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SENSITIVITY MEASURES, ANOVA-LIKE 
TECHNIQUES AND THE USE 

OF BOOTSTRAP 
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aJoint Research Centre of the European Commission, 21020 Zspra (VA) ,  Italy; 
b~ational Centre for Mathematical Modelling of the Russian Academy 

of Science, 4A Miusskaya Square, 125047 Moscow (CIS) 

(Received 3 September 1996; In final form 21 January 1997) 

Sobol' sensitivity indices, used in variance based global sensitivity analysis of model 
output, are compared with the Analysis of Variance in classical factorial design. Monte 
Carlo computation of Sobol' indices is described briefly, and a bootstrap approach is 
presented, which can be used to produce a confidence interval for the true, unknown 
indices. 

Keywords: Analysis of variance decomposition; bootstrap; sensitivity indices 

1. INTRODUCTION 

In the context of numerical experiments, sensitivity analysis (SA) aims 
to quantify the relative importance of input variables X = (XI, . . . , X,) 
in determining the value of an assigned output variable Y = f (X). 
(Note that Y could in fact be vector-valued without affecting any of 
the following results). More specifically, global SA tries to quantify 
output uncertainty due to the uncertainty in the input variables, both 
singly and in combination with one another. Variance based SA 
techniques are intended to estimate how much ouput variability is 
dependent on each of the input variables (again, taken singly and in 
combination with one another). 

This note deals with a recently developed method for global 
sensitivity analysis of model output: Sobol' sensitivity indices. The 
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100 G. E. B. ARCHER et al. 

method is based on decomposing the variance of model output into 
terms of increasing dimensionality, as in the classical Analysis of 
Variance (ANOVA) of factorial experimental designs. Monte-Carlo 
(MC) techniques are used to expedite their construction, and a 
bootstrap method is presented which produces reliable interval 
estimates for the true, unknown index values. The use of the bootstrap 
increases the usefulness of the indices by reducing the computational 
effort required to estimate their variability. 

The layout of the paper is as follows. In Section 2 we introduce the 
Sobol' indices, and discuss briefly the history of the ANOVA- 
decomposition, and explain how to construct the indices using MC 
methods. In Section 3 the bootstrap method for interval estimation is 
explained, and Section 4 presents a numerical example of all the work. 
Section 5 contains the conclusions drawn from the experiments, and 
ideas for future work. 

2. THE SOBOL' SENSITIVITY INDICES 

2.1. Motivation 

The sensitivity indices described in this note were developed by Sobol' 
(1990a), based on his earlier work on the Fourier Haar series (1969). 
The indices were developed for the purpose of Sensitivity Analysis 
(SA), that is, to estimate the sensitivity of a function f (X) with respect 
to different variables or subgroups of variables. In SA terminology, 
Y = f (X) is the (possibly vector valued) output variable, while the X 
are the input variables. The method is outlined briefly: 
Let the function Y = f (X) = f (XI . . . Xn) be defined on the n- 
dimensional unit cube 

It is possible to decompose f(X) into summands of increasing 
dimensions: 
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SENSITIVITY MEASURES 101 

provided that fo is a constant and the integral of every summand over 
any of its own variables is zero: 

Consequences of (1) and (2) are that all the functions which appear 
within the summands in (1) are orthogonal, and thatfo = J,, f (X)dX. 
In Sobol' (1969) the representation (1, 2) is constructed from 
consideration of Fourier Haar series; in his 1990 article a more 
general developement is offered. Iff (X) is integrable in the unit cube, 
then all of the functions which appear within the summands in (1) are 
also integrable, as follows: 

and so on, where the convention is used that dX-{ij,,,,) indicates 
integration over all variables with the exception of those within the 
subscript parenthesis. These integrals will be remarked upon in Sec- 
tion 2.2, where we explore the history of this form of decomposition. 

The total variance off (X) can be written as D = J,, f 2 ( x ) d x -  
f &while 

is the contribution to the total variance from term ft,,,,isin the series 
development. At this point the sensitivity estimates Si,,,,i, can be 
introduced: 

In Sobol' (1990a) it is shown that the total variance can be partitioned 
in the same way as the original function: 
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102 G.  E. B. ARCHER et al. 

from which it follows that the sum of all the sensitivity indices-over all 
possible combinations of indices-must be 1. We write this as 
X'' Si,.,,i3 = 1. 

This decomposition is useful for SA because the terms Si,,.,is give the 
fraction of the total variance of f(X) which is due to any individual 
input variable or combination of input variables. In this way, for 
example, S1 is the main effect of varaible XI, S12 is the interaction 
effect, i.e., that part of the output variation due to variables X1,X2 
which cannot be explained by the sum of the effect of the two 
variables alone. Finally, the last term S12..., is that fraction of the 
output variance which cannot be explained by summing terms of lower 
order. 

This decomposition is not unique in the analysis of numerical 
experiments (see next section): a variance decomposition identical to 
(5) is suggested by Cukier et al. (1978) when using the Fourier 
Amplitude Sensitivity Test (FAST) method, based on the Fourier 
transform, for sensitivity analysis. The FAST indices are identical to 
the Sobol' ones in all but computation (Saltelli & Bolado, 1996); 
however their calculation is usually limited to only those indices which 
refer to "main effect", that is, individual Xi terms (Liepman & 
Stephanopoulos, 1985). 

Decompositions similar to (1) and (4) are discussed in Cotter (1979), 
Cox (1982), Efron and Stein (1981), and Sacks et al. (1989). In this last 
article the plots of the individual f terms in the development (1) are 
used for the purpose of SA. 

Other investigators (Iman & Hora (1990), Krzykacz (1990), Saltelli 
et al., (1993), McKay (1995)) have developed sensitivity measures 
(called importance measures or correlation ratios) which are also 
based on the fractional contribution of the total variance of individual 
input variables. In an SA exercise, these measures would produce the 
same importance ranking as that gained by consideration of the single 
term Si values. For a discussion of the various measures, see also 
Homma & Saltelli (1994). 

Practically, in order to apply Sobol' sensitivity estimates one must 
evaluate the multidimensional integrals (such as Equation (3)) using 
MC methods. Each term in the series development (1) is a separate 
integral, and the number of terms is equal to 2" - 1, far too many to be 
computed even for moderate model dimension n. An MC technique 
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SENSITIVITY MEASURES 103 

designed to obviate this difficulty - reducing the number of MC 
calculations to n + 1- is explained in Section 2.3. 

In fractionally replicated designs it is customary to assume that 
higher order interactions are zero, in order to leave sufficient degrees 
of freedom for variance estimation, but in SA experiments, where the 
models are usually nonlinear and the variation in the response much 
wider, it may happen that the higher order terms are the most 
important (for example, see Saltelli & Sobol' (1995)) and so their 
estimation is crucial. These sensitivity indices allow such effects to be 
estimated easily, by partitioning X, and treating subsets of variables as 
new variables; for example, X could be partitioned into (U, V), where 
U = (XI . . . Xk), and V (Xn++l ,..., X,). The variance of f (X) can 
then be decomposed into D = DU+ Dv+ DUV. Using this results, we 
define a "total effect" term for each variable, by letting U=Xi, 
V = (XI, .  . . , Xi-l, Xi+l . . . X,) and declaring the total effect of vari- 
able i to be given by 

In this way the total contribution of each variable to the output variation 
is estimated. 

The general conclusion to this subsection is that the Sobol' 
formulation of the sensitivity indices is very general and includes as 
a particular case most of what has been done previously in SA, using 
decompositions like (3) or (5), as well as those sensitivity measures 
based on fractional contributions to the output variance. Sobol' 
indices of the first order are identical to FAST coefficients, and differ 
from the other tests mentioned above only by a scale factor. Further, 
Sobol' indices allow the interaction and higher order interaction terms 
to be computed straightforwardly; this capacity makes Sobol' sensiti- 
vity analysis similar to the Analysis of Variance in factorial design, as 
shall be discussed in the next section. 

2.2. The ANOVA Decomposition 

The decomposition (1) or (5) has a long history which, in this section, 
is examined, to help endow the Sobol' indices with their true statistical 
definitions. The decomposition has an interesting pedigree which links 
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104 G. E. B. ARCHER et al. 

naturally to U-statistics and resampling methodology. The lemma 
which describes the decomposition in its most general form is given in 
Efron & Stein (1981), and concerns functions of independent random 
variables ( X i )  which are not necessarily identically distributed, 
although when they are, the result can be stated more concisely. 
Suppose, as above, f ( X 1 , .  . . , X,) is some statistic defined on the 
product measure generated by X = ( X I , .  . . , X,). Then f  ( X )  may be 
decomposed into a grand mean f o  = E [ f  ( X ) ] ,  i' th main effect 
J;:(Xi) = E [ f  (XIXi  = xi)] - f o ;  ij'th interaction Jl(Xi,  X j )  = E [ f  (X) I  
X i = ~ i , ~ = ~ j ] - E [ f ( X ) I X i = ~ i ] - E [ f ( X ) I X j = ~ j ] + f o ,  and SO 

on. Given these definitions, the decomposition in Section 2.1 follows 
immediately, as the case n = 2 easily demonstrates: 

Using the law of iterated expectations. it is straightforward to see all 
the random variables on the right hand side have zero mean and are 
mutually uncorrelated. For example E [J;:(Xi)] = E [ E  { f  (XI Xi = xi) 

-h) l  = E l f  w1 - f o  = 0. 0 
This decomposition of a statistic is the same as is typically deployed 

for data collected from a factorial experiment (Fisher, 1958). One of 
our aims is to discuss the similarities and the differences between SA 
and ANOVA. 

One of the earliest to write about this lemma was Hoeffding (1948), 
who was concerned with estimators f ( X )  which are U-statistics. Such 
a U-statistic is defined as 

where, as in Section 2.1, the sum in the numerator is carried out over 
all permutations (al, . . . , a,) of m different integers. If the {Xi )  are 
independent and identically distributed (i.i.d.) according to some 
distribution function G, then U is an unbiased estimator of 
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SENSITIVITY MEASURES 105 

8(G) = J . . . J f (xl, . . . , xm)dG(xl) . . . dG(xm). In other words U is 
the average of all the possible values off (X,, , . . . , Xam) drawn from 
the realisation of (XI, . . . , X,), m < n. This will strike chords with 
readers who are practioners of resampling methodologies (start with 
Efron 1979), which have become steadily more popular as cheap and 
powerful computing facilities become more widely available. In 
bootstrapping, resamples are drawn from the full n set of data 
(xl,  . . . , x,), while the U-statistics are even more redolent of the 
jackknife (Chapter 5 of Efron & Tibshirani (1993)), which estimates 
functionals of G by forming a weighted average of the set of estimates 
obtained by deleting one (or more) data points at a time. 

Both the jackknife and the bootstrap use as a rationale the 
substitution of the sample distribution function G (which places 
probability mass l l n  on each xi)  for the unknown population 
distribution G. Substituting in the function 8(G) above gives 

Hoeffding shows that O(G) is a linear function of U-Statistics with 
E [B(G)] = 0(G) +0(nP1) and therefore B(G) -+ 8(G) as n -+ m. This 
fact-that as sample size increases, so an estimator calculated on a 
random sample will tend towards the population parameter-justifies 
the bootstrap also. Interestingly enough, iff is a linear statistic, i.e., all 
terms on the right hand side of the decomposition are zero apart from 
those which only involve individual Xi, then the jackknife and 
bootstrap estimates of 0 agree, whilst if there are higher-order effects 
then the bootstrap estimates are more accurate. 

Much of the rest of Hoeffding's rich paper is a mathematical tour- 
de-force, in which it is shown that many commonly used statistics, such 
are the rank correlation coefficient, are examples of U-statistics. The 
most important result is that when the {Xi) are i.i.d. and f is a plug-in 
estimator (that is, it does not depend on n), then asymptotically 
f i ( U  - 0) has a normal distribution. 

The relationship between U-statistics and the jackknife is explored 
in Efron & Stein (1981), who consider the case where 

EG (Xi) = C and var~(Xi)  = a2vi 
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106 G. E. B. ARCHER et al. 

and show that the plug-in estimator of sample variance 

1 " n 

S ( X l , . . . , X n ) = - E ( X i - T ) ' ,  where x=C Xi 
i=l i= 1 

has grand mean: fo = (y) 2, 
2 main effects: J;:(Xi) = 9 [(xi - C) - o 2], Vi, 

and pairwise interaction effects: Jij(Xi, 4) = 5 (xi - C) ( ~ j  - C), V(i, j)  
and all higher order terms are zero. 

A more interesting application to SA is the realisation that the 
decomposition (I), which powers the Sobol' indices, is exactly the same 
as that used to construct an ANOVA of the results of a factorial 
experimentation. In this sense, ANOVA is SA, and SA is ANOVA. 
For consider a response variable X, measured under different 
conditions of two factors A (with I levels) and B (with J levels). Each 
particular combination of factors is replicated K times, and so Xqk is 
the k'th replicate of the experiment at the (I, J)'th level of factors A 
and B. (Attention is restricted to the case of the fully replicated, two 
factor design only for ease of discussion). In statistical terminology, A 
and B are factors, Xis a response variable; in SA, A and B are input 
variables, and X is the output variable. But the Sobol' indices, to 
measure the importance of A, B, or their interaction (written A B) uses 
exactly the same decomposition as the ANOVA F-tests of significance. 
This is seen if we write down the total sum of squares about the mean, 
used in ANOVA to perform the F-test. We have: 

(A dot in the subscript indicates that the average has been taken over 
that index.) In comparison with (5 ) ,  the first two terms on the right 
hand side correspond to the single D terms (N= 2 here), with the third 
right hand side term corresponding to D12. The final term on the right 
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SENSITIVITY MEASURES 107 

hand side is the residual sum of squares-it has expected value of zero 
and is used to measure the deviance of the data from the theoretical 
normal linear model. Coupling this decomposition with a Gaussian 
assumption about the Xuk allows the significance testing of the various 
effects (factors, or input variables). For example, to test the strength of 
factor A on X, the ratio of the first term on the left hand side to the 
residual sum of squares is constructed, and compared to the 
appropriate F distribution. 

These ANOVAs were first employed (Fisher, 1958) in biological 
experiments however, where random variation-here modelled through 
{ E ~ ~ ) ,  and estimated with the residual sum of squares-has to be taken 
into account. Is this the case in SA? Sacks et al. (1989) have argued 
that, in a computer experiment, all the variation in the response comes 
through the variation in the input variables and so models of the 
above form are inappropriate. This would certainly be the case if only 
two input variables were under study. But as Terry Andres has 
pointed out (private communication) in a typical computer experi- 
ment the statistician is faced with usually at least dozens of input 
variables. In that case, one could fit a model using m < n of them, and 
test its adequacy by assuming that the residual noise in the variation 
of the input constitutes random error. This is in fact exactly what 
happens in "classical" ANOVA: the only difference being that for a 
computer experiment we are aware of the causes of the extra noise, 
while in the biological experiment we are not. Although conceptually 
different to fractionally replicated designs-where higher order inter- 
actions are set zero in order to leave sufficient degrees of freedom with 
which to estimate a2-the approach is identical. The fact that 
investigators in different disciplines have used the same kind of 
decomposition, apparently without cross-fertilisation, seems to be one 
of the many instances of convergent thinking in the handling of 
scientific problems. 

2.3. Computation of Sobol' Sensitivity Indices 

As mentioned in the previous section Sobol' indices can be computed 
using plain Monte Carlo integrals. So, for example, if N sets of X are 
generated, X I ,  x2, . . . , XN say, each one a sampled point in Kn, then 
the straightforward MC estimates of grand mean and total variance 
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108 G. E. B. ARCHER et al. 

are given by 

However, it is not necessary to generate a further set of MC samples 
for each combination of variables whose sensitivity index must be 
calculated. If we write 

then at the m'th stage of the MC process we generate two such 
(1) samples, x-,, and x!!,~ say, and then the partial variances required to 

estimate the main effects (Si = DJD) can be estimated using 

here, the superscripts (1) and (2) refer to different MC samples. The 
computational procedure may be clarified as follows: 

(i) Under the assumption that all main effects are to be estimated, 
two matrices of dimension N by n are generated (matrices (1) and 
(2) in the previous equation). The matrix superscripted (1) is used 
for "sampling" and that superscripted (2) is for "re-sampling" 
(although not in the bootstrap sense!). 

(ii) In order to compute variable Xi's contribution to the total 
variance, multiply the values of f obtained by sampling 
independently all the variables by the corresponding f values 
obtained by "resampling" all the variables except Xi. If variable i 
is important, then high values of the first term in the (f x f )  
product will be multiplied by similarly high values in the second 
term. Otherwise the pairing of terms will tend to be casual, high 
values being possibly multiplied by low ones, and the di value 
tend to be lower. This technique was proposed in Saltelli et al. 
(1993) but had already been described in a Russian article (Sobol' 
(1990a); more convergent thinking). The approach aims to 
minimise MC variability, since sensitivity indices for variables i 
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SENSITIVITY MEASURES 109 

(iii) 

(iv) 

and j will differ only in the i'th and j'th columns of their input 
matrices, Si is in fact computed by summing terms: 

while Sj from summing terms: 

(In computing Si we resample all but xi, while for Sj we resample 
everything except xj . )  
The computational cost of the procedure, the number of model 
evaluations required to compute all the main effects, is size 
(n + 1)N. (One sample of size N for computing the averagejb plus 
n of the same size for each of the main effects). The cost of the 
bootstrap procedure in Section 3 is negligible by comparison, as 
the bootstrap uses the model evaluations already generated. In 
normal test applications, it is more expensive to generate a single f 
value than to resample a set off values a large (10,000) number 
times. 
The higher order interactions and the total effects terms are 
computed in the same manner. For instance the total effect for Xi 
(see Section 2.1) requires the calculation of 

where this time only one realisation xim is "resampled" to obtain 
the second term in the product. Therefore, in order to compute a 
full set of total effect terms {ST,), it is only necessary to compute 
one Monte Carlo integral for the mean, plus n MC integrals for 
the {D~,). 

2.3.1. Sample Generation 

In his work on sensitivity measures for nonlinear models, Sobol' 
recommends the use of a quasi random numbers sequence for the 
computation of the MC integrals: the LP, sequence. A description of 
this algorithm can be found in Sobol' (1990b); quasi random numbers 
are characterised by faster convergence under certain limitations on 
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110 G. E. B. ARCHER et al. 

the value of n; see also Davis & Rabinowitz (1984), and Brately & Fox 
(1988). 

3. BOOTSTRAP CONFIDENCE INTERVALS 
FOR SENSITIVITY INDICES 

No estimate of sensitivity can be of any use without an estimate of its 
sampling variability. In Sobol' (1990b) the "probable error" for the Di 
was used as a judge of accuracy, i.e., SDi is calculated so that 
Pr{lDi - ~~l 5 SDi) = 0.5. For the Si and ST, indices, a more suitable 
estimate of accuracy can be derived using bootstrap confidence 
intervals (BCIs). For detailed discussion of BCIs, see Chapters 
12,13,14 and 22 of Efron & Tibshirani (1993); basically, the MC 
sampled {x,) values are resampled (i.e., sampled with replacement) B 
times, at each stage and for each variable Si is recalculated, leading to 
a bootstrap estimate of the sampling distribution of the sensitivity 
indices, { ~ ~ ) f = ~ ,  for i = 1, .  . . , n. Then BCIs can be constructed in a 
number of ways: as a small check on robustness in our numerical 
work, two methods were used. First, the percentile method, which 
selects as endpoints for a 95% interval the 2.5% and 97.5% percentiles 
of the bootstrap distribution. Secondly, the moment method, which 
relies on large sample theory and gives a symmetric 95% interval for 
Si as 

si iz 1.96 x e.s.e. (&), where e.s.e.(si) = 

l B  
and Sr* = -xqb 

B 
b= 1 

In our experiments, we chose B= 10000. The moment interval has the 
advantage that the bootstrap provides reliable estimates of standard 
error for very many fewer sizes of B than is the case for percentiles of 
the unknown distribution function. However, moment intervals could 
have poor coverage properties if the distribution turned out to be 
skewed either to the right or the left. 

Bootstrapping works because sampling with replacement from a set 
of independent, identically distributed data is equivalent to sampling 
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SENSITIVITY MEASURES 11 1 

from the empirical distribution function of the data. In Appendix A it 
is shown that the procedure, usually applied with pseudo-random 
sampling, is valid with the use of quasi-random sampling as well. 

3.1. A Note on the Number of Resamples 

One of our reviewers comments that the bootstrap technique may be 
offputting due to the large number of resamples required. Is B = 10,000 
a prohibitive number, for a practical, as opposed to artificial, example? 
In the case of independent, identically distributed data, the time 
needed to calculate each ST really depends on the length of time 
required to select N random variates uniformly distributed on (0,l). 
This is not likely to take a long time (our total computing time for 
both sets of confidence intervals was about 5 minutes). It is the case 
that reliable estimation of the extreme percentiles of a sampling 
distribution requires much larger amounts of resampling than is the 
case for simpler standard error estimation (Hall, 1986). We re-iterate 
for emphasis: bootstrap resampling is carried out without the need for 
further model evaluations. It is the number of model evaluations which 
govern the cost of a numerical example. 

In practice a value of B= 1000 or 2000 is likely to be chosen. A very 
simple check on the adequacy of the percentile intervals can be given 
by the jackknife-after-bootstrap method (Efron 1992). Without any 
further resampling, this technique estimates the standard errors in 
bootstrap functionals, and so a quick check can be made on the 
stability of bootstrap intervals generated from (say) B= 1000. If the 
percentiles seem robust against bootstrap sampling variability, then 
the experimenter can be happy with a much lower level of resampling 
than used in our experimental section. 

4. NUMERICAL EXPERIMENTS 

The effectiveness of the Sobol' indices and the 
investigated using the following test function: 

bootstrap intervals are 
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112 G.  E. B. ARCHER et al. 

where 

As before, f is defined on Kn. Figure 4.1 gives plots of the function 
g i (o ) ,  for different values of the parameter ai. Function f will integrate 
to 1 for all values of the parameter greater than or equal to zero. 

This test function, with ai = OVi, was used in Davis & Rabinowitz 
(1984) to test multidimensional integration. The function gi (o)  was 
also used in Saltelli & Sob01 (1995a, 1995b). 

The parameters control the function as follows: 

The importance of input variable Xi is therefore governed by the size 

X 

FIGURE 4.1 Some examples of the test function. 
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SENSITIVITY MEASURES 

of at. For example: 

ai = 0 + 0 5 gi 5 2 + Xi is an important variable 
ai = 9 + 0.9 5 gi < 1.1 + Xi is less important 
ai = 99 + 0.99 < gi 5 1.01 + Xi is insignificant. 

There are several advantages to the use of this test function: 

(1) the sensitivity indices can be calculated analytically; 
(2) it is strongly nonlinear and nonmonotonic, and hence provides a 

good test of the methods; 
(3) by definition, all the interaction terms are non-zero; 
(4) the parameters of the function allow the experimenter to "fine- 

tune" the level of difficulty. 

In addition, the results from this test function are easily understood 
and comparable with other work (for example in David & Rabinowitz 
(ibid.)). None of these advantages are present in the case of numerical 
simulation of a numerical experiment. (For the application of the 
sensitivity indices to larger models, see Saltelli et al., (1993), Saltelli & 
Hjorth (1995) and SAM0 (1996).) 

For the experiment, n = 20 variables were chosen and the 
parameters set to a, = ((i - 1)/2) i = 1, . . . , n, and so Xi monotoni- 
cally decreases in importance as i increases. The input variables were 
generated using Sobol' LP, sequences, with N =  512. 

The global indices, &,, were then calculated as described in 
Section 3. Table IV.1 contains a list of the variable rankings, estimated 
sensitivities, and their interval estimates. Figures 4.2a and 4.2b contain 
the same information graphically. 

5. RESULTS 

Starting with the indices themselves, there is good monotonic decrease 
in importance for the first seven variables. The estimates for Variables 
11,12 and 18 are a little odd, but the indices have indeed picked out the 
most important variables clearly. Looking at variables 19 and 20, we 
see the "impossible" result of a negative index. Theoretically 
impossible, since the indices are theoretically a ratio of variances, it 
must be concluded that this is a function of the MC "short-cutv- 
examination of Equation (6) shows how it can occur. However it does 
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TABLE 1V.I Estimates of Sobol' indices and Bootstrap Confidence Intervals 

Variable Moment BCZ 

(0.390,0.604) 
(0.1 11,0.378) 
(0.045,0.225) 

(-0.009,0.131) 
(-0.005,0.135) 
(-0.018,O.lOl) 

(0.002,0.072) 
(-0.050,0.063) 
(-0.016,0.065) 
(-0.048,0.052) 
(-0.031,0.057) 
(-0.018,0.049) 
(-0.026,0.036) 
(-0.027,0.036) 
(-0.029,0.031) 
(-0.020,0.034) 
(-0.012,0.028) 
(-0.009,0.035) 
(-0.032,0.012) 
(-0.039,-0.001) 

Percentile BCZ 

(0.389,0.603) 
(0.104,0.373) 
(0.042,0.225) 

(-0.010,0.132) 
(-0.009,0.132) 
(-0.022,0.099) 

(0.000,0.072) 
(-0.052,0.063) 
(-0.016,0.065) 
(-0.049,0.053) 
(-0.034,0.056) 
(-0.019,0.048) 
(-0.026,0.037) 
(-0.027,0.036) 
(-0.030,0.030) 
(-0.020,0.033) 
(-0.012,0.028) 
(-0.009,0.035) 
(-0.032,0.013) 
(-0.039,O.OOO) 

not affect the message of the results with respect to the relative 
importance of the input variable. 

Examining the BCIs, there is very close agreement between the two 
methods, and so it seems very likely that the sampling distribution of 
these indices is symmetrical, a hypothesis which gains extra weight 
when it is noted that the index estimates are by and large near the centre 
of the BCIs. A "quick-and-dirty" hypothesis test of index differences 
using the intervals suggests that the importance measure for Variable 2 
is significantly lower than that for variable 1 (since 0.244 lies below the 
lower endpoint of the Variable 1 intervals). Indeed Variable 1 in such a 
comparison appears significantly more important than any other 
variable. More is said on this matter of index differences in Section 6. 

Another approach common to SA is to rank transform data to 
make analysis more "robust" (see Iman & Conover (1979), Saltelli & 
Marivoet (1990) and Saltelli et al., (1993)). The Sobol' indices are 
certainly amenable to rank transformation and in fact using the test 
function of Section 4 on rank transformed input variables served to 
emphasise the difference between the first and subsequent variables- 
with the pleasing results that the negative indice estimates for the very 
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SENSITIVITY MEASURES 

Moment intervals, c=0.95 

'"I Percentile intervals, c=0.95 

FIGURE 4.2 Moment (top) and Percentile (bottom) bootstrapped intervals for the 
total Sensitivity Indices. 

unimportant variables disappeared. The inference about relative 
variable importances was unaffected by the transformation and so 
the results are not displayed. 

6. CONCLUSIONS 

We have offered a short description of a new, powerful method for 
sensitivity analysis, which incorporates advantages from several 
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different pre-existing approaches (from FAST to correlation ratios). It 
builds on the earlier methods by allowing a full ANOVA to be carried 
out on the outcome of a numerical experiment. Results from the 
literature and the example in Section 4 are certainly encouraging. The 
Sobol' sensitivity indices were able to clearly "sort out" the most 
important input variables into their correct order of importance, and 
the bootstrap intervals were an effective way of assessing overlap 
between them. 

The bootstrap has been shown useful in the situation of gauging 
uncertainty in an important area-where uncertainty itself is under 
examination! However, it should be recognised that comparing 
confidence intervals across classes is not a formal test of the hypothesis 
that one sensitivity index is significantly different from another, but 
only a "quick" method of assessing how likely this is to be the case. It 
would be conceptually straightforward to use the bootstrap to test 
such a hypothesis: and clearly it is of interest so to do. The bootstrap 
could also be used to examine the bias in an SA estimate, and if 
necessary, correct that bias. This exciting idea calls for further 
development. 

The global effect indices (those which include all the effects of a 
parameter, either alone (the main effect) or in conjunction with others 
(the interaction) are especially powerful for SA, particuarly when used 
with the bootstrap estimates of confidence bounds. By taking into 
account higher order interactions, the indices seem to offer a useful 
advantage over previously advanced variance based SA measures. 

The use of the indices, exemplified here through their application to 
a well known analytic test case, is especially useful for real 
applications. In Saltelli et al. (1993) it was shown, via reference to 
three international benchmarks, that variance based measures are 
preferrable for automated sensitivity analysis. In Saltelli & Hjorth 
(1995) the global effects indices were applied successfully to a chemical 
kinetics system. In the same article, it was also shown that the 
interaction terms are indeed important in many real settings, whereby 
a first order sensitivity measure may be insufficient. However, Saltelli 
and Hjorth (1995) estimated the error on the sensitivity measure using 
the probable error (see Section 3 above). The introduction of the 
bootstrap approach in this article upgrades the performance of the 
measures by offering a more accurate and realistic evaluation of 
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SENSITIVITY MEASURES 117 

the error. This improvement partially mitigates the main drawback in 
the use of the indices, i.e., the large sample size ((n + l )N) needed for 
their computation; this is also a consequence of the MC approach 
applied to a continuous range of x values. As discussed in Section 2, a 
(saturated or fractional) factorial design model could be used in the 
same problem setting, and future work could certainly involve a 
comparison of Sobol' and ANOVA approaches. 
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APPENDIX A QUASI-RANDOM SAMPLING 
FOR BOOTSTRAP 

Suppose 6' is a functional of the distribution F which generated the 
i.i.d. sample x  (F + x ) ,  and that 6 = s ( x )  is the estimator of this 
functional. The bootstrap replicate x* = ( x ; ,  . . . , x i )  is generated by 
sampling at random and with replacement from x.  

The simplest algorithm for sampling x* on a computer can be 
specified (Sobol', 1994) as follows: select a standard random number y, 
compute an integer k = [ny] + 1 and put x* = xk. This rule defines a 
transformation x  = h(y) ,  and the function h(z )  is piecewise constant. 
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So we can write x* = ( h ( y l ) ,  . . . , h(yn) ) ,  and see that the resample is 
defined by one random point r with cartesian co-ordinates 
(71,. . . ,"in). Clearly, I? is distributed in the n-dimensional unit 
hypercube. 

Bootstrap Sample 

The bootstrap distribution for 6 is generated as follows. Select B 
independent random points rb, b = 1,. . . , B, from which are generated 
B resamples, each of which yields a re-estimate of the functional of 
interest: 

which is the bootstrap estimate of the sampling distribution. It can be 
used to estimate various moments of the estimator. Estimates of the 
expectation and standard error are, respectively, 

At large B, OT; is asymptotically normal and the definition of 
approximate probable errors or confidence intervals is possible. Both 
quantities stochastically converge: 

where 

E [ i m  ] = 1' . . . 1' [ , ~ ( h ( ~ ~ ) ,  . . . , h(zn))]"dz1 . . . dz,. 

The integral can be easily expressed in the form of a sum because the 
integrand is piecewise constant: 

However, the last expression is as a rule impractical: the number of 
summands nn is usually very large. 
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Quasi-random Bootstrap 

Let Ql ,  . . . , Qb, . . . be an n-dimensional quasi-random sequence (that is, 
a sequence of nonrandom points uniformly distributed in the number- 
theoretical sense inside the n-dimensional unit hypercube). The boot- 
strap replications can be computed from points Qb rather than rb, using 
the cartesian co-ordinates ( q l ,  . . . , q,) of a point Q to generate the 
resample x*, instead of the random co-ordinates (yl , . . . , y,) of I?. We 
label the b'th set of quasi-random co-ordinates as (q ; , .  . . , q  R) .  

Clearly, the function s (h(z l ) ,  . . . , h(z,)) is Riemann-integrable 
Therefore 

and the same is true for all positive powers of s. Hence 

0; - ~ $ 1 ,  se i  + E[e2]  - ( ~ [ 4 ) ~ ,  as B + oo. 

The function 8 will generally be symmetric (see above) and so 
(Sobol' and Shukhman, 1995) switching to quasi-random numbers 
may lead to a considerable increase in rate of convergence, for 
moderate n, say n 5 15. At higher n remians only a gain in reliability of 
computations. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
ts

bi
bl

io
te

ke
t i

 B
er

ge
n]

 a
t 0

0:
18

 2
2 

A
pr

il 
20

15
 


