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Partly based on 

Global sensitivity analysis.
The Primer
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EC impact assessment guidelines: 
sensitivity analysis & auditing 

European Commission. November 2021. “Better 
Regulation: Guidelines and Toolbox.” 
https://ec.europa.eu/info/law/law-making-
process/planning-and-proposing-law/better-
regulation-why-and-how/better-regulation-
guidelines-and-toolbox_en
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EC impact assessment guidelines: 
sensitivity analysis & auditing 
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Who do these have in common?

J. Campbell, et al., Science 322, 1085 (2008).
R. Bailis, M. Ezzati, D. Kammen, Science 308, 98 (2005).
E. Stites, P. Trampont, Z. Ma, K. Ravichandran, Science 
318, 463 (2007).
J. Murphy, et al., Nature 430, 768-772 (2004).
J. Coggan, et al., Science 309, 446 (2005).

OAT
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•

• •
•

•

Seven OAT 
points in a 3D 

space 
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Before we go on to discuss OAT a premise:

We don’t know if a model is linear 
before we do the analysis!
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Otherwise the model 
could be declared 

linear or additive (or 
otherwise well 

behaved) and one 
could make it do with 

derivatives at a 
single baseline point.
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Thus derivates are out, but is OAT OK? 

Or how bad is it?  
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OAT in 2 dimensions

Area circle / area 
square =? 

~ 3/4  
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OAT in 3 dimensions

Volume sphere / 
volume cube  =?   

~ 1/2   

http://images.google.it/imgres?imgurl=http://yaroslavvb.com/research/reports/curse-of-dim/pics/sphere.gif&imgrefurl=http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html&h=287&w=265&sz=11&hl=it&start=3&um=1&tbnid=WwtgUyNpRPBdwM:&tbnh=115&tbnw=106&prev=/images%3Fq%3Dcurse%2Bdimensionality%26um%3D1%26hl%3Dit%26rls%3DGGLD,GGLD:2004-34,GGLD:it%26sa%3DN
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OAT in 10 dimensions

Volume hypersphere / volume ten 
dimensional hypercube =?    ~ 0.0025
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OAT in k dimensions

K=2

K=3

K=10
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Thus OAT is very poor in 
exploring the space of the 

factors – it is also non 
conservative.

Why? 
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OAT in not roughly 

right … it is precisely 

wrong!
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Reading about dubious or absent sensitivity analysis



17

For the papers using OAT points a better 
(statistical theory based) alternative is 
available, be it:

- A two level factorial design, 
- A trajectory analysis (a-la-Morris) or 
- A linear regression based on a Monte 
Carlo Sample

Using  perhaps the same low number of 
points.      
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Another story of SA

Nicholas Stern, London 
School of Economics 

Stern’s Review –
Technical Annex to 

postscript

William Nordhaus, 
University of Yale  
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Stern’s Review – Technical Annex To postscript 
(a sensitivity analysis of a cost benefit analysis)

The Stern - Nordhaus exchange on SCIENCE

Nordhaus → falsifies Stern based on ‘wrong’ 
range of discount rate (~ you GIGOing) 

Stern → ‘My analysis shows robustness’ 
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From Stern’s Review SA 
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My problems with it:

!

!
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… but foremost he says: 

changing assumptions → important effect 

when instead he should admit that:

changing assumptions → all changes a lot  
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!

!

The Stern-Nordhaus 

controversy; 

a reverse engineering the 

model:  

➔ uncertainty is too large to 

take decisions ➔ both Stern 

and Nordhaus are wrong 

Stern’s plot

My plot

% loss in GDP per capita
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Sensitivity 
analysis, 
also by 
reverse 
engineering 

delta
eta scenario

market
gamma
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Variance based 
methods; a best  
practice?
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Mostly based on 
the work of Ilya 
M. Sobol’ (1990), 
who extended the 
work of R.I. 
Cukier (1973). 
Further 
extensions by T. 
Homma and 
myself (1996, 

onward).  
  



27Scatterplots’ 
notation:

( )

( )YEf

XXXfY k

=

=

0

21 ,...,

The ordinate axis is always Y

The abscissa are the various 
factors Xi in turn.

The points are always the same!
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X1
X2

X3 X4
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Cutting into slices…

X1 X2

X3 X4
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Average of Y versus Xi – same scale for Y
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( )( )iX XYEV
ii ~X

This shows the 
variance of Y across 
the slices: greater for 
X4 than for X1
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( )( )
2~

i

ii

X

iX

V

XYEV


X

If the model is 
linear:
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( )( )iX XYEV
ii ~X

First order effect, or top marginal 
variance=

= the expected reduction in variance 
than would be achieved if factor Xi 
could be fixed.
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… and a powerful variance based 
measure is also available for non-
additive models …

( )( ) )(
~

YVXYEV
i

iX ii
= X

For additive systems one can 
decompose the total variance as a sum 
of first order effects  
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( )( )iX XYEV
ii ~X

( )( )iX YVE
ii ~~

XX

This is a first order 
effect, or top 
marginal variance. 
The expected reduction in variance 
than would be achieved if factor Xi 
could be fixed.

This is a total order 
effect, or bottom 
marginal variance. 
The expected variance than would be 
left if all factors but  Xi could be fixed.

From this … … to this
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( )( )iX YVE
ii ~~

XX

This has an 
intuitive 
interpretation (the 
scatterplots)  

How About this?   

( )( )iX XYEV
ii ~X
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Variance decomposition (ANOVA) 

( )( ) iiX VXYEV
ii

=
~X

( )( )

...

~

ijii

jiXX

VVV

XXYEV
ijji

++=

=X
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Variance decomposition (ANOVA) 

( )

k

iji

ij

i

i VVV

YV

...123

,

...+++

=



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Variance decomposition (ANOVA) 

When the factors are independent the total 
variance can be decomposed into main effects and 
interaction effects up to the order k, the 
dimensionality of the problem.

When the factors are not independent the 
decomposition loses its unicity (and hence its 
appeal!)
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Sampling in the unit hypercube 
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CDF

ζj

xj

ζj is a (quasi) 
random point 
in [0,1]

xj is the factor 
value sampled 
from its 
marginal

X
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( )( )iX XYEV
ii ~X

To main effect of non- Xi ( )( )iX YEV
ii ~~

XX

Main effect of 
factor Xi

From

replacing Xi with X~i

From main effect to total effect
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( )( )
( )( ) ( )YVYVE

YEV

iX

iX

ii

ii

=

+

~

~

~

~

X

X

X

X

BUT:

Easy to prove using  V(•)=E(•)2-E2(•)
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( )( )iX YVE
ii ~~

XX

… all remaining variance must be 
due to Xi and its interactions 

( )( )iX YEV
ii ~~

XX

Main effect on non-Xi
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( )( )iX YVE
ii ~~

XX( )( )iX YEV
ii ~~

XX

Main effects Residuals 

( )( )iX XYEV
ii ~X

( )( )iX XYVE
ii ~X
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Rows add up to V(Y); diagonal terms  

equal for additive models. 

+ = V(Y)

+ = V(Y)

Main (or first order) effect of 
Xi

Total (or total order) effect of Xi
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( )( )
Ti

iX
S

YV

YVE
ii =

)(

~~
XX

( )( )
i

iX
S

YV

XYEV
ii =

)(

~X

Rescaled to [0,1], under the name of first order and total 

order sensitivity coefficient  



48This can be estimated without ‘double loop’ 

( )( )
( ) 2

0~

~

fffE

XYEV

i

ii iX

−=

=

XX

X

… simply as product of function  values (single loop)
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And this can be computed as follows – generate a 

(quasi) random numbers matrix of row 
dimension 2k and column length N 

)2(21

)2(22221

)2(11211

...

............

...

...

kNNN

k

k

xxx

xxx

xxx



50Split into two: 
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k
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xxx

xxx

xxx

...

............

...

...
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22221

11211

=A

)2()2()1(

)2(2)2(2)1(2

)2(1)2(1)1(1

...

............

...

...

kNkNkN

kkk

kkk

xxx

xxx

xxx

++

++

++

=B
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(call it a quasi-A matrix)

NkikNNN

kik

kik

B

i

xxxx

xxxx

xxxx

......

............

......

......

)(21

2)(22221

1)(11211

+

+

+

=A

And generate a third matrix which is all-A but one column 
(column i) which is from B
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B

jf
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B
iA

jf
)2()2()1(

)2(2)2(2)1(2

)2(1)2(1)1(1

...

............

...
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kNkNkN
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from row j of  

from the quasi-A matrix:
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54In summary one can compute the first order terms from 
one matrix A and B each and k matrices Ai

B  i.e. using 
function values 

A

jf

The entire story can be repeated for the total 
effect index, which can be computed from 

B
iA

jf

B
iA

jf

B

jfA

jf
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Thus with k quasi-A matrices and the two matrices A and B 
one can compute for a total of k+2 matrices all total and 
first order effects 

B

A

A

A

A

B

K

B

B

...

2

1 Si
STi
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In three dimensions (k=3), three points (N=3)

333231

232221

131211

xxx

xxx

xxx

=A
)33(3)23(3)13(3

)33(2)23(2)13(2

)33(1)23(1)13(1

+++

+++

+++

=
xxx

xxx

xxx

B

363534

262524

161514

xxx

xxx

xxx

B =Rewriting B: 
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Generate the 3 quasi-A matrices  

333234

232224

131214

1
xxx

xxx

xxx

B =A

363231

262221

161211

3
xxx

xxx

xxx

B =A
333531

232521

131511

2
xxx

xxx

xxx

B =A
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•

•

•

•

Computing STi  

First point

131211 ,, xxx

161211 ,, xxx

131511 ,, xxx

131214 ,, xxx
1X

2X

3X

FromA
From

B

1A

From
B

2A

From B

3A
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•

•

•

•

161514 ,, xxx

161211 ,, xxx

131511 ,, xxx

131214 ,, xxx
1X

2X

3X

From B
From

B

1A

From
B

2A

From B

3A
Computing Si  

First point
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Reading about estimators
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What you have seen so far 
has been optimized as to have 

a maximum of coordinates 
from A and a minimum of 

coordinates from B.

Why?
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We normally use 
low discrepancies 
sequences 
developed by I.M 
Sobol’ – these are 
known as LP-
TAU sequences  

sequenceAn LP
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X1,X2 plane, 100 Sobol’ points X1,X2 plane, 1000 Sobol’ points

Sobol’ sequences of quasi-random 
points
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Sobol’ sequences of quasi-random 
points

X1,X2 plane, 1000 Sobol’ points X1,X2 plane, 10000 Sobol’ points
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X1,X2 plane, 10000 Sobol’ points X1,X2 plane, 10000 random  points

Sobol’ sequences of quasi-random points 
against random points
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Source: Mauntz and Kucherenko, 2005

Why quasi-random 
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Why estimate using as much as 
possible from A and quasi-A matrices? 

The lower the column number the better 
its discrepancy property  

➔ quasi-MC trick: if possible 
put important variables on the left 
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( )( )iX XYEV
ii ~X

( )( )iX YVE
ii ~~

XX

Equal to one 
another when the 
model is additive 
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( )( )iX YVE
ii ~~

XX

Why these two measures? 

Factors prioritization ( )( )iX XYEV
ii ~X

Fixing (dropping) non 

important factors   
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Computational details:

1. Easy-to-code, Monte Carlo – better on quasi-
random points. Estimate of the error available. 

 
2. The main effect can be made cheap; its 

computational cost does not depend upon k.

3. The total effect is expensive;  its computational 
cost is (k+1)N where N is one of the order of one 
thousand.  
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Applications 
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Simulation

 Model

parameters

Policy Options

data

errors
model structures

uncertainty analysis

sensitivity analysis
model 

output

feedbacks on input data and model factors
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Space of alternatives

Including/
excluding variables

Normalisation

...

ImputationWeights

Aggregation

Performance 
index

Italy GreeceSpain

10

20

30

40

50

60

Uncertainty analysis can be used to assess the robustness of composite 
indicators …
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Methodology from: 

Joint OECD-JRC  

handbook. 
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Uncertainty and sensitivity (UA, SA)

Data 

83%

Weights 

17%

UA

SA

Index (IT) – Index (CZ) 
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Reading about university ranking and sensitivity analysis 
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Univ California - Davis 

(48, 98 [71, 116])

Univ St Andrews in UK

 (201-302, 171[154, 201])

university name

(SJTU rank range, median rank [95% confidence interval for the median rank])

or

(SJTU rank, median rank [95% confidence interval for the median rank])
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SJTU

rank
Harvard Univ 100 1 USA

Stanford Univ 89 11 2 USA

Univ California - Berkeley 97 3 3 USA

Univ Cambridge 90 10 4 UK

Massachusetts Inst Tech (MIT) 74 26 5 USA

California Inst Tech 27 53 19 1 6 USA

Columbia Univ 23 77 7 USA

Princeton Univ 71 9 11 7 1 8 USA

Univ Chicago 51 34 13 1 9 USA

Univ Oxford 99 1 10 UK

Yale Univ 47 53 11 USA

Cornell Univ 27 73 12 USA

… … …
Univ California - San Francisco 14 9 14 3 11 3 7 10 4 3 3 3 6 1 6 1 18 USA

… … …
Duke Univ 10 6 13 11 6 3 7 6 3 1 3 1 9 9 7 1 3 1 32 USA

Rockefeller Univ 4 10 23 26 1 3 3 3 3 3 4 4 6 3 1 1 1 32 USA

Univ Colorado - Boulder 19 39 30 11 1 34 USA

Univ British Columbia 20 60 20 35 Canada

Univ California - Santa Barbara 9 9 10 3 10 6 7 6 11 4 6 3 4 7 1 1 36 USA

Univ Maryland - Coll Park 6 37 44 9 4 37 USA

… … …
Ecole Normale Super Paris 7 9 4 6 7 6 4 9 6 7 4 3 3 4 3 3 1 6 4 73 France

Univ Melbourne 1 20 17 31 23 1 6 73 Australia

Univ Rochester 1 10 7 16 24 14 10 10 6 1 73 USA

Univ Leiden 3 6 9 23 24 13 14 9 76 Netherlands

… … …
Univ Sheffield 1 21 26 21 9 13 7 1 77 UK

Tohoku Univ 4 1 7 1 4 17 19 3 3 3 19 7 3 4 4 79 Japan

Univ Utah 4 4 6 1 4 9 6 16 7 13 4 9 6 6 1 79 USA

King's Coll London 4 6 9 29 17 14 10 1 6 3 1 81 UK

Univ Nottingham 1 6 10 21 21 10 17 7 4 1 82 UK

Boston Univ 3 1 6 3 6 11 1 4 3 13 14 10 10 10 83 USA

… … …

Legend:
Frequency lower 15%
Frequency between 15 and 30%
Frequency between 30 and 50%
Frequency greater than 50%

Simulated rank range



79

It is beyond doubt that Harvard, Stanford, 

Berkley, Cambridge, and MIT are top 5

(both in the original SJTU and in more than 80% 

of our simulations) ... 
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… Still for 96% of the universities, the range of ranks 

is greater than 10 positions.

Examples of rank variation

•92 positions (Univ Autonoma Madrid) and 277 

positions (Univ Zaragoza) in Spain, 

•71 positions (Univ Milan) and 321 positions 

(Polytechnic Inst Milan) in Italy,  

•22 positions (Univ Paris 06) and 386 positions 

(Univ Nancy 1) in France. 
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Reading about evolution of SA

(including software) 



82

Ongoing work
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Input-output scatterplots 
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Input-output scatterplots 

Investigation: 
compute 

“discrepancies” 
of these bi-

dimensional plots 
and see if they 

are a good proxy 
of the total 

sensitivity index  

Hand-waiving description of discrepancy: how many 
points are in a selected subspace versus how many 

should be there if the distribution were perfectly uniform
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Input-output scatterplots 

Investigation: 
compute 

“discrepancies” 
of these bi-

dimensional plots 
and see if they 

are a good proxy 
of the total 

sensitivity index  

Distribution of the Pearson correlation r between the savage scores-transformed ranks yielded 
by each discrepancy measure and the savage scores-transformed ranks produced by the total 
sensitivity index
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Relevant recent works including sensitivity analysis 



87Published August 25, 2023  
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