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It is shown that the effective dimensions can be estimated at reasonable computational costs using

variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be

found by using the Sobol’ sensitivity indices for subsets of variables. The effective dimension in the

superposition sense can be estimated by using the first order effects and the total Sobol’ sensitivity

indices. The classification of some important classes of integrable functions based on their effective

dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of

numerical tests verify the prediction of the developed techniques.
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1. Introduction

Modern mathematical models of real systems in physics,
chemistry, biology, economics and other areas often have high
complexity with hundreds or even thousands of variables. Straight-
forward modelling using such models can be computationally
costly or even impossible. There is a demand for complexity
reduction techniques which are not only general and applicable
to any complex non-linear model but also rigorous in that
their application provides estimates of the approximation errors.
Variance based global sensitivity analysis allows to develop such
complexity reduction techniques. Recently a new class of measures
was introduced by Borgonovo [1,2]. These measures are known as
moment-independent. They are based on the entire distribution of
the output without a specific reference to its moments. Potentially,
moment-independent measures can also be used for complexity
reduction.

For modelling and complexity reduction purposes it is impor-
tant to distinguish between the model nominal dimension and its
effective dimension. The notions of the ‘‘effective dimension’’ in the
truncation and superposition sense was introduced by Caflisch
et al. in [3]. Quite often complex mathematical models have
effective dimensions much lower than their nominal dimensions.
The knowledge of model effective dimensions is very important as
it allows to apply various complexity reduction techniques.
ll rights reserved.
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nko).
The effective dimension in the truncation sense dT loosely
speaking is equal to the number of important factors in the model.
Identification of important and not important variables allows to
fix not important variables at their nominal values. The resultant
model would have lower complexity with dimensionality reduced
from n to dT. A condition dT 5n often occurs in practical problems.
Another type of complexity reduction is associated with the
effective dimension in the superposition sense dS: the function
has the effective dimension in the superposition sense dS if it is
almost a sum of s-dimensional function components in the ANOVA
decomposition.

For some problems such as path-dependent option pricing in
mathematical finance changing the order in which input variables
are sampled can dramatically decrease dT. Such techniques are
known as dimension reduction. Most results on dimension reduc-
tion are empirical and qualitative (see for example [3]).

A straightforward evaluation of the effective dimensions from
their definitions is not practical in the general. Owen introduced
the dimension distribution for a square integrable function [4]. The
effective dimension can be defined through a quantile of the
dimension distribution. He showed that for some classes of functions
quantiles of the dimension distribution can be explicitly calculated
but they are difficult to estimate in a general case. In this paper we
show that global sensitivity analysis based on the Sobol’ sensitivity
indices (SI) allows to estimate the effective dimensions at reasonable
computational costs.

Evaluation of the Sobol’ SI necessitates the computation of high-
dimensional integrals. The classical grid methods become compu-
tationally impractical when the number of dimensions n increases
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because of ‘‘the curse of dimensionality’’. The convergence rate of
Monte Carlo (MC) integration methods does not depend on the
number of dimensions n. However, the rate of convergence
OðN�1=2Þ, where N is the number of sampled points, attained by MC
is rather slow. A higher rate of convergence can be obtained by using
quasi-Monte Carlo (QMC) methods based on uniformly distributed
sequences instead of pseudo-random numbers. Asymptotically, QMC
can provide the rate of convergence O(N�1).

For sufficiently large N, QMC should always outperform MC.
However, in practice such sample sizes quite often are infeasible,
especially when high-dimensional problems are concerned. Many
numerical experiments demonstrated that the advantages of QMC
can disappear for high-dimensional problems. There were claims
that the degradation in performance of QMC occurs at nZ12 [5]. In
contrast, other papers reported the superiority of QMC over MC for
some integrands with n¼ 360 [6]. Some explanations for such
inconsistent results were given using the notion of the effective
dimension [3]. In [7] it was shown how the ANOVA components are
linked to the effectiveness of QMC integration methods. Sloan
and Wozniakowski [8] studied the efficiency of the quasi-Monte
Carlo algorithms for high-dimensional integrals. They identified
classes of functions for which the effect of the dimension is
negligible. These are the so-called weighted classes in which the
behavior in the successive dimensions is moderated by a sequence
of weights.

There is no computationally feasible technique that would
predict the efficiency of QMC in high dimensions. In this paper
we use Sobol’ SI as a quantitative measure of the QMC efficiency.

This paper is organized as follows. Section 2 briefly describes MC
and QMC integration algorithms and issues concerning the possible
degradation of QMC efficiency in higher dimensions. Section 3 gives
a description of the Sobol’ SI. Section 4 presents improved formulas
for evaluation of the Sobol’ SI. The notion of the effective dimension
is introduced in Section 5. The classification of functions based on
Sobol’ SI is suggested in Section 6. It is shown how this classification
can be used for the prediction of the QMC efficiency. Test examples
and numerical results are considered in Section 7. Finally, conclu-
sions are given in Section 8.
2. MC and QMC algorithms

Consider the evaluation of an integral

I½ f � ¼

Z
Hn

f ðxÞ dx,

where the function f ðxÞ is integrable in the n-dimensional unit
hypercube Hn and sufficiently regular. The Monte Carlo quadrature
formula is based on the probabilistic interpretation of an integral.
An approximation to this expectation is

IN½f � �
1

N

XN

i ¼ 1

f ðxiÞ,

where fxig is a sequence of random points in Hn of length N. The
approximation IN[f] converges to I[f] with probability 1.

Consider an integration error e defined as

e¼ I½ f ��IN½ f �
�� ��:

The expectation of e2 is

Eðe2Þ ¼
s2ðf Þ

N
,

where s2ðf Þ is the variance. The root mean square error of the MC
method is

eMC ¼ ðEðe2ÞÞ
1=2
¼

sðf Þ
N1=2

:

In contrast to grid methods, the convergence rate of MC methods
does not depend on the number of variables n although it is
rather slow.

The efficiency of MC methods is determined by the properties of
the random numbers. Random number sampling is prone to
clustering. As new points are added randomly, they do not necessa-
rily fill the gaps between already sampled points. In contrast, low-
discrepancy sequences (LDS) are specifically designed to place
sample points as uniformly as possible.

The discrepancy is the measure of deviation from uniformity.
Consider a number of points N from a sequence fxig in an
n-dimensional rectangle Q whose sides are parallel to the coordi-
nate axes, Q AHn. Then, the discrepancy is defined as

DN ¼ sup
Q AHn

NQ

N
�mðQ Þ

����
����,

where m(Q) is a volume of Q and NQ is the number of points of the
sequence fxig that are contained in Q.

The Koksma–Hlawka inequality gives an upper bound for the
QMC integration error:

eQMC rVðf ÞDN : ð1Þ

Here, V(f) is the variation of f ðxÞ in the sense of Hardy and Krause
[9]. For a one-dimensional function with a continuous first
derivative it is simply

Vðf Þ ¼

Z
H1

jdf ðxÞ=dxj dx: ð2Þ

In higher dimensions, the Hardy-Krause variation may be defined
in terms of the integral of partial derivatives. Further it is assumed
that f ðxÞ is a function of bounded variation.

For random numbers, the expected discrepancy is DN ¼

OððlnlnNÞ=N1=2Þ, while the discrepancy of LDS is of the order

DN ¼O
logn
ðNÞ

N

� �
: ð3Þ

There are a few well-known and commonly used LDSs. Different
principles were used for their construction by Halton, Faure, Sobol,
Niederreiter and others. The LDS developed by Niederreiter has the
best theoretical asymptotic properties [9]. However, many prac-
tical studies have proven that the Sobol’ LDS is in many aspects
superior to other LDS [6,10].

The Sobol’ LDS was constructed by following the three main
requirements [11]:
1.
 Best uniformity of distribution as N-1.

2.
 Good distribution for fairly small initial sets.

3.
 A very fast computational algorithm.
Points generated by the Sobol’ LDS produce a very uniform filling of
the space even for a rather small number of points N, which is a very
important point in practice.

The bound on the integration error (1) is a weak one and is not
particularly meaningful in practice. It was shown experimentally
that the QMC integration error is determined by the variance and
not by the variation of the integrand [12]. It is generally accepted
that the rate of the discrepancy determines the expected rate of the
accuracy, so one can use an estimate of the QMC convergence rate

eQMC ¼O
logn
ðNÞ

N

� �
: ð4Þ

Asymptotically, this rate of convergence is O(N�1). Numerous
computational studies showed that QMC methods can provide
significant improvement over MC. The analysis of (4) shows that
eQMC is an increasing function of N up to some threshold value of N�,
N� � expðnÞ. The accelerated convergence rate O(N�1) sets in at
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N4N�. For high-dimensional problems such a large number of
sample points is infeasible. This is one of the reasons why in
practice the advantages of using QMC can disappear at high and
even moderate values of n.

The study of some test problems in [5] led its authors conclude
that even for problems of moderate dimensionality (n412) QMC
offers no practical advantage over MC. Other authors [13,14] also
reported the degradation of performance of QMC in high dimen-
sions and for a discontinuous function even in low dimensions. In
contrast, in [6] it was found that for some high-dimensional
integrands (n¼ 360), QMC significantly outperformed MC. These
results were later confirmed in other papers (e.g. [3,4,15]).

Sobol noted that an error bound (1) with DN given by (3) was
obtained with the assumption that the function f ðxÞ depends
equally on all variables [16]. In practical applications many
functions quite often strongly depend only on a small subset of
variables: xi1 ,xi2 , . . . ,xis ,1r i1o i2o � � �o is,son while the depen-
dence on other variables can be weak. In this case, n can be
substituted by s in (4). This consideration is based on a very
important property of LDS: the projection of the n-dimensional LDS
on the s-dimensional subspace forms the s-dimensional LDS. That
means in particular that the accelerated convergence rate of the
QMC integration can set in at lower values of N4N�,N� � expðsÞ. It
is important to note that in practice low-dimensional projections
have good uniform distributions, while in high dimensions LDS are
not particularly well equidistributed for feasible N.

The effects on the convergence of certain properties of inte-
grands including variance, variation, smoothness and dimension
were studied in [14]. It was found that the variation does not affect
the convergence, while the variance provides a rough upper bound,
but it does not accurately predict the performance.

Caflisch et al. [3] introduced the notion of an effective dimen-
sion. It was suggested that QMC is superior to MC if the effective
dimension of an integrand is not too large. The notion is based on
the ANalysis Of VAriances (ANOVA). In [7] it was shown how the
ANOVA components are linked to the effectiveness of QMC
integration methods. Owen [4] introduced the dimension distribu-
tion for square integrable functions and showed how it is linked
with Sobol’ SI [17] . Further details are given in Section 5.
3. Global sensitivity indices

Many practical problems deal with functions of a very complex
structure. Global sensitivity analysis (SA) can provide information on
the general structure of a function by quantifying the variation in the
output variables to the variation of the input variables. The method of
global SA is superior to the local SA methods such as regression analysis,
rank transformation, etc. as it is general and can be applied to both
linear and highly non-linear functions [18]. One of the most efficient
global SA techniques is based on the Sobol’ SI [17]. This technique
provides an unambiguous information on the importance of different
subsets of input variables to the output variance.

Consider an integrable function f ðxÞ defined in the unit hyper-
cube Hn. It can be expanded in the following form:

f ðxÞ ¼ f0þ
Xn

s ¼ 1

Xs

i1 o ���o is

fi1 ...is ðxi1 , . . . ,xis Þ: ð5Þ

This expansion is a sum of 2n components. It can also be presented as

f ðxÞ ¼ f0þ
Xn

i ¼ 1

fiðxiÞþ
Xn

io j

fijðxi,xjÞþ � � � þ f12...nðx1,x2, . . . ,xnÞ:

Each of the components fi1 : :is ðxii , . . . ,xis Þ is a function of a unique
subset of variables from x. The components fi(xi) are called first order
terms, fij(xi,xj) the second order terms and so on.
It can be proven [17] that the expansion (5) is unique ifZ
Hn

fi1 : :is ðxii , . . . ,xis Þ dxik ¼ 0, 1rkrs, ð6Þ

in which case it is called a decomposition into summands of
different dimensions [19]. This decomposition was introduced in
[20,19]. Later it became known as the ANOVA decomposition. The
ANOVA decomposition is orthogonal, i.e. for any two subsets uaw
an inner productZ

Hn

fuðxÞfwðxÞ dx¼ 0: ð7Þ

It follows from (5) and (6) thatZ
Hn

f ðxÞ dx¼ f0,

Z
Hn

f ðxÞ
Y
ka i

dxk ¼ f0þ fiðxiÞ,

Z
Hn

f ðxÞ
Y

ka ði,jÞ

dxk ¼ f0þ fiðxiÞþ fjðxjÞþ fi,jðxi,xjÞ ð8Þ

and so on.
For square integrable functions, the variances of the terms in the

ANOVA decomposition add up to the total variance of the function

s2 ¼
Xn

s ¼ 1

Xn

i1 o ���o is

s2
i1 : :is

, ð9Þ

where s2
i1 : :is
¼
R

Hn f 2
i1 : :is
ðxi1 , . . . ,xis Þ dxi1 . . . dxis .

Sobol’ defined the global SI as the ratios

Si1 : :is ¼
s2

i1 : :is

s2
:

All Si1 : :is are non-negative and add up to one

Xn

s ¼ 1

Xn

i1 o ���o is

Si1 : :is ¼ 1:

Si1 : :is can be viewed as a natural sensitivity measure of a set of
variables xii , . . . ,xis . It corresponds to a fraction of the total variance
given by fi1 : :is ðxi1 , . . . ,xis Þ. For example, S1 is the main effect of
a variable x1, S12 is a measure of interactions between x1 and x2

(i.e. that part of the total variance due to parameters x1 and x2 which
cannot be explained by the sum of the effects of parameters x1 any x2 )
and so on. For functions of an additive structure, only the low-order SI
are important. In an extreme case in which there is no interaction
among the input variables,

f ðxÞ ¼ f0þ
Xn

i ¼ 1

f ðxiÞ

all higher order SI are equal to zero. Thus,

Xn

i ¼ 1

Si ¼ 1:

This case is very important for the understanding of the performance
of QMC integration. It will be considered in the following section.

In the general case, all SI can be important for SA. Their
straightforward calculation using the ANOVA decomposition would
result in 2n integral evaluations of the summands fi1 : :is ðxi1 , . . . ,xis Þ

using (8) and 2n integral evaluations for calculations ofs2
i1 : :is

(9). For
high-dimensional problems such an approach is impractical. For
this reason Sobol’ introduced the SI for subsets of variables.
Consider two complementary subsets of variables y and z:

x¼ ðy,zÞ:
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Let y¼ ðxi1 , . . . ,xim Þ,1r i1o � � �o imrn,K ¼ ði1, . . . ,imÞ. The variance
corresponding to y is defined as

s2
y ¼

Xm

s ¼ 1

X
ði1 o ���o isÞAK

s2
i1 ,...,is

:

s2
y includes all partial variances s2

i1
,s2

i2
, . . . ,s2

i1 : :is
such that their

subsets of indices ði1, . . . ,isÞAK. The variance s2
z is defined similarly.

The total variance ðstot
y Þ

2 is defined as

ðstot
y Þ

2
¼ s2�s2

z :

ðstot
y Þ

2 consists of all s2
i1 : :is

such that at least one index ðipÞAK while
the remaining indices can belong to the complimentary set K . The
corresponding global SI are defined as

Sy ¼
s2

y

s2
,

Stot
y ¼

ðstot
y Þ

2

s2
:

Obviously Stot
y ¼ 1�Sz. Stot

y �Sy accounts for all interactions between y
and z. The total sensitivity indices were introduced by Homma and
Saltelli in [21].

The important indices in practice are Si and Si
tot. Their knowledge

in most cases provides sufficient information to determine the
sensitivity of the analyzed function to individual input variables.
The use Si and Si

tot reduces the number of index calculations from
O(2n) to just O(2n). Extreme cases are
�
 Stot
i ¼ 0 means that f ðxÞ does not depend on xi (in this case Si is

also equal to 0);

�
 Si ¼ 1 means that f ðxÞ depends only on xi (in this case Si

tot is also
equal to 1);

�
 Si ¼ Stot

i corresponds to the absence of interactions between

variable xi and other variables. It will be shown in the next
section how this case relates to the efficiency of QMC
integration.

4. Original and improved formulas for evaluation of SI

One of the most important results obtained by Sobol’ is an
effective way of computing SI. Given x and xu being two indepen-
dent sample points, where x¼ ðy,zÞ and xu¼ ðyu,zuÞ, Sy and Sy

tot are
calculated using the following formulae [22]:

Sy ¼

R 1
0 f ðxÞf ðy,zuÞ dx dzu�f 2

0R 1
0 f 2ðxÞ dx�f 2

0

, ð10Þ

Stot
y ¼

1

2

R
Hn ½f ðxÞ�f ðyu,zÞ�2 dx dyuR 1

0 f 2ðxÞ dx�f 2
0

: ð11Þ

In the general multidimensional case, the integrals in (10) and (11)
are evaluated using MC or QMC methods.

Formulae (10), (11) are based on generating two independent
sample points x¼ ðy,zÞ, xu¼ ðyu,zuÞ and evaluating the three func-
tions f ðxÞ,f ðy,zuÞ,f ðyu,zÞ. In this case a Monte Carlo algorithm for (10)
has a form

Sy �

1
N

PN
i ¼ 1 f ðy,zÞf ðy,zuÞ� 1

N

PN
i ¼ 1 f ðy,zÞ

h i2

1
N

PN
i ¼ 1 f 2ðy,zÞ� 1

N

PN
i ¼ 1 f ðy,zÞ

h i2
: ð12Þ

The extended version of the Sobol’ method presented by Saltelli
in [23]. It has an additional advantage of the reduced cost of
evaluating Sy and Sy

tot. Namely, for calculation of all one-dimen-
sional indices it uses N(n+2) model evaluation rather than N(2n+1)
for the original Sobol’ formulas. Moreover, it was shown in [23] that
these N(n+2) model evaluations can be used for computing all two-
dimensional indices. The extended version is based on using a
different set of function values, namely f ðxÞ,f ðxuÞ,f ðy,zuÞ.

One can notice that for less important variables values of the
terms in nominator of (12) can be very close. It can result in the
significant loss of accuracy. Situation can be improved using
modified formula for Sy. It is easy to see that f 2

0 ¼ ð
R

Hn f ðxÞ dxÞ2 ¼

ð
R

Hn f ðxÞ dxÞð
R

Hn f ðxuÞ dxuÞ. Hence, formula (10) can be rewritten as

Sy �

R
Hn f ðxÞf ðy,zuÞ dx dzu�ð

R
Hn f ðxÞ dxÞð

R
Hn f ðxuÞ dxuÞR

Hn f 2ðxÞ dx� f 2
0

: ð13Þ

This expression can be reformulated as

Sy �

R
Hn f ðxÞ½f ðy,zuÞ�f ðxuÞ� dx dxuR

Hn f 2ðxÞ dx�f 2
0

: ð14Þ

The correspondent Monte Carlo algorithm has a form

Sy �

1
N

PN
i ¼ 1 f ðy,zÞ½ f ðy,zÞ�f ðyu,zuÞ�

1
N

PN
i ¼ 1 f 2ðy,zÞ� 1

N

PN
i ¼ 1 f ðy,zÞ

h i2
: ð15Þ

The improved formula (15), which was suggested by Kucherenko
in [24], is based on the same set of function values as the extended
version suggested by Saltelli [23]. A comparison of the original and
improved formulas presented in [24,25] shows that for small value
indices the improved formula produces a few orders of magnitude
more accurate results. A comprehensive discussion of computation
of Sy

tot can be found in [36].
5. Effective dimensions

The ANOVA decomposition was used for the introduction of a
notion of the effective dimension in [3]. Let L¼ f1,2, . . . ,ng and jyj
be a cardinality of a set yDL.

Definition 1. The effective dimension of f in the superposition
sense is the smallest integer dS such thatX
0o jyjodS

SyZp, ð16Þ

where p is the threshold, 0opo1.

Condition (16) means that the function f is almost a sum of
dS-dimensional functions. The effective dimension dS is the order of
the highest effect one needs to include in the sum

P
0o jyjodS

Sy in
order to reach the target p. Another notion of the effective
dimension was implicitly introduced in [6]. In [3] it was called
the effective dimension in the truncation sense.

Definition 2. The effective dimension of f in the truncation sense is
the smallest integer dT such thatX
0oyD f1,2,...,dT g

SyZp: ð17Þ

In other words, the effective dimension dT is the highest number
of variables, which need to be included in the sum

P
0oyD f1,2,...,dT g

Sy

in order to reach the target p. The value dS does not depend on the
order in which the input variables are sampled, while dT does. For
the same p dSrdT .

It was suggested that the efficiency of QMC methods on high-
dimensional problems can be attributed to the low effective
dimension of the integrand (in one or both of the senses), although
no formal proof was given [3]. By reducing the effective dimension,
a higher efficiency of QMC integration can be achieved. One
example of such an approach is a simulation driven by Brownian
motion. It was shown that by changing the order in which the
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variables are sampled from the LDS the effective dimension can be
reduced and thus the accuracy can be significantly improved [3].

A straightforward evaluation of the effective dimension from its
definitions (16), (17) is not practical in the general case as it would
require the calculation of all 2n components s2

y ðfyÞ. A quasi-
regression method suggested in [7] is less computationally expen-
sive. A truncated orthogonal decomposition based on orthogonal
polynomials is used for an indirect estimation ofs2

y ðfyÞ. The method
allows the separation of high and low order subcomponents of fy.
The lower frequency or smoother parts of the ANOVA components
of an integrand f are known to be related to the accuracy of
integration rules applied to f. This method is still difficult to use for
the prediction of QMC efficiency and there are some unresolved
numerical issues such as the possibility of the negative variance
estimates.

Owen introduced a probability measure mðyÞ on non-empty
subsets yDf1, . . . ,sg, in which mðyÞ is proportional to the variance
contribution to f of the subset u of input variables of f [4]. If U is a
random m distributed subset, then its cardinality, denoted jUj, is a
random variable. The distribution nð�Þ of the random variable jUj is
the dimension distribution of f. The effective dimension can be
defined through a quantile of the dimension distribution nð�Þ.
Although such quantiles are hard to estimate, Owen considered
several cases of additive and multiplicative test functions for which
such quantiles can be explicitly calculated. Owen also introduced
the notion of mean dimensions. A similar concept was also
suggested and used in [26]. One of the advantages of using mean
dimensions is that they do no depend on the arbitrary threshold
level p. The mean dimension was computed for some commonly
considered test functions. It was shown that many of these
functions are sums or products of univariate functions and have
very low effective dimension. To analyze a class of isotropic test
functions introduced by Capstick and Keister [27], Owen linked
Sobol’ SI with the dimension distribution. It allowed him to
show numerically that the function classes under consideration
are in fact very nearly a superposition of functions of 3 or fewer
variables. Owen also noticed that low effective dimension is not
sufficient to state that QMC will be more efficient than MC for
discontinuous functions or functions with spikes such as some of
Genz’s functions. This observation is in accordance with earlier
findings made in [14].

The set of variables z can be regarded as not important if Stot
z 51.

In this case it is possible to fix a value of z at some nominal point z0

and to use f ðy,z0Þ as an approximation to f ðxÞ. The approximation
error depends on the choice of z0:

dðz0Þ ¼
1

s

Z
½f ðxÞ�f ðy,z0Þ�

2 dx: ð18Þ

The following theorem shows that dðz0Þ is of the same order as Stot
z .

Theorem 1. For an arbitrary z0 the error dðz0ÞZStot
z . If z0 is assumed

to be random and uniformly distributed, then the expected value is

Edðz0Þ ¼ 2Stot
z : ð19Þ

Proof of this theorem can be found in [25]. A corollary of the
theorem is the following assertion from [17]: for an arbitrary e40
Table 1
Classification of functions based on Sobol’ sensitivity indices.

Function type Description

A A few dominant variables

B No unimportant subsets; important low-order interaction term

C No unimportant subsets; important high-order interaction term
with probability exceeding 1�e

dðz0Þo 1þ
1

e

� �
Stot

z : ð20Þ

Consider set y¼ ðx1, . . . ,xdÞ,1rdrn and a complimentary set
z¼ ðxdþ1, . . . ,xnÞ. Using equality Stot

z ¼ 1�Sy and (17) for dT ¼ d it
is easy to see that

Stot
z r1�p, ð21Þ

hence

Edðz0Þr2ð1�pÞ: ð22Þ
6. Classification of functions based on Sobol’ SI

Functions with respect to their dependence on variables can
broadly be divided into two categories: functions with not equally
important variables and functions with equally important vari-
ables. Functions with equally important variables according to the
relationship between the values of Si and Si

tot can be further divided
into two subgroups. Altogether, three different types of functions
can be distinguished:

Type A: Functions with not equally important variables. Such
functions are characterized by the small effective dimension dT

(and small dS because of the condition: dSrdT ). In terms of Sobol’
SI, this case can be written as

Stot
y

ny
b

Stot
z

nz
: ð23Þ

Here y is a group of leading variables, z is a group of complimentary
variables, ny, nz are the number of variables in groups y and z
correspondingly, nz ¼ n�ny.

Type B: Functions with dominant low-order terms. Such func-
tions are characterized by the small effective dimension dS5n. In
an extreme case of dS ¼ 1

Si ¼ Stot
i , 1r irn: ð24Þ

As a result

Xn

i ¼ 1

Si ¼ 1

and Si ¼ 1=n.
Type C: Functions with dominant high-order interaction terms.

Such functions are characterized by the high effective dimension
dS � n. For such functions

SioStot
i , 1r irn: ð25Þ

This condition can also be written as

Xn

i ¼ 1

Sio1:

This classification is summarized in Table 1.
Type A functions are probably the most common type of functions

encountered in practice. For this case QMC can attain the rate of
convergence OðN�aÞwith a� 1, although the presence of high-order
interaction terms can somewhat decrease the convergence rate.
Relationship between

Si and Si
tot

dT dS QMC is more

efficient than MC

Stot
y =ny bStot

z =nz 5n 5n Yes

s Si � Sj ,8i,j Si=Stot
i � 1,8i � n 5n Yes

s Si � Sj ,8i,j Si=Stot
i 51,8i � n � n No
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In the ANOVA decomposition of type B functions, the effective
dimension dS is small. In the extreme case it is equal to 1, and a
function f ðxÞ can be presented as a sum of one-dimensional
functions

f ðxÞ ¼
Xn

i ¼ 1

fiðxiÞ:

QMC would always outperform MC for type B functions irrespec-
tive of the nominal dimension n. Although additive or nearly
additive integrands are not very common, there are important
application areas such as financial mathematics where such
integrands are typical.

For type C functions both of the effective dimensions are equal
or nearly equal to a nominal dimension n. For this type of functions
QMC will lose its advantage over MC in high dimensions because of
the importance of high-order terms in the ANOVA decomposition.

The evaluation of all main and total effects Sobol sensitivity
indices for type B and C functions requires N(n+2) function
calculations. Computational costs can be further reduced by using
the RS/QRS-HDMR method in which case the number of function
evaluations is equal to N.

The identification of the effective dimension dT for type A
functions may require a few iterations before a set of non-
important variables z satisfying condition (21) is found.
Table 2
Sensitivity indices for the standard and Brownian Bridge approximations.

Index Function Measure Numerical values

n¼8 n¼32

3A Brownian S1

Stot
1

0.72 0.70

Bridge
P

Si 0.72 0.72

approximation
P

Sij 0.28 0.28R
Hn x2ðtÞdt Stot

z ðdT Þ 0.09 0.10

dT 2 2

dS 2 2

4B Standard S1

Stot
1

0.17 0.06

approximation
P

Si 0.25 0.062R
Hn x2ðtÞdt

P
Sij 0.77 0.94

Stot
z ðdT Þ 0.05 0.09

dT 6 22

dS 2 2
7. Numerical results

7.1. Path integrals

Consider the Wiener path integral

I¼

Z
C

F½xðtÞ� dxx, ð26Þ

where C is the space of all functions x(t) continuous in the interval
0rtrT with a boundary condition xð0Þ ¼ x0. The integral (26) can
be regarded as an expectation with respect to the Wiener measure
on C, so that I¼ EðF½xðtÞ�Þ. Here xðtÞ is a random Wiener processes
(also known as a Brownian motion). A Monte Carlo approach
consists of constructing many random paths xðtÞ, computing F½xðtÞ�
and averaging the results. We consider two discretization algo-
rithms for random paths xðtÞ generation. The first one is known as
the standard discretization algorithm. It follows directly from the
definition of xðtÞ. The second one is the alternative discretization
algorithm also known as the Brownian bridge. It is based on the use
of conditional distributions. Both algorithms were described in
[28,29]. The alternative discretization algorithm was later analyzed
in [30] within the framework of the quasi-Monte Carlo approach.
Both algorithms have the same variance, hence their Monte Carlo
accuracies are also the same but the corresponding quasi-Monte
Carlo algorithms have different efficiencies with the Brownian
bridge having the much higher convergence rate (although there
are functionals F[x(t)] for which the Brownian bridge does not offer
a consistent advantage in quasi-Monte Carlo integration [31]).

Consider a functional

F½xðtÞ� ¼

Z T

0
x2ðtÞ dt: ð27Þ

This integral can be evaluated analytically. We assume that the
diffusion constant in the definition of Wiener’s measure is 1

2 and
that boundary value xðtÞ ¼ x0 is fixed. The interval 0rtrT is
divided into n equal parts. It is assumed that n¼ 2l, l is an integer
number l40. Random values of the process at the moments of time
ti ¼ ði=nÞT, 1r irT are sampled by using independent normal
N(0;1) variable Z. A continuous path x(t) is replaced with a
polygonal approximation xn(t), details can be found elsewhere [29].
The expression for Fn has the general form

Fn ¼
Xn

i ¼ 0

aiZ
2
i þ

Xn

i ¼ 0

Xn

jo i

aijZiZj, ð28Þ

where Zi are independent normal random variables, ai and aij are
coefficient values which depend on the type of approximation for
xn(t). Applying global sensitivity analysis it is easy to show that the
first and second order SI are given by

Si ¼ 2
a2

i

s2ðFnÞ
, Sij ¼

a2
ij

s2ðFnÞ
, ð29Þ

while all higher order SI are equal to zero. Here s2ðFnÞ is the
variance

s2ðFnÞ ¼ 2
X

i

a2
i þ
X
io j

a2
ij: ð30Þ

s2ðFnÞ has the same value for both algorithms, so they are
equivalent as far as the Monte Carlo method is concerned.

The results of the analytical evaluation of coefficients ai show for
the standard discretization coefficients ai linearly decrease with the
index number i. For the Brownian bridge discretization sensitivity
indices of the first few variables are much larger than those of the
subsequent variables. They also decrease more rapidly than
sensitivity indices for the standard discretization. For the Brownian
bridge the first two sensitivity indices are considerably larger than
ones for the standard method. It results in particular in the much
higher value of the sum of the first order sensitivity indices

P
iSi for

the Brownian bridge discretization than that for the standard
discretization (Table 2). The results show for the standard approx-
imation

P
iSi decreases with the increase of the number of

discretization points n approximately as 2=n. As a result the
importance of the second order interactions grows with n. They
become dominant at n44. In contrast, for the Brownian Bridge
approximation

P
iSi is much higher than that of the second order

indices
P

Sij and it is practically independent of the number of
discretization points n. Table 2 also shows the effective dimensions.
The effective dimension in the superposition sense is equal to 2 for
both approximations irrespective of n. The effective dimension in
the truncation sense is estimated using relationship (22) and values
of Sz

tot. In Table 2 the following notation is used: Sz
tot (dT) is a value of

Sz
tot for a set z¼ ðxdT þ1, . . . ,xnÞ. For the Brownian Bridge approxima-

tion dT ¼ 2 for any n and it belongs to the type A function. For the
standard approximation dT is close to n ðdT �

3
4 nÞ, however because

of the small effective dimension in the superposition sense it
belongs to the type B functions.
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It is well known that the initial low-dimensional coordinates
of the low discrepancy sequences (LDSs) are more uniformly
distributed than the later high-dimensional coordinates [9,11].
The Brownian bridge construction uses the best coordinates from
each n-dimensional vector point to determine most of the structure
of a path and reserves the later coordinates to fill in fine details. In
other words, the most important variables are determined with the
best dimensions of LDSs. It results in a significantly improved
accuracy of quasi-Monte Carlo integration. In contrast, the standard
construction does not account for the specifics of LDSs distribution
properties.

Numerical results for the convergence rates presented in [32]
confirm that for the standard Monte Carlo method there is no
difference between the two discretizations. On the other hand the
Brownian bridge discretization method with the Sobol sequence
provides significantly more accurate results than the standard
discretization.
7.2. Test problems commonly used in quadrature

To test the classification presented above, QMC and MC
integration methods were compared considering seven different
test functions presented in Tables 3–5. All functions are defined in
Hn. Their integral values are equal to 1. Most of the functions are
known test functions used previously in [33,5,34] and some other
papers for testing QMC integration methods. Functions 2A, 3B
Table 3
Sensitivity indices for type A functions.

Index Function f ðxÞ Ref. Measure

1A Pn
i ¼ 1

ð�1Þi
Qi

j ¼ 1

xj

[5] S1

Stot
1P

Si

2A Qn
i ¼ 1

j4xi�2jþai

1þai
,

[35] S1

Stot
1

a1 ¼ a2 ¼ 0,
P

Si

a3 ¼ � � � ¼ a100 ¼ 6:52

Table 4
Sensitivity indices for type B functions.

Index Function f ðxÞ Ref. Measure An

1B Qn
i ¼ 1

n�xi

n�0:5

[34] S1

Stot
1

1

0
@

P
Si

12

2B
1þ

1

n

� �n Qn
i ¼ 1

ffiffiffiffi
xi

n
p [34] S1

Stot
1

1

�
P

Si

ðn2

3B Qn
i ¼ 1

j4xi�2jþai

1þai
,

[35] S1

Stot
1

1



ai ¼ 6:52
P

Si

1



and 3C were used in [35,10] as test functions for global sensitivity
analysis.

The measures S1,Stot
1 ,S1=Stot

1 and
Pn

i ¼ 1 Si were calculated analy-
tically. Analytical and numerical results for selected dimensions
(n¼ 2, 10, 100) are presented in Tables 3–5.

For each of the considered functions, the root mean square error

e¼ 1

K

XK

k ¼ 1

ðI½ f ��Ik½ f �Þ
2

 !1=2

averaged over 50 runs (K ¼ 50) is presented in Figs. 1–3 as a
function of N. For the MC method all runs were statistically
independent. For QMC integration for each run a different part
of the Sobol’ LDS was used.

For practical purposes, MC and QMC integration errors can be
approximated as

cN�a: ð31Þ

The exponents for the exponential decay a in (31) for QMC and MC
integrations were extracted from the trend lines. The trend lines
and corresponding values for ð�aÞ are presented in Figs. 1–3.

The ANOVA decomposition for function 1A has the following
form (for simplicity, a three-dimensional case is considered):

f x1,x2,x3ð Þ ¼ �x1þx1x2�x1x2x3

¼ f0þ f1 x1ð Þþ f2 x2ð Þþ f3 x3ð Þþ f1,2 x1,x2ð Þþ f1,3 x1,x3ð Þ

þ f2,3 x2,x3ð Þþ f1,2,3 x1,x2,x3ð Þ
Analytical values Numerical values

n¼2 n¼10 n¼100

12

27

ð1�ð� 1
2 Þ

n
Þ
2

1
2�

4
5 ð�

1
2 Þ

n
þ 3

10 ð
1
3 Þ

n

0.75 0.89 0.89

[–] 0.86 0.89 0.89

ð1þDÞð2�nÞ

ð1þCÞ

– 0.71 0.0004

2Cþðn�2ÞD

ð1þCÞ2ð1þDÞðn�2Þ
�1

– 0.84 0.003

C ¼
1

3ða1þ1Þ2
,D¼

1

3ða3þ1Þ2

alytical values Numerical values

n¼2 n¼10 n¼100

1

þ 1
12ðn�0:5Þ2

1
A

n�1 0.96 0.992 0.999

n

n�1
2

� �2
1þ 1

12ðn�1
2Þ

2

� �n

�1

� � 0.981 0.995 0.999

þ
1

n2þ2n

�1�n 0.88 0.93 0.99

n

þ2nÞ 1þ 1
n2 þ2n


 �n
�1

h i 0.941 0.963 0.995

þ 1
3ðai þ1Þ2

�ð1�nÞ 0.99 0.95 0.55

n 1
3ðai þ1Þ2

þ 1
3ðai þ1Þ2

�n
�1

0.99 0.97 0.74



Table 5
Sensitivity indices for type C functions.

Index Function f ðxÞ Ref. Measure Analytical values Numerical values

n¼2 n¼10 n¼100

1C Qn
i ¼ 1

j4xi�2j
[33] S1

Stot
1

ð43 Þ
1�n 0.75 0.075 4.3�10�13

P
Si

n

3ðð43 Þ
n
�1Þ

0.86 0.20 1.06�10�11

2C
ð2Þn

Qn
i ¼ 1

xi
[-] S1

Stot
1

ð34 Þ
ðn�1Þ 0.75 0.075 4.28�10�13

P
Si

n

3ðð43 Þ
n
�1Þ

0.86 0.20 1.07�10�11

Fig. 1. The integration error e vs. the number of sampled points. (a) Function 1A

(n ¼ 360), (b) function 2A (n ¼ 100).
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¼�
3

8
þ �

3

4
x1þ

3

8

� �
þ �

1

8
þ

1

4
x2

� �
þ

1

8
�

1

4
x3

� �

þ �
1

4
x1�

1

4
x2þ

1

2
x1x2þ

1

8

� �
þ

1

4
x1þ

1

4
x3�

1

2
x1x3�

1

8

� �

þ
1

4
x2þ

1

4
x3�

1

2
x2x3�

1

8

� �
þ �

1

4
x1�

1

4
x2�

1

4
x3

�

þ
1

2
x1x2þ

1

2
x1x3þ

1

2
x2x3�x1x2x3þ

1

8

�
:

One can see by comparing f1(x1), f2(x2) and f3(x3) that the
variable x1 is more important in terms of its variance than x2 and x3.
It is also important to notice that first order terms are more
important than interaction ones: the ratio Si/Si

tot is close to one both
in low and high dimensions.

Pn
i ¼ 1 Si is also close to one (the

analytic values for sensitivity indices for arbitrary i are given in
[36]). To check condition (23), S1,2

tot and Stot
3,4,...,200 were calculated for

n¼ 200. Their values are Stot
1,2 ¼ 0:94 and Stot

3,4,...,200 ¼ 0:1, hence
dT ¼ 2 assuming that p¼ 0:9. These results confirm that condition
(24) is satisfied, in which case QMC should be more efficient than
MC irrespective of dimensionality. Indeed, the results of numerical
integration confirm this prediction (Fig. 1a): for a high-dimensional
problem with n¼360, the exponent for algebraic decay aQMC ¼ 0:94
in (31) is only marginally smaller than theoretically predicted
asymptotical value aQMC ¼ 1:0. The constant c is lower for the QMC
method.

Function 2A in Table 3 was widely used in papers on global
sensitivity analysis, where it was called ‘‘g-function’’ [35,10]. It can
be seen that, as the value of ai increases, the importance of the
corresponding variable decreases. By varying values of ai it is
possible to change the type of the g-function. Three different sets of
faigwere engineered in such a way that all three types of functions
were considered. For function 2A at n¼ 2Stot

1,2 ¼ Stot
3,4,...,100 ¼ 0:64, so

condition (23) is satisfied and dT is close to 2. At the same time the
interaction terms are dominant:

Pn
i ¼ 1 Si � 0. The efficiency of QMC

is still higher than that of MC at n¼ 100, althoughaQMC is only equal
to � 0.7 (Fig. 1b) and the constants c in (31) are almost equal for
both methods.

All considered test functions with equally important variables
are in fact symmetrical with regard to their variables

f ð. . . xi, . . . ,xj, . . .Þ ¼ f ð. . . xj, . . . ,xi, . . .Þ, 8fi,jg,ia j:

Type B functions 1B and 2B (see Table 4) have very similar values
of Si=Stot

i and
Pn

i ¼ 1 Si (both being very close to one). Fig. 2a and b
confirm that the integration errors for both functions exhibit a
similar behavior with QMC outperforming MC by several orders of
magnitude at n¼ 360.

With all ai being equal to 6.52, the g-function becomes a type B
function (function 3B in Table 4). The analysis of the global SI shows
that for this function the interaction terms (although not being
dominant) become more important at high n (Si=Stot

i decreases from
0.99 at n¼2 to 0.55 at n¼100). The values of the integration errors
for the QMC and MC methods are very similar up to N� � 216. At
N4N� QMC becomes more efficient than MC (Fig. 2c).

For functions 1C and 2C the ratio of Si/Si
tot rapidly decreases to 0

with n, which means that the higher order terms become dominant.
The effective dimensions for such functions are equal to their
nominal values. In this case, QMC loses its advantage over MC in
high dimension. In particular, aQMC � aMC . The results presented in
Fig. 3 confirm this prediction.



Fig. 2. The integration error e vs. the number of sampled points. (a) Function 1B

(n ¼ 360), (b) function 2B (n ¼ 360), (c) function 3B (n ¼ 100).

Fig. 3. The integration error e vs. the number of sampled points. (a) Function 1C

(n ¼ 20), (b) function 2C (n ¼ 20).
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8. Conclusions

It has been shown that global sensitivity analysis allows the
estimation of the effective dimensions at reasonable computa-
tional costs. Namely, dT can be found by calculation of the Sobol’
sensitivity indices for subsets of variables. dS can be estimated by
either using calculating the first order effects and the total Sobol’ SI
or by using the RS/QMC-HDMR method.

Global sensitivity analysis can also be used to predict the
efficiency of the QMC method. Functions with respect to their
dependence on the input variables can be loosely divided into
three categories: functions with not equally important variables
(type A) for which dT 5n; functions with equally important
variables and with dominant low-order terms (type B) for which
dS5n, and functions with equally important variables and with
dominant interaction terms (type C) for which dS ¼ dT ¼ n.
For functions of type A and B, QMC is even in the high-dimensional
case superior to MC while for functions of type C, QMC loses
its advantage over MC because of the importance of higher
order terms in the corresponding ANOVA decomposition. The
results of numerical tests verify the prediction of the suggested
classification.
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