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EC impact assessment guidelines:
sensitivity analysis & auditing

European Commission. November 2021. “Better
Regulation: Guidelines and Toolbox.”
https://ec.europa.eu/info/law/law-making -
process/planning—and-proposing—law/better—
regulation—-why-and—-how/better—-regulation-
guidelines—and-toolbox_en
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EC impact assessment guidelines:
sensitivity analysis & auditing

TOOL #65. UNCERTAINTY AND SENSITIVITY ANALYSIS

A
Better Regulation

TOOLBOX

What

Uncertainty analysis aims at quantifying uncertainties in model results provided
to the decision-makers due to uncertain assumptions/inputs. Sensitivity analysis
allows identifying the uncertain assumptions mostly responsible for uncertainty
in model results.

Why

A transparent and high-quality impact assessment should acknowledge and,
to the extent relevant or possible, attempt to quantify the uncertainty in results
as it could change the ranking and conclusions about the policy options.

How

Assessing the uncertainties in model results by propagating model input
uncertainties through the model and inferring a posteriori the relevant uncertain
inputs by subsequent statistical analysis.




Who do these have in common?

J. Campbell, et al., Science 322, 1085 (2008).
R. Bailis, M. Ezzati, D. Kammen, Scrence 308, 98 (2005).
E. Stites, P. Trampont, Z. Ma, K. Ravichandran, Science
318, 463 (2007).

J. Murphy, et al., Nature 430, 768-772 (2004).

J. Coggan, et al., Science 309, 446 (2005).
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Seven OAT
points in a 3D

Spdce



Before we go on to discuss OA'T a premise:

We don't know if a model is linear
before we do the analysis!



Y,
HX ;-

Otherwise the model
could be declared
linear or additive (or
otherwise well

behaved)anc

single baseline

uld make 1t d
derivatives at a

one
0 wWith

point.




Thus derivates are out, but 1s OAT OKY?

Or how bad 1s 1t?



OAT in 2 dimensions
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OAT in 3 dimensions

Volume sphere /
volume cube =?

~1/2



http://images.google.it/imgres?imgurl=http://yaroslavvb.com/research/reports/curse-of-dim/pics/sphere.gif&imgrefurl=http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html&h=287&w=265&sz=11&hl=it&start=3&um=1&tbnid=WwtgUyNpRPBdwM:&tbnh=115&tbnw=106&prev=/images%3Fq%3Dcurse%2Bdimensionality%26um%3D1%26hl%3Dit%26rls%3DGGLD,GGLD:2004-34,GGLD:it%26sa%3DN

OAT in 10 dimensions

Volume hypersphere / volume ten
dimensional hypercube =* ~ 0.0025




volume of n—ball inscnbed in the unitary hy percube

OA'T 1n k dimensions
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Thus OAT 1s very poor 1n
exploring the space ot the
factors — 1t 1s also non
conservative.

Why?



OAT In not roughly
right ... it is precisely
wrong!

\




Reading about dubious or absent sensitivity analysis

Environmental Modelling & Software
Volume 114, April 2019, Pages 29-39

Why so many published sensitivity analyses
are false: A systematic review of sensitivity
analysis practices

Andrea Saltelli °® © =, Ksenia Aleksankina €, William Becker 9, Pamela Fennell 8,
Federico Ferretti 9, Niels Holst f, Sushan Li 9, Qiongli Wu "

Show more \/



For the papers using OA'T points a better
(statistical theory based) alternative is
available, be it:

- A two level factorial design,

- A trajectory analysis (a—la—Morris) or
— A linear regression based on a Monte
Carlo Sample

Using perhaps the same low number of
poIints.




Another story of SA

William Nordhaus,
University of Yale

Nicholas Stern, London
School of Economics

Stern’s Review —
Technical Annex to
postscript



Stern’s Review — Technical Annex To postscript
(a sensitivity analysis of a cost benefit analysis)

The Stern — Nordhaus exchange on SC/ENCE

Nordhaus = falsifies Stern based on ‘wrong’
range of discount rate (~ you GIGOing)

Stern = ‘My analysis shows robustness’



% loss in GDP per capita

From Stern’s Review SA

2000 2050 2100 2150 2200
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High Climate, market impacts + risk of catastrophe + non-market
-40 - impacts
| 5-95% impacts range

-50 - as above with damage exponent [1.5,2.25,3]

5 - 95% impacts range

-60 -



% loss in GDP per capita

My problems with it:

2000 2050 2100 2150 2200
D ] ] ]
=10 -
-13.8
-20 4 -20.2
-30 4
High Climate, market impacts + risk of catastrophe + non-market
-40 - impacts
| 5-95% impacts range
-50 - as above with damage exponent [1.5,2.25,3]
5 - 95% impacts range
-60 -

!



.-« but foremost he says:
changing assumptions = important effect
when instead he should admit that:

changing assumptions =2 all changes a lot

- High Climate, market impacts + risk of catastrophe + non-market
& -40 impacts
= I 5 - 95% impacts range

as above with damage exponent [1.5,2.25,3]
5 - 95% impacts range




The Stern—-Nordhaus

2050

[ 5 - 95% impacts range

Stern’s plot

High Climate, market impacts + risk of catastrophe + non-market
impacts

2000
controversy; ’
a reverse engineering the 101
model: %20—
=» uncertainty 1s too large to ;‘_30_

take decisions = both Stern 2

and Nordhaus are wrong : )
.

.| e—

Globul Esvronmental Change 20 (2010) 298-302

Contents lists available at ScienceDirect

Global Environmental Change

journal homepage: www.elsevier.com/locate/gloenvehas

as above with damage exponent [1.5,2.25,3]
5 - 95% impacts range

o
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Sensitivity analysis didn't help. A practitioner’s critique of the Stern review

Andrea Saltelli *, Beatrice D'Hombres

Jount Nesearch Centre, Mustitute for the Prodection and Secunty of the Citizen, ipra, Naly
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Sensitivity
analvysis,
also by
reverse
engineering




Variance based
methods; a best
practice”?




Mostly based on
the work of Ilya
M. Sobol’ (1990),
who extended the
work of R.I.
Cukier (1973).
Further
extensions by T.
Homma and
myself (1996,

onward).




Scatterplots’
notation:

Y = (X, X,,..X,)
fo = (Y)

['he ordinate axis is always Y

T\ 1

['he abscissa are the various
factors X, in turn.

The points are always the same!
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Cutting into slices...
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This shows the

variance of Y across

the slices: greater for
X, than for X,

Vi (Ex (Y[X,)
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Vi (Ex (Y[X,)

First order etfect, or top marginal
variance=

= the expected reduction in variance

than would be achieved if factor Xi
could be fixed.



For additive systems one can
decompose the total variance as a sum
of first order effects

vai (Ex~i (Y‘Xi)):V(Y)

... and a powerful variance based
measure is also available for non-
additive models ...



From this --- -++ to this

VX

This is a total order

EX Y | X i effect, or bottom
~

marginal variance.

The expected variance than would be
left if all factors but Xi could be fixed.

This is a first order

effect, or top

marginal variance. E V Y X
The expected reduction in variance

than would be achieved if factor Xi X~| X |

could be fixed.

-
I



This has an

intuitive
in (Ex~i (Y| Xi )) interpretation (the

scatterplots)

EX_yi (\/Xi (Y|X~| )) How About this?



Variance decomposition (ANOVA)

in (Ex~i (Y|Xi )):Vi

Viex (Ex. (Y[X,X,))=
—V +V, +V.

J




Variance decomposition (ANOVA)

V(Y)=

ZV + > Vi +..+ Vi

i, j>1



Variance decomposition (ANOVA)

When the factors are independent the total
variance can be decomposed into main effects and
interaction effects up to the order k, the
dimensionality of the problem.

When the factors are not independent the
decomposition loses its unicity (and hence its

appeal!)



Sampling in the unit hypercube



CDF

¢ is a (quasi)
random point

. in [0,1]

X; 18 the factor

i 1 value sampled
1 fromits

! marginal



From main effect to total effect

From

Vi (Ex~i (Y| X )) eor

replacing X, with X,

To main effect of non- X, Wy ( (Y|X ))



V, (Ex (Y]X2))+
Ex (in (Y X )) =V (Y )

Easy to prove using V(e )=E(*)?-E?(°)




Main etfect on non-X;
B, (i, (V[X5)

V'S

Vie, (B, (¥]X.)

... all remaining variance must be
due to X, and its interactions






Main (or first order) effect of

Main effects

; Residuals

Vo (Ey (1]X,)

+E (wa,. (Y\Xi)) = V(Y)

VX,—-i (EX,- (Y‘X—u’))'l'EXw,- (VX,- (Y’X~i)) = V()

X

Total (or total order) effect of X,

Rows add up to

V(Y); diagonal terms

equal for additive models.



V(B 0x)

V (Y) ‘

E,, Vs (Y[X0))
V (Y)

Rescaled to [0,1], under the name of first order and total

— STi

order sensitivity coefficient



This can be estimated without “double loop’

Vx, (Ex~i (Y|Xi )):
— EXXLi (ff ’)_ f02

... simply as product of function values (single loop)



And this can be computed as follows — generate a
(quasi) random numbers matrix of row
dimension Zk and column length NV

Xig Koo e Xyag
Xop Ky e Xyiap

ANt Knz o oo Knek)



Split into two:

Xll X12
A _ X21 X22
XNl XN 2

Xlk
X2k

XNk

B —

X1 (k+1)
X2 (k+1)

XN (k+1)

Xi(k+2)
X2 (k+2)

XN (k+2)

X1(2k)
X2(2k)

XN (2k)



And generate a third matrix which is all-A but one column
(column i) which is from B

X1 X el Keriy (o0 Kik
X X [ I ] X 1 | I | X
B 21 22 2(k+1) 2Kk
Al =
Ant ANz oo | ANk [ Kk

(call it a quasi-A matrix)



Finally we compute in (EX~i (Y | Xi ))




Where:

Xy Xukszy o Kk
f B 1S Computed B — X2(k+1) X2(k+2) e X2(2k)
J from row j of
B XN (k+1) XN (k+2)  =*° XN (2k)
and f JAl from the quasi-A matrix:
X1 Xi5 Xl(k+i) cee Xy
AiB = Koo Ry oo Kogeriy oo Kok
XNl XN2 XN(k—I—i) XNk



In summary one can compute the first order terms from
one matrix A and B each and k matrices A,” i.e. using
function values

B B
fr fi

The entire story can be repeated for the total
effect index, which can be computed from

f jA f JAB



Thus with k quasi-A matrices and the two matrices A and B
one can compute for a total of k+2 matrices all total and
first order etfects

Sp, AL

7 Agg

Ay

A B



In three dimensions (k=3), three points (N=3)
X1 X X3 Xii3+1)  Kisz+2)
A — Ko Ko Xyg B — Xoz+1)  K2(3+2)

K31 K3 Kgg X3i311)  X3(3+2)
Xia X5 X

B — Xos Xos  Koyg
X3s K35 Xgp

Rewriting B:

X1(3+3)
X2(3+3)

X3(3+3)



Generate the 3 quasi-A matrices

X

11

X X

31

Xia | %2 X3
AB _ Koa| Koo Xyz
L =
Kaa | Kzp X33
Xis | %i3
X X
25 23
AS =
X35 | Xa3

Xll

X
X

21

31

X X

22

32

X

26

X

36




From AB Computing S

X117 K19, Xia First point

X,
Xl

X110 %121 X3 @ ——s @ Xiar X0y X3

From A AE
/X 2 From/MA\;

® Xii: X5 X3 B
111 M5 From A2



From AE Computing S,

o . .
RS PIRST: First point

X

X
X141 K151 Xi6 ® 1_>‘ YOX X
From B 14 M2 N3

AB
/)(2 From/MA\;

® X1 X5 X3 B
FromAz



Reading about estimators

Computer Physics Communications 181 (2010) 259-270

Contents lists available at ScienceDirect -gmm. .

COMMUNICATIONS

Computer Physics Communications

I

ELSEVIER www.elsevier.com/locate/cpc

Variance based sensitivity analysis of model output. Design and estimator
for the total sensitivity index

Andrea Saltelli, Paola Annoni*, Ivano Azzini, Francesca Campolongo, Marco Ratto, Stefano Tarantola

Joint Research Centre of the European Commission, Institute for the Protection and Security of the Citizen, Ispra, Italy




What you have seen so far
has been optimized as to have
a maximum of coordinates
from A and a minimum of
coordinates from B.

Why?



#[1:1000, 2]

1.0

0.5

0.6

0.4

0.2

0.0

£ o n“u S B:F: un%.u"" a N

o ) n oo ) u"un u: ,h, % F . Oq
Lt e e e We normally use
Aol LT e Jlow discrepancies

0.0

st 2 ) sequences
0.z 04 0.6 0.8 1.0 developed by IM

=[1:1000, 1]
Sobol’ — these are
An LP. sequence known as LP-

TAU sequences



X[1:100, 2]

1.0

0.g

0.8

04

0.0
I

I | | I I |
0.0 0.z 0.4 0.6 0.g 1.0

X1,X2 plane, 10(.). Sobol’ points

Sobol’ sequences
poINts

= _
— a a o o
ﬂ-
By - o L") ] ] o= &
o o
] I b &
a
o LS N 5 o " o o
= g "
o a
L} o= a o ]
= ot
] o, o % Fog o, ™
a
o a o
. |'_ID _ ; u: L. n% Lol
o =
N %, o o o o "% o T ]
= ]
o
= L] 1Y A -
-] a o
- "an
% =1 o - = fa a : o o i e
= » A " : [ o
o, % - :: e "o % &
a
a
B . - L
wd a o o L] n o a o o o o o o
1] o o 2 @ o - o 2 =
ﬁ a
= o L & B, % _.° e " oL “u“u n-Ih oa o LI
a u L
o LT o o L a7 oo L a® L " 0" a
o Fa og ‘Fu- o = -uu ,,ﬂ“- a " -“u ® P * -““ * “
g | L.
| | | | | |
0.0 0.z 0.4 0.6 0.8 1.0

I Nt TR |

X1,X2 plane, 1000 Sobol’ points

of quasi—random



X[1:1000, 2]
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<[1:10000, 2)
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Sobol’ sequences of quasi—-random points
against random points



Why quasi—random

A QMC (-0.94)
aMC (0.52)

Source: Mauntz and Kucherenko, 2005



Why estimate using as much as
possible from A and quasi—A matrices?

The lower the column number the better
its discrepancy property

=» quasi—MC trick: if possible
put important variables on the left



Vi (Ex (Y[X,)

\ Equal to one

another when the

/ model is additive

s, Vi (VX))



Why these two measures?

VX (EX (Y| X _ )) Factors prioritization
[ ~j l

Fixing (dropping) non

Ex~i (in (Y|X~i )) important factors



Computational details:

1. Easy-to-code, Monte Carlo — better on quasi-
random points. Estimate of the error available.

2. The main effect can be made cheap; its
computational cost does not depend upon k.

3. The total effect is expensive; its computational

cost is (k+1)N where N is one of the order of one
thousand.



Applications




Policy Options model structures

errors

Simulation

uncertainty analysis

Model model

output sensitivity analysis

parameters

feedbacks on input data and model factors




Uncertainty analysis can be used to assess the robustness of composite
indicators ...

>

Performance -

Space of alternatives index 607

507

40—
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30

Weights Imputation

Aggregation : '
20—

Including/ Normalisation : :
excluding variables 10—

Spain Italy Greece

v



Methodology from:

Joint OECD-JRC Handbook
handbook. on Constructing
Composite
Indicators
METHODOLOGY

AND USER GUIDE

HIEW 1032 1pU] & 1sodwo) Bugongsuo) uo ¥ooqpuey

301NS Y38N ANY AD0T7000

(@ & JRC

OECD  european commission



Frequency of occurrence

Uncertainty and sensitivity (UA, SA)

e-business readiness: category Use

120 |
1
Czech Republic il ltaly performs
T | better
100 L performs better g .
Ei Weights
=i 17%
80+ 5!
o 1
Sl
UA : |
=
60 3
i
A0 |
20 Data
83%
I] 1
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
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Reading about university ranking and sensitivity analysis

Research Policy 40 (2011) 165-177

Contents lists available at ScienceDirect

Research Policy

F1.SEVIER journal homepage: www.elsevier.com/locate/respol

Rickety numbers: Volatility of university rankings and policy implications

Michaela Saisana*, Béatrice d’Hombres, Andrea Saltelli

Econometrics and Applied Statistics, Joint Research Centre, European Commission, Enrico Fermi 2749, 21027 Ispra, Italy




SJTU rank
500 400 300 200

100

university name

(SJTU rank range, median rank [95% confidence interval for the median rank])
or

(SJTU rank, median rank [95% confidence interval for the median rank])

Univ St Andrews in UK
(201-302, 171154, 201)) ~

( | .
| \

>

L‘ Inl'llﬂ H‘ ‘

5

Al et
o B

Univ California - Davis
(48, 98 [71, 116])

- 100

- 200

- 300

- 400

- 500

Median rank (and 95% confidence interval) accounting for

methodological uncertainties



Simulated rank range

N O oo Lo
T OO OKNO® SJTU

O
LN

TR BB 8RR rank

Harvard Univ 1 usA
Stanford Univ 2 USA
Univ California - Berkeley 3 USA
Univ Cambridge 4 UK

Massachusetts Inst Tech (MIT) 5 usa
California Inst Tech 6 USA
Columbia Univ 7 USA
Princeton Univ 8 USA
Univ Chicago 9 UsA
Univ Oxford 10 UK

Yale Univ 11 usa
Cornell Univ 12 UsA

Univ California - San Francisco 914 311 3 710 18 uUsA
Duke Univ 10 613 11 6 376313199713 1 32 UsA
Rockefeller Univ 4102326 1 33333446311 1 32 USA
Univ Colorado - Boulder 19 3011 1 34 UsA
Univ British Columbia 20 20 35 Canada
Univ California - Santa Barbara 9 910 310 6 7 6 11 4 6 3 4 7 11 36 USA
Univ Maryland - Coll Park oA ° 4 37 UsA
Ecole Normale Super Paris 79467 6 4967 433433 1 6 4 73 France
Univ Melbourne 120 178823 1 6 73 Australia
Univ Rochester 110 71624 1410 10 6 73 USA
Univ Leiden 3 6 923241314 9 76 Netherlands
Univ Sheffield 1212621 913 7 1 77 UK
Tohoku Univ 4 1 7 1 41719 3 3 3 19 7 3 4 4 79 Japan
Univ Utah 4 46 149 616 713 4 9 6 6 1 79 USA
King's Coll London 4 6 929171410 1 6 3 1 81 UK
Univ Nottingham 1 61021211017 7 4 1 82 UK
Boston Univ 316 3 611 1 4

3131410 10 10 83 usa

Legend:
Frequency lower 15%
Frequency between 15 and 30%

Frequency greater than 50%



It I1s beyond doubt that Harvard, Stanford,
Berkley, Cambridge, and MIT are top 5

(both In the original SJTU and in more than 80%
of our simulations) ...



... Still for 96% of the universities, the range of ranks
IS greater than 10 positions.

Examples of rank variation

92 positions (Univ Autonoma Madrid) and 277
positions (Univ Zaragoza) in Spain,

/1 positions (Univ Milan) and 321 positions
(Polytechnic Inst Milan) in Italy,

«22 positions (Univ Paris 06) and 386 positions
(Univ Nancy 1) in France.



Reading about evolution of SA

(including software)

Environmental Modelling & Software
Volume 137, March 2021, 104954

Position Paper

The Future of Sensitivity Analysis: An
essential discipline for systems modeling
and policy support

d

1

Saman Razavi ® 2 &, Anthony Jakeman b Andrea Saltelli ¢, Clémentine Prieur

Bertrand Iooss ¢, Emanuele Borgonovo !, Elmar Plischke 9, Samuele Lo Piano ", Takuya Iwonoggb,

William Becker i, Stefano Tarantola !, Joseph H.A. Guillaume ?, John Jakeman k, Hoshin Gupta !,
Nicola Melillo ™, Giovanni Rabitti ", Vincent Chabridon &, Qingyun Duan °, Xifu Sun ,
Stefdn Smith "...Holger R. Maier "




Ongoing work

We gratefully acknowledge

Search...

Statistics > Applications

[Submitted on 27 Jun 2022 (v1), last revised 17 Mar 2023 (this version, v2)]

Discrepancy measures for sensitivity analysis
Arnald Puy, Pamphile T. Roy, Andrea Saltelli

While sensitivity analysis improves the transparency and reliability of mathematical models, its uptake by modelers is still scarce. This is partially explained by its technical requirements,
which may be hard to understand and implement by the non-specialist. Here we propose a sensitivity analysis approach based on the concept of discrepancy that is as easy to understand
as the visual inspection of input-output scatterplots. Firstly, we show that some discrepancy measures are able to rank the most influential parameters of a model almost as accurately as
the variance-based total sensitivity index. We then introduce an ersatz-discrepancy whose performance as a sensitivity measure matches that of the best-performing discrepancy
algorithms, is simple to implement, easier to interpret and orders of magnitude faster.



Input—output scatterplots

We gratefully acknowledge {

ornell University

Search...

\/ > stat > arXiv:2206.13470

Statistics > Applications
[Submitted on 27 Jun 2022 (v1), last revised 17 Mar 2023 (this version, v2)]
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The strong principle for the real world is: never use a model if you don't know
its limitations and side effects. In fact, you must know what it can't do for you
better than what it can do. I am glad this project is taking place: a long-awaited
examination of the role—and obligation—of modeling.

Nassim Nicholas Taleb, Distinguished Professor of Risk Engineering,
NYU Tandon School of Engineering. Author of the
five-volume Incerto series (The Black Swan)
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