

Sensitivity analysis

Andrea Saltelli Centre for the Study of the Sciences and the Humanities, University of Bergen, and Open Evidence Research, Open University of Catalonia

Berkeley, September 24-26, 2018

Where to find the talks: www.andreasaltelli.eu

Not a discipline

Unlike statistics, mathematical modelling is not a discipline, hence the lack of universally accepted quality standards, disciplinary fora and journals and recognized leaders

Making sensitivity analysis part of the syllabus of statistics?

Peder Sather project with Berkeley, Bergen, Trondheim universities

Saltelli, A., Does Modelling need a reformation? Ideas for a new grammar of modelling, available at https://arxiv.org/abs/1712.06457

Uncertainty and sensitivity analysis

Definitions

Uncertainty analysis: Focuses on just quantifying the uncertainty in model output

Sensitivity analysis: The study of the relative importance of different input factors on the model output

SENSITIVITY AND UNCERTAINTY ANALYSES

Page 391

Six steps for a global SA:

- 1. Select <u>one</u> output of interest;
- 2. Participatory step: discuss which input may matter;
- 3. Participatory step (extended peer review): define distributions;
- 4. Sample from the distributions;
- 5. Run (=evaluate) the model for the sampled values;
- 6. Obtain in this way bot the uncertainty of the prediction and the relative importance of variables.

Limits of sensitivity analysis

Orrin H.

Pilkey

Useless Arithmetic: Why Environmental Scientists Can't Predict the Future by Orrin H. Pilkey and Linda Pilkey-Jarvis Useless arithmetic Wy Twine world Sciences Carl Productive Focus Orme 11, Pillery & Lable Pillery-Javes <>It is important, however, to recognize that the sensitivity of the parameter in the equation is what is being determined, not the sensitivity of the parameter in nature.

[…] If the model is wrong or if it is a poor representation of reality, determining the sensitivity of an individual parameter in the model is a meaningless pursuit.>>

One of the examples discussed concerns the Yucca Mountain repository for radioactive waste. TSPA model (for total system performance assessment) for safety analysis.

TSPA is Composed of 286 sub-models.

TSPA (like any other model) relies on assumptions \rightarrow one is the low permeability of the geological formation \rightarrow long time for the water to percolate from surface to disposal.

The confidence of the stakeholders in TSPA was not helped when evidence was produced which could lead to an upward revision of 4 orders of magnitude of this parameter (the ³⁶Cl story) Type III error in sensitivity: Examples:

In the case of TSPA (Yucca mountain) a range of 0.02 to 1 millimetre per year was used for percolation of flux rate.

→… SA useless if it is instead ~ 3,000 millimetres per year.

Robert K. Merton

"Scientific mathematical modelling should involve constant efforts to falsify the model"

Ref. → Robert K. Merton's 'Organized skepticism '

Communalism – the common ownership of scientific discoveries, according to which scientists give up intellectual property rights in exchange for recognition and esteem (Merton actually used the term Communism, but had this notion of communalism in mind, not Marxism);

Universalism – according to which claims to truth are evaluated in terms of universal or impersonal criteria, and not on the basis of race, class, gender, religion, or nationality;

Disinterestedness – according to which scientists are rewarded for acting in ways that outwardly appear to be selfless;

Organized Skepticism – all ideas must be tested and are subject to rigorous, structured community scrutiny.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola

GLOBAL SENSITIVITY ANALYSIS

The Primer

WILEY

Wu Qiongli

An engineer's vision of UA, SA

One can sample more than just factors

One can sample modelling assumptions, alternative data sets, resolution levels, scenarios …

Assumption	Alternatives
Number of indicators	 all six indicators included or
	one-at-time excluded (6 options)
Weighting method	 original set of weights,
	 factor analysis,
	 equal weighting,
	 data envelopment analysis
Aggregation rule	 additive,
	 multiplicative,
	 Borda multi-criterion

VIDENCE. ARGUMENT.& PERSUASION HE POLICY OCESS

"Are the results from a particular model more sensitive to changes in the model and the methods used to estimate its parameters, or to changes in the data?" Can one lie with sensitivity analysis as one can lie with statistics?

Saltelli, A., Annoni P., 2010, How to avoid a perfunctory sensitivity analysis, Environmental Modeling and Software, 25, 1508–1517.

In 2014 out of 1000 papers in modelling 12 have a sensitivity analysis and < 1 a global SA; most SA still move one factor at a time

TOT SA/TOT MOD (%)

TOT GSA/TOT MOD (%)

Ferretti, F., Saltelli A., Tarantola, S., 2016, Trends in Sensitivity Analysis practice in the last decade, Science of the Total Environment, http://dx.doi.org/10.1016/j.scitotenv.201 6.02.133

OAT in 2 dimensions

Area circle / area square =?

~ 3/4

OAT in 3 dimensions

Volume sphere / volume cube =?

~ 1/2

OAT in 10 dimensions; Volume hypersphere / volume ten dimensional hypercube =? ~ 0.0025

Once a sensitivity analysis is done via OAT there is no guarantee that either uncertainty analysis (UA) or sensitivity analysis (SA) will be any good:

→ UA will be non conservative

SA may miss important factors

END

Which factor is more important?

Why?

~1,000 blue points

Divide them in 20 bins of ~ 50 points

Compute the bin's average (pink dots)

Each pink point is ~
$$E_{\mathbf{X}_{i}}(Y|X_{i})$$

Take the variance of the pink points and you have a sensitivity measure

 $V_{X_i}\left(E_{\mathbf{X}_{\mathbf{x}_i}}\left(Y|X_i\right)\right)$

Which factor has the highest $V_{X_i}\left(E_{\mathbf{X}_{\sim i}}\left(Y|X_i\right)\right)$?

 $S_i \equiv \frac{V(E(Y|X_i))}{V_Y}$

 $V_{X_i}\left(E_{\mathbf{X}_{\mathbf{x}_i}}\left(Y|X_i\right)\right)$

- First order effect, or top marginal variance=
- = the expected reduction in variance that would be achieved if factor Xi could be fixed.
- Why?

Because:

 $V_{X_i}\left(E_{\mathbf{X}_{\sim i}}\left(Y|X_i\right)\right) +$ $+ E_{X_i}\left(V_{\mathbf{X}_i}\left(Y | X_i\right)\right) = V(Y)$

Easy to prove using $V(Y)=E(Y^2)-E^2(Y)$

Because:

 $V_{\underline{X}_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y|X_{i}\right)\right)+$ $+ E_{X_i} \left(V_{\mathbf{X}_{\sim i}} \left(Y | X_i \right) \right) = V(Y)$

This is what variance would be left (on average) if Xi could be fixed…

must be the expected reductionin variance that would be achievedif factor Xi could be fixed

For <u>additive</u> models one can decompose the total variance as a sum of first order effects

 $\sum V_{X_i} \left(E_{\mathbf{X}_{\sim i}} \left(Y | X_i \right) \right) \approx V(Y)$

··· which is also how additive models are defined

Non additive models

Is this factor non-important?

There are terms which capture two-way, three way, … interactions among variables.

All these terms are linked by a formula

Variance decomposition (ANOVA)

V(Y) =

$\sum_{i} V_{i} + \sum_{i,j>i} V_{ij} + \dots + V_{123\dots k}$

→ Lesson Stefano Tarantola

EC impact assessment guidelines: sensitivity analysis & auditing

http://ec.europa.eu/smart-regulation/guidelines/docs/br_toolbox_en.pdf

Secrets of sensitivity analysis

Why should one ever run a model just once? First secret: The most important question is the question.

Or: sensitivity analysis is not "run" on a model but on a model once applied to a question Second secret: Sensitivity analysis should not be used to hide assumptions [it often is]

Third secret: If sensitivity analysis shows that a question cannot be answered by the model one should find another question or model

[Often the love for one's own model prevails]

Badly kept secret:

There is always one more bug!

(Lubarsky's Law of Cybernetic Entomology)

And of course please don't run a sensitivity analysis where each factors has a 5% uncertainty

More than a technical uncertainty and sensitivity analysis? 1. Uncertainty and sensitivity analysis (never execute the model once)

2. Sensitivity auditing and quantitative storytelling (investigate frames and motivations)

Saltelli, A., Guimarães Pereira, Â., Van der Sluijs, J.P. and Funtowicz, S., 2013, 'What do I make of your latinorum? Sensitivity auditing of mathematical modelling', Int. J. Foresight and Innovation Policy, (9), 2/3/4, 213–234.

Saltelli, A., Does Modelling need a reformation? Ideas for a new grammar of modelling, available at https://arxiv.org/abs/1712.06457

3. Replace 'model to predict and control the future' with 'model to help mapping ignorance about the future' ...

... in the process exploiting and making explicit the metaphors embedded in the model

J. R. Ravetz, "Models as metaphors," in Public participation in sustainability science : a handbook, and W. A. B. Kasemir, J. Jäger, C. Jaeger, Gardner Matthew T., Clark William C., Ed. Cambridge University Press, 2003, available at http://www.nusap.net/download.php?op=getit&lid=11