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Abstract

This paper discusses application and results of global sensitivity analysis techniques to probabilistic safety assessment (PSA) models, and

their comparison to importance measures. This comparison allows one to understand whether PSA elements that are important to the risk, as

revealed by importance measures, are also important contributors to the model uncertainty, as revealed by global sensitivity analysis. We

show that, due to epistemic dependence, uncertainty and global sensitivity analysis of PSA models must be performed at the parameter level.

A difficulty arises, since standard codes produce the calculations at the basic event level. We discuss both the indirect comparison through

importance measures computed for basic events, and the direct comparison performed using the differential importance measure and the

Fussell–Vesely importance at the parameter level. Results are discussed for the large LLOCA sequence of the advanced test reactor PSA.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Probabilistic safety assessment (PSA) is a methodology

that produces numerical estimates for a number of risk

metrics for complex technological systems. The core

damage frequency (CDF) and the large early release

frequency (LERF) are the common risk metrics of interest

in nuclear power plants (NPP).

The generic risk metric can be written as a function of the

frequencies of the initiating events, i.e. events that disturb

the normal operation of the facility such as a power

excursion and the conditional probabilities of the failure

modes of structures, systems and components (SSCs)

R ¼ hðf IE
; qÞ ð1Þ

where f IE ¼ {f IE
i }; i ¼ 1;…;Z; is the set of the frequencies

of initiating events with Z the total number of initiating

events included in the PSA model and q ¼ {qj}; j ¼

1;…;N; is the set of the basic event probabilities, with N, the

total number of basic events in the PSA. More synthetically,

qj ¼ pðBEjÞ; j ¼ 1;…;N:

Once the logical expression of the minimal cut sets is

expanded and the rare event approximation is considered, R

is linear in f IE and q [4].

Since Eq. (1) relates the risk metric to the basic events,

we refer to Eq. (1) as the basic event representation or basic

event level of the PSA model.

A ‘point estimate’ of the risk metric R can be produced

by Eq. (1) using point (‘best estimate’) values of the inputs

(f IE and q in this case). We write

R0ðf0Þ ¼ hðq0; f 0Þ ð2Þ

where we have introduced the symbol f to denote the

generic qj or fi ðf ¼ {qj; fi}; j ¼ 1; 2;…;N; i ¼ 1; 2;…;ZÞ:

One refers to R0 as to the nominal value or the risk metric,

or, shortly, the nominal risk.

The risk metric is often expressed as a function of more

fundamental parameters. For example, the failure time of a

component is usually assumed to follow an exponential

distribution with a failure rate l. In the case the component

is renewed every t units of time, then, its average (over

time) unavailability is [2]:

qj ¼ pðBEjÞ ¼
ljt

2
ð3Þ

However, more rigorously, we acknowledge that these

inputs are uncertain and express this uncertainty using
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state-of-knowledge or epistemic probability distributions

(Kaplan and Garrick, 1981) [1,12–15,17]. The propa-

gation of these distributions produces the epistemic

distribution of R. Epistemic or state of knowledge

dependencies and conditional dependencies are not

captured by the basic event expression of R. Eq. (1)

needs to be replaced by its parametric representation, if

we want to take them into account [4]. We denote the

expression of the risk metric as a function of the PSA

model parameters as:

RðxÞ ¼ gðx1; x2;…; xnÞ ð4Þ

The importance of a PSA element with respect to the

risk is found applying PSA importance measures.

Importance measures traditionally used are the Fussell–

Vesely (FV), risk achievement worth (RAW) [8,26]

These measures show shortcomings when applied to set

of basic events (Eq. (1)). Furthermore, RAW cannot be

used to compute the importance of parameters (Eq. (4))

[4]. The differential importance measure (DIM) proposed

recently by Borgonovo and Apostolakis [4] remedies this

situation. In addition, DIM is defined for both Eqs. (1)

and (4), providing measures of the risk-significance of

both basic events and parameters (Section 2).

PSA importance measures (FV, RAW and DIM) are

local measures, i.e. they deal with a point value of R and

of the parameters. However, to assess the relevance of a

parameter with respect to the model uncertainty, the

entire epistemic uncertainty in R and in the parameters

should be taken into account. Global sensitivity analysis

(GSA) techniques are the appropriate techniques for this

task [21]. We have investigated several GSA techniques

in this work. In this paper we focus on the results

and performance of global sensitivity indices computed

via extended fourier amplitude sensitivity test (FAST)

[12,22,24].

We show that, due to epistemic dependencies, the

appropriate level to perform GSA is the parameter level of

the PSA model. Thus, the comparison of importance

measures and GSA technique results is not direct, since

importance measures are produced at the basic event level

by most standard PSA software tools, while GSA techniques

are computed at the parameter level. We propose both an

indirect approach for the comparison of FV and RAW

results at the basic event level to GSA results, and a direct

comparison that makes use of DIM and FV at the parameter

level as measures of risk. We provide quantitative results

through the use of the large loss of coolant accident

(LLOCA) PSA model of the advanced test reactor (ATR)

[10].

In Section 2, we present DIM, FV, and RAW and discuss

their properties. In Section 3, we introduce variance-based

techniques and the definition of model coefficient of

determination. In Section 4, we discuss dependencies

caused by epistemic uncertainty. In Section 5, we present

the application and results of GSA and importance

measures, and their comparison for the large LLOCA

sequence of the ATR PSA model. In Section 6 a number of

conclusions is offered.

2. PSA importance measures

In this section, we discuss the definitions and properties

at both the parameter and basic event level of DIM, FV and

RAW.

DIM is defined for both PSA model parameters and basic

events. The definition of DIM for parameters is as follows

[4]:

DIMx1
ðx0; dxÞ ¼

dRxi

dR

����
x0

¼

›R

›xi

����
x0

dxi

X
j

›R

›xj

������
x0

dxj

ð5Þ

where x0 ¼ {x10
; x20

;…; xn0
} is the set of the parameters in

Eq. (4) fixed at a reference point value, dx ¼ {dx1; dx2;…;

dxn} is the change vector,

dRxi
¼

›R

›xi

����
x0

dxi

is the differential of R with respect to xi;

dR ¼
›R

›x1

����
x0

dx1 þ
›R

›x2

����
x0

dx2 þ · · · þ
›R

›xn

����
x0

dxn

is the total differential of R.

DIM (Eq. (5)) is the fraction of the local change in R that

is due to a change in parameter xi:

The definition of DIM at the basic event level is

DIMEj
ðf0; dfÞ ¼

dREj

dR
¼

›R

›fj

�����
f0

dfj

X
k

›R

›fk

�����
f0

dfk

ð6Þ

where Ej denotes the generic basic event or initiating event,

fj denotes the corresponding probability (if Ej is a basic

event) or frequency (if Ej is an initiating event), dREj

denotes the differential of R in fj; dR is the total differential

of in R. Eq. (6) states that basic events that cause the greater

change in the risk metric have the highest DIM. We note

that Eq. (6) is based on the expression of R as function of the

basic events (Eq. (1)), while the definition in Eq. (5) applies

to the expression of the risk metric as a function of the

parameters (Eq. (4)).

As it appears from Eqs. (5) and (6), DIM depends on both

the parameter reference values and the vector of changes in

the parameters. DIM can be computed under different

assumptions regarding the way parameters or basic events

are affected by the changes [4]. The following assumptions
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are considered in this paper:

Uniform changes : dyi ¼ dyj ;i; j ðH1Þ

Proportional changes :
dyi

yi

¼
dyj

yj

¼v ;i; j ðH2Þ

where yi stands for the generic parameter xi or basic event

probability qj depending on whether we are dealing with the

basic event or parameter levels. We note that, under H1,

DIM measures the parameter/event importance with respect

to a small change that is the same for all the parameters.

Under H2, DIM ranks the parameters according to the effect

they produce on R when they are changed by the same

fraction of their nominal values. Clearly, the two situations

are different and the results for the measure are different,

depending on the chosen assumption.

DIM possesses the additivity property, i.e. the DIM of a

group of parameters/events is the sum of the individual

DIMs of the parameters/events in the group [4]. This

property is useful when the analyst is interested in the

evaluation of changes that affect multiple parameters/

events, and remedies one of the shortcomings in the use

of FV and RAW for these applications.

FV and RAW are traditionally used to identify basic

events/initiating events that contribute to risk the most.

Hence, they are defined at the basic event level (Eq. (1)).

The definition of FV for a basic event is [8,28].

FVBEj
ðf0Þ ¼

Fr
[m
t¼1

MCSt
j

 !

Fr
[n
k¼1

MCSm

 ! ¼

Fr
[m
t¼1

MCSt
j

 !

R0

ð7Þ

where Ej stands for initiating/basic event j, Frð
Sm

t¼1 MCSt
jÞ

is the frequency of the union of all the minimal cut-sets

(MCS) containing event j; and Frð
S

k MCSkÞ ¼ R0 is the

nominal risk (Eq. (2)).

The definition of FV can be extended at the parameter

level [4] as follows

FVxj
ðx0Þ ¼

X
i

Ti
xj
ðx0Þ

R0

ð8Þ

where Ti
xj
ðx0Þ denotes the generic term in the risk metric

expression as a function of the parameters (Eq. (4)) that

contains parameter xj; the numerator is the sum over all

the terms in the expression of RðxÞ that contain parameter

xi and the denominator is the base case value of the risk.

FVxj
ðx0Þ is the fraction of the risk that is associated with

parameter xj:

RAW is defined for basic events as [8,27]:

RAWEj
ðf0Þ ¼

Rþ
j

R0

ð9Þ

where R0 is the nominal risk and Rþ
j is the new risk that is

produced when the Boolean variable of basic event j is set

equal to ‘true’. Setting to true the Boolean variable of an

event means to assume that the event has happened. Then, in

the rigorous definition of RAW, the PSA model is modified

accordingly and a new estimate of the risk is obtained from

the model. For example, if Ej represents a particular failure

mode, then this failure is assumed to exist when Rþ
j is

calculated.

The relations among the three importance measures

presented above are detailed in Ref. [4]. We note that DIM,

FV, and RAW are computed with all the basic event

probabilities/parameters fixed at their nominal values.

Hence, they are local methods and their results provide

information about the importance of PSA elements fixed at

one point of the uncertainty space only.

3. Epistemic uncertainty

We note that, in the presence of epistemic uncertainty,

uncertainty and global sensitivity analyses must be

performed on Eq. (3), the parameter level, and not on Eq.

(1), the basic event level. Thus uncertainty importance

measures [19] are properly defined for parameters and not

for basic events.

For example, let us consider the simple case of a one-out-

of-two parallel system. The risk metric is the unavailability,

Q, of the system. Since the two components are in parallel,

this unavailability is Q ¼ Pð1 and 2Þ; that is the probability

that components fail. This is written as:

Q ¼ Pð1l2ÞPð2Þ ¼ Pð2l1ÞPð1Þ

If the two failures are assumed independent, we get:

Q ¼ Pð1ÞPð2Þ or Q ¼ q1q2

Then, Eq. (1) becomes

Q ¼ q1q2 ð10Þ

where q1 and q2 are the unavailabilities of the two

components. Eq. (10) is the basic event representation of

the risk metric. We note that Eq. (10) is linear in q1 and q2.

We now consider the fact that both q1 and q2 are

uncertain. Then Q becomes a function of random variables.

Its variance is given by:

V 0½Q� ¼ V½q1q2� ¼ E½q2
1�E½q

2
2�2 E½q1�

2E½q2�
2 ð11Þ

Suppose now that the two components are nominally

identical. Then, q1 and q2 are described by the same

distribution because of epistemic (state-of-knowledge)

uncertainty [1]. In addition, when one samples the

distribution of Q from the two distributions of q1 and q2,

the same value for the two unavailabilities must be used in

each Monte Carlo trial [3]. Thus, q1 and q2 are perfectly

correlated, or, equivalently q1 ¼ q2 ¼ q:

Therefore, Q is described by just one parameter (q )

and the epistemic representation of Q as a function of
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the parameter (Eq. (4)) is:

Q ¼ q2 ð12Þ

We note that Q in no longer linear. Eq. (12) is the expression

that allows the correct computation of the uncertainty in Q:

V½Q� ¼ V½q2� ¼ E½q4�2 E½q2�2 ð13Þ

Thus, Eq. (1) needs to be replaced by Eq. (4), in performing

uncertainty analysis when epistemic uncertainty is taken

into account.

4. Global sensitivity analysis techniques

To determine the influence of individual parameters and

parameter groups on the uncertainty in R, GSA techniques

must be used. These methods consider the parameter

uncertainty distributions and reflect their contribution to

the epistemic uncertainty in R. As we mentioned, epistemic

uncertainty is properly dealt with at the parameter level.

Therefore, we will set the expression of R as a function of

the parameters (Eq. (3)).

Variance based techniques (VBTs) explain VR, i.e. the

variance of R, in terms of the individual parameters or

parameter groups. They identify the parameters that

contribute to the overall uncertainty in R the most, as

follows. VR is generated by the epistemic uncertainty in the

parameter values. VR can be written in terms of individual

parameter and parameter group contribution as [16]:

VR ¼
X

i

Vi þ
X
i,j

Vij þ
X

i,j,m

Vijm þ · · · þ V12…k ð14Þ

where k is the number of the uncertain parameters R denotes

the risk metric, Xi denotes the ith parameter, EðRlXi ¼ xpi Þ

denotes the expectation of R conditional on Xi having a fixed

value xpi ; Vi ¼ VðEðRlXi ¼ xpi ÞÞ stands for the variance over

all possible values of xi; and analogous definitions hold for

the higher order terms.

First order global sensitivity indexes can be introduced

using Eq. (14) as [19]:

S1ðxiÞ ¼
Vi

VR

ð15Þ

Parameters that have a higher contribution to the variance

will have higher conditional variances Vi, and therefore will

have higher S1ðxiÞ: S1ðxiÞ is then taken as the uncertainty

importance measure of the individual parameter xi.

Estimation procedures for S1ðXiÞ are the classical FAST

[9], the method of Sobol [25], and others [19,20].

We note that, if R is can be expressed as sum of terms

containing only one parameter at a time

RðxÞ ¼
Xk

i¼1

fkðxkÞ ð16Þ

then, in Eq. (14), all the terms involving more than one

parameter in the summation would be zero and VR

would be exactly the sum of first order terms ðVR ¼P
i ViÞ: In this case, the importance of the parameters

with respect to the model uncertainty is fully contained

in S1(X ).

In general, we expect the risk metric not to be additive

with respect to the parameters [11]. Therefore, there will be

some interactions between the parameters. The STðXiÞ;

defined as the sum of all effects (first and higher order)

involving parameter Xi, however, are capable of giving to

the analyst information on the importance of terms

involving more than one parameter. In this paper we use

the extended FAST method proposed by [24], that allows

the simultaneous computation of the first and total effect

indices.

Finally, we remark that, through VBTs, we are able to

identify the parameters that individually or as groups

contribute most to the uncertainty in R in a quantitative

fashion and without stating any assumption on the type

of the dependence of R on the individual parameters.

This gain in information may lead to an increase in

computational cost [7,16]. However, the use of extended

FAST allows us to compute first and total order

sensitivity at a cost of the order N, where now N is

the sample size required for the computation of the

S1ðXiÞ and STðXiÞ:

5. Application to a PSA accident sequence

5.1. The model

The reference model is the LLOCA sequence of the

ATR [10]. Two major safety systems are involved in the

large LLOCA accident, namely, the scram system

(SCRAM) and the firewater injection system (FIS).

Failure of SCRAM leads directly to core damage. The

SCRAM system failure is dominated by the common

cause failure event ‘failure to insert four safety rods’,

since a system failure due to a series of independent

events is very unlikely. If the SCRAM is successful, then

FIS must also be successful to assure that no core

damage results. The FIS cools the core after the LLOCA.

Water is injected into the core by 4 injection lines.

During a large LLOCA, one of these lines is assumed

failed. Failure of the other three lines is necessary to fail

the system. If FIS fails, core damage results.

The number of basic events for the model used in this

exercise is 45, for a total of 289 MCSs. Of these, 10 MCSs

contain only one basic event, 32 are formed by two basic

events, and the remaining 247 are given by three basic

events.

The risk metric used in this case is the CDF that is

associated with the LLOCA initiating event (CDFLLOCA).

CDFLLOCA for the reference example, is written using these
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data and the MCS above using the rare event approximation

as a function of the event probabilities as

RðfÞ¼CDFLLOCAðfÞ¼ fLLOCA

X
j

pðMCSi
jÞ

0
@

1
A

¼ fLLOCA

X10

j¼1

pðBE
j
1Þþ

X32

j¼1

Y2

i¼1

pðBE
j
iÞþ

X247

j¼1

Y3

i¼1

pðBE
j
iÞ

2
4

3
5

ð17Þ

where fLLOCA is the frequency of the LLOCA initiating

event;
P10

j¼1 pðBEjÞ is the sum of the probabilities of the

MCS that contain one basic event; j is the index in the

sum that goes from 1 to the number of minimal cut sets;P32
j¼1

Q2
i¼1 pðBE

j
iÞ is the sum of the probabilities of the

MCS that contain two basic events; i is the index in the

product that runs from 1 to the number of basic events

that are contained in the MCS;
P247

j¼1

Q3
i¼1 pðBE

j
iÞ is the

sum of the probabilities of the 247 MCS that contain

three basic events ði¼1;…;3Þ:

The 45 basic events used and their point estimate

failure probabilities are listed in Table 1, where the

presence of a failure rate in the fourth column, indicates

that an exponential failure model has been chosen for the

corresponding event. The point values are the means

obtained averaging the failure probabilities over the

corresponding epistemic distributions. The total number

of parameters is 31. The number of parameters is lower

then the number of basic events due epistemic depen-

dence (Section 3). For example, the three pumps are

considered identical, and so are two valves LCV-7A and

LCV-7B. Thus, the same parameters characterize their

failure modes, as, for example, x14 is used for the three

pump failure-to-start probability and x6 for the failure-to-

actuate probability of both valves LCV-7A and LCV-7B.

As in the original PSA model for the ATR [10], an error

factor (EF) of 10 and no correlation on the parameters

have been assumed. With these data we obtain an

uncertainty distribution of the CDFLLOCA that can be

approximated by a lognormal, with mean of 1029 (1/y)

and EF of 12.

A second effect of the presence of epistemic

uncertainty is as follows. We note from Eq. (17) that

the CDFLLOCA is linear in the individual basic event

probabilities. In the presence of epistemic uncertainty

CDFLLOCA becomes polynomial function of the par-

ameters of the PRA model, since the same parameters

can characterize several basic event probabilities that are

in the same MCS. From the size of the MCS, the analyst

can determine what the maximum order of the poly-

nomial is. For the reference PSA model and from Eq.

(17), we see that the maximum size of the MCS is three.

Therefore, a parameter may appear at most three times in

an the MCS and CDFLLOCA the parameters will appear

the most in the third power. This is the case when a

parameter is shared by all three basic events of the same

MCS. This is the case, in our example, for the rate of

independent failures while running of the three deep-well

pumps. As noted by Apostolakis and Kaplan [3], the

epistemic dependence of the failure rates of the pumps

will result in a term of the form ðltÞ3: Furthermore, in

general, MCS that involve independent events are

characterized by lower probability than MCS involving

the corresponding single basic events. One could then

hypothesize that only the terms involving one basic event

are relevant in R and in its uncertainty. Using the model

coefficient of determination, we show that this is not the

case. The analyst can have a quantitative indication of

the linear regression of CDFLLOCA by computing the

model coefficient of determination, G2
CDFLLOCA : This

coefficient G2
CDFLLOCA is defined as [23]

G2
CDFLLOCA ¼

Xm
i¼1

ðCDFLLOCA
i 2 CDFLLOCAÞ2

Xm
i¼1

ðCDFLLOCA
i 2 CDFLLOCAÞ2

ð18Þ

where Rp
i denotes the estimate of Ri from the regression

model, obtained regressing on the epistemic distributions

of the input parameters. G2
R represents the fraction of the

variance of the risk metric explained by the linear

regression. The closer G2
R is to unity, the greater the

linearity of the model. For the reference model, we found

G2
R ¼ 0:12: Thus, this tells us that the model is non-linear

at the parameter level. From the one hand this result

confirms our expectations in consideration of the

presence of epistemic uncertainty, and, on the other

hand, it has consequences on both the results of the

importance measures and GSA techniques, as discussed

in the following sections.

5.2. Importance measure results at the basic event

and the parameter level

The FV and RAW of the basic events as produced from a

standard PRA software code and the corresponding rankings

are given in Table 2. Table 2 also gives the results of the

computation of DIM for the basic events, and the rankings

obtained with this measure. We note that DIM and FV

produce the same rankings. This is due to the facts that (a)

we are considering the importance of both initiating and

basic events. Thus, the variables in this case are basic event

probabilities ( p(BE)) and initiating event frequencies

( fLLOCA). They are characterized by different units: p(BE),

as anticipated in Section 3. The most important event

according to the three measures is LLOCA, the initiating

event.

The results of the importance measure analysis at the

parameter level are reported in Table 3. From this table,

we note that the most relevant parameter is the frequency

of the initiating event, FLLOCA. This parameter is also
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associated with the most relevant basic event. We note

that there is now a discrepancy between the rankings of

DIM(xi) and FV(xi). In particular, 19 parameters are

ranked in a different position by the two measures. This

discrepancy shows that the model is non-linear at the

parameter level, as we anticipated in the previous

section.

5.3. Global sensitivity analysis results

We discuss the results of the extended FAST, reported in

Table 4. For the reference model, a sample size of

N ¼ 27,000 was required for the computation of the first

and total indices, with a corresponding total CPU time of

110 s.

We note that the parameters ranked in the first three

positions by S1ðxiÞ; FLLOCA, x12, and x19, are responsible for

about 10% of VR. All the other parameters have values

0:0017 , SðxiÞ , 0:0045; the only exception being x20 that

has by far the lowest S1(xi). Their total contribution amounts

to about 13% of VR. We note that the sum of the S1(xi) over

all the parameters is equal to 0.23. This means that the

portion of the variance explainable in terms of individual

parameters is about 23%. Parameter groups and interactions

among parameters account for 77% of VR, as confirmed by

the high values of the STðxiÞ in Table 4.

Table 1

Model basic events list, meaning and failure probability

Basic event Meaning Probability Parameter

BE1 Operator failure to isolate FIS path after excavation error 8.000 £ 1022 x1

BE2 Firewater injection system disabled by excavation error 1.250 £ 1024 x2

BE3 Insufficient flow through bottom head injection 1.503 £ 1026 x3

BE4 Lower FIS manual valve GT-T-84 failure to restore after TM 2.700 £ 1025 x4

BE5 No flow from firewater injection system 3.484 £ 1025 x5

BE6 Failure to actuate valve lcv-7b 5.001 £ 1024 x6

BE7 Failure to actuate valve lcv-7a 5.001 £ 1024 x6

BE8 Lower FWIS injection valve LCV-7B spuriously closes 3.000 £ 1024 x7 ¼ lv ¼ 3.000 £ 1026 (1/h)

BE9 Valve LCV-7B ICC fails to operate 1.000 £ 1023 x8

BE10 Lower FIS injection valve LCV-7B fails to open 7.000 £ 1024 x9

BE11 Common cause failure of valve paths LCV-7A and LCV-7B to open 7.000 £ 1025 x10

BE12 Common cause loss of both FIS paths due to failure of AOVs 4.300 £ 1025 x11

BE13 Lower FIS injection valve LCV-7A fails to open 7.000 £ 1024 x9

BE14 Valve LCV-7A ICC fails to operate 1.000 £ 1023 x8 ¼ lv ¼ 3.000 £ 1026

BE15 Lower FWIS injection valve LCV-7A spuriously closes 3.000 £ 1024 x7

BE16 Deepwell pump 1 heating and ventilation fails 1.40 £ 1022 x12

BE17 Deepwell pump 1 is in TM (plant-specific) 1.940 £ 1022 x13

BE18 Deepwell pump 1 fails to start 3.000 £ 1023 x14

BE19 Deepwell pump 1 fails to run 2.996 £ 1023 x15 ¼ lp ¼ 3.000 £ 1025

BE20 Deepwell Pump 1 instrumentation and control (ICC) fails 1.000 £ 1023 x16

BE21 Deepwell Pump #1 Breaker Spuriously Opens 3.000 £ 1025 x17 ¼ lb ¼ 3.000 £ 1027

BE22 Level control faults 8.383 £ 1025 x19

BE23 Power failure at 4160 vac etr commercial bus ‘d’ 5.601 £ 104 x20

BE24 Deepwell pump 3 is in TM (plant-specific) 7.050 £ 1023 x18

BE25 Deepwell pump 3 fails to start 3.000 £ 1023 x14

BE26 Deepwell pump 3 fails to run 2.996 £ 1023 x15 ¼ lp ¼ 3.000 £ 1025

BE27 Deepwell Pump 3 instrumentation and control (ICC) fails 1.000 £ 1023 x16

BE28 Deepwell Pump #3 Breaker Spuriously Opens 3.000 £ 1025 x17 ¼ lb ¼ 3.000 £ 1027

BE29 Deepwell pump 3 heating and ventilation fails 1.40 £ 1022 x12

BE30 Deepwell pump 4 TM (plant-specific) 2.620 £ 1022 x21

BE31 Deepwell pump 4 fails to start 3.000 £ 1023 x14

BE32 Deepwell pump 4 fails to run 2.996 £ 1023 x15 ¼ lp ¼ 3.000 £ 1025

BE33 Deepwell Pump 4 instrumentation and control (ICC) fails 1.000 £ 1023 x16

BE34 Deepwell pump #4 breaker spuriously opens 3.000 £ 1025 x17 ¼ lb ¼ 3.000 £ 1027

BE35 Heating and ventilation fails for pump 4 1.40 £ 1022 x12

BE36 Power failure at 4160 V atr bus 670-e-1 1.080 £ 1023 x22

BE37 Common cause loss of scram system 1.500 £ 1025 x23

BE38 Common cause failure of low outlet pressure sensor trains (C) 7.200 £ 1026 x24

BE39 Common cause failures of low outlet pressure 2:3 logics 3.000 £ 1025 x25

BE40 Failure of rod clutch coil controllers (rcccs) 2.601 £ 106 x26

BE41 2/3 Sensor trains fail to signal lop sublogic u 4.776 £ 107 x27

BE42 Failure to insert at least three safety rods in 6.500 £ 1027 x28

BE43 Common cause failure of RCCCs to release 5.001 £ 1024 x29

BE44 Failure of sufficient rcccs to release 5.001 £ 1024 x30

LL0CA Initiating event frequency 4.56 £ 1026 (1/y) flloca
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GSA results also allow us to understand how uncertainty

is partitioned between the two safety systems. Table 4 tells

us that out of the first 10 parameters, seven pertain to basic

events of the FIS, and two pertain to the reactor SCRAM.

The first ranked parameters of the SCRAM fault tree are x23

and x30, ranked 8th and 10th, respectively. Furthermore, the

sum of the S1(xi) of the parameters associated with FIS is

0.1104, while their sum over the parameters of the SCRAM

fault tree is 0.0232 (the remaining is attributed to FLLOCA).

These results qualitatively tell us that uncertainty in R is

unequally distributed between the two safety systems, with

FIS being responsible for most of it.

Suppose we have collected further data for some of the

top ranked parameters with S1(xi) and that we can, in turn,

fix them to their true value. The interpretation of the S1(xi)

and STðxiÞ indices computed through extended FAST is that

the percentage reduction of VCDFLLOCA will be between

S1(xi) and ST(xi), when xi is fixed. The actual reduction in the

output variance VR that is obtained by fixing xi to its true

value is obtained by re-computing the whole uncertainty

analysis, with assumed xi known. We fixed the values of the

first 10 parameters of Table 4, to assess the reduction in

uncertainty that the knowledge of their value would bring.

We obtained a reduction in VCDFLLOCA of almost two orders

Table 2

FV and RAW and DIM of the basic events of the ATR large LLOCA sequence

Basic event FV FV rankings RAW RAW rankings DIM DIM rankings

BE1 2.42 £ 1022 16 1.28 42 1.02 £ 1022 16

BE2 2.42 £ 1022 16 1.95 £ 102 13 1.02 £ 1022 16

BE3 3.64 £ 1023 31 2.42 £ 103 2 1.53 £ 1023 31

BE4 6.54 £ 1022 10 2.42 £ 103 2 2.75 £ 1022 10

BE5 8.44 £ 1022 5 2.42 £ 103 2 3.55 £ 1022 5

BE6 3.03 £ 1023 29 7.05 15 1.28 £ 1023 29

BE7 3.03 £ 1023 29 7.05 15 1.28 £ 1023 29

BE8 1.82 £ 1023 37 7.05 15 7.66 £ 1024 37

BE9 6.05 £ 1023 23 7.04 15 2.55 £ 1023 23

BE10 4.24 £ 1023 28 7.05 15 1.78 £ 1023 28

BE11 1.70 £ 1021 3 2.42 £ 103 2 7.16 £ 1022 3

BE12 1.04 £ 1021 4 2.42 £ 103 2 4.38 £ 1022 4

BE13 4.24 £ 1023 27 7.05 15 1.78 £ 1023 27

BE14 6.05 £ 1023 22 7.04 15 2.55 £ 1023 22

BE15 1.82 £ 1023 36 7.05 15 7.66 £ 1024 36

BE16 4.70 £ 1022 11 4.29 36 1.98 £ 1022 11

BE17 6.47 £ 1022 13 4.27 36 2.72 £ 1022 13

BE18 1.00 £ 1022 25 4.32 36 4.21 £ 1023 25

BE19 9.99 £ 1023 26 4.32 36 4.21 £ 1023 26

BE20 3.34 £ 1023 35 4.33 36 1.41 £ 1023 35

BE21 1.00 £ 1024 42 4.33 36 4.21 £ 1025 42

BE22 2.03 £ 1021 2 2.42 £ 103 2 8.55 £ 1022 2

BE23 6.61 £ 1022 12 1.17 £ 102 14 2.78 £ 1022 12

BE24 3.37 £ 1022 15 5.74 23 1.42 £ 1022 15

BE25 1.43 £ 1022 24 5.76 23 6.02 £ 1023 24

BE26 1.43 £ 1022 19 5.76 23 6.02 £ 1023 19

BE27 4.78 £ 1023 34 5.77 23 2.01 £ 1023 34

BE28 1.43 £ 1024 41 5.78 23 6.02 £ 1025 41

BE29 6.79 £ 1022 6 5.71 23 2.86 £ 1022 6

BE30 1.08 £ 1021 8 5.02 35 4.55 £ 1022 8

BE31 1.24 £ 1022 20 5.12 29 5.22 £ 1023 20

BE32 1.24 £ 1022 21 5.12 29 5.22 £ 1023 21

BE33 4.13 £ 1023 33 5.12 29 1.74 £ 1023 33

BE34 1.24 £ 1024 40 5.13 29 5.22 £ 1025 40

BE35 5.95 £ 1022 9 5.07 34 2.50 £ 1022 9

BE36 4.46 £ 1023 32 5.12 29 1.88 £ 1023 32

BE37 3.63 £ 1022 14 2.42 £ 103 2 1.53 £ 1022 14

BE38 1.74 £ 1022 18 2.42 £ 103 2 7.32 £ 1023 18

BE39 7.27 £ 1022 7 2.42 £ 103 2 3.06 £ 1022 7

BE40 1.64 £ 1028 43 1.01 43 6.90 £ 1029 43

BE41 1.16 £ 1023 39 2.42 £ 103 2 4.88 £ 1024 39

BE42 1.58 £ 1023 38 2.42 £ 103 2 6.65 £ 1024 38

BE43 1.64 £ 1028 44 1.01 43 6.90 £ 1029 44

BE44 7.53 £ 10212 45 1.01 43 3.17 £ 10212 45

LLOCA 1.00 1 2.22 £ 105 1 4.21 £ 1021 1
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of magnitude (i.e. from 10215 to 10217) with the EF falling

from 12 to 9.94.

5.4. Uncertainty drivers vs. safety significant contributors

To understand whether uncertainty drivers are risk

significant contributors, it is necessary to compare import-

ance measure results to GSA results. Such a comparison is

not obvious when dealing with complex PSA models for

several reasons. Standard software codes, as for example

SAPHIRE, compute R at the basic event level (Eq. (1)) [5,

6]. The model size, often of several hundreds basic events

and parameters, requires the PSA model to be solved using

computer codes and, it is often not possible to get an

analytical expression for R. Thus, deriving the expression

for the risk metric as a function of the parameters is not

possible. In addition importance measures (FV and RAW)

are traditionally defined and computed for basic events and

components. We have seen that GSA techniques deal with

parameters. This means that a direct comparison of the

results of standard PSA codes for importance measures and

GSA results is not possible. However, let us for a moment

suppose to have the results of importance analysis and GSA

techniques at the parameter level. In this case, we could

develop the Savage scores from the importance measure

rankings and the GSA rankings [7]. Savage scores are

utilized in the literature to compare the parameter rankings

of different sensitivity analysis techniques [7,17,18]. They

are defined as follows

jðxiÞ ¼
Xk

j¼rðxiÞ

1=j; ð19Þ

where jðxiÞ is the Savage score of parameter xi, rðxiÞ is the

rank of parameter xi and k is the total number of parameters.

The degree of agreement of the rankings of two

sensitivity analysis techniques, SA1 and SA2, is quantified

by the correlation coefficient of the Savage scores of the two

techniques. The correlation coefficient computed on Savage

scores is defined as

r
SAi=SAk

j ¼

Xn

j¼1

ðjSAi ðxjÞ2jSAi ðxjÞÞðj
SAk ðxjÞ2jSAk ðxjÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

jSAiðxjÞ2jSAiðxjÞÞ
2
Xn

j¼1

ðjSAk ðxjÞ2jSAk ðxjÞÞ
2

vuut
ð20Þ

Table 3

Point estimate results and rankings for FV and DIM at the parameter level

Parameter FV(xi) DIM(xi) FV rankings FV Savage scores DIM rankings DIM Savage scores

x1 0.024 0.010 16 0.7757 16 0.7090

x2 0.024 0.010 16 0.7757 16 0.7090

x3 0.0036 0.001537 23 0.3364 24 0.2930

x4 0.066 0.02761 9 1.1983 10 1.1983

x5 0.085 0.03562 7 1.7439 7 1.5772

x6 0.0055 0.00255 21 0.4295 22 0.3819

x7 0.0034 0.00153 24 0.3819 25 0.2513

x8 0.0097 0.005114 20 0.5321 20 0.4795

x9 0.0000030 0.00357 31 0.0323 21 0.4295

x10 0.17 0.07157 3 2.5272 4 2.1939

x11 0.10 0.04396 5 1.4344 6 1.7439

x12 0.11 0.07244 4 2.1939 3 2.5272

x13 0.064 0.02703 11 1.0074 11 1.0983

x14 0.033 0.01541 15 0.6465 12 1.0074

x15 0.034 0.01536 13 0.9240 13 0.9240

x16 0.012 0.00513 19 0.4795 19 0.5321

x17 0.00034 0.0001541 27 0.1728 28 0.1358

x18 0.034 0.01414 13 0.9240 15 0.7757

x19 0.20 0.0857 2 3.0272 2 3.0272

x20 0.066 0.02771 9 1.1983 9 1.3094

x21 0.10 0.04557 5 1.4344 5 1.9439

x22 0.0044 0.00188 22 0.2930 23 0.3364

x23 0.036 0.01533 12 1.0983 14 0.8471

x24 0.017 0.007362 18 0.5877 18 0.5877

x25 0.073 0.030675 8 1.5772 8 1.4344

x26 0.0000064 2.71166 £ 1026 28 0.1358 29 0.1001

x27 0.0012 0.000488 26 0.2113 27 0.1728

x28 0.0016 0.000664 25 0.2513 26 0.2113

x29 0.0000032 1.35583 £ 1026 30 0.0656 30 0.0656

x30 0.0000032 1.35583 £ 1026 30 0.0656 30 0.0656

FLLOCA 1.00 0.421351315 1 4.0272 1 4.0272
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where n is the total number of parameters, jSAi ðxjÞ is the

average Savage score that the sensitivity analysis technique

SAi attributes to parameter xj and jSAi ðxjÞ¼1 independently

of the number of parameters. Savage scores are used instead

of simple rankings in order to emphasize the agreement of

the measures on the top ranked variables [7].

From Eq. (20) we see that, if two measures produce

the same parameter rankings, then the parameters will

have the same scores. Therefore r
SAi=SAk

j will be unity. In

general, the closer r
SAi=SAk

j is to unity, the higher the

agreement in the rankings obtained with the two

measures. A negative value of r
SAi=SAk

j means that the

two measures tend to give opposite rankings, i.e.

parameters that are ranked high by one technique tend

to be low ranked by the other.

The correlation coefficient on the scores of importance

measures and GSA techniques gives quantitative infor-

mation on whether parameters that are ranked first by

importance measures (i.e. are risk significant) are also

drivers of the uncertainty of R. In fact, a high value of

the correlation coefficient would mean that uncertainty

contributors tend to be also risk significant elements.

To enable the computation of the scores, when dealing

with PSA model results produced by PSA standard codes,

we have to apply some intermediate steps, since importance

measures are computed for basic events [5,6]. We propose

to (1) associate to each parameter the corresponding basic

event/events. The rankings of the various techniques can be

converted into Savage scores, and the correlation coeffi-

cients can be computed. These steps are summarized in

Table 5.

The application of these steps to the ATR Large LLOCA

sequence is summarized in Table 6. The Savage scores are

reported in columns 5 and 8. The correlation coefficients of

the RAW and extended FAST, r
RAWðBEÞ=Si

j ; and FV and

extended FAST r
FVðBEÞ=Si

j ; are:

r
RAWðBEÞ=S1

j ¼ 0:51 and r
FVðBEÞ=S1

j ¼ 0:49 ð21Þ

These values indicate that the agreement between RAW and

extended FAST, and between FV and extended FAST is, in

general, weak. Thus, we can say that uncertainty con-

tributors do not tend to coincide with risk contributors for

the model at hand. However, we note that the initiating

event, LLOCA is ranked first by both FV and RAW, and its

corresponding parameter, FLLOCA, is ranked first by

extended FAST. This means that, by improving our

knowledge in FLLOCA, we would acquire better knowledge

on a risk significant contributor while efficiently reducing

the uncertainty in the CDFLLOCA.

The comparison of DIM, FV, and extended FAST

rankings at the parameter level1 can be done in a

straightforward manner, since all these measures are defined

for parameters. We can compute directly the Savage scores

obtained from the parameter rankings according to FV(xi)

and DIM(xi) and extended FAST. These scores are given in

Tables 3 and 4.

The Savage scores correlation coefficients turn out to be:

r
DIMðxÞ=S1ðxiÞ
j ¼ 0:64 and r

FVðxÞ=S1ðxiÞ
j ¼ 0:62 ð22Þ

The intermediate values of these correlation coefficients

show that risk significant parameters do not tend to coincide

Table 4

First order indexes ðSiÞ and total order indexes (STi) for the parameters of

the Large LLOCA sequence

Parameter S1(xi) ST(xi) Rank Savage scores

x1 0.0027 0.602582 19 0.5321

x2 0.0023 0.557544 23 0.3364

x3 0.0047 0.837081 4 2.1939

x4 0.0042 0.810726 7 1.5772

x5 0.0014 0.469973 30 0.0656

x6 0.0022 0.627429 25 0.2513

x7 0.0046 0.748013 5 1.9439

x8 0.0017 0.521022 29 0.1001

x9 0.0031 0.721116 15 0.7757

x10 0.0043 0.814946 6 1.7439

x11 0.003 0.47721 16 0.7090

x12 0.0437 0.815207 2 3.0272

x13 0.002 0.554586 26 0.2113

x14 0.0036 0.760575 14 0.8471

x15 0.0038 0.7626 11 1.0983

x16 0.0036 0.783453 13 0.9240

x17 0.0027 0.71104 18 0.5877

x18 0.0019 0.623066 27 0.1728

x19 0.0075 0.783292 3 2.5272

x20 0.000873 0.52003 31 0.0323

x21 0.0041 0.65086 9 1.3094

x22 0.0024 0.616027 21 0.4295

x23 0.0041 0.758641 8 1.4344

x24 0.0029 0.557622 17 0.6465

x25 0.0018 0.514783 28 0.1358

x26 0.0036 0.70982 12 1.0074

x27 0.0022 0.579769 24 0.2930

x28 0.0024 0.561865 20 0.4795

x29 0.0023 0.45943 22 0.3819

x30 0.0039 0.788219 10 1.1983

fLLOCA 0.0932 0.838342 1 4.0272

Table 5

Comparison steps for PSA importance measures and GSA techniques

No. Step

1 Associate each parameter with the corresponding

basic event/events

2 Get the parameter importance measure ranking

as average of the basic event

rankings

3 Compute the Savage scores on the

rankings

4 Compute the correlation coefficient on the

scores

1 As mentioned, DIM and FV for parameters cannot be estimated through

a standard code. This calculations were done transposing the cut sets

expression for the reference example into a mathematical software.
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with uncertainty drivers. This was the case at the basic

event level also. We note that the correlation between

FV(xi) and extended FAST is now higher than at the basic

event level. This is explained by the definition of FV(xi)

(Eq. (8)). If a parameter appears in several terms, it is

likely that it will have a high FV and drive the model

uncertainty. We note that again FLLOCA is ranked first by

all the techniques. Thus, the analysis at the parameter

level confirms that FLLOCA is important both as

uncertainty driver and risk contributor.

We finally note that, while the previous analysis required

some intermediate steps to compare importance measures to

GSA results, the use of DIM(x ) and FV(x ) at the parameter

level enables a direct comparison.

6. Conclusions

We have discussed the application and results of GSA

techniques to PSA models, focusing on variance-based

techniques, computed through extended FAST. We have

seen that the presence of epistemic uncertainty makes it

necessary to perform GSA at the parameter level of the

model.

Application and results of the extended FAST

technique for the computation of the first and total

order sensitivity indices for the parameters of the

reference model have been discussed. We have computed

the reduction in the risk metric variance that we obtain if

the parameters ranked in the first 10 positions by first

order global sensitivity indices were known with

certainty. We have seen that we would be able to

reduce VR by two order of magnitudes. We have

analyzed how uncertainty is partitioned between the

two safety systems. We have found that parameters of

the FIS are responsible for most of the uncertainty.

We have seen that, to understand whether uncertainty

drivers are also associated to risk significant element, we

must compare GSA results to importance measure results.

Since R is computed at the basic event level, and FV and

RAW are produced for basic events by standard software

codes [4,6], a direct comparison of importance measure and

GSA results is not possible. Thus, the results of such a

comparison are to be considered qualitative. However,

Table 6

RAW(BE) and FV(BE) Savage scores for comparison with extended FAST results

Parameter Associated

basic event

Raw basic

event ranking

Raw average

ranking

Raw Savage

scores

FV basic event

ranking

FV average

ranking

FV Savage

scores

x1 BE1 42 28 0.092 16 14 1.0767

x2 BE2 13 13 1.29 16 15 1.0767

x3 BE3 2 2 3.39 31 22 3.9996 £ 1021

x4 BE4 2 3 3.39 10 9 1.5660

x5 BE5 2 4 3.39 5 5 2.3116

x6 BE6, BE7 15, 15 15 1.14 29, 29 21 4.6778 £ 1021

x7 BE8, BE15 15, 15 15 1.14 37, 36 25 2.2313 £ 1021

x8 BE9, BE14 15, 15 15 1.14 23, 22 18 7.1555 £ 1021

x9 BE10, BE13 15, 15 15 1.14 28, 27 20 5.1079 £ 1021

x10 BE11 2 5 3.39 3 3 2.8949

x11 BE12 2 6 3.39 4 4 2.5616

x12 BE16, BE29, BE35 36, 23, 34 25 0.41 11, 6, 9 8 1.7094

x13 BE17 36 27 0.25 13 11 1.2917

x14 BE18, BE25, BE31 36, 23, 29 20 0.47 25, 24, 20 19 7.0413 £ 1021

x15 BE19, BE26, BE32 36, 23, 29 21 0.47 26, 19, 21 17 7.4959 £ 1021

x16 BE20, BE27, BE33 36, 23, 29 22 0.47 35, 34, 33 24 3.0615 £ 1021

x17 BE21, BE28, BE34 36, 23, 29 23 0.47 42, 41, 40 28 1.1641 £ 1021

x18 BE24 23 19 0.70 15 13 1.1434

x19 BE22 2 7 3.39 2 2 3.3949

x20 BE23 14 14 1.21 12 10 1.3751

x21 BE30 35 26 0.28 8 7 1.8021

x22 BE36 29 24 0.28 32 23 3.6770 £ 1021

x23 BE37 2 8 3.39 14 12 1.2148

x24 BE38 2 9 3.39 18 16 9.5540 £ 1021

x25 BE39 2 10 3.39 7 6 1.9449

x26 BE40 43 29 0.07 43 29 6.8205 £ 1022

x27 BE41 2 11 3.39 39 27 1.6705 £ 1021

x28 BE42 2 12 3.39 38 26 1.9336 £ 1021

x29 BE43 43 30 0.07 44 30 4.4949 £ 1022

x30 BE44 43 31 0.07 45 31 2.2222 £ 1022

FLLOCA Initiating event: LLOCA 1 1 4.39 1 1 4.3949
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using DIM and FV at the parameter level the comparison is

direct and quantitative results can be obtained.

The comparison of risk contributors and uncertainty

drivers at the basic event level for model at hand has

produced an intermediate value of the correlation coeffi-

cient, indicating that uncertainty drivers are not necessarily

risk significant contributors. However, LLOCA, the initiat-

ing event, is ranked first by all the measures. This means that

getting information to reduce the uncertainty in the

initiating event frequency (LLOCA), would allow a

reduction in the uncertainty of an important risk contribu-

tors, while effectively reducing our uncertainty in the

CDFLLOCA.

At the parameter level, we have obtained again an

intermediate correlation for the rankings obtained with

FV(xj) and DIM (xj) and those obtained with extended

FAST. This means that parameters that are important to

risk are not necessarily uncertainty drivers. The most

important parameter according to this analysis at the basic

event level and confirms that this parameter is the most

significant in both the model uncertainty and determi-

nation of the risk.

The analyst can then utilize this information to allocate

resources and prioritize information and data collection for

the model. In this respect, GSA techniques provide useful

analytical capabilities that respond to the need of improving

uncertainty analysis of PSA models.
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