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A novel approach for estimation variance-based sensitivity indices for models with dependent variables
is presented. Both the first order and total sensitivity indices are derived as generalizations of Sobol’
sensitivity indices. Formulas and Monte Carlo numerical estimates similar to Sobol’ formulas are
derived. A copula-based approach is proposed for sampling from arbitrary multivariate probability
distributions. A good agreement between analytical and numerical values of the first order and total
indices for considered test cases is obtained. The behavior of sensitivity indices depends on the relative
predominance of interactions and correlations. The method is shown to be efficient and general.
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1. Introduction

High complexity of models in physics, chemistry and other
fields often results in the increased uncertainty in model param-
eters. In such cases good modelling practices require the use of
global sensitivity analysis (SA) [1–3]. Over the last decade ANOVA-
based SA has gained acceptance among practitioners in the process
of model development and corroboration. The ANOVA decompo-
sition is unique only if the input variables are independent, and
methods like that of Sobol’ [4] have been developed to deal with
independent inputs. However, in many fields such as nuclear engi-
neering [5], mechanical engineering [6], medical decision making
[7], extinction risks assessments in biology [8], just to name a few
input variables are dependent. The dependency can arise as the
result of constraints in the inputs space due to properties of in-
puts (i.e. composition constraints in material science) or because
of the complex input structure where inputs may be themselves
the output of some other model or experiment [9]. In these cases
the simple description of input uncertainty through independent
marginal distribution functions is not adequate. Correct procedures
require sampling from the joint and conditional distribution func-
tions of inputs.

Over the past ten years or so many techniques have been pro-
posed to generalize variance-based SA for the case of dependent
variables. Tim Bedford [10] applied a Gram–Schmidt orthogonal-
ization of the inputs, followed by the classical decomposition of
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variance of the new orthogonal set of variables. The proposed de-
composition is not unique as it depends on the ordering in which
the original variables are included in the orthogonalization pro-
cedure resulting in interpretation difficulties. Later, Saltelli and
Tarantola [11] proposed an algorithm to identify most important
inputs in the case of dependent variables. Each sensitivity index
of the first (or higher) order is estimated using its straightfor-
ward definition, which numerically results in the so-called brute
force double loop Monte Carlo (MC) estimate. The major drawback
of this approach is the high computational cost usually required
and not always affordable. Recently, Xu and Gertner [12] devel-
oped an approach by splitting the contribution of an individual
input to the uncertainty of the model output into two compo-
nents: the correlated contribution and the uncorrelated one. They
propose a regression-based method for estimating the correlated
and uncorrelated contribution of the inputs. The method relies on
the assumption that the relationship between response and pa-
rameters is approximately linear. In [13], Li et al. introduced a
unified framework which generalizes the ANOVA-HDMR including
covariances in the decomposition of the model output variance.
Similarly to Xu and Gertner [12], they distinguish between struc-
tural and correlative contribution of a given input. The method
consists of two steps: (i) an approximation of the model obtained
by estimating a (reduced) functional decomposition via a meta-
model; (ii) computation of variances and covariances of the model
function components with the model output. These yield two sen-
sitivity indices for each input, the structural and correlative part.
Although this method represents an improvement in the sensitivity
analysis with correlated inputs, it also presents some critical is-
sues such as non-uniqueness of the functional decomposition (how
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many components should be included in the decomposition, the
choice of the appropriate surrogate model, etc.).

In this paper we propose a generalization of the variance-based
sensitivity indices for the case of dependent variables. The gener-
alization does not involve the use of surrogate models, data-fitting
procedures or orthogonalization of the input factor space. We de-
rive formulas and numerical estimates for sensitivity indices, anal-
ogous to Sobol’ formulas for the case of independent variables [4,
14]. The values of the sensitivity indices are unique and their in-
terpretation is not ambiguous. A priori knowledge of probability
distribution functions is required. In the case of normal distribu-
tions an application of formulas is straightforward. In the general
case we propose to use a Gaussian copula which is determined by
marginal distributions of inputs and their correlation structure.

This paper is organized as follows: the next section presents
formulas for the first order effect and total indices for models with
dependent variables. Section 3 contains general results for the case
of a correlated multivariate normal distribution. It also considers
the particular case of a linear model with two correlated bivariate
normal variables. In Section 4 the general case of correlated vari-
ables each of which represented by its own marginal distribution
and a correlation structure is presented. Application of the Gaus-
sian copulas is proposed to reduce the arbitrary case of correlated
variables to the case of correlated multivariate normal distribution.
Generation of correlated variables is considered in Section 4. MC
estimates of the derived formulas are presented in Section 5. Sec-
tion 6 introduces an MC sampling procedure for calculation of MC
estimates. Section 6 presents three test cases. It compares the nu-
merical and analytical results and discusses the convergence rates
of the MC and Quasi Monte Carlo (QMC) methods for the derived
formulas and for the brute force approach. Finally, conclusions are
presented in the last section.

2. Formulas for the first order effect and total indices

We consider a model function f (x1, . . . , xn) defined in Rn with
an input vector x = (x1, . . . , xn). Here x is a real-valued random
variable with a continuous distribution function p(x1, . . . , xn). It is
assumed that f (x1, . . . , xn) has a finite variance. Consider an ar-
bitrary subset of the variables y = (xi1 , . . . , xis ), 1 � s < n, and a
complementary subset z = (xi1 , . . . , xin−s ), so that x = (y, z).

The total variance of f (x1, . . . , xn) can be decomposed as

D = D y
[

Ez
(

f (y, z̄)
)] + E y

[
Dz

(
f (y, z̄)

)]
.

Here

Ez
(

f (y, z̄)
) =

∫
Rn−s

f (y, z̄)p(y, z̄|y)dz̄,

D y
[

Ez
(

f (y, z̄)
)] =

∫
Rs

[
Ez

(
f (y, z̄)

)]2
p(y)dy − f 2

0 ,

Dz
(

f (y, z̄)
) =

∫
Rs

(
f (y, z̄)

)2
p(y, z̄|y)dz̄ − f 2

0 ,

E y
[

Dz
(

f (y, z̄)
)] =

∫
Rs

[
Dz

(
f (y, z̄)

)]2
p(y)dy.

We use notations z and z̄ to distinguish a random vector z gener-
ated from a joint probability density function p(y, z) and a random
vector z̄ generated from a conditional distribution p(y, z̄|y). Nor-
malized by the total variance, this expression leads to the equality

1 = D y[Ez( f (y, z̄))]
D

+ E y[Dz( f (y, z̄))]
D

. (2.1)

2.1. The first order effect index

The ratio

S y = D y[Ez( f (y, z̄))]
D

(2.2)

is known as the first order effect index of the subset y, while the
second term in (2.1)

S T
z = E y[Dz( f (y, z̄))]

D

is known as the total effect of the subset z. For consistency we also
present the total effect of the subset y

S T
y = Ez[D y( f ( ȳ, z))]

D
. (2.3)

Collectively S y , S T
y in the case of independent variables are

known as Sobol’ indices [3,14].
The full expression for the first order effect index is given by

the following formula:

S y = 1

D

[ ∫
Rs

p(y)dy

[ ∫
Rn−s

f (y, z̄)p(y, z̄|y)dz̄

]2

− f 2
0

]
. (2.4)

Here f0 = E( f (x)), p(y, z̄|y) is a conditional probability density
function, p(y) is a marginal distribution function. For majority of
practical problems an analytical calculation of S y is not feasible.
In the MC framework a direct application of formula (2.2) requires
the so-called double loop of computations also known as the brute
force approach. It results in a very high computational cost and
hence it is not applicable for practical applications [11].

Expression (2.4) can be written as

S y = 1

D

[ ∫
Rs

p(y)dy

[ ∫
Rn−s

f (y, z̄)p(y, z̄|y)dz̄

×
∫

Rn−s

f
(

y, z̄′)p
(

y, z̄′∣∣y
)

dz̄′
]

− f 2
0

]
. (2.5)

Formula (2.5) allows for overcoming the limitation of the double
loop approach although the dimensionality of the integral is in-
creased from n to 2n − s. Application of formula (2.5) requires
generating (i) a random vector (y, z) from the joint distribution
p(y, z); (ii) a random vector (y, z̄′) from the conditional distri-
bution p(y, z̄′|y). The details of the MC scheme are given in the
following sections. For the uncorrelated case conditional distri-
butions are reduced to marginal distributions: p(y, z̄|y) = p(z̄),
p(y, z̄′|y) = p(z̄′) and formula (2.5) becomes equivalent to the
standard Sobol’ formula for the first order effect [4,14].

Modified formula: Formula (2.5) can be modified by noticing
that

f 2
0 =

[ ∫
Rn

f (y, z)p(y, z)dy dz

]2

=
[ ∫

Rn

f (y, z)p(y, z)dy dz

∫
Rn

f
(

y′, z′)p
(

y′, z′)dy′ dz′
]
. (2.6)

Here (y, z) and (y′, z′) are two different random vectors generated
from the joint distribution p(y, z). Combining (2.5) and (2.6) we
obtain
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S y = 1

D

[ ∫
Rs

p(y)dy

[ ∫
Rn−s

f (y, z̄)p(y, z̄|y)dz̄

×
∫

Rn−s

f
(

y, z̄′)p
(

y, z̄′∣∣y
)

dz̄′
]

−
[ ∫

Rn

f (y, z)p(y, z)dy dz

∫
Rn

f
(

y′, z′)p
(

y′, z′)dy′ dz′
]]

which can be further simplified by using the Bayes’ formula
p(y, z̄|y)p(y) = p(y, z) and taking the common multiplier∫

Rn f (y, z)p(y, z)dy dz out:

S y = 1

D

[ ∫
Rn

f (y, z)p(y, z)dy dz

[ ∫
Rn−s

f
(

y, z̄′)p
(

y, z̄′∣∣y
)

dz̄′

−
∫
Rn

f
(

y′, z′)p
(

y′, z′)dy′ dz′
]]

. (2.7)

This formula significantly improves the convergence of the numer-
ical estimates for the case of small indices [15,16].

Alternative formula: We can also write (2.4) with respect to y′

S y = 1

D

[ ∫
Rs

p
(

y′)dy′
[ ∫

Rn−s

f
(

y′, ẑ
)

p
(

y′, ẑ
∣∣y′)dẑ

]2

− f 2
0

]

in which case (2.7) can be written as

S y = 1

D

[ ∫
Rn

f
(

y′, z′)p
(

y′, z′)dy′ dz′
[ ∫

Rn−s

f
(

y′, ẑ
)

p
(

y′, ẑ
∣∣y′)dẑ

−
∫
Rn

f (y, z)p(y, z)dy dz

]]
. (2.8)

Here we used notations z, z′ , ẑ to distinguish random vectors z
and z′ generated from the joint probability distribution p(y, z) and
a random vector ẑ generated from a conditional probability distri-
bution function p(y′, ẑ|y′).

In the case of independent inputs an alternative formula (2.8)
is reduced to

S y = 1

D

[ ∫
Rn

f
(

y′, z′)p
(

y′)p
(
z′)dy′ dz′

[ ∫
Rn−s

f
(

y′, z
)

p(z)dz

−
∫
Rn

f (y, z)p(y)p(z)dy dz

]]
. (2.9)

The alternative formula allows to reduce the number of function
evaluations in the case of independent inputs [17]. For the case
of dependent inputs an application of the alternative formula (2.8)
requires the same number of function evaluations as formula (2.7).
Nevertheless, MC estimates of formula (2.8) can be more efficient
than formula (2.5) or (2.7) in conjunction with an application of
QMC methods. The details are given in Section 6.

2.2. Total effects

The definition for the total effect index (2.3) is derived from the
following relationship:

DT
y = D − Dz

[
E y

(
f ( ȳ, z)

)]
. (2.10)

Here

E y
(

f ( ȳ, z)
) =

∫
Rs

f ( ȳ, z)p( ȳ, z|z)dȳ,

Dz
[

E y
(

f ( ȳ, z)
)] =

∫
Rn−s

[
E y

(
f ( ȳ, z)

)]2
p(z)dz − f 2

0 .

Using (2.5) formula (2.10) can be transformed to the explicit for-
mula for S T

y

S T
y = 1

2D

∫
Rn+s

[
f (y, z) − f

(
ȳ′, z

)]2
p(y, z)p

(
ȳ′, z

∣∣z)dy dȳ′ dz.

(2.11)

The details of derivation are given in Appendix A. This formula is
the generalization of the Jensen–Sobol’ formula [14,18] for the case
of dependent variables.

For generating input vectors (y, z) and ( ȳ′, z) a joint proba-
bility distribution function p(y, z) and a conditional distribution
p( ȳ′, z|z) are used correspondingly.

In the case of independent variables formula (2.11) is reduced
to the well-known Jensen–Sobol’ formula [14,18]:

S T
y = 1

2D

∫
Rn+s

[
f (y, z) − f

(
y′, z

)]2
p(y)p

(
y′)p(z)dy dy′ dz.

(2.12)

3. Correlated normal distributions

In this section we consider models with input vectors which
follow normal distributions. In this case an application of the de-
rived formulas is rather straightforward.

3.1. n-Dimensional normal distribution

Consider n-dimensional multivariate normal distribution with
mean vector μ and covariance matrix Σ :

Φn(x) = 1

(2π)n/2
√|Σ |e− 1

2 (x−μ)T Σ−1(x−μ). (3.1)

Here |Σ | denotes the determinant of matrix Σ . We use a differ-
ent notation for a multivariate normal distribution function Φn(x)
to distinguish it from other distributions which we denote as p(x).
The components y, z of the vector x are also normally distributed
with mean vectors μy , μz and covariance matrices Σy , Σz corre-
spondingly. The mean vector μ and the covariance matrix Σ can
be partitioned as

μ =
[

μy

μz

]
, Σ =

[
Σy Σyz

Σzy Σz

]
. (3.2)

The conditional distribution of Φn−s(y, z̄|y) is also a normal
distribution:

Φn−s(y, z̄|y) = 1

(2π)(n−s)/2
√|Σzc|e− 1

2 (z̄−μzc)
T Σ−1

zc (z̄−μzc) (3.3)

with mean vector μzc :

μzc = μz + ΣyzΣ
−1
y [y − μy] (3.4)

and covariance matrix Σzc :

Σzc = Σz − ΣzyΣ
−1
y Σyz. (3.5)

A marginal distribution p(y) has a form:

Φs(y) = 1

(2π)s/2
√|Σy|

e− 1
2 (y−μy)T Σ−1

y (y−μy). (3.6)
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Formulas for the first order effect (2.5) and the total indices
(2.11) in the case of a model with inputs following multivariate
normal distribution are

S y = 1

D

[ ∫
Rs

Φs(y)dy

[ ∫
Rn−s

f (y, z̄)Φn−s(y, z̄|y)dz̄

×
∫

Rn−s

f
(

y, z̄′)Φn−s
(

y, z̄′∣∣y
)

dz̄′
]

− f 2
0

]
,

S T
y = 1

2D

∫
Rn+s

[
f (y, z) − f

(
ȳ′, z

)]2
Φn(y, z)Φs

(
ȳ′, z

∣∣z)dy dȳ′ dz.

(3.7)

3.2. Bivariate normal distribution

To illustrate the developed technique we consider a simple case
of the bivariate normal distribution:

Φ(y, z) = 1

σyσz

√
2π(1 − ρ2)

× e
− 1

2(1−ρ2)
[ (y−μy )2

σ2
y

+ (z−μz)2

σ2
z

− 2ρ(y−μy )(z−μz)

σzσy
]
, (3.8)

where ρ is the correlation coefficient between y and z. Here y, z
are two elements of the input vector x. In this case moments (3.2)
have a simple form:

μ =
[

μy

μz

]
, Σ =

[
σ 2

y ρσzσy

ρσzσy σ 2
z

]
,

and the conditional distribution (3.3) simplifies to

Φ(y, z̄|y) = 1

σz

√
2π(1 − ρ2)

e
− (z̄−μzc )2

2(1−ρ2)σ2
z ,

where μzc = μz + ρσz
σy

[y − μy].
The formula for the first order effect index (3.7) has a form:

S y = 1

D

[ ∫
R

1√
2πσ 2

y

e
− (y−μy )2

2σ2
y dy

×
[ ∫

R

f (y, z̄)
1

σz

√
2π(1 − ρ2)

e
− (z̄−μzc )2

2(1−ρ2)σ2
z dz̄

×
∫
R

f
(

y, z̄′) 1

σz

√
2π(1 − ρ2)

e
− (z̄′−μzc )2

2(1−ρ2)σ2
z dz̄′

]
− f 2

0

]
. (3.9)

A formula for the total index can be written similarly. However, in
this particular case it may be simpler to use definition (2.10) for
calculating S T

y once the first order effect index is calculated.

3.3. Bivariate normal distribution. Linear additive model

Consider an additive model:

f (y, z) = a1 y + a2z.

Using (3.9) we obtain

D y = (a1σy + ρa2σz)
2.

In the limiting case of no correlation ρ = 0 this expression is re-
duced to:

D y = a2
1σ

2
y .

Noticing that

D = a2
1σ

2
y + a2

2σ
2
z + 2ρa1a2σyσz

it is easy to obtain the value for DT
y :

DT
y = a2

1σ
2
y

(
1 − ρ2).

Condition DT
y � D y is satisfied only if ρ � − 2a1a2σyσz

a2
1σ

2
y +a2

2σ
2
z

for ρ > 0 or

ρ � − 2a1a2σyσz

a2
1σ

2
y +a2

2σ
2
z

for ρ < 0. If both coefficients a1, a2 are positive

or negative, then DT
y < D y for positive values of ρ . For negative

values of ρ DT
y < D y if coefficients a1, a2 have opposite signs. Such

a situation is not possible in the case of independent variables,
where it is always DT

y � D y .

4. The general case of correlated variables

Although normal distributions are often encountered in prac-
tice, there is a need to account for different types of dependences
among input variables which are often present in practical appli-
cations. In this section we consider the general case of pairwise
correlated variables with each variable being represented by its
own marginal distribution. We propose to use a Gaussian cop-
ula which allows us to reduce the problem of evaluation of main
and total indices to the case of the correlated normal distribution.
Other copulas can also be used (f.e. Archimedean copulas can be
used to account for tail dependence of input variables). Copulas
are widely used in applications of financial risk management and
actuarial analysis [19,20]. We also note that the presented method
is general and it allows using any form of dependency between
inputs provided that the joint and conditional probability distribu-
tions are known.

4.1. Uniformly distributed random variables

Let u = u1, . . . , un , ui ∈ [0,1], i = 1, . . . ,n, be uniformly dis-
tributed random variables with correlation matrix Σu .

Definition. Let Fn(x) be the n-variate cumulative normal distri-
bution function and F (xi) be the univariate cumulative normal
distribution function. The n-variate Gaussian copula function is

C(u1, . . . , un;Σu) = Fn
(

F −1(u1), . . . , F −1(un);Σ
)
. (4.1)

Here F −1 is the inverse normal cumulative distribution function
and xi = F −1(ui) [21].

From this definition the joint distribution function for corre-
lated uniformly distributed random variables p(u1, . . . , un) can be
written explicitly:

p(u1, . . . , un) = ∂nC(u1, . . . , un)

∂u1 · · · ∂un
= Φn(x1, . . . , xn;Σ)∏n

i=1 Φ(xi)
. (4.2)

Here Φn(x1, . . . , xn;Σ) is the multivariate joint normal distribution
function (3.1), Φ(xi) is the univariate normal distribution function
with zero mean and variance σ 2

i .
An application of the Gaussian copula function requires map-

ping of an original correlation matrix Σu to the correlation matrix
Σ of the corresponding joint normal distribution function. The
Pearson correlation coefficients for uniformly distributed random
variables r(ui, u j) are equal to

r(ui, u j) = 12E(uiu j) − 3,
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where E(uiu j) = ∫∫
H2 uiu j p(ui, u j)dui du j . Using a relationship

p(ui, u j)dui du j = Φ2(xi, x j;ρ)dxi dx j , E(ui, u j) can be presented
as

E(uiu j) =
∫ ∫
R2

F (xi)F (x j)Φ2(xi, x j;ρ)dxi dx j,

where

Φ2(xi, x j;ρi j) = 1

2π
√

1 − ρ2
i j

e
− x2

i +x2
j −2ρi j xy

2(1−ρ2
i j ) .

Hence the correlation coefficients for uniformly distributed random
variables r(ui, u j) and the corresponding correlation coefficients
ρi j of the normal distribution are linked by the following formula:

r(ui, u j) = 12E
(

F (xi)F (x j)
) − 3. (4.3)

Components of the uniformly distributed random vector u are
obtained by the transformation ui = F (xi), i = 1, . . . ,n.

Applying the transformation law of probabilities (4.2) formulas
for the first order effect (2.5) and the total indices (2.11) can be
presented in the following form:

S y = 1

D

[ ∫
Rs

Φs(y)dy

[ ∫
Rn−s

f
(

F̄ s(y), F̄n−s(z̄)
)
Φn−s(y, z̄|y)dz̄

×
∫

Rn−s

f
(

F̄ s(y), F̄n−s
(
z̄′))Φn−s

(
y, z̄′∣∣y

)
dz̄′

]
− f 2

0

]
,

S T
y = 1

2D

∫
Rn+s

[
f
(

F̄ s(y), F̄n−s(z)
) − f

(
F̄ s

(
ȳ′), F̄n−s(z)

)]2

× Φn(y, z)Φs
(

ȳ′, z
∣∣z)dy dȳ′ dz. (4.4)

Here F̄ s(y) is a vector of univariate marginal distribution functions:
F̄ s(y) = (F (x1), . . . , F (xs)). Similarly can be written all other for-
mulas derived in Section 1.

In comparison with the case of normally distributed variables
an application of formulas (4.4) requires two additional steps:

(1) mapping of the original correlation matrix Σu to the correla-
tion matrix Σ ;

(2) an application of the univariate cumulative normal distribution
function F (xi) to each corresponding normal component xi for
construction the input factor ui .

4.2. Arbitrary distributions

In the general case of arbitrarily distributed variables ξ1, . . . , ξn

with correlation matrix Σξ and a marginal univariate cumulative
distribution function G the n-variate Gaussian copula function has
a form:

C
(
G1(ξ1), . . . , Gn(ξn);Σξ

)
= Fn

(
F −1(G1(ξ1)

)
, . . . , F −1(Gn(ξn)

);Σ)
.

As in the previous case of uniformly distributed random vari-
ables we need to map Σξ to the correlation matrix Σ using the
definition:

r(ξi, ξ j) = E[(ξi − ξ̄i)(ξ j − ξ̄ j)]
[D(ξi)D(ξ j)]1/2

= E(ξiξ j) − (ξ̄i ξ̄ )2

[D(ξi)D(ξ j)]1/2
, (4.5)

where E(ξi, ξ j) is calculated as

E(ξiξ j) =
∫ ∫

G−1
i

(
F (xi)

)
G−1

j

(
F (x j)

)
Φ2(xi, x j;ρi j)dxi dx j .

Here G−1 is the inverse cumulative distribution function.
It was shown in [22] that a relationship between ρi j and

r(ξi, ξ j) can be presented as ρi j = r(ξi, ξ j)ψ . Here ψ , satisfying
ψ � 1 is a function of r(ξi, ξ j) and marginal distributions Gi(ξi)

and G j(ξ j). For commonly used distributions values of ψ are given
in [22]. For a uniform distribution ψ is almost a constant: ψ ≈ 1.
A similar but less general approach was developed in [23].

Components of random vector ξ are obtained by the transfor-
mation

ξi = G−1
i

(
F (xi)

)
, i = 1, . . . ,n. (4.6)

Formulas for the first order effect and the total indices have the
following form:

S y = 1

D

[ ∫
Rs

Φs(y)dy

×
[ ∫

Rn−s

f
(
Ḡ−1

s

(
F̄ s(y)

)
, Ḡ−1

n−s

(
F̄n−s(z̄)

))
Φn−s(y, z̄|y)dz̄

×
∫

Rn−s

f
(
Ḡ−1

s

(
F̄ s(y)

)
, Ḡ−1

n−s

(
F̄n−s

(
z̄′)))

× Φn−s
(

y, z̄′∣∣y
)

dz̄′
]

− f 2
0

]
,

S T
y = 1

2D

∫
Rn+s

[
f
(
Ḡ−1

s

(
F̄ s(y)

)
, Ḡ−1

n−s

(
F̄n−s(z)

))

− f
(
Ḡ−1

s

(
F̄ s

(
ȳ′)), Ḡ−1

n−s

(
F̄n−s(z)

))]2

× Φn(y, z)Φs
(

ȳ′, z
∣∣z)dy dȳ′ dz. (4.7)

Here we use the following notation: Ḡ−1
s ( F̄ s(y)) = (G−1

1 (F (x1)), . . . ,

G−1
s (F (xs))).

There are three additional steps in comparison to the case of
normally distributed variables:

(1) mapping of the original correlation matrix Σξ to the correla-
tion matrix Σ ;

(2) an application of the univariate cumulative normal distribution
function F (xi) to each corresponding normal component xi of
the input factor ξi ;

(3) an application of the inverse cumulative distribution G−1
i for

construction the input variables ξi using transformation (4.6).

5. Monte Carlo estimates

In this section we construct an MC algorithm for numerical es-
timation of S y and S T

y . An MC estimator of the original formula
(2.4) has a form:

S y =
1

N y

∑N y

j=1

( 1
Nz

∑Nz
k=1 f (y j, z̄k)

)2 − f 2
0

D
. (5.1)

It requires (i) double loop calculations consisting of sampling N y
points of vector y distributed according to p(y) and Nz points
of vector z̄ distributed according to a conditional distribution
p(y, z̄|y) to calculate the first term in the nominator; (ii) gener-
ation of N yz points of a random vector (y, z) according to a joint
probability density function p(y, z) to evaluate f0 and D:

f0 = 1

N yz

N yz∑
l=1

f (yl, zl),
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D = 1

N yz

N yz∑
l=1

(
f (yl, zl)

)2 − f 2
0 . (5.2)

The total number of sampled points and function evaluations per
one set (y, z) in this case is equal to N = N y Nz + N yz . To achieve a
good convergence both N y and Nz should be large. This algorithm
which was considered in [11] requires high computational efforts.

Formula (2.5) allows for using a much more efficient MC esti-
mator similar to the one originally suggested by Sobol’ in [4,14]
for the case of uncorrelated variables:

S y =
1
N

∑N
j=1( f (y j, z j) f (y j, z̄′

j)) − ( 1
N

∑N
j=1 f (y j, z j)

)2

D
. (5.3)

Here estimators (5.2) are used for the computation of f0 and D
with the number of sampled points equal to N yz = N .

An estimator for the total effect index (2.11) has a form:

S T
y =

1
N

∑N
j=1( f (y j, z j) − f ( ȳ′

j, z j))
2

2D
. (5.4)

For estimation S y and S T
y each MC trial requires three func-

tion evaluations: f (y j, z j), f (y j, z̄′
j) and f ( ȳ′

j, z j). Hence the total

number of function evaluations for a set (Si, S T
i ), i = 1, . . . ,n, is

equal to N F = N(2n + 1).
The modified formula (2.7) has the following MC estimator:

S y =
1
N

∑N
j=1 f (y j, z j)( f (y j, z̄′

j) − f (y′
j, z′

j))

D
. (5.5)

Although it has improved convergence properties, for estimat-
ing S y and S T

y each MC trial requires four function evaluations:
f (y j, z j), f (y′

j, z′
j), f (y j, z̄′

j) and f ( ȳ′
j, z j). The total number of

function evaluations for a set (Si, S T
i ), i = 1, . . . ,n, in this case is

equal to N F = N(2n + 2).
The estimator for the alternative formula (2.8) for S y has a

form:

S y =
1
N

∑N
j=1( f (y′

j, z′
j)( f (y′

j, ẑ j) − f (y j, z j)))

D
. (5.6)

Four function evaluations f (y j, z j), f (y′
j, z′

j), f (y′
j, ẑ j) and

f ( ȳ′
j, z j) are required at each MC trial for estimation S y and S T

y .

The total number of function evaluations for a full set (Si, S T
i ),

i = 1, . . . ,n, is equal to N F = N(2n + 2). In the case of indepen-
dent variables f (y′

j, ẑ j) = f ( ȳ′
j, z j) = f (y′

j, z j) and N F is reduced
to N(n + 2) [17].

6. Generation of correlated variables

MC estimates presented in the previous section require MC
sampling algorithms. Firstly, we present an algorithm for generat-
ing n-dimensional random normal variables. The algorithm consists
of the following steps:

(a) generate n-dimensional random vector u uniformly distributed
between 0 and 1 using random numbers or quasi-random se-
quences;

(b) transform every element of ui into a standard normal vector
x̃i with zero mean and unit variance using the inverse normal
cumulative distribution function: x̃i = F −1(ui);

(c) find Cholesky or other suitable decomposition of correlation
matrix Σ :

A AT = Σ;

(d) compute vector x which follows n-dimensional normal distri-
bution (3.1):

x = Ax̃ + μ.

Secondly, we consider construction of the sets (y, z̄′) and ( ȳ′, z)
of normal random variables required to calculate (S y, S T

y ) using
standard formulas (2.7), (2.11) or (y′, ẑ) and ( ȳ′, z) if an alternative
formula (2.8) is used. Here we only consider the construction of
the set (y, z̄′) (other sets can be constructed similarly) by following
these steps:

(a) generate two independent n-dimensional random vectors u
and u′ uniformly distributed between 0 and 1. In the case of
QMC sampling a vector of the total dimension 2n needs to be
generated and then split into two vectors u and u′ . The ini-
tial (1 : n) low-dimensional coordinates of the original vector
are used to create a vector u, while the later high-dimensional
coordinates (n + 1 : 2n) are used to create a vector u′;

(b) split u′ into two subsets of variables v ′ = (u′
i1
, . . . , u′

is
), 1 �

s < n, and a complementary subset w ′ of n − s variables, so
that u′ = (v ′, w ′);

(c) transform vector u into a normal vector x with mean μ and
covariance matrix Σ as described above;

(d) split vector x into two subsets (y, z);
(e) transform every element u′

i of the complementary subset
w ′ into a standard normal variate z̃i with zero mean and
unit variance using the inverse normal cumulative distribution
function;

(f) compute μzc given in (3.4) using vector y;
(g) find Cholesky or other suitable decomposition of correlation

matrix Σzc given by (3.5):

Azc AT
zc = Σzc;

(h) compute vector z̄′ which follows the (n − s)-dimensional con-
ditional distribution given by (3.3):

z̄′ = Azc z̃′ + μzc;
(i) combine vectors y and z̄′ to obtain (y, z̄′).

For the case of arbitrary distributions one can apply a copula-
based approach as described in Section 4.

An application of the alternative formula (2.8) requires con-
struction of a set (y′, ẑ) which is formed similarly to a set (y, z̄′).
The only major difference between these two sets is that a set
w ′ of the original uniform vector u′ is used for construction of a
vector z̄′ , while for a vector ẑ the w part of the original uniform
vector u is used. This difference does not affect the performance of
MC estimators (5.5) and (5.6) when random numbers are used for
sampling. However, when QMC sampling is used the performance
of the alternative estimator (5.6) can be higher than that of the es-
timator (5.5) due to the specifics of the low discrepancy sequences
[24,25]. It is well known that the initial low-dimensional coordi-
nates of the low discrepancy sequences such as Sobol’ sequences
are more uniformly distributed than the later high-dimensional co-
ordinates [24–26]. Initial low-dimensional coordinates are used by
a vector w , while the later high-dimensional coordinates are used
by a vector w ′ . In other words, an application of the alternative
formula (2.8) reduces an effective dimension of an integrand. It re-
sults in the increased efficiency of QMC sampling [16] and higher
performance of the estimator (5.6).

7. Numerical tests

In this section the developed approach is illustrated by three
different models with correlated input variables. For first two
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Fig. 1. Test case 1: Evolution of the first and total order indices at different values of ρ estimated at the sample size N = 213. Solid lines refer to Si ; broken lines refer to S T
i .

models with normally distributed variables analytical solutions are
computed and compared with the results of numerical tests. In the
third model variables are uniformly distributed and the analytical
solution is available only for the case of independent variables. MC
estimates (5.5) for Si and (5.4) for S T

i were used in all tests. QMC
sampling is performed using Sobol’ sequences [24,26].

For the first test case we also compared the efficiency of the
proposed estimators with that of a modified brute force approach.
For the brute force estimates N points x( j) , j = 1, . . . , N , are gen-
erated from the joint probability distribution. For each random
variable y = xi the sample set x( j) , j = 1, . . . , N , is sorted and sub-
divided in M equally populated partitions (bins) with Nm = N/M
points each (M < N). Within each bin we calculate the local mean
value Ez( f (y, z̄)|y) ≈ ∑Nm

k=1 f (yk, zk). Note, that f (yk, zk) is only
an approximation to f (yk, z̄k). Finally, the variance of all condi-
tional averages is computed as

D y = 1

M

M∑
j=1

(
1

N j
m

N j
m∑

k=1

f (yk, zk)

)2

− f 2
0 .

The subdivision in bins is done in the same way for all inputs using
the same set of sample points.

For the three-dimensional problem it is possible to apply a
similar modified brute force approach to calculate the total sen-
sitivity index. However, its extension to higher dimension is not
practical. The same set of points can be used for both the first or-
der and total sensitivity indices. To calculate S T

1 we take y = x1,
z = (x2, x3) and divide the two-dimensional space of z into cells
which contain approximately the same number of points. Within

the jth cell we estimate E j( f ( ȳ, z)|z) ≈ 1
N j

∑N j

k=1 f (yk, zk) where

N j is the number of sample points in the cell j. Then we compute
the sample variance over all these conditional averages to obtain
S23 and apply formula (2.10): in the considered case S T

1 = 1 − S23.
The problem with this approach is that the correlation between in-
puts may leave some cells with very few sample points which can
cause numerical problems.

7.1. Test case 1. Linear model

Consider the linear model

f (x1, x2, x3) = x1 + x2 + x3,

where all input variables are normally distributed with zero mean
and covariance matrix:

Σ =
⎛
⎝ 1 0 0

0 1 ρσ

0 ρσ σ 2

⎞
⎠ .

Table 1
Numerical estimates and analytical values of the first and total order indices for the
linear additive model. Notations: the subscript (A) stands for “analytical”.

Correlation Si S(A)
i S T

i S T (A)
i

ρ = 0.0
X1 0.167 0.167 0.167 0.167
X2 0.168 0.167 0.167 0.167
X3 0.669 0.667 0.669 0.667

ρ = 0.5
X1 0.126 0.125 0.125 0.125
X2 0.502 0.5 0.094 0.094
X3 0.784 0.781 0.376 0.375

ρ = −0.5
X1 0.251 0.250 0.251 0.250
X2 0.000 0.000 0.188 0.188
X3 0.564 0.563 0.752 0.750

ρ = 0.8
X1 0.109 0.109 0.109 0.109
X2 0.737 0.735 0.039 0.039
X3 0.855 0.852 0.157 0.157

ρ = −0.8
X1 0.357 0.357 0.358 0.357
X2 0.129 0.129 0.129 0.129
X3 0.515 0.514 0.515 0.514

Analytical values for the first order indices were given in [27],
while we calculated the total order indices:

S1 = 1

2 + σ 2 + 2ρσ
, S T

1 = 1

2 + σ 2 + 2ρσ
;

S2 = (1 + ρσ)2

2 + σ 2 + 2ρσ
, S T

2 = 1 − ρ2

2 + σ 2 + 2ρσ
;

S3 = (σ + ρ)2

2 + σ 2 + 2ρσ
, S T

3 = σ 2(1 − ρ2)

2 + σ 2 + 2ρσ
.

Analysis shows that the total indices for the correlated inputs S T
2

and S T
3 tend to zero as |ρ| → 1. It is also interesting to note that

S T
i � Si , i = 2,3, if ρ � 0 or ρ � − 2σ

σ 2+1
.

In all further tests σ was taken to be equal 2. Fig. 1 shows
the analytical values of the first and total order sensitivity indices
versus ρ . For the chosen σ S T

i � Si , i = 2,3, if ρ � 0 or ρ � −0.8,
while for variable x1 S T

1 = S1 for all ρ and both indices never reach
zero.

Table 1 shows that the numerical results are in perfect agree-
ment with the analytical values. In all numerical tests the num-
ber of sampled points were chosen to be N = 213, i.e. sufficiently
large to reach convergence (see also Fig. 2). The computational cost
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Fig. 2. Test case 1: Convergence plots of the first order and total indices for three variables at ρ = 0.8. The red solid line refers to random sampling; the blue dotted line
refers to quasi-random sampling; black circles refer to the brute force method. Horizontal lines show analytic values given in Table 1. (For interpretation of colors in this
figure, the reader is referred to the web version of this article.)

(i.e. number of model evaluations) required to obtain both the first
and total order indices for all three inputs was N(2n + 2) = 216.

Fig. 2 shows the numerical convergence of the first and total in-
dices at ρ = 0.8. A comparison between the MC and QMC methods
shows that the QMC method provides much faster convergence.
Among the three methods the brute force approach is by far the
least efficient. For monitoring convergence the number of sampled
points should be increased incrementally which is not possible for

the brute force approach. This approach requires fixing the number
of points in advance.

7.2. Test case 2. Portfolio model

The second test case is:

f (x1, x2, x3, x4) = x1x3 + x2x4,
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Fig. 3. Evolution of the first order and total order sensitivity indices of the Ishigami function at different correlation values ρ13 estimated at the sample size N = 8192. Solid
lines refer to Si ; broken lines refer to S T

i .

where (x1, x2, x3, x4) ∼ N(μ,Σ), with μ ≡ (0,0,μ3,μ4) and

Σ =

⎛
⎜⎜⎝

σ 2
1 σ12 0 0

σ21 σ 2
2 0 0

0 0 σ 2
3 σ34

0 0 σ43 σ 2
4

⎞
⎟⎟⎠ .

This case is a four variable version of the portfolio model discussed
in [28] which includes 6 variables. Analytical values of first and
total order indices are:

S1 = σ 2
1 (μ3 + μ4ρ12

σ2
σ1

)2

D
, S T

1 = σ 2
1 (1 − ρ2

12)(σ
2
3 + μ2

3)

D
;

S2 = σ 2
2 (μ4 + μ3ρ12

σ1
σ2

)2

D
, S T

2 = σ 2
2 (1 − ρ2

12)(σ
2
4 + μ2

4)

D
;

S3 = 0, S T
3 = σ 2

1 σ 2
3 (1 − ρ2

34)

D
;

S4 = 0, S T
4 = σ 2

2 σ 2
4 (1 − ρ2

34)

D
,

where ρi j = σi j
σiσ j

and D = σ 2
1 (σ 2

3 +μ2
3)+σ 2

2 (σ 2
4 +μ2

4)+2σ12(σ34 +
μ3μ4). Similarly to the test case 1 values of total order indices
S T

i → 0 as |ρ12| → 1 or |ρ34| → 1.
For numerical tests we used the following values of parameters:

μ = (0,0,250,400),

Σ =

⎛
⎜⎜⎝

16 2.4 0 0
2.4 4 0 0
0 0 4 · 104 −1.8 · 104

0 0 −1.8 · 104 9 · 104

⎞
⎟⎟⎠ .

Table 2 shows that both analytical and numerical values are in a
very good agreement. All numerical results were obtained with us-
ing N = 1500 sampled points. Given that n = 4, the total cost of
the numerical estimates is N(2n + 2) = 15 000 model runs. Com-
parison shows that the QMC method is much more efficient than
the MC one (plots not presented in this paper).

7.3. Test case 3. Ishigami function

The last test case is the Ishigami function

f (x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1)

with input variables being uniformly distributed: −π � xi � π , i =
1,2,3 [29]. This model is widely used as a benchmark for sensitiv-
ity tests as it features strong non-linearity and non-monotonicity.

Table 2
Numerical estimates and analytical values of the first and total order indices for the
portfolio model. Notations: the subscript (A) stands for “analytical”.

Si S(A)
i S T

i S T (A)
i

X1 0.503 0.507 0.495 0.492
X2 0.400 0.399 0.298 0.300
X3 0.009 0.000 0.185 0.192
X4 0.007 0.000 0.108 0.108

For the Ishigami function analytical values of first and total order
indices are available only for independent inputs.

In this test case we assume the presence of correlation between
variables x1 and x3 and explore the variation of sensitivity esti-
mates at different values of correlation ranging from ρ13 = −0.9
to ρ13 = 0.9. Numerical values of sensitivity indices are obtained
using the copula approach presented in Section 4.1. Fig. 3 shows
the first order and total order sensitivity indices at different val-
ues of ρ13. The first order index for x1 is only weakly influenced
by the correlation while first order indices for x2 and x3 increase
with correlation. S T

2 = S2 as variable x2 is not involved neither in
interaction nor in correlation with other variables. The total indices
for x1 and x3 go to zero as |ρ13| → 1. Note that S T

1 > S1, S T
3 > S3

at |ρ13| � 0.6 due to the presence of interaction between x1 and
x3 but at |ρ13| > 0.6 the relationship between the first order and
total indices changes: S T

1 < S1, S T
3 < S3 due to the dominant effect

of correlation.

8. Conclusions

A novel approach for estimating global sensitivity indices for
models with dependent input variables is presented. The method
can be seen as a generalization of Sobol’ sensitivity indices which
have been originally designed for models with independent vari-
ables. Formulas for dependent variables are derived for both the
first order and total sensitivity indices. The dependency can be in
a form of constraints or correlations between variables. A priori
knowledge of probability distribution functions is required. In the
case of normal distributions the application of the proposed for-
mulas is straightforward. In the general case we propose to use a
copula-based approach.

Three different test functions were used for testing and compar-
ison. For two of them we obtained analytical solutions and showed
a good agreement between numerical and analytical results. Nu-
merical tests also demonstrated that the rate of convergence of
the proposed approach is much higher than that of the brute force
method.
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Results show an interesting effect of correlation on the sensi-
tivity indices. The first order indices can be higher than the total
indices depending on the level of correlation. Total indices always
tend to zero as correlation |ρ| → 1.
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Appendix A

The subsets total variance DT
y by definition is equal to

DT
y = D − Dz

[
E y

(
f ( ȳ, z)

)]
. (A.1)

We notice that D can be written as

D = E
(

f 2(y, z)
) − f 2

0

= 1

2

∫
Rn

f 2(y, z)p(y, z)dy dz

+ 1

2

∫
Rn

f 2( ȳ′, z
)

p
(

ȳ′, z
)

dȳ′ dz − f 2
0 . (A.2)

The first term on the right can be presented in an equivalent form
using the Bayes’ formula p(y, z̄|y)p(y) = p(y, z):

1

2

∫
Rn

f 2(y, z)p(y, z)dy dz = 1

2

∫
Rn

f 2( ȳ, z)p(z)p( ȳ, z|z)dȳ dz.

(A.3)

We use formula (2.5) written for Dz[E y( f ( ȳ, z))] and (A.1)–(A.3)
to present DT

y as

DT
y = 1

2

∫
Rn

f 2( ȳ, z)p(z)p( ȳ, z|z)dȳ dz

+ 1

2

∫
Rn

f 2( ȳ′, z
)

p(z)p
(

ȳ′, z
∣∣z)dȳ′ dz − f 2

0

−
[ ∫

Rn−s

p(z)dz

[ ∫
Rs

f ( ȳ, z)p( ȳ, z|z)dȳ

×
∫
Rs

f
(

ȳ′, z
)

p
(

ȳ′, z
∣∣z)dȳ′

]
− f 2

0

]
.

It can be further transformed as

DT
y = 1

2

∫
Rn

f 2( ȳ, z)p(z)p( ȳ, z|z)dȳ dz

−
∫

Rn−s

p(z)dz

[ ∫
Rs

f ( ȳ, z)p( ȳ, z|z)dȳ

×
∫
Rs

f
(

ȳ′, z
)

p
(

ȳ′, z
∣∣z)dȳ′

]

+
∫
Rn

f 2( ȳ′, z
)

p(z)p
(

ȳ′, z
∣∣z)dȳ′dz. (A.4)

(A.4) is equivalent to

DT
y = 1

2

∫
Rn+s

[
f (y, z) − f

(
ȳ′, z

)]2
p(y, z)p

(
ȳ′, z

∣∣z)dy dȳ′ dz.

Hence the final formula for S T
y has the form:

S T
y = 1

2D

∫
Rn+s

[
f (y, z) − f

(
ȳ′, z

)]2
p(y, z)p

(
ȳ′, z

∣∣z)dy dȳ′ dz.
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