

Sensitivity Analysis

Andrea Saltelli

Presentation at the Barcelona
Supercomputing Center, September 18, 2023

A. Saltelli, M. Ratto,
T. Andres, F. Campolongo,
J. Cariboni, D. Gatelli,
M. Saisana, S. Tarantola

Partly based on
 Global sensitivity analysis. The Primer

GLOBAL SENSITIVITY ANALYSIS

The Primer

(3)WILEY

EC impact assessment guidelines: sensitivity analysis \& auditing

European Commission. November 2021. "Better Regulation: Guidelines and Toolbox." https://ec.europa.eu/info/law/law-making-process/planning-and-proposing-law/better-regulation-why-and-how/better-regulation-guidelines-and-toolbox_en

Better regulation: guidelines and toolbox

General principles
The befter reguiation guifeaines sat ouf the pencpios fiat the Eurnpuan Commusson foltows when prepaing new initiatives and proposals and when managng and weviating eenting lepistaton
The guidetines apply to nach phase of the inw making cycle
Better Regulation
TOOLBOX

T 3 ncytuner jave
Better regutation guabielines
Enghan (inat 78 mb . B .
$20 . \operatorname{tar} 3003$
Better reguiation tooltoer

Better regulation toolbox by chapters

EC impact assessment guidelines: sensitivity analysis \& auditing

TOOL \#65. UNCERTAINTY AND SENSITIVITY ANALYSIS

1. Main features

	Uncertainty analysis aims at quantifying uncertainties in model results provided to the decision-makers due to uncertain assumptions/inputs. Sensitivity analysis allows identifying the uncertain assumptions mostly responsible for uncertainty in model results.			
A transparent and high-quality impact assessment should acknowledge and,				
to the extent relevant or possible, attempt to quantify the uncertainty in results				
as it could change the ranking and conclusions about the policy options.		$	$	Assessing the uncertainties in model results by propagating model input
:---				
uncertainties through the model and inferring a posteriori the relevant uncertain				
inputs by subsequent statistical analysis.				

Who do these have in common?

J. Campbell, et al., Science 322, 1085 (2008).
R. Bailis, M. Ezzati, D. Kammen, Science 308, 98 (2005).
E. Stites, P. Trampont, Z. Ma, K. Ravichandran, Science 318, 463 (2007).
J. Murphy, et al., Nature 430, 768-772 (2004).
J. Coggan, et al., Science 309, 446 (2005).

OAT

Before we go on to discuss OAT a premise:

We don't know if a model is linear before we do the analysis!

Thus derivates are out, but is OAT OK?

Or how bad is it?

OAT in 2 dimensions

Area circle / area square =?

$$
\sim 3 / 4
$$

OAT in 3 dimensions

Volume sphere / volume cube =?
 $$
\text { ~ } 1 / 2
$$

OAT in 10 dimensions

Volume hypersphere / volume ten

 dimensional hypercube $=? \sim 0.0025$

OAT in k dimensions

Thus OAT is very poor in exploring the space of the factors - it is also non conservative.

Why?

OAT in not roughly right ... it is precisely
 wrong!

Reading about dubious or absent sensitivity analysis

Environmental Modelling \& Software Volume 114, April 2019, Pages 29-39

Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices

```
Andrea Saltelli }\mp@subsup{}{}{ab
Federico Ferretti}\mp@subsup{}{}{\mathbf{d}},\underline{Niels Holst }\mp@subsup{}{}{\textrm{f}},\mp@subsup{\mathrm{ Sushan Li }}{}{9},\mathrm{ Qiongli Wu }\mp@subsup{}{}{\textrm{h}
```

For the papers using OAT points a better (statistical theory based) alternative is available, be it:

- A two level factorial design,
- A trajectory analysis (a-la-Morris) or
- A linear regression based on a Monte Carlo Sample

Using perhaps the same low number of points.

Another story of SA

Nicholas Stern, London School of Economics

Stern's Review Technical Annex to postscript

William Nordhaus, University of Yale

Stern's Review - Technical Annex To postscript (a sensitivity analysis of a cost benefit analysis)

The Stern - Nordhaus exchange on SCIENCE
Nordhaus \rightarrow falsifies Stern based on 'wrong' range of discount rate (\sim you GIGOing)

Stern \rightarrow 'My analysis shows robustness'

From Stern's Review SA

My problems with it:

... but foremost he says:

 changing assumptions \rightarrow important effect when instead he should admit that: changing assumptions \rightarrow all changes a lot

The Stern-Nordhaus

 controversy;a reverse engineering the model:
\rightarrow uncertainty is too large to take decisions \rightarrow both Stern and Nordhaus are wrong

Global Environmental Change 20 (2010) 29s-302

Contents lists available at ScienceDirect

Global Environmental Change
EI SEVIER
ELSEVIER
journal homepage: www-elsevier.com/locate/gloenveha

Sensitivity analysis didn't help. A practitioner's critique of the Stern review
Andrea Saltelli ${ }^{*}$, Beatrice D'Hombres
point Inearch Gemtre, mutitute for the Potection and Sectiny of the Civien, hipra, Haly

\% loss in GDP per capita

Variance based methods; a best practice?

Mostly based on the work of Ilya M. Sobol' (1990), who extended the work of R.I. Cukier (1973). Further extensions by T. Homma and myself (1996, onward).

$$
\begin{aligned}
& \text { Scatterplots' } \\
& \text { notation: } \\
& Y=f\left(X_{1}, X_{2}, \ldots X_{k}\right) \\
& f_{0}=E(Y)
\end{aligned}
$$

The ordinate axis is always Y The abscissa are the various factors X_{i} in turn. The points are always the same!

Cutting into slices...

Average of Y versus X_{i} - same scale for Y

This shows the variance of Y across the slices: greater for X_{4} than for X_{1}

$$
V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)
$$

$$
V_{X_{i}}\left(E_{\mathbf{x}_{\mathbf{x}_{i}}}\left(Y \mid X_{i}\right)\right)
$$

First order effect, or top marginal variance=
$=$ the expected reduction in variance than would be achieved if factor Xi could be fixed.

For additive systems one can decompose the total variance as a sum of first order effects

$$
\sum_{i} V_{X_{i}}\left(E_{\mathbf{x}_{i}}\left(Y \mid X_{i}\right)\right)=V(Y)
$$

... and a powerful variance based measure is also available for nonadditive models ...

From this ...
 ... to this
 $V_{X_{i}}\left(E_{\mathbf{X}_{-i}}\left(Y \mid X_{i}\right)\right)$
 This is a total order effect, or bottom marginal variance.
 The expected variance than would be left if all factors but Xi could be fixed.
 This is a first order
 effect, or top
 marginal variance.
 The expected reduction in variance than would be achieved if factor Xi could be fixed.
 $$
E_{\mathbf{x}_{i-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)
$$

$$
V_{X_{i}}\left(E_{\mathbf{x}_{\mathbf{x}_{i}}}\left(Y \mid X_{i}\right)\right)
$$
 This has an intuitive interpretation (the scatterplots)
 $$
E_{\mathbf{X}_{-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right) \text { How About this? }
$$

Variance decomposition (ANOVA)

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)=V_{i} \\
& V_{X_{i} X_{j}}\left(E_{\mathbf{X}_{\sim i j}}\left(Y \mid X_{i} X_{j}\right)\right)= \\
& =V_{i}+V_{i}+V_{i j}
\end{aligned}
$$

Variance decomposition (ANOVA)

$$
\begin{aligned}
& V(Y)= \\
& \sum_{i} V_{i}+\sum_{i, j>i} V_{i j}+\ldots+V_{123 \ldots k}
\end{aligned}
$$

Variance decomposition (ANOVA)

When the factors are independent the total variance can be decomposed into main effects and interaction effects up to the order k, the dimensionality of the problem.

When the factors are not independent the decomposition loses its unicity (and hence its appeal!)

Sampling in the unit hypercube

From main effect to total effect
From
$V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right) \quad \begin{aligned} & \text { Main effect of } \\ & \text { factor } X_{i}\end{aligned}$

$$
\text { replacing } X_{i} \text { with } \boldsymbol{X}_{\sim i}
$$

To main effect of non- X_{i}

$$
V_{\mathbf{X}_{\mathbf{x}_{i}}}\left(E_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)
$$

BUT:

$$
\begin{aligned}
& V_{\mathbf{x}_{\mathbf{V}_{i}}}\left(E_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)+ \\
& E_{\mathbf{X}_{\mathbf{x}_{i}}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{-i}\right)\right)=V()
\end{aligned}
$$

Easy to prove using $V(\cdot)=E(\cdot)^{2}-E^{2}(\bullet)$

$$
\begin{gathered}
E_{\mathbf{X}_{\sim i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right){ }^{\text {Main effect on non-X }} \begin{array}{l}
\\
V_{\mathbf{X}_{\sim i}}\left(E_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)
\end{array}
\end{gathered}
$$

... all remaining variance must be due to X_{i} and its interactions

$$
\begin{array}{r|l}
\text { Maid effecte } \\
V_{X_{i}}\left(E_{\mathbf{x}_{\mathbf{i}}}\left(Y \mid X_{i}\right)\right) & \left.\begin{array}{c}
\text { Residuals } \\
V_{X_{i}}\left(V _ { \mathbf { x } _ { i - i } } \left(Y \mid X_{i}\right.\right.
\end{array}\left(E_{X_{i}}\left(Y \mid \mathbf{X}_{-i}\right)\right)\right) \\
E_{\mathbf{X}_{-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)
\end{array}
$$

Main (or first order) effect of

Main effects
Residuals

$$
V_{X_{i}}\left(E_{\mathbf{X}_{i}}\left(Y \mid X_{i}\right)\right)+E_{X_{i}}\left(V_{\mathbf{X}_{-i}}\left(Y \mid X_{i}\right)\right)=\mathbf{V}(\mathbf{Y})
$$

$$
V_{\mathbf{X}_{\sim i}}\left(E_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)+\frac{E_{\mathbf{X}^{-i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)}{\uparrow}=\mathbf{V}(\mathbf{Y})
$$

$$
\text { Total (or total order) effect of } X_{i}
$$

Rows add up to $\mathrm{V}(\mathrm{Y})$; diagonal terms equal for additive models.

$$
\begin{aligned}
& \frac{V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)}{V(Y)}=S_{i} \\
& \frac{E_{\mathbf{X}_{\sim i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right)}{V(Y)}=S_{T i}
\end{aligned}
$$

Rescaled to $[0,1]$, under the name of first order and total order sensitivity coefficient

This can be estimated without 'double loop'

$$
\begin{aligned}
& V_{X_{i}}\left(E_{\mathbf{x}_{-i}}\left(Y \mid X_{i}\right)\right)= \\
& =E_{\mathbf{x X}_{i-i}^{\prime}}\left(f f^{\prime}\right)-f_{0}^{2}
\end{aligned}
$$

... simply as product of function values (single loop)

And this can be computed as follows - generate a (quasi) random numbers matrix of row dimension $2 k$ and column length N

$$
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1(2 k)} \\
x_{21} & x_{22} & \ldots & x_{2(2 k)} \\
\ldots & \ldots & \ldots & \ldots \\
x_{N 1} & x_{N 2} & \ldots & x_{N(2 k)}
\end{array}
$$

Split into two:

$$
\mathbf{A}=\begin{array}{cccccccc}
x_{11} & x_{12} & \ldots & x_{1 k} & x_{1(k+1)} & x_{1(k+2)} & \ldots & x_{1(2 k)} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \mathbf{B}= & x_{2(k+1)} & x_{2(k+2)} & \ldots \\
x_{2(2 k)} \\
x_{N 1} & x_{N 2} & \ldots & x_{N k} & x_{N(k+1)} & x_{N(k+2)} & \ldots & x_{N(2 k)}
\end{array}
$$

And generate a third matrix which is all-A but one column (column i) which is from B

(call it a quasi-A matrix)

Finally we compute $V_{X_{i}}\left(E_{\mathbf{X}_{-i}}\left(Y \mid X_{i}\right)\right)=$

$$
=E_{\mathbf{X X}_{\sim i}^{\prime}}\left(f f^{\prime}\right)-f_{0}^{2}=
$$

Where:
$\boldsymbol{f}_{\boldsymbol{j}}^{\boldsymbol{B}}$ is computed

$$
\begin{array}{llll}
x_{1(k+1)} & x_{1(k+2)} & \ldots & x_{1(2 k)}
\end{array}
$$ from row j of

$$
x_{N(k+1)} \quad x_{N(k+2)} \quad \ldots \quad x_{N(2 k)}
$$

from the quasi-A matrix:

$$
\mathbf{A}_{i}^{B}=\begin{array}{cccccc}
x_{11} & x_{12} & \ldots & x_{1(k+i)} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2(k+i)} & \ldots & x_{2 k} \\
\ldots & \ldots & & \ldots & & \ldots \\
x_{N 1} & x_{N 2} & \ldots & x_{N(k+i)} & \ldots & x_{N k}
\end{array}
$$

In summary one can compute the first order terms from one matrix A and B each and k matrices $A_{i}{ }^{B}$ i.e. using function values

The entire story can be repeated for the total effect index, which can be computed from

$$
f_{j}^{A} \quad f_{j}^{A_{i}^{B}}
$$

Thus with k quasi-A matrices and the two matrices A and B one can compute for a total of $\mathrm{k}+2$ matrices all total and first order effects

In three dimensions $(\mathrm{k}=3)$, three points $(\mathrm{N}=3)$

$$
\begin{aligned}
& \begin{array}{llllll}
x_{11} & x_{12} & x_{13} & x_{1(3+1)} & x_{1(3+2)} & x_{1(3+3)}
\end{array} \\
& \mathbf{A}=\begin{array}{lllll}
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array} \quad B=\begin{array}{lll}
x_{2(3+1)} & x_{2(3+2)} & x_{2(3+3)} \\
x_{3(3+1)} & x_{3(3+2)} & x_{3(3+3)}
\end{array} \\
& x_{14} \quad x_{15} \quad x_{16} \\
& \text { Rewriting B: } \quad B=\begin{array}{llll}
x_{24} & x_{25} & x_{26}
\end{array} \\
& \begin{array}{lll}
x_{34} & x_{35} & x_{36}
\end{array}
\end{aligned}
$$

Generate the 3 quasi-A matrices

$$
\mathbf{A}_{1}^{B}=\begin{aligned}
& x_{14} \\
& x_{24} \\
& x_{34}
\end{aligned} \left\lvert\, \begin{array}{ll}
x_{12} & x_{13} \\
x_{22} & x_{23} \\
x_{32} & x_{33}
\end{array}\right.
$$

$$
\mathbf{A}_{2}^{B}=\begin{gathered}
x_{11} \\
x_{21} \\
x_{31}
\end{gathered} \begin{array}{|c|ccc|c|}
x_{15} \\
x_{25} \\
x_{35} & x_{13} & x_{11} & x_{12} & x_{16} \\
x_{23} \\
x_{33}
\end{array} \quad \mathbf{A}_{3}^{B}=\begin{aligned}
& x_{21} \\
& x_{22} \\
& x_{31}
\end{aligned} \begin{array}{|c}
x_{32} \\
x_{36} \\
x_{36}
\end{array}
$$

> From \mathbf{A}_{3}^{B} $x_{11}, x_{12}, x_{16}^{3}$
> Computing S_{Ti}
> First point

Reading about estimators

Computer Physics Communications 181 (2010) 259-270

	Contents lists available at ScienceDirect	,
Eve	Computer Physics Communications	
ELSEVIER	www.elsevier.com/locate/pp	

Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index

Andrea Saltelli, Paola Annoni ${ }^{*}$, Ivano Azzini, Francesca Campolongo, Marco Ratto, Stefano Tarantola
Joint Research Centre of the European Commission, Institute for the Protection and Security of the Citizen, Ispra, Italy

What you have seen so far
has been optimized as to have a maximum of coordinates from A and a minimum of coordinates from B.

Why?

We normally use low discrepancies sequences
developed by I.M Sobol' - these are known as LPTAU sequences

X1,X2 plane, 1000 Sobol' points

Sobol' sequences of quasi-random points

Sobol' sequences of quasi-random points

Why quasi-random

Source: Mauntz and Kucherenko, 2005

Why estimate using as much as possible from A and quasi-A matrices?

The lower the column number the better its discrepancy property
\rightarrow quasi-MC trick: if possible put important variables on the left

$$
V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid \mathbf{X}_{i}\right)\right) l_{\begin{array}{l}
\text { Equal to one } \\
\text { another when the } \\
\text { model is additive }
\end{array}}
$$

Why these two measures?

$$
\begin{aligned}
& \left.V_{X_{i}}\left(E_{\mathbf{X}_{\sim i}}\left(Y \mid X_{i}\right)\right)\right)^{\text {Factors prioritization }} \\
& E_{\mathbf{X}_{\sim i}}\left(V_{X_{i}}\left(Y \mid \mathbf{X}_{\sim i}\right)\right) \begin{array}{c}
\text { Fixing (dropping) non } \\
\text { important factors }
\end{array}
\end{aligned}
$$

Computational details:

1. Easy-to-code, Monte Carlo - better on quasirandom points. Estimate of the error available.
2. The main effect can be made cheap; its computational cost does not depend upon k.
3. The total effect is expensive; its computational cost is $(k+1) N$ where N is one of the order of one thousand.

Applications

Uncertainty analysis can be used to assess the robustness of composite indicators ...

Space of alternatives

Including/ excluding variables

Methodology from: Joint OECD-JRC handbook.

Handbook on Constructing Composite Indicators

METHODOLOGY
AND USER GUIDE

2JRC EUROPEAN COMMISSION

Uncertainty and sensitivity (UA, SA)

Reading about university ranking and sensitivity analysis

Research Policy 40 (2011) 165-177

Contents lists available at ScienceDirect

Research Policy

journal homepage: www.elsevier.com/locate/respol

Rickety numbers: Volatility of university rankings and policy implications
Michaela Saisana*, Béatrice d'Hombres, Andrea Saltelli
Econometrics and Applied Statistics, Joint Research Centre, European Commission, Enrico Fermi 2749, 21027 Ispra, Italy
SJTU rank

It is beyond doubt that Harvard, Stanford, Berkley, Cambridge, and MIT are top 5

(both in the original SJTU and in more than 80% of our simulations) ...
... Still for 96% of the universities, the range of ranks is greater than 10 positions.

Examples of rank variation
-92 positions (Univ Autonoma Madrid) and 277 positions (Univ Zaragoza) in Spain,

- 71 positions (Univ Milan) and 321 positions
(Polytechnic Inst Milan) in Italy,
- 22 positions (Univ Paris 06) and 386 positions
(Univ Nancy 1) in France.

Reading about evolution of SA
 (including software)

Environmental Modelling \& Software
Volume 137, March 2021, 104954

Position Paper

The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support

```
Saman Razavi }\mp@subsup{}{}{a
Bertrand Iooss }\mp@subsup{}{}{e}\mathrm{ , Emanuele Borgonovo,}\mp@subsup{}{}{\textrm{f}}\mathrm{ , Elmar Plischke }\mp@subsup{}{}{9}\mathrm{ , Samuele Lo Piano }\mp@subsup{}{}{\textrm{h}}\mathrm{ , Takuya Iwanaga, }\mp@subsup{}{}{\textrm{b}}\mathrm{ ,
William Becker }\mp@subsup{}{}{i}\mathrm{ , Stefano Tarantola }\mp@subsup{}{}{j}\mathrm{ , Joseph H.A. Guillaume ' }\mp@subsup{}{}{\mathrm{ b}}\mathrm{ , John Jakeman }\mp@subsup{}{}{k}\mathrm{ , Hoshin Gupta ',
Nicola Melillo }\mp@subsup{}{}{m},\mp@subsup{\mathrm{ Giovanni Rabitti }}{}{n},\mp@subsup{\mathrm{ Vincent Chabridon }}{}{e},\mathrm{ Qingyun Duan }\mp@subsup{}{}{0},\underline{Xifu Sun }\mp@subsup{}{}{\textrm{b}}\mathrm{ ,
Stefán Smith }\mp@subsup{}{}{\mathrm{ h}
```


Ongoing work

Statistics > Applications

[Submitted on 27 Jun 2022 (v1), last revised 17 Mar 2023 (this version, v2)]

Discrepancy measures for sensitivity analysis

Arnald Puy, Pamphile T. Roy, Andrea Saltelli

While sensitivity analysis improves the transparency and reliability of mathematical models, its uptake by modelers is still scarce. This is partially explained by its technical requirements, which may be hard to understand and implement by the non-specialist. Here we propose a sensitivity analysis approach based on the concept of discrepancy that is as easy to understand as the visual inspection of input-output scatterplots. Firstly, we show that some discrepancy measures are able to rank the most influential parameters of a model almost as accurately as the variance-based total sensitivity index. We then introduce an ersatz-discrepancy whose performance as a sensitivity measure matches that of the best-performing discrepancy algorithms, is simple to implement, easier to interpret and orders of magnitude faster.

Input-output scatterplots

(䍚 Comell Univesity

SUubitted on 27 Jun 2022 (V). lastrevied 17 w 203 ,
Discrepancy measures for sensitivity analysis
Arnald Puy, Pamphile T. Roy, Andrea Saltelli
While sensitivity analysis improves the transparency and reliability of mathematical models, its uptake by modelers is still scarce. This is partially explained by its technical requirements, which may be hard to understand and implement by the non-specialist. Here we propose a sensilivity analysis approach based on the concept of discrepancy that is as easy to understand as the visual inspection of input-output scatterplots. Firstly, we show that some discrepancy measures are able to rank the most infuential parameters of a model almost as accurately as the variance-based total sensitivity index. We then introduce an ersat--discrepancy whose performance as a sensitivity measure matches that of the best-pertorming discrepancy algorithms, is simple to implement, easier to interpret and orders of magnitude faster

Input-output scatterplots

Hand-waiving description of discrepancy: how many points are in a selected subspace versus how many should be there if the distribution were perfectly uniform

[^0]Investigation:
compute
"discrepancies"
of these bidimensional plots and see if they are a good proxy
of the total
sensitivity index

Input-output scatterplots

Distribution of the Pearson correlation r between the savage scores-transformed ranks yielded by each discrepancy measure and the savage scores-transformed ranks produced by the total sensitivity index

Investigation:
compute
"discrepancies"

甸 Cornell University
ar <iv> sall axvervan 13750
Hep 1Ad

Statistics > Applications

[SUbimited on 27 Jun 2022 (v1), last revised 17 Mar 2023 (this version, v2]
Discrepancy measures for sensitivity analysis
Arnald Puy, Pamphile T. Roy, Andrea Saltelli
While sensitivity analysis improves the ransparency and reliability of mathemaicical mocelis, its uptake by modelers is still scarce. This is partialy explained by its teccnicaa requirement, which may be hard to understand and implement by the non-specialist. Here we propose a sensitivity analysis approach based on the concept of discrepancy that is as easy to understand as the visual inspection of input-output scatterplots. Firstly, we show that some discrepancy measures are able to rank the most infuential parameters of a model almost as accurately as the variance-based total sensitivity index. We then introduce an ersatz-discrepancy whose performance as a sensitivity measure matches that of the best-performing discrepancy algorithms, is simple to implement, easier to interpret and orders of magnitude faster
$\begin{array}{llll}-0.5 & 0.0 & 0.5 & 1.0\end{array}$ of these bidimensional plots and see if they are a good proxy of the total sensitivity index

Relevant recent works including sensitivity analysis

nature communications

Explore content \vee About the journal \vee Publish with us \vee
nature $>$ nature communications $>$ comment $>$ article

Comment | Open Access | Published: 08 June 2022
The delusive accuracy of global irrigation water withdrawal estimates

Amuid Puy ㄷ, Razi Sheikholeslami, Hoshin V, Gupta, lim W. Hall, Buce Lankford, Samuele Lo Piano, lonas
Meier, Florian Panpenterner, Amilcare Porporato Ghulia Vico \& Andrea Saltelli
Noture Communicotions 13, Article number: 3183 (2022) \mid Cite this article
$\mathbf{5 9 3 0}$ Accesses $\mid 18$ Citations $\mid \mathbf{1 0 6}$ Atmetric \mid Metrics

ScienceAdvances

HOME > SCIENCE ADVANCES > VOL. 8, NO. 42 > MODELS WITH HIGHER EFFECTIVE DIMENSIONS TEND TO PRODUCE MORE UNCERTAIN ESTIMATES

- RESEARCH ARTICLE MATHEMATICS

```
f y in & © m
```


Models with higher effective dimensions tend to produce more uncertain estimates

```
ARNALD PUY (- .PIERFRANCESCO BENEVENTANO, SIMONA.LEVIN - SAMUELELO PIANO - TOMMASO PORTALURI, AND ANDREA SALTELI (D) Authors Info &
Affiliations

\section*{Published August 25, 2023}

The strong principle for the real world ist never use a model if you don't know its limitations and side effects. In fact, you must know what it can't do for you better than what it can do. I am glad this project is taking place: a long-awaited examination of the role-and obligation-of modeling.

\section*{Nassim Nicholas Taleb, Distinguished Professor of Risk Engineering, NYU Tandon School of Engineering. Author of the five-volume Incerto series (The Black Swan)}


\section*{the politics \\ of modelling \\ numbers between}
science and policy
edited by
Andrea Saltelli \& Monica Di Fiore```


[^0]:    

