation of  the sensitivities can be achieved. 

FAST enables the estimation of  the first order partial 
v a r i a n c e s  Di as well as the total output variance D, 
and hence first order sensitivity indices Si. In FAST 
each uncertain input factor xi is related to a frequency 
toi, and a set of  suitably defined parametric equations 

xi( s ) = Gi( sin ( wis ) ) (2) 

allows each factor to be varied in its range, as the 
new parameter s is varied. The parametric equations 
define a curve that systematically explores the input 
parameter space ~.  The curve is supposed to be space- 
filling, so that summary statistics on the output can be 
computed, according to the theorem of Weyl [ 25], by 
integrating either over s2 or along the curve itself. The 
quadratures are employed by using a set of  N points 
which are selected along the curve and are usually 
equally spaced. 

N represents the sample size required for evaluat- 
ing the whole set Si. N coincides with the number of  
model evaluations and, hence, with the total cost of  
the analysis. The larger the maximum value ~-max of  
the input frequencies ~i, the larger the sample size N. 

A Fourier analysis is performed on the output y = 
. f (x l  (s ) ,  x2(s)  . . . .  ) ~ f ( s )  considered as a function 

of  s: the spectrum A2(o9)  of f ( s )  at each frequency 
a, is computed by 

A 2 = A 2 + B 2 , 

where 

' i  A ( w )  = ~ f ( s )  cosoJsds  

--7/" 
and 

'7 B ( w )  = ~ f ( s )  sin ~osds 

are integrals numerically evaluated over s. Finally, the 
Si's are obtained by computing the ratio between D, 
and D, which are estimated according to 

+oo 

D,. = 2 Z A2(p~°i) ' (3) 
p=l 

+oo 

D = 2 ~ A2(o~i). (4) 
j=l 

A set of  incommensurate frequencies should be used 
in Eq. (2) for obtaining a space-filling curve. Actually, 
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Table I 
Resulls of the Morris experimenl on the K1M model. Factors are 
ranked in order of importance according 1o the SA measures #. 
The I0 most important faclors are displayed in bold fonl. 

Factor Rank Factor Rank 

WATLIQ 2 W 15 13 
RAIN 66 YOOHRAD 3 
B32 24 QI 1 
B5 36 Q5 33 
B6 21 Q6 19 
B7 16 Q7 15 
R8 18 QM 14 27 
R9 56 QMI5 62 
RI0 I I QM19 29 
R 12 28 QM20 49 
RI3 31 QW7 5 
R 14 26 Q21 4 
R 15 44 Q22 55 
R 16 30 QM28 39 
R 17 34 R HLCO2 50 
R 18 12 R HLSO2 40 
R 19 25 RHLNH3 67 
R20 38 RHLO3 8 
R23 45 RIILH202 9 
R25 51 RHLHNO3 61 
R 26 35 RHLDMS 7 
R28 60 RHLDMSO 53 
R29 23 RHLDMSO2 32 
R30 20 RHLMSA 42 
R31 14 I)EHCO2 41 
R34 59 DEHSO2 52 
PRATE34 48 DEHH202 10 
R35 65 DEHO3 6 
R36 63 DEHNH3 68 
R37 46 DEHHNO3 47 
W8 58 DEHDMS 17 
W 10 37 DEH DMSO 54 
Wll 22 DEHDMSO2 43 
W 14 57 DEHMSA 64 

a space-f i l l ing curve  is only an idealisat ion since the 

f requencies  cannot ,  in practice,  truly be incommensu-  

rate, due to the finite precis ion of  computers .  Rational,  

or equivalent ly,  integer f requencies  are therefore em-  

ployed.  This  fact poses a p rob lem of  interferences be- 

tween frequencies:  the Four ier  coeff icients  evaluated 

at the input f requency wi and its mult iples  reflect the 

sensitivity o f  the output  to the ith factor. If  interfer- 

ence occurs  at a given f requency value, then the c o l  

responding Four ier  coeff ic ient  will reflect s imultane-  

ously sensit ivit ies to more  than one factor, thus ren- 

der ing the analysis impract icable .  

81 

Actually,  the set of  f requencies  is chosen so that 

they are free o f  interferences up to order  M, where 

M is a parameter  at disposi t ion of  the investigator.  

Eqs. (3)  and (4)  are therefore cut ~o the Mth term, 

usually M = 4 or 6. Note  that incommensurab i l i ty  

would  correspond to M = exp. Of  course,  the higher  

M the more  accurate the eslimates.  The  drawback  is 

that N, the sample  size, is strongly constra ined by M. 

In a case with 8 factors, for example ,  if  M = 4. the 

m i n i m u m  sample  size required is N = 486; if M is se! 

to 6, the min imum N is much higher  ( N  = 3492) .  N 

is also constrained by k given thai, as the number  o f  

lectors increases, it is necessary 1o choose  h igher  a)ma~ 

in order to obtain a set {wi}  fl'ee of  interferences up 

to a given order. 

Cukier  et al. [ 21 ] proposed an empir ical  formula  

yie lding the f iequency  sets { co/} and the ( m in imum } 

sample  size N for models  up to / ,  = 50 factors, assum- 

ing M = 4 .  

Another  formula,  based on the Nyquis t  cri terion,  

gives N in terms of  Wm,~x and M, 

N = 2Mw,na~ + 1 , (5)  

As discussed in [26] ,  N grows approximate ly  as 

the square o f  the number  o f  factors, for M = 4. In a 

case with 50 factors, for instance, no less than N = 

43606 s imulat ions are required,  thus render ing F A S T  

in some cases computa t iona l ly  infeasible.  

Saltelli et al. [6] ex tended the FAST method to 

est imate the total effects, $7;, Vi = 1,2 . . . . .  k. A total 

effect index St, (see [27] ) is defined as the sum of  the 

indices Si,.i,, ..... which include the index i. For instance, 

in a model  with three factors the total indices look like 

ST, = Si + S12 + S~3 + St23, 

ST~ = $2 + $2~ + S=.~ + $2~3 • 

ST, = $3 + $31 + S3e + $3~:. 

It is wor thwhi le  noticing that, as in exper imenta l  de- 

s ign ,  S123 • $213 ~ $312, which expresses  the sensit iv- 

ity to the output of  the third-order  interaction among  

the factors of  the model .  S imi lar  symmetr ies  occur  for 

the second-order  interactions,  i.e. &2 = $21, Si ,  -- 

$31, $23 = $32. Tile total index Sri quantif ies the over-  
all effect  on the output  uncertainly due to the factor i: 

it includes the single effect Si as well as the efl 'ecls due 

to the interactions with the other  factors, at any order. 



8 2  K Canq)olongo et al./Computer Physics 

The pair of  indices 5', and St, for the factor i can be 
obtained by choosing a "high" value for the frequency 
wi and a set o f " low"  values for the other frequencies, 
(o(_i), corresponding to the remaining factors. In the 
extended FAST, therefore, coi - Wmax. 

By evaluating the Fourier spectrum in the "low" 
range, the total index ST, can be estimated, whereas the 
first order index & is obtained as in the classical FAST 
(see Eqs. (3) and (4 ) ) .  To estimate the sensitivity 
indices for the factor j ,  a permutation of  the frequen- 
cies is necessary, because a "high" frequency value 
must be assigned to the factor of interest. This com- 
putation requires a new set of  N sample points within 
/2. Hence, the total cost of the analysis for computing 
all the pairs of" indices is k x N. 

When performing the extended FAST, the problem 
of interference is easier to manage than in the classical 
FAST: it consists of  the overlap occurring between the 
"low" and the "high" frequency bounds. The problem 
of interference can be escaped by choosing wi such 
that 

~o,,,~,~ ==_ oJi > 2 M m a x { w ( _ i ) } .  (6) 

This formula imposes a constraint on the sample size 
N, i.e. N = 4M ~ + I. This relation is deduced by 
Eqs. (5) and (6) where {~o(-i)} = 1 and O ) m a  x = 2M. 
The use of  such a sample size N guarantees an analysis 
free of  interferences up to order M. 

The above constraint is much weaker compared to 
the classical FAST, as the minimum value required for 
the sample size is N = 65 when M is set to 4. An 
important remark is that N is not constrained by k in 
any way. 

The parametric representation of  the curve explor- 
ing ,(2, introduced in Eq. (2),  has been standardised. 
With extended FAST we generate standard samples 
of  noncorrelated input |actors that are uniformly dis- 
tributed in the range [0, 1 ). The proposed parametric 
equations are 

I 1 -ri = ~ + ~ arcsin(sin(oois)) . 

In a model where the probabilty distribution func- 
tions (p.d.f. 's) and the ranges of  the input factors are 
generic, a differential form can be solved to transform 
the standard sample into the required one. The ODE 
for the factor i is 

Communications 117 (1999) 7.5-85 

J'2 dG,(xi) _ 1 
7 r ( l - x ; )  / Pi(Gi)  c l x ~  ' 

where Pi is the p.d.f, of  xi. 
The extended FAST is flexible as it allows using dif- 

ferent curves systematically exploring the input factor 
space /2. Let us call the number of  curves employed 
N,-. The sample size N is given by 

N =  (2Mwm~lx + I)N,..  

4.2.2. The extended FAST applied to KIM 

The 10 most important factors resulting from the 
Morris screening exercise have been selected for fur- 
ther investigation. The selection of  these factors has 
been made on the basis of the results displayed in 
Fig. 2. The distance that a given point in the figure 
has to the vertical axis represents a "qualitative" mea- 
sure of the importance of  the corresponding factor. In 
other words, a "qualitative" ranking is obtainable by 
means of  the set of /x  values for the various factors. 

In the analysis we decided to consider the set of  
the 10 most important factors according to the ranking 
offered by Morris. A quantitative appreciation of  their 
influence on the output variable has been obtained by 
performing the extended FAST. 

The ranges and distributions adopted for the 10 fac- 
tors are the same as in the screening exercise. The 
remaining factors have been assumed irrelevant and. 
therefore, fixed to their nominal values. 

The sample size N = 1026 has been used for the 
calculation of each pair of  indices (&, Sy; ), with M = 
4, COl = 64 and N,. = 2. The total cost of  the analysis 
is C = N × k = 10260, being k = 10. The results 
are illustrated in Table 2 and in Fig. 3, where two 
pie charts, lbr the &'s and for the ST,'S, represent the 
percentage contributions of the 10 factors to the total 
output variance. 

The execution of  the classic FAST would have 
yielded the pie chart (a) only. According to Cukier"s 
empirical formula, the computational cost of  the clas- 
sic FAST would have been C = 806. In this particular 
exercise, standard FAST would have likely sufliced, 
given that within the error the model behaves addi- 
tively (the sum of the Si's is one on the (a) chart). 
The (b) pie indicates nonnegligible interactions, 
though these are likely to be an overestimate. Indeed 
SQ, is 0.93, while STQ, is 0.97; once all the ST,'S are 
renormalised with the sum of the total indices, the 
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Table 2 
The FAST indices computed for the 10-factor model. The remain- (al 

ing 58 uncertain factors were kept fixed to their nominal values. 

Factor First order index (Si) Total index (ST,) 

WATLIQ .07595 .13668 
YOOHRAD .00663 .01726 
Ql .93284 .97196 
QW7 .01207 .05923 
Q21 .00003 .01391 
R HLO3 .00150 .02345 
RHLH202 .00008 .01372 
RHLDMS .00201 .01898 
DEHH202 .00007 .01186 
DEHO3 .00013 .01752 

influence of QI ends up being reduced. The true rel- 
evance of interactions is likely in between the values 
given by the two charts. 

The use of extended FAST even for additive cases 
is motivated by the fact that a priori one cannot an- 

ticipate additivity (most versions and cases run with 
KIM indicated substantial non-additivity [ 10,1 I ] ). 

Q1 
91% 

7% 

QI 

76% 

l 

1% 

83 

5. Discussion and conclusions 

The (b) pie chart in Fig. 3 yields useful quantitative 
information about the overall relative importance of 
the 10 factors. It shows that the factor Qj, which is the 
quantile of kl, is by far the most important among the 
10 factors, accounting approximately for ( 76 -90 )% 
of the output variance D. 

This is not surprising since the kinetic constant kl 
is involved in the reaction between OH and DMS and 
the reactions competing with formation of MSA are of 
more relevance in the hydrogen-abstraction pathway 
than in the alternative pathway. Furthermore, the same 
result was found by Campolongo et al. [13] when 
studying the sensitivity of the KIM-III model with the 
old value of k21. 

The second most important factor is WATLIQ, ex- 

plaining about ( 7 - 1 1 ) %  of D. The other 7 factors 
included in the analysis account for ( 4 - 1 3 ) %  of the 
total output variance D. 

As mentioned above, the apparent discrepancy be- 
tween the two pie charts in Fig. 3, concerning the pos- 
sible role of interactions, is due to the numerical error 
of the method. In any case it can be said that the in- 

WATLIQ RHLO3 
11% 2% 

Fig. 3. Results of the FAST quantitative measure. A sample size 
N = 1026 has been used for the calculation of each pair of indices 
(Si, ,5"7", ), with M = 4, toi = 64. and Nr = 2. The total cost of the 
analysis is C = N × k = 10260. being k = 10. Tile pie char! (a) 
represents the Si's and the pie cha11 (b) denotes lhe SL's. 

teractions, if present, do not play a predominant role. 
This conclusion, valid for the 10-factor model where 

58 out of 68 uncertain factors were kept fixed to their 
nominal values, cannot be extended to the original ver- 
sion of the model, where 68 input factor are uncertain. 
In fact, possible interactions between the elements of 
the 10-factor model and others that were kept fixed in 
this analysis are not accounted for by the FAST re- 
sults. The results of the simplified model are deemed 
to be more additive than the original one. 

The same consideration explains the minor differ- 
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ences  in the r a n k i n g  o f  the impor t ance  o f  the factors  

p rov ided  by Mor r i s  and FAST. 

The  re l iabi l i ty  of  the FAST resul ts  is cond i t iona l  

upon  the cho ice  o f  the s u b g r o u p  o f  factors  lo which  

FAST is appl ied .  The  cho ice  o f  the fac tors  to be for- 

warded  to F A S T  is a sub jec t ive  and  very  del ica te  step. 

Typica l ly  a SA exerc i se  may  fail by two di f ferent  

types  of  error,  

- (Type  I) a factor  which  is not  impor t an t  is erro-  

neous ly  ident i f ied;  or 

- (Type  I I )  a fac tor  w h i c h  is i m p o r t a n t  is not  ident i -  

fied. 

W h i l e  an e r ror  o f  Type I made  by Mor r i s  would  

be o f  no conce rn ,  because  the factor  would  s imply  be 

ass igned  a zero  or low p e r c e n t a g e  o f  var iance  by the 

c o n s e q u e n t  F A S T  analys is ,  a Type 1I e r ror  would  not 

be cor rec ted  by F A S T .  Is there  a risk to cut  of f  f rom 

lhe ana lys i s  a factor  that is ac tua l ly  important '?  

For sure,  such  a risk c a n n o t  be ruled out  outr ight .  

P rev ious  exerc i ses  [ 7 ] ,  and  i tera t ions  o f  the present  

onc, seem to ind ica te  that  Morr i s  does  not make  Type 

I1 errors .  Th i s  is r easonab le ,  s ince the inf luence  of  fac- 

tors in mode l s  fo l lows  - a cco rd ing  to our  expe r i ence  

a Pare to- l ike  d i s t r ibu t ion ,  with  few factors  account -  

ing for mos t  o f  the var iance ,  and mos t  of  the factors  

tak ing  up the r e m a i n i n g  bit .  O ne  has  to bui ld  a model  

artificially,  in o rder  to get  a case  where  the inf luence  

of  factors  is m o r e  u n i f o r m l y  ba lanced .  

For a mode l  wi th  abou t  70  factors  it is very well 

l ikely that  lcss than 10 have  some  s izeable  inf luence,  

and in this  case  two of  them clear ly  eat up more  than 

90% of  the var iance .  In o ther  words ,  a l t hough  it is 

an a rb i t ra ry  choice ,  by se lec t ing  the first 10 factors  

ident i l ied by Mor r i s  for the F A S T  ana lys i s  we feel 

r e a s o n a b l y  p ro tec ted  f rom an e r ror  of  Type II. 
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